KR102194215B1 - Biomarkers for Diagnosing Gastric Cancer And Uses Thereof - Google Patents

Biomarkers for Diagnosing Gastric Cancer And Uses Thereof Download PDF

Info

Publication number
KR102194215B1
KR102194215B1 KR1020190079713A KR20190079713A KR102194215B1 KR 102194215 B1 KR102194215 B1 KR 102194215B1 KR 1020190079713 A KR1020190079713 A KR 1020190079713A KR 20190079713 A KR20190079713 A KR 20190079713A KR 102194215 B1 KR102194215 B1 KR 102194215B1
Authority
KR
South Korea
Prior art keywords
gastric cancer
gene
expression level
dna
mirna
Prior art date
Application number
KR1020190079713A
Other languages
Korean (ko)
Inventor
성 김
Original Assignee
사회복지법인 삼성생명공익재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단 filed Critical 사회복지법인 삼성생명공익재단
Priority to KR1020190079713A priority Critical patent/KR102194215B1/en
Application granted granted Critical
Publication of KR102194215B1 publication Critical patent/KR102194215B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a gastric cancer biomarker composition and a diagnosis kit using an mRNA or miRNA expression level of a gene as an index for Koreans to diagnose or screen gastric cancer, and a method for providing information for diagnosing gastric cancer. According to the present invention, a gene expression level in the saliva of a suspected cancer patient among Koreans is measured by a formulation capable of measuring mRNA expression levels of the genes SPINK7, PPL, and SEMA4B, and miRNA expression levels of MIR140-5p and MIR301a, wherein SPINK7, PPL, SEMA4B, MIR140-5p, and MIR301a are biomarkers for diagnosing gastric cancer. Accordingly, the salvia of the patient is used in a non-invasive manner, and thus gastric cancer can be simply analyzed with high accuracy and can be diagnosed when the gene expression level is lower than that of a normal person.

Description

위암 진단용 바이오마커 및 이의 용도{Biomarkers for Diagnosing Gastric Cancer And Uses Thereof}Biomarkers for Diagnosing Gastric Cancer And Uses Thereof}

본 발명은 한국인을 대상으로 유전자의 mRNA 또는 miRNA 발현 수준을 지표로 하여 위암을 진단하는 위암 진단용 바이오마커 조성물 및 진단 키트, 위암 진단을 위한 정보의 제공 방법에 관한 것이다.The present invention relates to a biomarker composition and a diagnostic kit for diagnosing gastric cancer for diagnosing gastric cancer by using the mRNA or miRNA expression level of a gene as an index for Koreans, and a method of providing information for diagnosing gastric cancer.

위암(gastric cancer)은 전세계적으로 네 번째로 진단되는 흔한 암이며, 암 관련 사망의 원인으로 3위이다. 이러한 위암은 동아시아 국가에서 대표적으로 진단되는 암 유형이다. 우리나라의 경우, 유전, 소금에 절인 음식을 포함하는 식단, 흡연, 헬리코박터 파이로리(Helicobacter pylori)의 높은 유병률 때문에 위암 발생이 높은 편이다. 우리나라에서 대부분의 초기 위암은 증상이 있는 경우 (25.9 ~ 35.7%)에 비해 증상이 없는 경우 (74.2 ~ 78.1%)인 것으로 확인된다. 일단 위암이 진행되어 심각한 증상 및 합병증을 초래하면, 예후(prognosis)가 좋지 않으며 생존률이 약 65% (조기 발견시)에서 20% 미만으로 감소한다. 1999년에 위암의 높은 유병률 때문에 한국 국립 암 검진 프로그램(National Cancer Screening Program in Korea)은 40세 이상의 모든 사람들을 대상으로 2년마다 내시경 검사를 받을 것을 권장하는 암 조기 발견 프로그램을 시행하였다. 그러나, 위암 진단을 위한 내시경은 비용이 많이 들고, 시간이 많이 소요되며, 침습적이다. 검진 프로그램이 시작된 이후, 대상자의 30% 미만이 참여하였다. 따라서, 위암의 조기 발견 및 스크리닝을 위해서는 신뢰할 수 있는 검진 도구로 사용 가능한 예측 바이오마커(biomarker)가 필요한 실정이다. 이러한 바이오마커는 질병의 결과를 개선시키고 불필요한 내시경 검사를 줄이는데 매우 바람직하다. Gastric cancer is the fourth most common cancer diagnosed worldwide, and the third leading cause of cancer-related deaths. This gastric cancer is a typical type of cancer diagnosed in East Asian countries. In Korea, the incidence of gastric cancer is high due to genetics, diet containing salted foods, smoking, and the high prevalence of Helicobacter pylori . In Korea, most early gastric cancers are found to be symptom-free (74.2 to 78.1%) compared to symptoms (25.9 to 35.7%). Once gastric cancer progresses and causes serious symptoms and complications, the prognosis is poor and the survival rate decreases from about 65% (at early detection) to less than 20%. In 1999, due to the high prevalence of gastric cancer, the National Cancer Screening Program in Korea implemented an early cancer detection program that recommends that all people over the age of 40 undergo endoscopy every two years. However, an endoscope for diagnosis of gastric cancer is expensive, time-consuming, and invasive. Since the start of the screening program, less than 30% of the subjects participated. Therefore, there is a need for a predictive biomarker that can be used as a reliable screening tool for early detection and screening of gastric cancer. Such biomarkers are highly desirable for improving disease outcomes and reducing unnecessary endoscopy.

위암을 검진하는 비침습적인 방법으로 혈청 내 잠재적인 바이오마커를 찾는 연구들이 있었다. 저농도의 혈청 펩시노겐(pepsinogen) Ⅰ, Ⅱ 및 이들의 비율은 위 전암 병변(preneoplastic gastric lesion)의 지표로 간주되었으나, 그 결과가 암의 위치와 다른 연구들에서 사용된 컷오프(cutoff) 값에 따라 달라졌다. 태아성 암항원(carcinoembryonic antigen; CEA), CA19-9, CA-50, CA72-4와 같이 가장 흔히 사용되는 위암 마커는 ROC(receiver operating characteristic)의 곡선하면적(area under the ROC curve; AUC) 값이 0.54 ~ 0.73 인 것으로 보고되었는데, 이러한 위암 마커들은 위암 환자를 스크리닝할 만큼 민감도나 특이도가 높지 않았다. 한편, 단백질 외에도 다양한 종류의 RNA가 위암용 바이오마커로 보고되고 있다. 위암 환자로부터 얻은 혈액 샘플에 대해 체계적으로 microRNA(miRNA) 프로파일링하는 연구가 있었다. 혈액 내 MIR221, MIR744 및 MIR376c의 발현 양상은 건강한 사람으로부터 위암 환자를 구별하는 바이오마커로서의 가치를 보여주었다. 위암에 대한 혈장 miRNA 바이오마커는 역전사 정량적 실시간 PCR(reverse transcription quantitative real-time PCR)을 통해 발견되었고, MIR185, MIR20a, MIR210, MIR25 및 MIR92b에 대한 AUC 값은 0.65 ~ 0.75 였다. 다른 연구에서는 MIR181a-1 및 KAT2B mRNA를 AUC 값이 0.95 미만인 복합 예측변수(predictor)로 확인하면서 위암의 진단 및 예후의 잠재적인 바이오마커로 제안하였다. 그러나, 충분히 큰 코호트(cohort)에서 이러한 mRNA 바이오마커에 대해 명확한 증명을 수행한 연구가 없었다. 그러므로, 위암 환자에서 mRNA 바이오마커에 대한 가치를 더 확인할 필요가 있다.There have been studies to find potential biomarkers in serum as a non-invasive method of screening for gastric cancer. Low concentrations of serum pepsinogen I, II and their ratio were considered as indicators of preneoplastic gastric lesions, but the results depend on the location of the cancer and the cutoff values used in other studies. lost. The most commonly used gastric cancer markers, such as carcinoembryonic antigen (CEA), CA19-9, CA-50, and CA72-4, are the area under the ROC curve (AUC) of the receiver operating characteristic (ROC). Values of 0.54 to 0.73 were reported, and these gastric cancer markers were not sensitive or specific enough to screen gastric cancer patients. Meanwhile, in addition to proteins, various types of RNA have been reported as biomarkers for gastric cancer. There has been a study of systematic microRNA (miRNA) profiling of blood samples obtained from gastric cancer patients. The expression patterns of MIR221, MIR744 and MIR376c in blood showed value as a biomarker that differentiates gastric cancer patients from healthy people. Plasma miRNA biomarkers for gastric cancer were discovered through reverse transcription quantitative real-time PCR, and AUC values for MIR185, MIR20a, MIR210, MIR25 and MIR92b were 0.65 to 0.75. In another study, MIR181a-1 and KAT2B mRNA were identified as complex predictors with an AUC value of less than 0.95, and suggested as potential biomarkers for diagnosis and prognosis of gastric cancer. However, there have been no studies that have performed definitive demonstration of these mRNA biomarkers in a sufficiently large cohort. Therefore, there is a need to further confirm the value of mRNA biomarkers in gastric cancer patients.

miRNA를 포함하는 타액 세포외 RNA(extracellular RNA; exRNA) 바이오마커는 구강암, 쇼그렌 증후군(Sjogren syndrome), 췌장암, 유방암, 폐암과 같이 다양한 국소 및 전신 질환을 검진하기 위해 개발되었다. 본 발명에서는 연구자들이 (암 진단 전에) 암 의심 환자로부터 검체를 채취하고 '회고적 블라인드 평가(retrospective blinded evaluation; PRoBE)' 지침을 바탕으로 하여, 한국인 고위험군을 대상으로 위암 진단용 타액 exRNA 바이오마커를 개발하였다.Saliva extracellular RNA (exRNA) biomarkers containing miRNA have been developed to screen for various local and systemic diseases such as oral cancer, Sjogren syndrome, pancreatic cancer, breast cancer, and lung cancer. In the present invention, researchers collect samples from patients with suspected cancer (before cancer diagnosis), and based on the'retrospective blinded evaluation (PRoBE)' guidelines, develop a saliva exRNA biomarker for gastric cancer diagnosis for Korean high-risk groups. I did.

본 발명의 일 양상은 SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준 및 MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 제제를 포함하는 위암 진단용 바이오마커 조성물을 제공하는 것을 목적으로 한다.One aspect of the present invention is a biomarker for diagnosis of gastric cancer comprising an agent measuring the mRNA expression level of the first gene group including SPINK7, PPL and SEMA4B and the miRNA expression level of the second gene group including MIR140-5p and MIR301a It is an object to provide a composition.

본 발명의 다른 양상은 상기 조성물을 포함하는 위암 진단용 키트를 제공하는 것을 목적으로 한다.Another aspect of the present invention is to provide a kit for diagnosing gastric cancer comprising the composition.

본 발명의 또 다른 양상은 (a) 한국인 피검자로부터 분리된 생물학적 시료에서 SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준과 MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 단계; 및 (b) 측정된 유전자 발현 수준을 비위암 정상 대조군과 비교하는 단계를 포함하는 위암 진단을 위한 정보의 제공 방법을 제공한다.Another aspect of the present invention is (a) the mRNA expression level of the first gene group including SPINK7, PPL and SEMA4B and the miRNA expression of the second gene group including MIR140-5p and MIR301a in a biological sample isolated from a Korean subject. Measuring the level; And (b) it provides a method of providing information for diagnosis of gastric cancer comprising the step of comparing the measured gene expression level with a normal non-gastric cancer control.

<위암 진단용 바이오마커 조성물><Biomarker composition for diagnosis of gastric cancer>

본 발명의 일 구체예에 따르면, 본 발명은 SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준; 및 MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 제제를 포함하는 위암 진단용 바이오마커 조성물을 제공한다.According to one embodiment of the present invention, the present invention is the mRNA expression level of the first gene group comprising SPINK7, PPL and SEMA4B; And it provides a biomarker composition for diagnosis of gastric cancer comprising an agent for measuring the miRNA expression level of the second gene group including MIR140-5p and MIR301a.

유전자 SPINK7는 ECRG2(esophagus cancer-related gene 2)로서 1기 식도 편평세포암(esophageal squamous carcinoma)에서 급격하게 발현이 저하되는 것으로 확인되었고, 우로키나제형 플라스민 활성제 수용체/β1 인테그린 경로(urokinase-type plasmin activator receptor/β1 integrin pathway)를 통해 암 세포의 침습을 억제하는 종양 억제 유전자(tumor suppressor gene)이다. 유전자 PPL(Periplakin)은 식도 편평세포암과 요로 상피세포암(urothelial carcinoma)에서 발현이 저하되는 것을 알려져 있으며, 대장암의 진행을 억제하는 종양 억제제로 작용한다. 유전자 SEMA4B는 PI3K/AKT 경로를 통해 비소세포암(non-small cell lung cancer)의 침습을 억제하는 종양 억제제로 작용한다. 유전자 MIR140은 유방암과 비소세포 폐암의 조직 및 세포주에서 유의적으로 감소되는 것으로 확인되었으며, 종양 억제제로 작용한다. 유전자 MIR301는 폐암과 대장암에서 과발현되는 것을 알려져 있으며, 종양을 형성하는 잠재적인 종양 유전자이다. 상기 유전자 SPINK7, PPL, SEMA4B, MIR140-5p 및 MIR301a는 타액에 존재하는 exRNA로서, 한국인을 대상으로 위암과의 상관관계가 명확히 밝혀진 바가 없다. The gene SPINK7 is ECRG2 (esophagus cancer-related gene 2), which has been found to be rapidly reduced in expression in stage I esophageal squamous carcinoma. It is a tumor suppressor gene that suppresses cancer cell invasion through the plasmin activator receptor/β1 integrin pathway. Gene PPL (Periplakin) is known to be reduced in expression in esophageal squamous cell carcinoma and urinary tract carcinoma, and acts as a tumor suppressor to inhibit the progression of colon cancer. The gene SEMA4B acts as a tumor suppressor that inhibits the invasion of non-small cell lung cancer through the PI3K/AKT pathway. Gene MIR140 has been found to be significantly reduced in tissues and cell lines of breast and non-small cell lung cancer, and acts as a tumor suppressor. Gene MIR301 is known to be overexpressed in lung cancer and colon cancer, and is a potential oncogene that forms tumors. The genes SPINK7, PPL, SEMA4B, MIR140-5p, and MIR301a are exRNAs present in saliva, and the correlation with gastric cancer in Koreans has not been clearly identified.

이에, 본 발명자들은 코호트를 한국인으로 한정하여 정상인 31명과 위암 환자 63명에서 타액 exRNA의 발현 수준을 비교한 결과, 위암 환자의 유전자 SPINK7, PPL 및 SEMA4B의 mRNA 발현 수준 및 유전자 MIR140-5p 및 MIR301a의 miRNA 발현 수준이 정상인에 비해 낮은 것을 확인하였다. 이러한 유전자 발현 수준의 결과는 정상인 및 위암 환자 각각 100명을 대상으로 검증하였을 때 동일한 결과를 얻었다. 따라서, 상기 5종의 유전자는 위암 진단용 바이오마커로 유용하게 사용할 수 있다.Accordingly, the present inventors limited the cohort to Koreans and compared the expression levels of saliva exRNA in 31 normal subjects and 63 gastric cancer patients. It was confirmed that the miRNA expression level was lower than that of normal subjects. The results of these gene expression levels were the same when tested in 100 normal and gastric cancer patients. Therefore, the five genes can be usefully used as biomarkers for gastric cancer diagnosis.

상기 유전자의 mRNA 또는 miRNA 발현 수준을 측정하는 제제는 서열번호 1로 표시되는 SPINK7, 서열번호 2로 표시되는 PPL, 서열번호 3으로 표시되는 SEMA4B, 서열번호 4로 표시되는 MIR140-5p 및 서열번호 5로 표시되는 MIR301a의 전체 또는 일부 서열에 특이적으로 결합하는 프라이머 세트, 프로브 및 안티센스 올리고뉴클레오티드로 이루어진 군에서 선택된 1종 이상일 수 있다. 특히, 제제는 유전자들의 핵산 서열 정보를 바탕으로 유전자의 특정 영역을 특이적으로 증폭하도록 디자인된 프라이머 세트 또는 프로브인 것이 바람직하다.The agent for measuring the mRNA or miRNA expression level of the gene is SPINK7 represented by SEQ ID NO: 1, PPL represented by SEQ ID NO: 2, SEMA4B represented by SEQ ID NO: 3, MIR140-5p represented by SEQ ID NO: 4, and SEQ ID NO: 5 It may be one or more selected from the group consisting of a primer set, a probe, and an antisense oligonucleotide specifically binding to all or part of the sequence of MIR301a represented by. In particular, the preparation is preferably a primer set or probe designed to specifically amplify a specific region of a gene based on the nucleic acid sequence information of the genes.

여기서, "특이적으로 결합하는"이란 결합에 의해 표적 물질의 존재 여부를 검출할 수 있을 정도로 다른 물질에 비해 표적 물질에 대한 결합력이 뛰어남을 의미한다.Here, "specifically binds" means that the binding power to the target substance is superior to that of other substances so as to detect the presence or absence of the target substance by binding.

본 발명의 "진단"은 병리 상태의 존재 또는 특징을 확인하는 것을 의미하며, 특정 질병 또는 질환에 대한 한 개체의 감수성(susceptibility)을 판정하는 것, 한 개체가 특정 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 질병 또는 질환에 걸린 한 개체의 예후를 판정하는 것, 또는 테라메트릭스(therametrics) (예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링 하는 것)를 포함한다. "Diagnosis" of the present invention means to confirm the presence or characteristics of a pathological condition, to determine the susceptibility of an individual to a specific disease or disease, whether or not an individual currently has a specific disease or disease And determining the prognosis of an individual with a particular disease or condition, or therametrics (eg, monitoring the condition of the subject to provide information on treatment efficacy).

본 발명의 "바이오마커"는 일반적으로 생물학적 시료에서 검출 가능한 물질로서 생체의 변화를 알아낼 수 있는 폴리펩티드, 단백질, 핵산, 유전자, 지질, 당지질, 당단백질, 당 등과 같은 유기 생체 분자들을 모두 포함한다. 특히, 바이오마커는 위암 환자로부터 분리된 타액 시료에 풍부하게 존재하며, 정상인과 위암 환자 간의 유의적인 발현 차이를 갖는 핵산, 특히 RNA일 수 있다.The "biomarker" of the present invention generally includes all organic biomolecules such as polypeptides, proteins, nucleic acids, genes, lipids, glycolipids, glycoproteins, sugars, etc. that can detect changes in a living body as a substance detectable in a biological sample. In particular, the biomarker is abundantly present in a saliva sample isolated from a gastric cancer patient, and may be a nucleic acid, particularly RNA, having a significant difference in expression between a normal person and a gastric cancer patient.

본 발명의 "바이오마커 조성물"은 바이오마커에 특이적으로 결합하여 그의 발현 수준을 측정할 수 있는 프라이머, 프로브, 안티센스 올리고뉴클레오티드 등을 포함할 수 있다. The "biomarker composition" of the present invention may include primers, probes, antisense oligonucleotides, and the like capable of specifically binding to a biomarker and measuring its expression level.

본 발명의 "프라이머"는 표적 유전자 서열을 인지하는 짧은 가닥의 RNA 또는 DNA 서열로, 정방향 및 역방향 프라이머를 포함하는 프라이머 세트일 수 있다. 프라이머의 핵산 서열은 시료내 존재하는 비표적 서열과 불일치하는 서열이기 때문에 상보적인 프라이머 결합 부위를 함유하는 표적 유전자 서열만을 증폭시키며, 비특이적 증폭을 유발하지 않는 프라이머일 때, 높은 특이성을 부여할 수 있다. The "primer" of the present invention is a short-stranded RNA or DNA sequence that recognizes a target gene sequence, and may be a primer set including forward and reverse primers. Since the nucleic acid sequence of the primer is a sequence that is inconsistent with the non-target sequence present in the sample, only the target gene sequence containing the complementary primer binding site is amplified, and a primer that does not induce non-specific amplification can give high specificity. .

본 발명의 "프로브"는 시료 내의 검출하고자 하는 표적 물질과 특이적으로 결합할 수 있는 물질을 의미하며, 특이적 결합을 통해 시료 내 표적 물질의 존재를 확인할 수 있다. 이때, 프로브는 당업계에 알려진 PNA(peptide nucleic acid), LNA(locked nucleic acid), 펩타이드, 폴리펩타이드, 단백질, RNA, DNA 등일 수 있다.The "probe" of the present invention means a substance capable of specifically binding to a target substance to be detected in a sample, and the presence of a target substance in a sample can be confirmed through specific binding. At this time, the probe may be a peptide nucleic acid (PNA), a locked nucleic acid (LNA), a peptide, a polypeptide, a protein, RNA, DNA, etc. known in the art.

본 발명의 "안티센스 올리고뉴클레오티드"는 특정 mRNA의 서열에 상보적인 핵산 서열을 함유하는 DNA 또는 RNA 유도체로서, mRNA 내 상보적인 서열에 결합하여 mRNA가 단백질로 번역되는 것을 저해하는 작용한다. 안티센스 올리고뉴클레오티드의 길이는 6 내지 100 염기, 바람직하게는 8 내지 60 염기, 보다 바람직하게는 10 내지 40 염기일 수 있다.The "antisense oligonucleotide" of the present invention is a DNA or RNA derivative containing a nucleic acid sequence that is complementary to a specific mRNA sequence, and acts to inhibit translation of the mRNA into a protein by binding to a complementary sequence in the mRNA. The length of the antisense oligonucleotide may be 6 to 100 bases, preferably 8 to 60 bases, more preferably 10 to 40 bases.

<위암 진단용 키트><Stomach Cancer Diagnosis Kit>

본 발명의 다른 일 구체예에 따르면, 본 발명은 위암 진단용 바이오마커 조성물을 포함하는 위암 진단용 키트를 제공한다. 구체적으로, 상기 키트는 위암 진단용 키트는 유전자 SPINK7, PPL, SEMA4B, MIR140-5p 및 MIR301a에 특이적으로 결합하는 프라이머 세트; 및 핵산 증폭용 시약을 포함할 수 있다. According to another embodiment of the present invention, the present invention provides a kit for diagnosis of gastric cancer comprising a biomarker composition for diagnosis of gastric cancer. Specifically, the kit includes a set of primers specifically binding to the genes SPINK7, PPL, SEMA4B, MIR140-5p and MIR301a for diagnosis of gastric cancer; And it may include a reagent for amplifying nucleic acid.

상기 프라이머는 전술한 바와 같으며, 핵산 증폭 반응에 사용된다. 이때, 프라이머는 핵산의 말단 또는 내부에 형광 물질, 화학발광물질(chemiluminescent), 방사성 동위원소 등으로 표지된 것일 수 있다.The primers are as described above, and are used in a nucleic acid amplification reaction. In this case, the primer may be labeled with a fluorescent material, chemiluminescent material, or radioactive isotope at the end or inside of the nucleic acid.

본 발명의 "핵산 증폭용 시약"은 프라이머를 이용하여 유전자를 대량으로 증폭하는데 사용되는 중합효소(polymerase), dNTP(deoxyribo nucleoside triphosphate), 완충제, 핵산, 조효소, 형광물질 등을 포함할 수 있다. 일례로, 핵산 증폭용 시약은 Taq 중합효소을 포함할 수 있다. The "nucleic acid amplification reagent" of the present invention may include a polymerase, deoxyribo nucleoside triphosphate (dNTP), a buffer, a nucleic acid, a coenzyme, a fluorescent substance, and the like used to amplify a gene in large quantities using a primer. For example, the reagent for amplifying nucleic acid may include Taq polymerase.

본 발명의 "진단용 키트"는 위암 의심 환자로부터 채취한 생물학적 시료를 정상인으로부터 채취한 생물학적 시료와 구분하여 위암을 진단할 수 있는 물질을 의미한다. 상기 생물학적 시료는 exRNA가 풍부하며 채취가 용이한 타액일 수 있다. 상기 키트는 유전자의 발현 수준을 측정하는 방법이 적용된 것일 수 있으며, RT-PCR 키트, 경쟁적 RT-PCR 키트, 실시간 RT-PCR 키트, RNase 보호 분석법 키트, 노던 블롯 키트, DNA 마이크로어레이 키트 등일 수 있다. The "diagnosis kit" of the present invention refers to a substance capable of diagnosing gastric cancer by separating a biological sample collected from a patient suspected of gastric cancer from a biological sample collected from a normal person. The biological sample may be saliva rich in exRNA and easy to collect. The kit may be applied to a method of measuring the expression level of a gene, and may be an RT-PCR kit, a competitive RT-PCR kit, a real-time RT-PCR kit, an RNase protection assay kit, a Northern blot kit, a DNA microarray kit, and the like. .

이러한 키트는 핵산 분리용 시약을 더 포함할 수 있다. 상기 핵산 분리용 시약은 세포 용해(lysis)가 가능한 염, 계면활성제, 금속 이온, 당, 환원제(예, DTT) 등을 포함할 수 있다.Such a kit may further include a reagent for separating nucleic acids. The reagent for separating nucleic acids may include a salt capable of lysis, a surfactant, a metal ion, a sugar, a reducing agent (eg, DTT), and the like.

이러한 키트를 사용하여 위암을 진단할 경우에는 암 의심 환자 또는 정상인에서 채취된 시료를 키트에 포함된 프라이머 및 핵산 증폭용 시약과 접촉시킬 수 있다. 이때, 시료는 핵산 분리 시약을 이용하여 추출될 수 있으며, 프라이머와 접촉 전에 알맞은 농도로 희석하여 준비될 수 있다. 준비된 시료를 프라이머 및 핵산 증폭 시약과 혼합한 후 중합효소 반응을 유도하는 온도 조건에서 유전자를 대량으로 증폭할 수 있다. 암 의심 환자와 정상인의 증폭된 유전자 발현 수준을 비교함으로써 유의적인 발현량 증감 여부를 판단하여 위암 여부를 진단할 수 있다.When using such a kit to diagnose gastric cancer, a sample taken from a patient suspected of cancer or a normal person may be brought into contact with the primers and nucleic acid amplification reagents included in the kit. At this time, the sample may be extracted using a nucleic acid separation reagent, and may be prepared by diluting it to an appropriate concentration before contacting the primer. After mixing the prepared sample with a primer and a nucleic acid amplification reagent, a large amount of genes can be amplified under a temperature condition that induces a polymerase reaction. It is possible to diagnose gastric cancer by comparing the amplified gene expression level of a patient suspected of cancer and a normal person to determine whether the expression level has increased or decreased significantly.

<위암 진단을 위한 정보의 제공 방법><Method of providing information for diagnosis of gastric cancer>

본 발명의 다른 일 구체예에 따르면, 본 발명은 위암 진단을 위한 정보의 제공 방법을 제공한다. 구체적으로, 상기 방법은 (a) 한국인 피검자로부터 분리된 생물학적 시료에서 SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준과 유전자 MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 단계; 및 (b) 측정된 유전자 발현 수준을 비위암 정상 대조군과 비교하는 단계를 포함한다.According to another embodiment of the present invention, the present invention provides a method of providing information for diagnosis of gastric cancer. Specifically, the method comprises (a) the mRNA expression level of the first gene group including SPINK7, PPL and SEMA4B and the miRNA expression of the second gene group including the genes MIR140-5p and MIR301a in a biological sample isolated from a Korean subject. Measuring the level; And (b) comparing the measured gene expression level with a normal non-gastric cancer control.

상기 (a) 단계는 위암을 진단하기 위해 한국인 암 의심 환자(피검자)의 생물학적 시료에서 바이오마커인 유전자 SPINK7, PPL 및 SEMA4B의 mRNA 발현 수준과 유전자 MIR140-5p 및 MIR301a의 miRNA 발현 수준을 확인하는 과정이다. Step (a) is a process of confirming the mRNA expression level of the biomarkers SPINK7, PPL, and SEMA4B and the miRNA expression level of the genes MIR140-5p and MIR301a in a biological sample of a Korean cancer suspected patient (subject) to diagnose gastric cancer. to be.

상기 생물학적 시료는 비침습적인 진단 방법에 적합하며, exRNA가 풍부하게 존재하는 타액인 것이 바람직하다. 이때, 유전자에 특이적으로 결합하는 프라이머를 이용하여 소량의 유전자를 증폭시킨 후 각 유전자의 발현 수준을 정량적으로 측정할 수 있다. 유전자의 mRNA 또는 miRNA 발현 수준 측정은 RT-PCR 키트, 경쟁적 RT-PCR 키트, 실시간 RT-PCR 키트, RNase 보호 분석법 키트, 노던 블롯 키트, DNA 마이크로어레이 키트 등을 이용할 수 있다. The biological sample is suitable for a non-invasive diagnostic method, and is preferably saliva rich in exRNA. At this time, after amplifying a small amount of genes using primers that specifically bind to the gene, the expression level of each gene can be quantitatively measured. For measurement of the mRNA or miRNA expression level of a gene, an RT-PCR kit, a competitive RT-PCR kit, a real-time RT-PCR kit, an RNase protection assay kit, a Northern blot kit, a DNA microarray kit, and the like can be used.

상기 (b) 단계는 암 의심 환자에서 측정된 유전자의 mRNA 또는 miRNA 발현 수준을 위암을 갖지 않은 (정상) 한국인을 기준값으로 하여 비교하는 과정이다. 이때, 측정된 5종의 유전자 발현 수준이 모두 기준값에 비해 유의적으로 낮을 경우, 위암으로 진단할 수 있다. The step (b) is a process of comparing the mRNA or miRNA expression level of a gene measured in a patient suspected of cancer based on a (normal) Korean person who does not have gastric cancer as a reference value. At this time, if all of the five measured gene expression levels are significantly lower than the reference value, gastric cancer can be diagnosed.

이후, 상기 (a) 단계에서 측정된 각 유전자의 mRNA 또는 miRNA 발현 수준을 조합하여 5종의 바이오마커에 대한 민감도 및 특이도와, 이러한 바이오마커에 의한 진단 정확도를 분석할 수 있다. 분석 방법은 당업계에 공지된 통계 분석 방법을 사용할 수 있으며, 일례로 선형 또는 비선형 회귀 분석방법, 선행 또는 비선형 classification 분석방법, ANOVA, 신경망 분석방법, 유전적 분석방법, 서포트 벡터 머신 분석방법, 계층 분석 또는 클러스터링 분석방법, 결정 트리를 이용한 계층 알고리즘 또는 Kernel principal components 분석방법, Markov Blanket 분석방법, recursive feature elimination 또는 엔트로피-기본 recursive feature elimination 분석방법, 전방 floating search 또는 후방 floating search 분석방법 등을 단독으로 또는 조합하여 사용할 수 있다. 분석의 신뢰를 높이기 위해서는 선형 회귀 분석 또는 ROC 분석을 사용하는 것이 바람직하다. Thereafter, by combining the mRNA or miRNA expression levels of each gene measured in step (a), the sensitivity and specificity of the five biomarkers and the accuracy of diagnosis by these biomarkers can be analyzed. The analysis method may use a statistical analysis method known in the art, for example, a linear or nonlinear regression analysis method, an advance or nonlinear classification analysis method, ANOVA, neural network analysis method, genetic analysis method, support vector machine analysis method, hierarchical Analysis or clustering analysis method, hierarchical algorithm or kernel principal components analysis method using decision tree, Markov Blanket analysis method, recursive feature elimination or entropy-basic recursive feature elimination analysis method, forward floating search or rear floating search analysis method, etc. Or they can be used in combination. In order to increase the reliability of the analysis, it is preferable to use linear regression analysis or ROC analysis.

상기 ROC 분석은 특정 진단 방법에서 민감도(sensitivity) 및 특이도(specificity)의 상관관계를 표현하는 그래프로, 특정 진단 모델의 정확도(acccuracy)를 나타낼 수 있다. 본 발명의 "민감도"는 특정 진단 모델을 이용할 때, 실제 질환을 가지고 있는 개체를 양성으로 판정하는 비율을 의미하며, 본 발명의 "특이도"는 특정 진단 모델을 이용할 때, 실제 질환을 가지고 있지 않은 개체를 음성으로 판정하는 비율을 의미한다.The ROC analysis is a graph expressing the correlation between sensitivity and specificity in a specific diagnosis method, and may indicate the accuracy of a specific diagnosis model. The "sensitivity" of the present invention refers to the ratio of determining positive for an individual with an actual disease when using a specific diagnostic model, and the "specificity" of the present invention does not have an actual disease when using a specific diagnostic model. It refers to the rate at which non-negative individuals are judged negative.

상기 진단 방법에서 특이도와 민감도가 모두 높을 경우에는 검사의 정확도가 높아지게 된다. 구체적으로, 전체 면적이 1이라 할 때, AUC가 0.5 이상, 0.6 이상, 0.7 이상, 0.8 이상 또는 0.9 이상일 때 정확도가 더 높다고 판단할 수 있으며, ROC 그래프에서 곡선이 왼쪽 상단 꼭지점에 가까울수록 정확도가 더 높다고 판단할 수 있다. ROC 그래프는 X축을 1 - 특이도, Y축을 민감도로 하여 모든 진단 모델의 그래프상 위치를 점으로 표시한 후 그 점들을 연결하여 곡선을 그린다. ROC 곡선에서, 곡선하면적(AUC)이 클수록 해당 진단 모델의 정확도가 높다고 판단할 수 있다. 따라서, 본 발명에 따라 한국인을 대상으로 유전자 SPINK7, PPL, SEMA4B, MIR140-5p 및 MIR301a의 발현 수준을 분석하여 위암을 진단할 경우에는 진단 정확도 (AUC 값)가 0.87 이상인 것으로, 한국인으로 한정되지 않은 상기 5종 유전자에 대한 진단 정확도 (AUC 값 = 0.81), 일반적인 위암 마커에 대한 진단 정확도 (AUC 값 = 0.54 ~ 0.73)에 비해 진단 정확도가 높다.When both the specificity and the sensitivity are high in the diagnostic method, the accuracy of the test is increased. Specifically, when the total area is 1, it can be determined that the accuracy is higher when the AUC is 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, or 0.9 or more, and the closer the curve is to the upper left vertex in the ROC graph, the higher the accuracy. It can be judged higher. In the ROC graph, the X-axis is 1-specificity and the Y-axis is sensitivity, and the positions on the graphs of all diagnostic models are indicated as points, and then a curve is drawn by connecting the points. In the ROC curve, as the area under the curve (AUC) increases, it can be determined that the accuracy of the corresponding diagnostic model is higher. Therefore, in the case of diagnosing gastric cancer by analyzing the expression levels of the genes SPINK7, PPL, SEMA4B, MIR140-5p, and MIR301a for Koreans according to the present invention, the diagnosis accuracy (AUC value) is 0.87 or more, and is not limited to Koreans. Diagnosis accuracy is higher than that of the five genes (AUC value = 0.81) and general gastric cancer markers (AUC value = 0.54 ~ 0.73).

본 발명에서는 위암 진단용 바이오마커인 유전자 SPINK7, PPL 및 SEMA4B의 mRNA와 MIR140-5p 및 MIR301a의 miRNA 발현 수준을 측정 가능한 제제를 이용하여 한국인 중 암 의심 환자의 타액 내 유전자의 발현 수준을 측정함으로써 환자로부터 생검하지 않고 타액을 이용하여 간편하고 높은 정확도로 분석 가능하며, 정상인이 비해 유전자의 발현이 낮을 경우를 위암으로 진단할 수 있다. In the present invention, by measuring the expression level of the gene in the saliva of a suspected cancer patient among Koreans using a formulation capable of measuring the mRNA expression levels of the genes SPINK7, PPL, and SEMA4B, which are biomarkers for diagnosis of gastric cancer, and the miRNA of MIR140-5p and MIR301a, It is possible to analyze with simple and high accuracy using saliva without biopsy, and it is possible to diagnose gastric cancer when the expression of the gene is lower than that of a normal person.

도 1은 전체적인 위암 진단용 타액 exRNA 바이오마커 개발 연구의 진행 과정을 나타낸 개략도이다; 실험은 바이오마커를 발굴하는 1 단계 (part 1)와 바이오마커를 검증하는 2 단계 (part 2)로 수행된다.
도 2는 마이크로어레이 결과에서 얻은 상위 150개 유전자를 이용하여 작성된 히트 맵(heat map) 이미지이다; 위암 환자군 (n = 63) 및 비위암 대조군 (n = 31)에서 얻은 타액을 이용하여 두 집단 간의 차이를 밝혔다. 빨간색은 위암 환자군의 시료이고, 파란색은 비위암 대조군의 시료이다.
도 3은 한국인의 타액 mRNA 바이오마커 3개 (SPINK7, PPL 및 SEMA4B)와 miRNA 바이오마커 2개 (MIR140-5p 및 MIR301a)의 조합에 대한 ROC 곡선 그래프이다; ROC 곡선 그래프를 이용하여 5종의 바이오마커 조합 (검은색 점선), 한국인에 대한 인구통계학 특징 (검은색 실선) 및 바이오마커와 인구통계학 특징의 조합 (회색 점선)에 대한 AUC 값을 각각 계산하였다.
1 is a schematic diagram showing the progress of a study on the development of a saliva exRNA biomarker for diagnosis of gastric cancer; The experiment is carried out in one step (part 1) of discovering biomarkers and two steps (part 2) of verifying biomarkers.
2 is a heat map image created using the top 150 genes obtained from microarray results; The difference between the two groups was revealed using saliva obtained from the gastric cancer patient group (n = 63) and the non-gastric cancer control group (n = 31). Red is a sample from a gastric cancer patient group, and blue is a sample from a non-gastric cancer control group.
Figure 3 is a ROC curve graph for the combination of three Korean saliva mRNA biomarkers (SPINK7, PPL and SEMA4B) and two miRNA biomarkers (MIR140-5p and MIR301a); Using the ROC curve graph, AUC values for the combination of five biomarker combinations (black dotted line), demographic characteristics for Koreans (black solid line), and biomarker and demographic characteristics (gray dotted line) were calculated, respectively. .

이하, 첨부된 도면을 참조하며 본 발명의 위암 진단용 바이오마커 및 이의 용도를 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the biomarker for gastric cancer diagnosis of the present invention and its use will be described in more detail with reference to the accompanying drawings. However, these descriptions are provided by way of example only to aid understanding of the present invention, and the scope of the present invention is not limited by these exemplary descriptions.

1. 재료 및 방법1. Materials and methods

1-1. 시료 수집 및 연구 설계1-1. Sample collection and study design

본 연구는 PRoBE 지침을 따라 설계되었다. 모든 실험 참가자를 삼성의료원(Samsung Medical Center)에서 모집하였으며, 타액 시료 294개 (위암 환자 163명, 비위암 정상인 131명)를 내시경 검사 전에 미리 채취하였다. 자세한 환자 등록 및 무세포 타액(cell-free saliva) 채취 절차는 http://www.clinchem.org/content/vol64/issue10 에서 확인할 수 있다. 모든 피험자의 인구통계학적 정보(demographic information)를 바탕으로 시료 무작위 추출을 수행하였다. 본 연구에서 사용된 인구통계학적 정보는 하기 표 1 및 2와 같다. 표 1 및 2에서, 나이, 인종 및 음주는 위암 환자군과 비위암 대조군의 수가 균형을 이루는 반면, 음주 및 헬리코박터 파이로리의 보균은 위암의 위험 요소로서 위암 환자군과 비위암 대조군의 수가 불균형을 이루었다.This study was designed according to the PRoBE guidelines. All participants were recruited from Samsung Medical Center, and 294 saliva samples (163 gastric cancer patients, 131 normal non-gastric cancer patients) were collected before endoscopy. Detailed patient registration and cell-free saliva collection procedures can be found at http://www.clinchem.org/content/vol64/issue10 . Sample randomization was performed based on demographic information of all subjects. Demographic information used in this study is shown in Tables 1 and 2 below. In Tables 1 and 2, age, race, and alcohol use balanced the number of gastric cancer patients and non-gastric cancer control groups, whereas alcohol and Helicobacter pylori carriers were a risk factor for gastric cancer.

인구통계학적 정보 Demographic information 특징Characteristic 전사체 바이오마커 발굴 단계Steps to discover transcript biomarkers 위암 환자군
(n = 63)
Gastric cancer patients
(n = 63)
비위암 대조군
(n =31)
Gastric cancer control
(n =31)
P 값P value
나이age 평균±표준편차Mean±standard deviation 56.2 ± 11.156.2 ± 11.1 54.8 ± 10.454.8 ± 10.4 0.560.56 성별 gender 남성male 43 (68.3%)43 (68.3%) 13 (41.9%)13 (41.9%) 0.020.02 여성female 20 (31.7%)20 (31.7%) 18 (59.1%)18 (59.1%) 인종race 아시아인Asian 63 (100%)63 (100%) 31 (100%)31 (100%) 흡연smoking 27 (42.8%)27 (42.8%) 5 (16.1%)5 (16.1%) 0.010.01 음주Drinking 28 (44.4%)28 (44.4%) 9 (29.0%)9 (29.0%) 0.150.15 H. pyloriH. pylori 37 (58.7%)37 (58.7%) 8 (25.8%)8 (25.8%) 0.0030.003

인구통계학적 정보Demographic information 특징Characteristic miRNA 바이오마커 발굴 단계Steps to discover miRNA biomarkers 위암 환자군
(n = 10)
Gastric cancer patients
(n = 10)
비위암 대조군
(n = 10)
Gastric cancer control
(n = 10)
P 값P value
나이age 평균±표준편차Mean±standard deviation 58.4 ± 7.658.4 ± 7.6 52.4 ± 7.952.4 ± 7.9 0.100.10 성별 gender 남성male 6 (60.0%)6 (60.0%) 4 (40.0%)4 (40.0%) 0.660.66 여성female 4 (40.0%)4 (40.0%) 6 (60.0%)6 (60.0%) 인종race 아시아인Asian 10 (100%)10 (100%) 10 (100%)10 (100%) 흡연smoking 3 (30.0%)3 (30.0%) 0 (0.0%)0 (0.0%) 0.210.21 음주Drinking 4 (40.0%)4 (40.0%) 5 (50.0%)5 (50.0%) 1.001.00 H. pyloriH. pylori 5 (50.0%)5 (50.0%) 4 (40.0%)4 (40.0%) 1.001.00

도 1를 참조하면, 바이오마커 개발 연구는 발굴(discovery) 단계와 검증(validation) 단계로 구성된다. Referring to FIG. 1, a biomarker development study consists of a discovery step and a validation step.

1 단계는 전사체(transcriptomic) 및 miRNA를 이용하여 바이오마커를 발굴하고 확인하는 단계이다. 전사체는 위암 환자 시료 63개 및 비위암 대조군 시료 31개에 대해 Affymetrix HG U133 + 2.0 microarray를 이용하여 프로파일링 하였고, mRNA 후보를 RT-qPCR로 확인하였다. miRNA는 초기 위암 시료 10개 및 비위암 대조군 시료 10개를 선택하여 TaqMan miRNA array (Applied Biosystems)를 이용하여 프로파일링 하였고, miRNA 후보를 TaqMan miRNA assay (Thermo Scientific)로 확인하였다. Step 1 is the step of discovering and confirming biomarkers using transcriptomic and miRNA. Transcripts were profiled for 63 gastric cancer patient samples and 31 non-gastric cancer control samples using Affymetrix HG U133 + 2.0 microarray, and mRNA candidates were identified by RT-qPCR. For miRNA, 10 initial gastric cancer samples and 10 non-gastric cancer control samples were selected and profiled using TaqMan miRNA array (Applied Biosystems), and miRNA candidates were identified by TaqMan miRNA assay (Thermo Scientific).

2 단계는 하기 표 3과 같이, 위암 환자군 시료 100개 및 비위암 대조군 시료 100개를 포함하는 독립된 코호트(independent cohort)에서 추출된 exRNA 시료를 사용하여 1단계에서 확인된 exRNA 바이오마커 후보에 대해 검증하였다. Step 2 is verified for the exRNA biomarker candidate identified in Step 1 using an exRNA sample extracted from an independent cohort containing 100 gastric cancer patient sample and 100 non-gastric cancer control sample, as shown in Table 3 below. I did.

인구통계학적 정보Demographic information 특징Characteristic 검증 단계Verification step 위암 환자군
(n=100)
Gastric cancer patients
(n=100)
비위암 대조군
(n=100)
Gastric cancer control
(n=100)
P 값P value
나이age 평균±표준편차Mean±standard deviation 51.9 ± 9.251.9 ± 9.2 55.7 ± 8.155.7 ± 8.1 0.0030.003 성별 gender 남성male 79 (79.0%)79 (79.0%) 47 (47.0%)47 (47.0%) <0.001<0.001 여성female 21 (21.0%)21 (21.0%) 53 (53.0%)53 (53.0%) 인종race 아시아인Asian 100 (100%)100 (100%) 100 (100%)100 (100%) 흡연smoking 66 (44.0%)66 (44.0%) 33 (33.0%)33 (33.0%) <0.001<0.001 음주Drinking 55 (55.0%)55 (55.0%) -- H. pylori H. pylori -- --

1-2. 타액 전사체 프로파일링 및 데이터 분석1-2. Saliva transcriptome profiling and data analysis

총 RNA는 miRNeasy micro kit (QIAGEN)를 사용하여 타액 상층액 300 ㎕로부터 추출되었다. Rnase에 오염된 DNA를 제거하기 위해 추출된 RNA에 DNase I (Ambion)를 처리하였다. 타액 mRNA의 양은 RT-qPCR을 이용하여 타액 내부 참고 유전자 (GAPDH)의 발현 수준을 측정하여 계산되었다. 분리된 타액 mRNA (약 10 ng)는 RiboAmp RNA Amplification kit (Molecular Devices)를 이용하여 증폭되었고, in vitro 전사 표지용 GeneChip Expression 3-Amplification Reagents (Affymetrix)를 이용하여 비오틴으로 표지되었다. 비오틴 표지된 상보적인 RNA (약 20 ㎍)를 단편화시킨 후 칩 하이브리드 및 스캐닝을 위해 미국 로스 앤젤레스의 마이크로어레이 핵심 시설인 캘리포니아 대학교로 보냈다. 타액 전사체 프로파일링에는 47,000개 미만의 전사물(transcript) 및 변이(variant)를 갖는 Affymetrix Human Genome U133 Plus 2.0 Array를 이용하였다. 마이크로어레이 데이터는 '마이크로어레이 실험에 대한 최소한의 정보(Minimum Information About a Microarray Experiment)' 지침을 바탕으로 GEO 데이터베이스 (접속번호 GSE64951)에 기재하였다.Total RNA was extracted from 300 μl of saliva supernatant using the miRNeasy micro kit (QIAGEN). DNase I (Ambion) was treated on the extracted RNA to remove DNA contaminated by RNAse. The amount of saliva mRNA was calculated by measuring the expression level of the saliva internal reference gene (GAPDH) using RT-qPCR. The isolated saliva mRNA (about 10 ng) was amplified using the RiboAmp RNA Amplification kit (Molecular Devices), and labeled with biotin using GeneChip Expression 3-Amplification Reagents (Affymetrix) for in vitro transcription labeling. Biotin-labeled complementary RNA (about 20 μg) was fragmented and sent to the University of California, a microarray core facility in Los Angeles, USA for chip hybridization and scanning. An Affymetrix Human Genome U133 Plus 2.0 Array with less than 47,000 transcripts and variants was used for saliva transcript profiling. Microarray data were recorded in the GEO database (access number GSE64951) based on the guidelines of'Minimum Information About a Microarray Experiment'.

1-3. RT-qPCR을 이용한 mRNA 바이오마커 확인1-3. Confirmation of mRNA biomarkers using RT-qPCR

마이크로어레이 프로파일링에 의해 선택된 후보 mRNA 바이오마커는 마이크로어레이 분석에서 사용된 동일한 시료 (n = 94)를 이용하여 중첩된 RT-qPCR (개별 SYBR green qPCR을 이용한 RT-PCR)에 의해 검증되었다. qPCR 프라이머는 Primer3 소프트웨어를 이용하여 설계되었고, Primer-BLAST 조사를 수행한 후 Sigma-Genosys에 의해 합성되었다. 프라이머 서열은 표적 유전자에서 단일 뉴클레오티드 변이(SNP) 영역을 피하도록 설계되었다. 모든 증폭산물(amplicon)은 인트론 범위(spanning)에 있었다. RT-qPCR 분석은 '정량적 실시간 PCR 실험의 발표를 위한 최소한의 정보(Minimum Information for Publication of Quantitative Real-Time PCR Experiment)' 지침에 따라 각 바이오마커 후보에 대해 중복으로 수행되었다. 자세한 실험방법은 http://www.clinchem.org/content/vol64/issue10 에서 확인할 수 있다. 각 유전자에 대한 PCR 산물의 특이도는 용융 곡선 분석 및 3% 아가로스 겔 분석으로 확인되었다. ΔCq 값은 [ΔCq = (각 바이오마커 후보의 기존 Cq 값) - (참고 유전자(housekeeping gene)인 GAPDH 또는 ACTB의 Cq 값)]으로 계산되었다. 전사체 바이오마커 확인 및 검증에 사용된 mRNA 바이오마커 후보 및 그 프라이머 서열은 하기 표 4와 같다.Candidate mRNA biomarkers selected by microarray profiling were verified by superimposed RT-qPCR (RT-PCR using individual SYBR green qPCR) using the same sample (n = 94) used in microarray analysis. qPCR primers were designed using Primer3 software, and synthesized by Sigma-Genosys after performing Primer-BLAST investigation. The primer sequence was designed to avoid single nucleotide variation (SNP) regions in the target gene. All amplicons were in the intron spanning. RT-qPCR analysis was performed in duplicate for each biomarker candidate according to the guidelines of'Minimum Information for Publication of Quantitative Real-Time PCR Experiment'. Detailed test methods can be found at http://www.clinchem.org/content/vol64/issue10 . The specificity of the PCR product for each gene was confirmed by melting curve analysis and 3% agarose gel analysis. The ΔCq value was calculated as [ΔCq = (existing Cq value of each biomarker candidate)-(Cq value of GAPDH or ACTB, which is a housekeeping gene)]. The mRNA biomarker candidates and their primer sequences used for identification and verification of transcript biomarkers are shown in Table 4 below.

유전자gene 가입 번호Subscription number 프라이머 염기서열(5' > 3')Primer sequence (5'> 3') 서열번호Sequence number 증폭산물 크기* (bp)Amplification product size * (bp) ANXA1ANXA1 NM_000700.1NM_000700.1 OF: CCACAAGCAAACCAGCTTTCOF: CCACAAGCAAACCAGCTTTC 66 6161 OR: AATTTCAGAACGGGAAACCAOR: AATTTCAGAACGGGAAACCA 77 IF: TCAAGCCATGAAAGGTGTTGIF: TCAAGCCATGAAAGGTGTTG 88 IR: ACGGGAAACCATAATCCTGAIR: ACGGGAAACCATAATCCTGA 99 CD24CD24 NM_013230.2NM_013230.2 OF: TGAGAATCCCAAATTTGATTGAOF: TGAGAATCCCAAATTTGATTGA 1010 5656 OR: TTGGATGTTGCCTCTCCTTC OR: TTGGATGTTGCCTCTCCTTC 1111 IF: TGCCAATATTAAATCTGCTGGAIF: TGCCAATATTAAATCTGCTGGA 1212 IR: GGATGTTGCCTCTCCTTCATIR: GGATGTTGCCTCTCCTTCAT 1313 CSTBCSTB NM_000100.3NM_000100.3 OF: GCCGAGACCCAGCACATCOF: GCCGAGACCCAGCACATC 1414 6060 OR: CACCTGGCTCTTGAATGACAOR: CACCTGGCTCTTGAATGACA 1515 IF: GTGAGGTCCCAGCTTGAAGAIF: GTGAGGTCCCAGCTTGAAGA 1616 IR: TGACACGGCCTTAAACACAGIR: TGACACGGCCTTAAACACAG 1717 EIF3GEIF3G NM_003755.3NM_003755.3 OF: AAGTTCAAGATTGTCCGCACOF: AAGTTCAAGATTGTCCGCAC 1818 112112 OR: GCAGTTCAGGTCCTCTTTGOR: GCAGTTCAGGTCCTCTTTG 1919 IF: TTCAAAGGCTGTCGCAAGGAIF: TTCAAAGGCTGTCGCAAGGA 2020 IR: CGTCATAGAGACATCGTCACTGIR: CGTCATAGAGACATCGTCACTG 2121 ERO1AERO1A NM_014584.1NM_014584.1 OF: GCAAATATGCCAGAAAGTGGAOF: GCAAATATGCCAGAAAGTGGA 2222 8181 OR: CCTGAAGTTTTCTAATTCTTTCACA OR: CCTGAAGTTTTCTAATTCTTTCACA 2323 IF: TGCCAGAAAGTGGACCTAGTIF: TGCCAGAAAGTGGACCTAGT 2424 IR: AAATTCTTCCAAATGCGTTGAIR: AAATTCTTCCAAATGCGTTGA 2525 KRT4KRT4 NM_002272.3NM_002272.3 OF: CCTCCCATGGACAGAGAAGAOF: CCTCCCATGGACAGAGAAGA 2626 5555 OR: CTAGTGGGAGATGGCATTGGOR: CTAGTGGGAGATGGCATTGG 2727 IF: CCAGGAGTGTCATCTCCAGAAIF: CCAGGAGTGTCATCTCCAGAA 2828 IR: TTGGACTGGGAAGGGACATAIR: TTGGACTGGGAAGGGACATA 2929 KRT6AKRT6A NM_005554.3NM_005554.3 OF: CCTCTGCTCCTTTTCATTGCOF: CCTCTGCTCCTTTTCATTGC 3030 6363 OR: GGTGGGGGTTCACAACACTOR: GGTGGGGGTTCACAACACT 3131 IF: AAAATTGCCAGGGGCTTATTIF: AAAATTGCCAGGGGCTTATT 3232 IR: GAGAGTTTGAGAGCCAGTGGAIR: GAGAGTTTGAGAGCCAGTGGA 3333 PPLPPL NM_002705.4NM_002705.4 OF: GAGAAACAAAGGCAAATACAGCOF: GAGAAACAAAGGCAAATACAGC 3434 6666 OR: TGTGTCCACGATGTTCTTCTCOR: TGTGTCCACGATGTTCTTCTC 3535 IF: CCGGAGCATCTCTAACAAGGAIF: CCGGAGCATCTCTAACAAGGA 3636 IR: ACCTGGTCGGCATTCTTCTGIR: ACCTGGTCGGCATTCTTCTG 3737 RANBP9RANBP9 NM_005493.2NM_005493.2 OF: ATGGCAAAACCCCAAAAGAOF: ATGGCAAAACCCCAAAAGA 3838 109109 OR: CCAACCTGGTAGTCTATTCAOR: CCAACCTGGTAGTCTATTCA 3939 IF: AGCCACGCATCCAATACCAGIF: AGCCACGCATCCAATACCAG 4040 IR: TGAGCAGAAAGACCAATTCCCAIR: TGAGCAGAAAGACCAATTCCCA 4141 S100A10S100A10 NM_002966.2NM_002966.2 OF: CAGTGTAGAGATGGCAAAGTGOF: CAGTGTAGAGATGGCAAAGTG 4242 9292 OR: TTATCAGGGAGGAGCGAACOR: TTATCAGGGAGGAGCGAAC 4343 IF: CCAGAGCTTCTTTTCCCTAATTGCIF: CCAGAGCTTCTTTTCCCTAATTGC 4444 IR: CTGCCTACTTCTTTCCCTTCTGIR: CTGCCTACTTCTTTCCCTTCTG 4545 SEMA4BSEMA4B NM_198925.2NM_198925.2 OF: CAGCCTCTACCAGCCTCAOF: CAGCCTCTACCAGCCTCA 4646 7777 OR: CTGGAACTGGACTTGCTCAOR: CTGGAACTGGACTTGCTCA 4747 IF: ATCCAGGACATCGAGGGAGCIF: ATCCAGGACATCGAGGGAGC 4848 IR: GTTGGTACAAAAGACGGGGACIR: GTTGGTACAAAAGACGGGGAC 4949 SPINK7SPINK7 NM_032566.2NM_032566.2 OF: CCTGCCCCATCACATACCTAOF: CCTGCCCCATCACATACCTA 5050 7979 OR: AGAGCCTGGGATGATGAAGATGOR: AGAGCCTGGGATGATGAAGATG 5151 IF: CATCACCTATGGGAATGAATGTCIF: CATCACCTATGGGAATGAATGTC 5252 IR: TCCATCGTGAAGAAACTGAACTCIR: TCCATCGTGAAGAAACTGAACTC 5353 GAPDH# GAPDH # NM_002046.4NM_002046.4 OF: CAACAGCCTCAAGATCATCAOF: CAACAGCCTCAAGATCATCA 5454 112112 OR: CCATCACGCCACAGTTTCOR: CCATCACGCCACAGTTTC 5555 IF: CCAACTGCTTAGCACCCCTGIF: CCAACTGCTTAGCACCCCTG 5656 IR: GGGCCATCCACAGTCTTCTGIR: GGGCCATCCACAGTCTTCTG 5757 ACTB# ACTB # NM_001101.3NM_001101.3 OF: CAGAGCCTCGCCTTTGCCOF: CAGAGCCTCGCCTTTGCC 5858 7373 OR: ATGCCGGAGCCGTTGTCGOR: ATGCCGGAGCCGTTGTCG 5959 IF: CCTCGCCTTTGCCGATCCIF: CCTCGCCTTTGCCGATCC 6060 IR: GAGCGCGGCGATATCATCAIR: GAGCGCGGCGATATCATCA 6161 O=outer, I=inner, F=forward, R=reverse
*: 증폭산물 크기는 IF 및 IR 프라이머가 사용된 중첩된 PCR 산물 크기이다.
#: Saliva internal reference (SIR) gene
O=outer, I=inner, F=forward, R=reverse
*: The amplification product size is the overlapped PCR product size in which IF and IR primers are used.
#: Saliva internal reference (SIR) gene

1-4. 타액 miRNA 프로파일링1-4. Saliva miRNA profiling

총 RNA는 mirVana PARIS extraction kit (Ambion)를 이용하여 타액 상층액 300 ㎕로부터 추출되었다. RNA 추출시 오염시키는 DNA를 제거하기 위해 On-column DNase treatment (Qiagen)를 사용하였다. 총 RNA (3 ng)는 the TaqMan miRNA Reverse Transcription Kit (Applied Biosystems)를 이용하여 상보적인 DNA로 전환되었다. 하기 표 5와 같이, 두 세트의 stem-loop RT 프라이머 (human pool A 및 human pool B) (Megaplex RT primers, Applied Biosystems)를 사용하였다. 역전사 후, RT 생성물은 TaqMan PreAmp Master Mix (Applied Biosystems) 및 Megaplex PreAmp primer (Applied Biosystems)으로 예비증폭되었다. miRNA를 정량하기 전에는 예비증폭 생성물을 희석하지 않았다. miRNA를 정량하는데 TaqMan Human miRNA array set version 3.0 (Applied Biosystems) 및 TaqMan Universal PCR Master Mix (no AmpErase uracil N-glycosylase)를 사용하였다. 모든 반응은 7900HT Fast Real-Time PCR System containing a special cardholder (Applied Biosystems)에서 수행되었다. 데이터는 usingRQManager 소프트웨어 버전 1.2 및 DataAssist 소프트웨어 버전 3.0 (Applied Biosystems)을 이용하여 분석되었다. ΔCq 값은 [ΔCq = (각 바이오마커 후보의 기존 Cq 값) - (참고 유전자인 U6 소핵 RNA로 전사된 RNA 중합효소 Ⅲ의 Cq 값)]으로 계산되었다. Total RNA was extracted from 300 μl of saliva supernatant using the mirVana PARIS extraction kit (Ambion). On-column DNase treatment (Qiagen) was used to remove contaminating DNA during RNA extraction. Total RNA (3 ng) was converted to complementary DNA using the TaqMan miRNA Reverse Transcription Kit (Applied Biosystems). As shown in Table 5 below, two sets of stem-loop RT primers (human pool A and human pool B) (Megaplex RT primers, Applied Biosystems) were used. After reverse transcription, the RT product was pre-amplified with TaqMan PreAmp Master Mix (Applied Biosystems) and Megaplex PreAmp primer (Applied Biosystems). The preamplification product was not diluted prior to quantification of miRNA. To quantify miRNA, TaqMan Human miRNA array set version 3.0 (Applied Biosystems) and TaqMan Universal PCR Master Mix (no AmpErase uracil N-glycosylase) were used. All reactions were performed in a 7900HT Fast Real-Time PCR System containing a special cardholder (Applied Biosystems). Data was analyzed using RQManager software version 1.2 and DataAssist software version 3.0 (Applied Biosystems). The ΔCq value was calculated as [ΔCq = (existing Cq value of each biomarker candidate)-(Cq value of RNA polymerase III transcribed into U6 micronuclear RNA, which is a reference gene)].

프라이머 (서열번호)Primer (SEQ ID NO:) 염기서열 (5' > 3')Base sequence (5'> 3') miR-140-5p (서열번호 62)miR-140-5p (SEQ ID NO: 62) CAGUGGUUUUACCCUAUGGUAGCAGUGGUUUUACCCUAUGGUAG miR-301a (서열번호 63)miR-301a (SEQ ID NO: 63) CAGUGCAAUAGUAUUGUCAAAGCCAGUGCAAUAGUAUUGUCAAAGC

1-5. 타액 내 miRNA 바이오마커의 확인 및 검증1-5. Identification and verification of miRNA biomarkers in saliva

TaqMan miRNA 어레이 프로파일링에 의해 선택된 바이오마커 후보는 miRNA 어레이 분석에서 사용된 동일한 시료 (n = 20)를 이용하여 TaqMan miRNA assay (Applied Biosystems)에 의해 확인되었다. 특이적 miRNA 유전자를 포함하는 TaqMan miRNA assay는 Applied Biosystems에 주문하였다. 실험방법은 TaqMan miRNA assay를 이용한 맞춤형 RT 및 예비증폭 풀에 대해 제조자가 제안한 바와 동일하다. 실시간 PCR 반응 전에는 시료를 희석하지 않았다. 각 후보 miRNA에 대한 qPCR 반응은 Roche LightCycler 480 II (Roche)으로 중복하여 수행되었다. 평균 임계 주기(average threshold cycle; Cq)를 확인하고, U6 소핵 RNA를 데이터 표준화의 참고 유전자로 사용하였다. 또한, TaqMan miRNA assay는 이후 코호트 검증에서 miRNA를 분석하는데 이용되었다. Biomarker candidates selected by TaqMan miRNA array profiling were confirmed by TaqMan miRNA assay (Applied Biosystems) using the same sample (n = 20) used in miRNA array analysis. TaqMan miRNA assays containing specific miRNA genes were ordered from Applied Biosystems. The experimental method is the same as suggested by the manufacturer for the custom RT and pre-amplification pool using TaqMan miRNA assay. Samples were not diluted before the real-time PCR reaction. The qPCR reaction for each candidate miRNA was performed in duplicate with Roche LightCycler 480 II (Roche). The average threshold cycle (Cq) was checked, and U6 micronuclear RNA was used as a reference gene for data standardization. In addition, TaqMan miRNA assay was used to analyze miRNA in later cohort validation.

1-6. 통계학적 분석1-6. Statistical analysis

먼저, 각 코호트 내 인구통계학적 특성을 정리한 후 χ2 test 및 t-test를 사용하여 코호트 내 위암 환자군과 비위암 대조군 간의 인구통계적 특성을 비교하였다.First, demographic characteristics within each cohort were summarized, and then demographic characteristics were compared between the gastric cancer patient group and the non-gastric cancer control group in the cohort using χ 2 test and t-test.

마이크로어레이 분석: 전체 데이터 세트에서 도출된 CEL 파일을 통계 소프트웨어 R 3.0.2으로 추출하였다. 데이터 전처리는 각 마이크로어레이 발현 데이터 세트에 대해 배경 보정 및 변위 표준화 후 Probe Logarithmic Intensity Error Estimation 발현 측정을 이용하여 수행되었다. 프로브 세트-수준 변위 표준화는 모든 시료에서 수행되었다. 마지막으로, 모든 프로브 세트에 대한 Wilcoxon rank-sum test는 위암 환자군과 비위암 대조군 간의 유전자 발현을 비교하는데 사용되었다. Microarray Analysis: CEL files derived from the entire data set were extracted with statistical software R 3.0.2. Data pre-processing was performed using Probe Logarithmic Intensity Error Estimation expression measurement after background correction and displacement standardization for each microarray expression data set. Probe set-level displacement normalization was performed on all samples. Finally, the Wilcoxon rank-sum test for all probe sets was used to compare gene expression between gastric cancer patients and non-gastric cancer controls.

타액 mRNA 및 miRNA 바이오마커 후보는 다음과 같은 기준을 충족시켰다: (a) Wilcoxon test의 P 값은 0.05 미만이고, (b) 배수변화도(fold change)는 1.2를 초과한다. 가장 낮은 P 값을 가진 상위 30개 mRNA 및 상위 15개 miRNA를 확인하기 위해 선택하였다. RT-qPCR 확인 단계에서, mRNA 및 miRNA에 대한 ΔCq 값은 Wilcoxon rank-sum test를 이용하여 위암 환자군과 비위암 대조군 간의 차이를 비교하였다. P값이 0.05 미만인 바이오마커 mRNA 12개 및 miRNA 6개를 선택하여 검증하였다.Saliva mRNA and miRNA biomarker candidates met the following criteria: (a) the P value of the Wilcoxon test was less than 0.05, and (b) the fold change exceeded 1.2. It was selected to identify the top 30 mRNAs and the top 15 miRNAs with the lowest P values. In the RT-qPCR confirmation step, ΔCq values for mRNA and miRNA were compared between the gastric cancer patient group and the non-gastric cancer control group using the Wilcoxon rank-sum test. 12 biomarker mRNAs and 6 miRNAs with a P value of less than 0.05 were selected and verified.

1-7. 검증 및 모델 구축1-7. Verification and model building

발굴 세트에서 선택된 각각의 mRNA 12개 및 miRNA 6개 후보를 검증하기 위해, 위암 환자군 100개 및 비위암 대조군 100개를 비교하는 Wilcoxon rank-sum test를 수행하였다. 먼저, Wilcoxon rank-sum test는 위암 환자군과 비위암 대조군 간의 각 마커에 대해 ΔCq 변형 값(transformed values)을 비교하는데 이용되었다. 이후, 비위암 대조군의 시료에서 위암을 구별할 수 있는 마커들의 최상의 조합을 확인하기 위해 다중 로지스틱 모델(multiple logistic model)를 설계하였다.To verify each of the 12 mRNA and 6 miRNA candidates selected from the excavation set, a Wilcoxon rank-sum test was performed comparing 100 gastric cancer patient groups and 100 non-gastric cancer control groups. First, the Wilcoxon rank-sum test was used to compare ΔCq transformed values for each marker between the gastric cancer patient group and the non-gastric cancer control group. Thereafter, a multiple logistic model was designed to identify the best combination of markers capable of distinguishing gastric cancer in the samples of the non-gastric cancer control group.

로지스틱 회귀 모델(logistic regression model)을 구성하기 위해 LASSO 변수 선택 기법/추정을 이용하였다. 조율 파라미터(tuning parameter, λ)는 R에서 GLMnet 패키지로 10배 교차 검증을 통해 선택되었다. 각 모델의 진단 능력은 모델에서 예측된 확률을 바탕으로 계산된 AUC를 이용하여 평가되었다. 통계학적 분석은 R 3.0.2 및 SPSS V22 (IBM Corp)를 이용하여 도출되었다. 각 값은 '평균 (표준편차)'이며, P 값 < 0.05는 통계적으로 유의한 것으로 간주되었다.To construct a logistic regression model, the LASSO variable selection technique/estimation was used. The tuning parameter (λ) was selected through 10-fold cross-validation from R to the GLMnet package. The diagnostic ability of each model was evaluated using the AUC calculated based on the predicted probability in the model. Statistical analysis was derived using R 3.0.2 and SPSS V22 (IBM Corp). Each value is'mean (standard deviation)', and a P value <0.05 was considered statistically significant.

2. 결과 2. Results

2-1. 타액 전사체 후보 바이오마커의 발굴2-1. Discovery of candidate biomarkers for saliva transcriptome

도 1과 같이, 위암 환자군 (n = 63) 및 비위암 대조군 (n = 31)에서 얻은 타액 시료의 유전자 발현 프로파일은 Affymetrix Human Genome U133 Plus 2.0 Array를 이용하여 조사되었다. 마이크로어레이 프로파일링의 정확도를 보장하기 위해, 각 타액 시료에서 RNA의 양과 품질을 평가하였다. 평균적으로 총 RNA 117.51 ± 70.67 ng (n = 94)를 타액 상층액 300 ㎕에서 얻었다. 위암 환자군과 비위암 대조군에서 분리된 총 RNA에는 유의적인 차이가 없었다 (P = 0.39; n = 94). 모든 타액 시료에서 참고 유전자 GAPDH의 RT-qPCR 결과도 위암 환자군과 비위암 대조군의 발현 수준에서 유의적인 차이가 없었다 (P = 0.71; n = 94). 2회 증폭하여 일정한 증폭 크기(consistent amplification magnitude)를 얻었고, 비오틴이 표지된 상보적 RNA의 수율은 58.58 ± 14.76 ㎍ 였다. 위암 환자군과 비위암 대조군의 상보적 RNA 수율에는 유의적인 차이가 없었다 (P = 0.23; n = 94).1, the gene expression profile of the saliva samples obtained from the gastric cancer patient group (n = 63) and the non-gastric cancer control group (n = 31) was investigated using Affymetrix Human Genome U133 Plus 2.0 Array. To ensure the accuracy of microarray profiling, the amount and quality of RNA in each saliva sample was evaluated. On average, 117.51 ± 70.67 ng of total RNA (n = 94) was obtained in 300 µl of saliva supernatant. There was no significant difference in total RNA isolated from the gastric cancer patient group and the non-gastric cancer control group (P = 0.39; n = 94). In all saliva samples, the RT-qPCR results of the reference gene GAPDH were not significantly different in the expression levels of the gastric cancer patient group and the non-gastric cancer control group (P = 0.71; n = 94). Amplification twice to obtain a constant amplification magnitude, and the yield of biotin-labeled complementary RNA was 58.58 ± 14.76 ㎍. There was no significant difference in the complementary RNA yield between the gastric cancer patient group and the non-gastric cancer control group (P = 0.23; n = 94).

발현 마이크로어레이 결과에서, 위암 환자군의 타액을 비위암 대조군의 타액과 비교하였을 때 exRNA 38개가 증가하고, exRNA 2601개가 감소하는 것으로 나타났다 (n = 94; P < 0.05; fold change > 1.2). 도 2와 같이, 상위 150개 유전자의 마이크로어레이 분석 결과로 만들어진 히트 맵(heat map)에서, 조정되지 않은 P 값 컷오프가 0.002이며, 위암 환자군과 비위암 대조군의 타액 프로파일 간에 잠재적으로 차이가 있는 것으로 나타났다.In the expression microarray results, 38 exRNAs increased and 2601 exRNAs decreased when the saliva of the gastric cancer patient group was compared with that of the non-gastric cancer control group (n = 94; P <0.05; fold change> 1.2). As shown in FIG. 2, in a heat map made as a result of microarray analysis of the top 150 genes, the unadjusted P value cutoff is 0.002, and there is a potential difference between the saliva profiles of the gastric cancer patient group and the non-gastric cancer control group. appear.

2-2. 위암 진단을 위한 mRNA 후보 바이오마커의 확인2-2. Identification of mRNA candidate biomarkers for diagnosis of gastric cancer

검증 전에 마이크로어레이 프로파일링에서 얻은 후보 mRNA 마커를 확인하였다. 가장 작은 P 값을 가진 상위 30개 mRNA 후보 (발현이 감소된 후보 25개 및 증가된 후보 5개)를 선택하였다. RT-qPCR을 수행하여 발굴 시료 세트 (위암 환자군 = 63, 비위암 대조군 = 31)의 결과를 확인하고, 마이크로어레이 데이터와 일치하면서 위암 환자군과 비위암 대조군 간의 유의적인 차이 (P = 0.05)를 보인 exRNA 30개 중 12개의 RNA 발현 수준 차이를 확인하였다. GAPDH 유전자를 이용하여 계산된 위암 환자군의 Cq 값은 24.85 ± 1.53인 반면, 비위암 대조군의 Cq 값은 25.03 ± 2.32으로, 유의적인 차이를 보이지 않았다 (P = 0.65). 하기 표 6과 같이, 감소된 exRNA 11개 (S100A10, ANXA1, CSTB, KRT6A, ERO1A, PPL, SPINK7, RANBP9, KRT4, CD24 및 SEMA4B) 및 증가된 exRNA 1개 (EIF3G)가 확인되었다. 확인된 바이오마커의 발현 양상은 마이크로어레이 프로파일링 결과와 일치하며, AUC 값이 0.63 ~ 0.74 였다.Candidate mRNA markers obtained from microarray profiling were identified before verification. The top 30 mRNA candidates with the smallest P value (25 candidates with reduced expression and 5 increased candidates) were selected. RT-qPCR was performed to confirm the results of the excavated sample set (gastric cancer patient group = 63, non-gastric cancer control group = 31), and showed a significant difference (P = 0.05) between the gastric cancer patient group and the non-gastric cancer control group while consistent with the microarray data. Among the 30 exRNAs, 12 differences in RNA expression levels were confirmed. The Cq value of the gastric cancer patient group calculated using the GAPDH gene was 24.85 ± 1.53, whereas the Cq value of the non-gastric cancer control group was 25.03 ± 2.32, showing no significant difference (P = 0.65). As shown in Table 6 below, 11 reduced exRNAs (S100A10, ANXA1, CSTB, KRT6A, ERO1A, PPL, SPINK7, RANBP9, KRT4, CD24 and SEMA4B) and 1 increased exRNA (EIF3G) were identified. The expression pattern of the confirmed biomarker was consistent with the microarray profiling result, and the AUC value was 0.63 ~ 0.74.

유전자gene ΔCq 값ΔCq value 위암 환자군
(평균 (표준편차))
Gastric cancer patients
(Mean (standard deviation))
비위암 대조군
(평균 (표준편차))
Gastric cancer control
(Mean (standard deviation))
AUC
(95% CI)
AUC
(95% CI)
ANXA1ANXA1 -0.90 (2.29)-0.90 (2.29) -1.96 (2.65)-1.96 (2.65) 0.7240.724 CD24CD24 1.18 (2.15)1.18 (2.15) 0.31 (1.46)0.31 (1.46) 0.6510.651 CSTBCSTB -1.84 (1.79)-1.84 (1.79) -2.31 (2.89)-2.31 (2.89) 0.6550.655 EIF3GEIF3G 1.84 (0.26)1.84 (0.26) 2.48 (0.23)2.48 (0.23) 0.6390.639 ERO1AERO1A 4.50 (4.84)4.50 (4.84) 2.91 (4.18)2.91 (4.18) 0.6630.663 KRT4KRT4 -0.76 (2.56)-0.76 (2.56) -1.58 (1.81)-1.58 (1.81) 0.6340.634 KRT6AKRT6A -0.04 (3.08)-0.04 (3.08) -1.19 (1.51)-1.19 (1.51) 0.6660.666 PPLPPL -1.03 (2.26)-1.03 (2.26) -2.42 (1.52)-2.42 (1.52) 0.7190.719 RANBP9RANBP9 5.90 (4.45)5.90 (4.45) 3.53 (3.48)3.53 (3.48) 0.7300.730 S100A10S100A10 1.69 (2.80)1.69 (2.80) 0.76 (2.57)0.76 (2.57) 0.6440.644 SEMA4BSEMA4B 8.19 (3.45)8.19 (3.45) 6.71 (1.88)6.71 (1.88) 0.6370.637 SPINK7SPINK7 1.05 (3.31)1.05 (3.31) -0.96 (3.16)-0.96 (3.16) 0.7370.737

2-3. 타액 miRNA 발현 프로파일, 후보 발굴 및 검증2-3. Saliva miRNA expression profile, candidate discovery and validation

초기 위암 환자군 (1a 단계 또는 1b 단계) 10명과 비위암 대조군 10명의 miRNA 발현 프로파일을 miRNA 발굴하는데 사용하였다. TaqMan Human miRNA array set version 3.0 (A+B)를 각 시료를 프로파일 하는데 사용하였다 (총 카드 40개). 데이터 표준화(normalization) 전에, 최소 시료 80% (환자 20명 중 16명) 중 Cq 값이 35 미만인 miRNA에 대해서만 RT-qPCR를 이용한 miRNA 확인의 정확도를 보장하는데 포함시켰다. 위암 환자군과 비위암 대조군 간의 검출 가능한 miRNA의 수는 비슷하였다 (218 ± 3). 이러한 기준을 이용하여, 발굴 단계의 시료 세트를 사용하는 RT-qRCR에 의한 확인을 수행하기 위해 miRNA 후보 15개 (발현이 감소된 12개 및 증가된 3개)를 선택하였다. 참고 유전자 U6 소핵 RNA에 대한 위암 환자군의 Cq 값은 18.79 ± 1.37이고, 비위암 대조군의 Cq 값은 18.67 ± 1.90 (P = 0.87) 였다. RT-qPCR 결과에서 miRNA 6개의 상대적인 발현 수준이 TaqMan miRNA array 데이터와 일치하는 것을 확인하였으며, 위암 환자군과 비위암 대조군 간의 유의적인 차이를 보였다. 하기 표 7과 같이, 발현이 감소된 miRNA 6개 (MIR140-5p, MIR374a, MIR454, MIR15b, MIR28-5p 및 MIR301a)를 확인하였고, 이들의 AUC 값은 0.79 ~ 0.88 였다. The miRNA expression profiles of 10 early gastric cancer patient groups (stage 1a or 1b) and 10 non-gastric cancer control groups were used to discover miRNA. TaqMan Human miRNA array set version 3.0 (A+B) was used to profile each sample (total of 40 cards). Prior to data normalization, only miRNAs with a Cq value of less than 35 in a minimum of 80% of the sample (16 out of 20 patients) were included to ensure the accuracy of miRNA identification using RT-qPCR. The number of detectable miRNAs between the gastric cancer patient group and the non-gastric cancer control group was similar (218 ± 3). Using this criterion, 15 miRNA candidates (12 with reduced expression and 3 with increased expression) were selected to perform identification by RT-qRCR using the sample set of the excavation step. The Cq value of the gastric cancer patient group for the reference gene U6 micronuclear RNA was 18.79 ± 1.37, and the Cq value of the non-gastric cancer control group was 18.67 ± 1.90 (P = 0.87). From the RT-qPCR results, it was confirmed that the relative expression levels of the 6 miRNAs were consistent with the TaqMan miRNA array data, and there was a significant difference between the gastric cancer patient group and the non-gastric cancer control group. As shown in Table 7 below, six miRNAs with reduced expression (MIR140-5p, MIR374a, MIR454, MIR15b, MIR28-5p, and MIR301a) were identified, and their AUC values were 0.79 to 0.88.

유전자gene ΔCq 값ΔCq value 위암 환자군
(평균 (표준편차))
Gastric cancer patients
(Mean (standard deviation))
비위암 대조군
(평균 (표준편차))
Gastric cancer control
(Mean (standard deviation))
AUC
(95% CI)
AUC
(95% CI)
miR140-5pmiR140-5p 1.77 (1.16)1.77 (1.16) -0.18 (1.43)-0.18 (1.43) 0.8400.840 miR374amiR374a 4.05 (1.50)4.05 (1.50) 2.41 (1.48)2.41 (1.48) 0.7900.790 miR454miR454 4.85 (1.42)4.85 (1.42) 2.71 (1.81)2.71 (1.81) 0.8300.830 miR15bmiR15b 1.79 (1.52)1.79 (1.52) 0.01 (1.33)0.01 (1.33) 0.8200.820 miR28-5pmiR28-5p 6.57 (1.36)6.57 (1.36) 4.50 (1.34)4.50 (1.34) 0.8800.880 miR301amiR301a 6.02 (1.18)6.02 (1.18) 4.32 (1.45)4.32 (1.45) 0.8200.820

2-4. mRNA 및 miRNA 후보 바이오마커의 검증2-4. Validation of mRNA and miRNA candidate biomarkers

독립된 코호트 (위암 환자군 100명 및 비위암 대조군 100명)를 이용하여 추가로 검증하기 위해, 상위 mRNA 후보 30개 및 miRNA 후보 15개로부터 확인된 mRNA 후보 12개 및 miRNA 후보 6개를 선택하였다. 하기 표 8과 같이, mRNA 후보 12개 중 9개 (ANXA1, CD24, CSTB, ERO1A, KRT4, KRT6A, PPL, S100A10 및 SPINK7)가 검증되었고 (P < 0.05), AUC 값이 0.59 ~ 0.64 였다. miRNA 후보 6개 중 4개 (MIR140-5p, MIR374a, MIR454 및 MIR15b)가 검증되었고, 이들은 위암 환자군과 비위암 대조군 간의 유의적인 차이가 보이면서 (P < 0.05; n = 200) AUC 값이 0.63 ~ 0.70 였다.For further validation using an independent cohort (100 gastric cancer patients and 100 non-gastric cancer control), 12 mRNA candidates and 6 miRNA candidates identified from 30 top mRNA candidates and 15 miRNA candidates were selected. As shown in Table 8 below, 9 of the 12 mRNA candidates (ANXA1, CD24, CSTB, ERO1A, KRT4, KRT6A, PPL, S100A10 and SPINK7) were verified (P <0.05), and the AUC values were 0.59 to 0.64. Four of the six miRNA candidates (MIR140-5p, MIR374a, MIR454, and MIR15b) were verified, and these showed significant differences between the gastric cancer patient group and the non-gastric cancer control group (P <0.05; n = 200), and the AUC value was 0.63 ~ 0.70 Was.

유전자gene ΔCq 값ΔCq value 위암 환자군
(평균 (표준편차))
Gastric cancer patients
(Mean (standard deviation))
비위암 대조군
(평균 (표준편차))
Gastric cancer control
(Mean (standard deviation))
P 값P value AUC
(95% CI)
AUC
(95% CI)
ANXA1ANXA1 -2.58 (2.07)-2.58 (2.07) -3.36 (1.63)-3.36 (1.63) 0.0080.008 0.61
(0.53, 0.69)
0.61
(0.53, 0.69)
CD24CD24 1.20 (1.90)1.20 (1.90) 0.32 (1.66)0.32 (1.66) 0.0010.001 0.63
(0.56, 0.71)
0.63
(0.56, 0.71)
CSTBCSTB -2.83 (2.15)-2.83 (2.15) -3.74 (1.79)-3.74 (1.79) 0.0040.004 0.62
(0.54, 0.70)
0.62
(0.54, 0.70)
EIF3GEIF3G 6.98 (3.08)6.98 (3.08) 7.08 (3.21)7.08 (3.21) 0.9450.945 0.50
(0.42, 0.58)
0.50
(0.42, 0.58)
ERO1AERO1A 4.53 (2.07)4.53 (2.07) 3.70 (1.96)3.70 (1.96) 0.0020.002 0.63
(0.55, 0.71)
0.63
(0.55, 0.71)
KRT4KRT4 -2.28 (2.35)-2.28 (2.35) -3.02 (2.00)-3.02 (2.00) 0.0350.035 0.59
(0.51, 0.67)
0.59
(0.51, 0.67)
KRT6AKRT6A -0.34 (2.34)-0.34 (2.34) -1.21 (2.15)-1.21 (2.15) 0.0010.001 0.63
(0.56, 0.71)
0.63
(0.56, 0.71)
PPLPPL 1.08 (2.23)1.08 (2.23) 0.34 (2.20)0.34 (2.20) 0.0070.007 0.61
(0.53, 0.69)
0.61
(0.53, 0.69)
RANBP9RANBP9 4.26 (3.11)4.26 (3.11) 3.56 (2.77)3.56 (2.77) 0.1570.157 0.56
(0.48, 0.64)
0.56
(0.48, 0.64)
S100A10S100A10 2.21 (2.02)2.21 (2.02) 1.55 (2.04)1.55 (2.04) 0.0060.006 0.61
(0.54, 0.69)
0.61
(0.54, 0.69)
SEMA4BSEMA4B 11.47 (3.98)11.47 (3.98) 10.57 (4.14)10.57 (4.14) 0.1490.149 0.56
(0.48, 0.64)
0.56
(0.48, 0.64)
SPINK7SPINK7 2.37 (2.72)2.37 (2.72) 1.18 (1.98)1.18 (1.98) 0.0010.001 0.64
(0.56, 0.72)
0.64
(0.56, 0.72)
miR140-5pmiR140-5p 1.54 (3.68)1.54 (3.68) -1.08 (3.27)-1.08 (3.27) <0.001<0.001 0.70
(0.63, 0.78)
0.70
(0.63, 0.78)
miR374amiR374a 6.95 (5.69)6.95 (5.69) 4.26 (4.59)4.26 (4.59) <0.001<0.001 0.65
(0.57, 0.73)
0.65
(0.57, 0.73)
miR454miR454 4.61 (3.40)4.61 (3.40) 3.14 (3.40)3.14 (3.40) 0.0030.003 0.63
(0.55, 0.70)
0.63
(0.55, 0.70)
miR15bmiR15b 2.92 (3.52)2.92 (3.52) 1.00 (3.42)1.00 (3.42) <0.001<0.001 0.65
(0.57, 0.72)
0.65
(0.57, 0.72)
miR28-5pmiR28-5p 5.15 (4.17)5.15 (4.17) 3.59 (3.94)3.59 (3.94) 0.0240.024 0.59
(0.51, 0.67)
0.59
(0.51, 0.67)
miR301amiR301a 8.46 (4.17)8.46 (4.17) 6.95 (3.82)6.95 (3.82) 0.010.01 0.61
(0.53, 0.69)
0.61
(0.53, 0.69)

2-5. 검증된 타액 exRNA 바이오마커를 이용한 예측 모델 구축2-5. Construction of predictive model using proven saliva exRNA biomarkers

도 3을 참조하면, mRNA 후보 12개 및 miRNA 후보 6개로부터 LASSO 방법으로 선택된 mRNA 바이오마커 3개 (SPINK7, PPL 및 SEMA4B) 및 miRNA 바이오마커 2개 (MIR140-5p 및 MIR301a)의 조합 모델에서, AUC 값은 0.81였다 (95% CI, 0.72 ~ 0.89). 민감도 및 특이도를 극대화하는 ROC 곡선 상에서 민감도가 75%, 특이도가 83%인 것으로 나타났다. 민감도를 80% 또는 90%로 설정하여 각각 특이도 예상값을 54% 또는 40%로 얻었다. 바이오마커의 예측 능력 (정확도)를 평가하기 위해, 위암 환자군 데이터베이스를 기반으로 인구통계학적 특성 전용 모델(demographic characteristic-only model)을 구축하였고, AUC 값은 0.69 였다 (95% CI, 0.59 ~ 0.79). 바이오마커 5종 및 인구통계학적 특성 (흡연, 성별 및 나이)를 통합한 모델에서, AUC 값은 0.87 (95% CI, 0.80 ~ 0.93) 였다. 상기 3가지 모델에 대해 Hosmer-Lemeshow test를 이용하여 교정을 수행하였다. 3가지 모델은 모두 P > 0.05인 것으로, 교정하는데 부족함이 없었다. 3가지 모델의 AUC 값을 비교하기 위해 Delong's test를 수행하였다. 바이오마커 및 인구통계학적 특성의 조합 모델 (AUC = 0.87)과 인구통계학적 모델 (AUC = 0.69) 간의 ΔAUC에서 유의적인 차이가 나타났다. 민감도 및 특이도를 극대화하는 ROC 곡선 상에서 민감도가 82%, 특수성이 77% 였고 양성 예측도(positive predictive value)가 82%, 음성 예측도(negative predictive value)가 77%였다. 높은 민감도 (90%)로 임계값을 설정할 경우, 특이도, 양성 예측도 및 음성 예측도가 각각 65%, 76%, 84% 였다.Referring to FIG. 3, in a combination model of three mRNA biomarkers (SPINK7, PPL and SEMA4B) and two miRNA biomarkers (MIR140-5p and MIR301a) selected by the LASSO method from 12 mRNA candidates and 6 miRNA candidates, The AUC value was 0.81 (95% CI, 0.72 ~ 0.89). On the ROC curve that maximizes sensitivity and specificity, it was found that the sensitivity was 75% and the specificity was 83%. By setting the sensitivity to 80% or 90%, the expected specificity was obtained as 54% or 40%, respectively. To evaluate the predictive ability (accuracy) of biomarkers, a demographic characteristic-only model was constructed based on the gastric cancer patient group database, and the AUC value was 0.69 (95% CI, 0.59 ~ 0.79). . In the model incorporating five biomarkers and demographic characteristics (smoking, sex, and age), the AUC value was 0.87 (95% CI, 0.80 to 0.93). Calibration was performed for the three models using the Hosmer-Lemeshow test. All three models had P> 0.05, and there was no shortage of calibration. Delong's test was performed to compare the AUC values of the three models. There was a significant difference in ΔAUC between the combination model of biomarker and demographic characteristics (AUC = 0.87) and the demographic model (AUC = 0.69). On the ROC curve that maximizes sensitivity and specificity, the sensitivity was 82% and the specificity was 77%, the positive predictive value was 82%, and the negative predictive value was 77%. When the threshold was set with high sensitivity (90%), the specificity, positive predictiveness and negative predictiveness were 65%, 76%, and 84%, respectively.

<110> SAMSUNG LIFE PUBLIC WELFARE FOUNDATION <120> Biomarkers for Diagnosing Gastric Cancer And Uses Thereof <130> PN190164 <160> 63 <170> KoPatentIn 3.0 <210> 1 <211> 258 <212> DNA <213> Artificial Sequence <220> <223> SPINK7 <400> 1 atgaagatca ctgggggtct ccttctgctc tgtacagtgg tctatttctg tagcagctca 60 gaagctgcta gtctgtctcc aaaaaaagtg gactgcagca tttacaagaa gtatccagtg 120 gtggccatcc cctgccccat cacataccta ccagtttgtg gttctgacta catcacctat 180 gggaatgaat gtcacttgtg taccgagagc ttgaaaagta atggaagagt tcagtttctt 240 cacgatggaa gttgctaa 258 <210> 2 <211> 5271 <212> DNA <213> Artificial Sequence <220> <223> PPL <400> 2 atgaactcgc tcttcaggaa gagaaacaaa ggcaaataca gccccactgt gcagacccgg 60 agcatctcta acaaggagct ctcggagctg atcgagcagc tgcagaagaa tgccgaccag 120 gtggagaaga acatcgtgga cacagaggcc aagatgcaga gtgacctggc tcggctgcag 180 gagggtcggc agcctgagca ccgggacgtg accctgcaga aggtgttgga ctctgagaag 240 ctgctctatg tgctagaggc ggatgcggcc attgccaagc acatgaagca cccacagggg 300 gacatgatcg ccgaggatat ccgccagctg aaggagcgtg tgaccaacct gcgcgggaaa 360 cacaagcaga tctacaggct ggcggtgaag gaagtggatc cacaggtcaa ctgggcggca 420 ctggtggagg agaagctgga caagctgaac aaccagagct ttgggactga cctgccgctg 480 gtggaccacc aagtggagga gcataacatc ttccacaatg aggtcaaggc catcgggccc 540 cacctggcca aggacgggga caaggagcag aacagcgaac tccgggccaa gtaccagaaa 600 ctgctggcag catcacaggc ccggcagcag cacctgagtt cgctgcagga ctacatgcag 660 cgctgcacca atgagctgta ctggctggac cagcaggcca agggccgcat gcagtacgac 720 tggagtgacc gcaacctcga ctaccccagc cgccggcgcc agtatgagaa tttcatcaac 780 cggaacctgg aggccaaaga ggagagaatc aacaaactgc acagcgaggg cgaccagctg 840 ctggcggccg agcaccccgg gaggaactcc attgaggcgc acatggaggc tgtgcacgca 900 gactggaagg agtacctgaa cctgctcatc tgcgaggaga gccacctcaa gtacatggag 960 gactaccacc agtttcacga agacgtgaag gacgctcagg agctgctgcg caaggtggac 1020 tcggacctga accagaagta tggccctgac ttcaaggacc ggtaccagat tgagctgctg 1080 ctgcgggagc tggatgacca ggagaaggtg ctggacaagt atgaggacgt ggtgcagggg 1140 ctgcagaagc gaggccagca ggtggtgccc ctcaagtacc gccgggagac tccgctcaag 1200 cccatccccg tggaggcact ctgtgacttt gagggggagc agggcctgat ctcgcggggc 1260 tacagctaca ccctgcagaa gaacaacggg gagagctggg agctcatgga cagcgctggg 1320 aacaagctga ttgctccggc cgtgtgtttt gtgatccccc ccacagaccc tgaggccctg 1380 gctctggctg acagcctggg cagccagtac cggagcgtgc ggcagaaggc agctgggagc 1440 aaacgcacgc tgcagcagcg gtatgaggtg ctgaagaccg agaatcccgg agatgcctct 1500 gacctacagg ggcggcagct gctggctggc ttggacaagg tggccagcga cctggaccgg 1560 caggagaagg ccatcacagg gatcctgcgg ccaccactgg agcaaggccg ggctgtgcag 1620 gacagtgccg agcgggccaa ggacctcaag aacatcacca acgagctact gcggattgaa 1680 cctgagaaga cgcggagcac ggctgagggc gaagccttca tccaggccct cccaggcagt 1740 ggcaccacac ccctgctgag gacccgggtg gaggacacca accggaaata cgagcacctc 1800 ctgcagctgc tggacttggc ccaggagaag gttgatgtgg ccaaccgcct ggagaagagc 1860 ctgcagcaga gctgggagtt gctggccaca cacgagaacc atctgaatca ggatgacaca 1920 gtgcctgaga gcagccgtgt cctggacagc aaggggcagg agctggcggc catggcctgt 1980 gagttacagg cccagaagtc cctcctgggt gaggtggagc agaacttgca ggcggccaag 2040 cagtgctcga gcacactggc cagccgcttc caggagcact gtccggacct ggagcgccag 2100 gaggccgagg tgcacaagct gggccagcgt ttcaacaacc tgcgccagca ggtggaacgc 2160 agggcgcaga gcctacagag cgccaaggca gcctacgagc acttccaccg cggccatgac 2220 cacgtgctgc agttcctagt cagcatcccc agttacgagc cccaggagac agacagcctc 2280 agccagatgg agaccaagct gaagaaccag aagaacctgc tagatgagat agcaagtagg 2340 gagcaggaag tacagaagat ctgtgccaat tcccagcagt accagcaagc tgtaaaggac 2400 tatgagttag aagcagaaaa actaaggtct cttctcgact tggagaatgg aaggagaagc 2460 cacgtgagca agagagccag gctccaatct cctgccacca aagtgaagga agaggaagca 2520 gcacttgccg ccaagttcac tgaagtttat gccatcaaca gacagaggct gcagaatctg 2580 gagtttgctc tgaatctcct cagacagcag ccggaagtag aagtgaccca tgagaccctg 2640 caaaggaata ggccggactc tggagtggag gaggcgtgga agatcaggaa ggaactggat 2700 gaggagactg agcggaggcg gcagctggag aacgaggtca agagcaccca ggaagaaatc 2760 tggaccttga ggaatcaggg gcctcaggaa tcggtggtga ggaaggaggt gctcaagaag 2820 gtgccggatc ccgtgctgga ggagagcttc cagcagctgc agcggacgct ggcagaggag 2880 cagcacaaga accagctgct gcaggaggag ctggaggcac tgcagctgca gctgcgtgcc 2940 ctggagcagg agaccagaga cggggggcag gagtacgtgg tcaaggaggt cctgcgcatc 3000 gagcctgaca gggcccaggc ggatgaggtc ttgcagctgc gggaggagct ggaggcactg 3060 aggcggcaga agggcgcccg ggaggcagag gtgctcctcc tgcagcagcg tgtggccgcc 3120 ctggctgaag agaagagccg ggcgcaggag aaggtcacag agaaagaggt ggtgaaactg 3180 cagaatgacc cccagctgga ggcagagtac cagcagctgc aggaggacca ccagcgccag 3240 gaccagctca gggagaagca ggaggaggag ctgagcttcc tccaggacaa gctcaagagg 3300 ctagagaagg agcgggccat ggccgagggc aagatcaccg tcaaggaggt gctcaaggtg 3360 gagaaggacg cggccaccga gagggaggtc agcgatctca cccgccaata tgaggacgag 3420 gctgccaagg ctcgcgctag ccagagggag aagacggagc tgctccgaaa gatatgggcc 3480 ttggaggagg agaacgccaa agtggtggtg caggagaagg tgcgggagat cgtgcggcca 3540 gaccccaagg cggaaagtga agtggcgaac ctccgcctgg agcttgtgga gcaggagcga 3600 aagtaccggg gtgccgagga gcagctccgg agctaccaga gtgagctgga ggccctcagg 3660 aggcgaggcc cccaggtgga agtcaaagag gtgactaagg aagtcattaa gtacaagact 3720 gaccctgaga tggagaagga gcttcagcgg ctcagggagg agatcgtgga caagaccaga 3780 ctgatcgaaa ggtgtgattt agagatctac cagctgaaaa aggaaatcca ggccctgaaa 3840 gacaccaaac cccaggtcca gaccaaagag gtggtccagg agatcctcca attccaagaa 3900 gaccctcaaa ccaaggagga ggtggcgtct ctgagggcaa agctctcaga ggagcagaag 3960 aaacaagtgg atctggagag ggaaagagct tcccaggaag agcagatcgc ccggaaagag 4020 gaggagctct cgcgggtgaa ggaaagggtg gtgcagcagg aggtggtcag gtatgaggag 4080 gagccaggcc tgcgggccga ggcgagcgcc tttgccgaga gcatcgatgt ggagctgcgg 4140 cagattgaca agctgcgggc agagctgcgg cggctgcagc gccggcgcac cgagcttgag 4200 cggcagctgg aggagctaga gcgcgagcgg caggcccgca gggaggccga gcgcgaggta 4260 cagcggttgc agcagcggct ggcagcgctg gagcaggaag aagctgaggc ccgtgagaag 4320 gtaacccata cgcagaaggt ggtgctgcag caggacccgc agcaggcgcg agagcatgcc 4380 ctgctccgac tccagctgga agaagagcag caccggcggc agctcctgga gggggagctc 4440 gagaccctcc ggaggaaact ggctgcactg gagaaggcgg aggtcaagga gaaggtggtg 4500 ctctccgaga gtgtccaggt ggagaagggc gacaccgagc aagagatcca gaggctcaag 4560 agcagcctgg aggaggagag ccgcagcaag cgcgagctgg acgtcgaggt gagccggctg 4620 gaagccaggc tttcggagct ggaattccat aactccaagt catccaagga actagacttt 4680 ctgagggaag agaaccacaa attacagctg gagaggcaaa acctgcagct ggagacccga 4740 aggctccaat cggaaatcaa catggcagcg acggaaacac gagacctgcg gaacatgacc 4800 gtggcggact ctgggaccaa ccatgactcc agactgtggt ccctggagag ggaactggat 4860 gacctcaaga ggctctccaa ggacaaagac ctcgagatcg acgagctgca gaagcgcctg 4920 ggctccgtgg ccgtcaagcg ggagcagcgg gagaaccacc tgcggcgctc catcgtagtc 4980 atccaccctg acacaggccg cgagctgtcc ccggaggaag cccaccgtgc cgggctcatt 5040 gactggaaca tgttcgtgaa actcagaagc caggagtgcg actgggagga gatctcagtg 5100 aagggtccca atggggagtc ctcagtgata cacgacagga agtctggcaa gaagttctcc 5160 atcgaagagg ccctgcagag tggcaggctg acccctgctc agtatgaccg ctatgtcaac 5220 aaggatatgt ccatccagga gctggcggtc ttggtatctg ggcagaagta g 5271 <210> 3 <211> 2514 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B <400> 3 atgctgcgca ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 60 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc gccgcctccg 120 acctgggcgc tcagcccccg gatcagcctg cctctgggct ctgaagagcg gccattcctc 180 agattcgaag ctgaacacat ctccaactac acagcccttc tgctgagcag ggatggcagg 240 accctgtacg tgggtgctcg agaggccctc tttgcactca gtagcaacct cagcttcctg 300 ccaggcgggg agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 360 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaact acatcaagat cctcctgccg 420 ctcagcggca gtcacctgtt cacctgtggc acagcagcct tcagccccat gtgtacctac 480 atcaacatgg agaacttcac cctggcaagg gacgagaagg ggaatgtcct cctggaagat 540 ggcaagggcc gttgtccctt cgacccgaat ttcaagtcca ctgccctggt ggttgatggc 600 gagctctaca ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 660 caaagccttc gccccaccaa gaccgagagc tccctcaact ggctgcaaga cccagctttt 720 gtggcctcag cctacattcc tgagagcctg ggcagcttgc aaggcgatga tgacaagatc 780 tactttttct tcagcgagac tggccaggaa tttgagttct ttgagaacac cattgtgtcc 840 cgcattgccc gcatctgcaa gggcgatgag ggtggagagc gggtgctaca gcagcgctgg 900 acctccttcc tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 960 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga cacccttttc 1020 tatggggtct tcacttccca gtggcacagg ggaactacag aaggctctgc cgtctgtgtc 1080 ttcacaatga aggatgtgca gagagtcttc agcggcctct acaaggaggt gaaccgtgag 1140 acacagcagt ggtacaccgt gacccacccg gtgcccacac cccggcctgg agcgtgcatc 1200 accaacagtg cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1260 aacttcctca aggaccactt cctgatggac gggcaggtcc gaagccgcat gctgctgctg 1320 cagccccagg ctcgctacca gcgcgtggct gtacaccgcg tccctggcct gcaccacacc 1380 tacgatgtcc tcttcctggg cactggtgac ggccggctcc acaaggcagt gagcgtgggc 1440 ccccgggtgc acatcattga ggagctgcag atcttctcat cgggacagcc cgtgcagaat 1500 ctgctcctgg acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1560 gtgcccatgg ccaactgcag cctgtacagg agctgtgggg actgcctcct cgcccgggac 1620 ccctactgtg cttggagcgg ctccagctgc aagcacgtca gcctctacca gcctcagctg 1680 gccaccaggc cgtggatcca ggacatcgag ggagccagcg ccaaggacct ttgcagcgcg 1740 tcttcggttg tgtccccgtc ttttgtacca acaggggaga agccatgtga gcaagtccag 1800 ttccagccca acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 1860 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt gctacccact 1920 ggggacctgc tgctggtggg cacccaacag ctgggggagt tccagtgctg gtcactagag 1980 gagggcttcc agcagctggt agccagctac tgcccagagg tggtggagga cggggtggca 2040 gaccaaacag atgagggtgg cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca 2100 ccagctggtg gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2160 atgtgcacgc tctttgtgct ggccgtgctg ctcccagttt tattcttgct ctaccggcac 2220 cggaacagca tgaaagtctt cctgaagcag ggggaatgtg ccagcgtgca ccccaagacc 2280 tgccctgtgg tgctgccccc tgagacccgc ccactcaacg gcctagggcc ccctagcacc 2340 ccgctcgatc accgagggta ccagtccctg tcagacagcc ccccggggtc ccgagtcttc 2400 actgagtcag agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2460 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt gtga 2514 <210> 4 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-140-5p <400> 4 cagugguuuu acccuauggu ag 22 <210> 5 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> miR-301a <400> 5 acugcuaacg aaugcucuga cuuuauugca cuacuguacu uuacagcuag cagugcaaua 60 guauugucaa agcaucugaa agcagg 86 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_OF <400> 6 ccacaagcaa accagctttc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_OR <400> 7 aatttcagaa cgggaaacca 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_IF <400> 8 tcaagccatg aaaggtgttg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_IR <400> 9 acgggaaacc ataatcctga 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD24_OF <400> 10 tgagaatccc aaatttgatt ga 22 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD24_OR <400> 11 ttggatgttg cctctccttc 20 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD24_IF <400> 12 tgccaatatt aaatctgctg ga 22 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD24_IR <400> 13 ggatgttgcc tctccttcat 20 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CSTB_OF <400> 14 gccgagaccc agcacatc 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_OR <400> 15 cacctggctc ttgaatgaca 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_IF <400> 16 gtgaggtccc agcttgaaga 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_IR <400> 17 tgacacggcc ttaaacacag 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_OF <400> 18 aagttcaaga ttgtccgcac 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_OR <400> 19 gcagttcagg tcctctttg 19 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_IF <400> 20 ttcaaaggct gtcgcaagga 20 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_IR <400> 21 cgtcatagag acatcgtcac tg 22 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_OF <400> 22 gcaaatatgc cagaaagtgg a 21 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_OR <400> 23 cctgaagttt tctaattctt tcaca 25 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_IF <400> 24 tgccagaaag tggacctagt 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_IR <400> 25 aaattcttcc aaatgcgttg a 21 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_OF <400> 26 cctcccatgg acagagaaga 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_OR <400> 27 ctagtgggag atggcattgg 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KRT4_IF <400> 28 ccaggagtgt catctccaga a 21 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_IR <400> 29 ttggactggg aagggacata 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_OF <400> 30 cctctgctcc ttttcattgc 20 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_OR <400> 31 ggtgggggtt cacaacact 19 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_IF <400> 32 aaaattgcca ggggcttatt 20 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_IR <400> 33 gagagtttga gagccagtgg a 21 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PPL_OF <400> 34 gagaaacaaa ggcaaataca gc 22 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PPL_OR <400> 35 tgtgtccacg atgttcttct c 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PPL_IF <400> 36 ccggagcatc tctaacaagg a 21 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PPL_IR <400> 37 acctggtcgg cattcttctg 20 <210> 38 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_OF <400> 38 atggcaaaac cccaaaaga 19 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_OR <400> 39 ccaacctggt agtctattca 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_IF <400> 40 agccacgcat ccaataccag 20 <210> 41 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_IR <400> 41 tgagcagaaa gaccaattcc ca 22 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> S100A10_OF <400> 42 cagtgtagag atggcaaagt g 21 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> S100A10_OR <400> 43 ttatcaggga ggagcgaac 19 <210> 44 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> S100A10_IF <400> 44 ccagagcttc ttttccctaa ttgc 24 <210> 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> S100A10_IR <400> 45 ctgcctactt ctttcccttc tg 22 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_OF <400> 46 cagcctctac cagcctca 18 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_OR <400> 47 ctggaactgg acttgctca 19 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_IF <400> 48 atccaggaca tcgagggagc 20 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_IR <400> 49 gttggtacaa aagacgggga c 21 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_OF <400> 50 cctgccccat cacataccta 20 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_OR <400> 51 agagcctggg atgatgaaga tg 22 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_IF <400> 52 catcacctat gggaatgaat gtc 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_IR <400> 53 tccatcgtga agaaactgaa ctc 23 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_OF <400> 54 caacagcctc aagatcatca 20 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_OR <400> 55 ccatcacgcc acagtttc 18 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_IF <400> 56 ccaactgctt agcacccctg 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_IR <400> 57 gggccatcca cagtcttctg 20 <210> 58 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_OF <400> 58 cagagcctcg cctttgcc 18 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_OR <400> 59 atgccggagc cgttgtcg 18 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_IF <400> 60 cctcgccttt gccgatcc 18 <210> 61 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ACTB_IR <400> 61 gagcgcggcg atatcatca 19 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-140-5p primer <400> 62 cagugguuuu acccuauggu ag 22 <210> 63 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-301a primer <400> 63 cagugcaaua guauugucaa agc 23 <110> SAMSUNG LIFE PUBLIC WELFARE FOUNDATION <120> Biomarkers for Diagnosing Gastric Cancer And Uses Thereof <130> PN190164 <160> 63 <170> KoPatentIn 3.0 <210> 1 <211> 258 <212> DNA <213> Artificial Sequence <220> <223> SPINK7 <400> 1 atgaagatca ctgggggtct ccttctgctc tgtacagtgg tctatttctg tagcagctca 60 gaagctgcta gtctgtctcc aaaaaaagtg gactgcagca tttacaagaa gtatccagtg 120 gtggccatcc cctgccccat cacataccta ccagtttgtg gttctgacta catcacctat 180 gggaatgaat gtcacttgtg taccgagagc ttgaaaagta atggaagagt tcagtttctt 240 cacgatggaa gttgctaa 258 <210> 2 <211> 5271 <212> DNA <213> Artificial Sequence <220> <223> PPL <400> 2 atgaactcgc tcttcaggaa gagaaacaaa ggcaaataca gccccactgt gcagacccgg 60 agcatctcta acaaggagct ctcggagctg atcgagcagc tgcagaagaa tgccgaccag 120 gtggagaaga acatcgtgga cacagaggcc aagatgcaga gtgacctggc tcggctgcag 180 gagggtcggc agcctgagca ccgggacgtg accctgcaga aggtgttgga ctctgagaag 240 ctgctctatg tgctagaggc ggatgcggcc attgccaagc acatgaagca cccacagggg 300 gacatgatcg ccgaggatat ccgccagctg aaggagcgtg tgaccaacct gcgcgggaaa 360 cacaagcaga tctacaggct ggcggtgaag gaagtggatc cacaggtcaa ctgggcggca 420 ctggtggagg agaagctgga caagctgaac aaccagagct ttgggactga cctgccgctg 480 gtggaccacc aagtggagga gcataacatc ttccacaatg aggtcaaggc catcgggccc 540 cacctggcca aggacgggga caaggagcag aacagcgaac tccgggccaa gtaccagaaa 600 ctgctggcag catcacaggc ccggcagcag cacctgagtt cgctgcagga ctacatgcag 660 cgctgcacca atgagctgta ctggctggac cagcaggcca agggccgcat gcagtacgac 720 tggagtgacc gcaacctcga ctaccccagc cgccggcgcc agtatgagaa tttcatcaac 780 cggaacctgg aggccaaaga ggagagaatc aacaaactgc acagcgaggg cgaccagctg 840 ctggcggccg agcaccccgg gaggaactcc attgaggcgc acatggaggc tgtgcacgca 900 gactggaagg agtacctgaa cctgctcatc tgcgaggaga gccacctcaa gtacatggag 960 gactaccacc agtttcacga agacgtgaag gacgctcagg agctgctgcg caaggtggac 1020 tcggacctga accagaagta tggccctgac ttcaaggacc ggtaccagat tgagctgctg 1080 ctgcgggagc tggatgacca ggagaaggtg ctggacaagt atgaggacgt ggtgcagggg 1140 ctgcagaagc gaggccagca ggtggtgccc ctcaagtacc gccgggagac tccgctcaag 1200 cccatccccg tggaggcact ctgtgacttt gagggggagc agggcctgat ctcgcggggc 1260 tacagctaca ccctgcagaa gaacaacggg gagagctggg agctcatgga cagcgctggg 1320 aacaagctga ttgctccggc cgtgtgtttt gtgatccccc ccacagaccc tgaggccctg 1380 gctctggctg acagcctggg cagccagtac cggagcgtgc ggcagaaggc agctgggagc 1440 aaacgcacgc tgcagcagcg gtatgaggtg ctgaagaccg agaatcccgg agatgcctct 1500 gacctacagg ggcggcagct gctggctggc ttggacaagg tggccagcga cctggaccgg 1560 caggagaagg ccatcacagg gatcctgcgg ccaccactgg agcaaggccg ggctgtgcag 1620 gacagtgccg agcgggccaa ggacctcaag aacatcacca acgagctact gcggattgaa 1680 cctgagaaga cgcggagcac ggctgagggc gaagccttca tccaggccct cccaggcagt 1740 ggcaccacac ccctgctgag gacccgggtg gaggacacca accggaaata cgagcacctc 1800 ctgcagctgc tggacttggc ccaggagaag gttgatgtgg ccaaccgcct ggagaagagc 1860 ctgcagcaga gctgggagtt gctggccaca cacgagaacc atctgaatca ggatgacaca 1920 gtgcctgaga gcagccgtgt cctggacagc aaggggcagg agctggcggc catggcctgt 1980 gagttacagg cccagaagtc cctcctgggt gaggtggagc agaacttgca ggcggccaag 2040 cagtgctcga gcacactggc cagccgcttc caggagcact gtccggacct ggagcgccag 2100 gaggccgagg tgcacaagct gggccagcgt ttcaacaacc tgcgccagca ggtggaacgc 2160 agggcgcaga gcctacagag cgccaaggca gcctacgagc acttccaccg cggccatgac 2220 cacgtgctgc agttcctagt cagcatcccc agttacgagc cccaggagac agacagcctc 2280 agccagatgg agaccaagct gaagaaccag aagaacctgc tagatgagat agcaagtagg 2340 gagcaggaag tacagaagat ctgtgccaat tcccagcagt accagcaagc tgtaaaggac 2400 tatgagttag aagcagaaaa actaaggtct cttctcgact tggagaatgg aaggagaagc 2460 cacgtgagca agagagccag gctccaatct cctgccacca aagtgaagga agaggaagca 2520 gcacttgccg ccaagttcac tgaagtttat gccatcaaca gacagaggct gcagaatctg 2580 gagtttgctc tgaatctcct cagacagcag ccggaagtag aagtgaccca tgagaccctg 2640 caaaggaata ggccggactc tggagtggag gaggcgtgga agatcaggaa ggaactggat 2700 gaggagactg agcggaggcg gcagctggag aacgaggtca agagcaccca ggaagaaatc 2760 tggaccttga ggaatcaggg gcctcaggaa tcggtggtga ggaaggaggt gctcaagaag 2820 gtgccggatc ccgtgctgga ggagagcttc cagcagctgc agcggacgct ggcagaggag 2880 cagcacaaga accagctgct gcaggaggag ctggaggcac tgcagctgca gctgcgtgcc 2940 ctggagcagg agaccagaga cggggggcag gagtacgtgg tcaaggaggt cctgcgcatc 3000 gagcctgaca gggcccaggc ggatgaggtc ttgcagctgc gggaggagct ggaggcactg 3060 aggcggcaga agggcgcccg ggaggcagag gtgctcctcc tgcagcagcg tgtggccgcc 3120 ctggctgaag agaagagccg ggcgcaggag aaggtcacag agaaagaggt ggtgaaactg 3180 cagaatgacc cccagctgga ggcagagtac cagcagctgc aggaggacca ccagcgccag 3240 gaccagctca gggagaagca ggaggaggag ctgagcttcc tccaggacaa gctcaagagg 3300 ctagagaagg agcgggccat ggccgagggc aagatcaccg tcaaggaggt gctcaaggtg 3360 gagaaggacg cggccaccga gagggaggtc agcgatctca cccgccaata tgaggacgag 3420 gctgccaagg ctcgcgctag ccagagggag aagacggagc tgctccgaaa gatatgggcc 3480 ttggaggagg agaacgccaa agtggtggtg caggagaagg tgcgggagat cgtgcggcca 3540 gaccccaagg cggaaagtga agtggcgaac ctccgcctgg agcttgtgga gcaggagcga 3600 aagtaccggg gtgccgagga gcagctccgg agctaccaga gtgagctgga ggccctcagg 3660 aggcgaggcc cccaggtgga agtcaaagag gtgactaagg aagtcattaa gtacaagact 3720 gaccctgaga tggagaagga gcttcagcgg ctcagggagg agatcgtgga caagaccaga 3780 ctgatcgaaa ggtgtgattt agagatctac cagctgaaaa aggaaatcca ggccctgaaa 3840 gacaccaaac cccaggtcca gaccaaagag gtggtccagg agatcctcca attccaagaa 3900 gaccctcaaa ccaaggagga ggtggcgtct ctgagggcaa agctctcaga ggagcagaag 3960 aaacaagtgg atctggagag ggaaagagct tcccaggaag agcagatcgc ccggaaagag 4020 gaggagctct cgcgggtgaa ggaaagggtg gtgcagcagg aggtggtcag gtatgaggag 4080 gagccaggcc tgcgggccga ggcgagcgcc tttgccgaga gcatcgatgt ggagctgcgg 4140 cagattgaca agctgcgggc agagctgcgg cggctgcagc gccggcgcac cgagcttgag 4200 cggcagctgg aggagctaga gcgcgagcgg caggcccgca gggaggccga gcgcgaggta 4260 cagcggttgc agcagcggct ggcagcgctg gagcaggaag aagctgaggc ccgtgagaag 4320 gtaacccata cgcagaaggt ggtgctgcag caggacccgc agcaggcgcg agagcatgcc 4380 ctgctccgac tccagctgga agaagagcag caccggcggc agctcctgga gggggagctc 4440 gagaccctcc ggaggaaact ggctgcactg gagaaggcgg aggtcaagga gaaggtggtg 4500 ctctccgaga gtgtccaggt ggagaagggc gacaccgagc aagagatcca gaggctcaag 4560 agcagcctgg aggaggagag ccgcagcaag cgcgagctgg acgtcgaggt gagccggctg 4620 gaagccaggc tttcggagct ggaattccat aactccaagt catccaagga actagacttt 4680 ctgagggaag agaaccacaa attacagctg gagaggcaaa acctgcagct ggagacccga 4740 aggctccaat cggaaatcaa catggcagcg acggaaacac gagacctgcg gaacatgacc 4800 gtggcggact ctgggaccaa ccatgactcc agactgtggt ccctggagag ggaactggat 4860 gacctcaaga ggctctccaa ggacaaagac ctcgagatcg acgagctgca gaagcgcctg 4920 ggctccgtgg ccgtcaagcg ggagcagcgg gagaaccacc tgcggcgctc catcgtagtc 4980 atccaccctg acacaggccg cgagctgtcc ccggaggaag cccaccgtgc cgggctcatt 5040 gactggaaca tgttcgtgaa actcagaagc caggagtgcg actgggagga gatctcagtg 5100 aagggtccca atggggagtc ctcagtgata cacgacagga agtctggcaa gaagttctcc 5160 atcgaagagg ccctgcagag tggcaggctg acccctgctc agtatgaccg ctatgtcaac 5220 aaggatatgt ccatccagga gctggcggtc ttggtatctg ggcagaagta g 5271 <210> 3 <211> 2514 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B <400> 3 atgctgcgca ccgcgatggg cctgaggagc tggctcgccg ccccatgggg cgcgctgccg 60 cctcggccac cgctgctgct gctcctgctg ctgctgctcc tgctgcagcc gccgcctccg 120 acctgggcgc tcagcccccg gatcagcctg cctctgggct ctgaagagcg gccattcctc 180 agattcgaag ctgaacacat ctccaactac acagcccttc tgctgagcag ggatggcagg 240 accctgtacg tgggtgctcg agaggccctc tttgcactca gtagcaacct cagcttcctg 300 ccaggcgggg agtaccagga gctgctttgg ggtgcagacg cagagaagaa acagcagtgc 360 agcttcaagg gcaaggaccc acagcgcgac tgtcaaaact acatcaagat cctcctgccg 420 ctcagcggca gtcacctgtt cacctgtggc acagcagcct tcagccccat gtgtacctac 480 atcaacatgg agaacttcac cctggcaagg gacgagaagg ggaatgtcct cctggaagat 540 ggcaagggcc gttgtccctt cgacccgaat ttcaagtcca ctgccctggt ggttgatggc 600 gagctctaca ctggaacagt cagcagcttc caagggaatg acccggccat ctcgcggagc 660 caaagccttc gccccaccaa gaccgagagc tccctcaact ggctgcaaga cccagctttt 720 gtggcctcag cctacattcc tgagagcctg ggcagcttgc aaggcgatga tgacaagatc 780 tactttttct tcagcgagac tggccaggaa tttgagttct ttgagaacac cattgtgtcc 840 cgcattgccc gcatctgcaa gggcgatgag ggtggagagc gggtgctaca gcagcgctgg 900 acctccttcc tcaaggccca gctgctgtgc tcacggcccg acgatggctt ccccttcaac 960 gtgctgcagg atgtcttcac gctgagcccc agcccccagg actggcgtga cacccttttc 1020 tatggggtct tcacttccca gtggcacagg ggaactacag aaggctctgc cgtctgtgtc 1080 ttcacaatga aggatgtgca gagagtcttc agcggcctct acaaggaggt gaaccgtgag 1140 acacagcagt ggtacaccgt gacccacccg gtgcccacac cccggcctgg agcgtgcatc 1200 accaacagtg cccgggaaag gaagatcaac tcatccctgc agctcccaga ccgcgtgctg 1260 aacttcctca aggaccactt cctgatggac gggcaggtcc gaagccgcat gctgctgctg 1320 cagccccagg ctcgctacca gcgcgtggct gtacaccgcg tccctggcct gcaccacacc 1380 tacgatgtcc tcttcctggg cactggtgac ggccggctcc acaaggcagt gagcgtgggc 1440 ccccgggtgc acatcattga ggagctgcag atcttctcat cgggacagcc cgtgcagaat 1500 ctgctcctgg acacccacag ggggctgctg tatgcggcct cacactcggg cgtagtccag 1560 gtgcccatgg ccaactgcag cctgtacagg agctgtgggg actgcctcct cgcccgggac 1620 ccctactgtg cttggagcgg ctccagctgc aagcacgtca gcctctacca gcctcagctg 1680 gccaccaggc cgtggatcca ggacatcgag ggagccagcg ccaaggacct ttgcagcgcg 1740 tcttcggttg tgtccccgtc ttttgtacca acaggggaga agccatgtga gcaagtccag 1800 ttccagccca acacagtgaa cactttggcc tgcccgctcc tctccaacct ggcgacccga 1860 ctctggctac gcaacggggc ccccgtcaat gcctcggcct cctgccacgt gctacccact 1920 ggggacctgc tgctggtggg cacccaacag ctgggggagt tccagtgctg gtcactagag 1980 gagggcttcc agcagctggt agccagctac tgcccagagg tggtggagga cggggtggca 2040 gaccaaacag atgagggtgg cagtgtaccc gtcattatca gcacatcgcg tgtgagtgca 2100 ccagctggtg gcaaggccag ctggggtgca gacaggtcct actggaagga gttcctggtg 2160 atgtgcacgc tctttgtgct ggccgtgctg ctcccagttt tattcttgct ctaccggcac 2220 cggaacagca tgaaagtctt cctgaagcag ggggaatgtg ccagcgtgca ccccaagacc 2280 tgccctgtgg tgctgccccc tgagacccgc ccactcaacg gcctagggcc ccctagcacc 2340 ccgctcgatc accgagggta ccagtccctg tcagacagcc ccccggggtc ccgagtcttc 2400 actgagtcag agaagaggcc actcagcatc caagacagct tcgtggaggt atccccagtg 2460 tgcccccggc cccgggtccg ccttggctcg gagatccgtg actctgtggt gtga 2514 <210> 4 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-140-5p <400> 4 cagugguuuu acccuauggu ag 22 <210> 5 <211> 86 <212> RNA <213> Artificial Sequence <220> <223> miR-301a <400> 5 acugcuaacg aaugcucuga cuuuauugca cuacuguacu uuacagcuag cagugcaaua 60 guauugucaa agcaucugaa agcagg 86 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_OF <400> 6 ccacaagcaa accagctttc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_OR <400> 7 aatttcagaa cgggaaacca 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_IF <400> 8 tcaagccatg aaaggtgttg 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ANXA1_IR <400> 9 acgggaaacc ataatcctga 20 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD24_OF <400> 10 tgagaatccc aaatttgatt ga 22 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD24_OR <400> 11 ttggatgttg cctctccttc 20 <210> 12 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CD24_IF <400> 12 tgccaatatt aaatctgctg ga 22 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CD24_IR <400> 13 ggatgttgcc tctccttcat 20 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> CSTB_OF <400> 14 gccgagaccc agcacatc 18 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_OR <400> 15 cacctggctc ttgaatgaca 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_IF <400> 16 gtgaggtccc agcttgaaga 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CSTB_IR <400> 17 tgacacggcc ttaaacacag 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_OF <400> 18 aagttcaaga ttgtccgcac 20 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_OR <400> 19 gcagttcagg tcctctttg 19 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_IF <400> 20 ttcaaaggct gtcgcaagga 20 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EIF3G_IR <400> 21 cgtcatagag acatcgtcac tg 22 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_OF <400> 22 gcaaatatgc cagaaagtgg a 21 <210> 23 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_OR <400> 23 cctgaagttt tctaattctt tcaca 25 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_IF <400> 24 tgccagaaag tggacctagt 20 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> ERO1A_IR <400> 25 aaattcttcc aaatgcgttg a 21 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_OF <400> 26 cctcccatgg acagagaaga 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_OR <400> 27 ctagtgggag atggcattgg 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KRT4_IF <400> 28 ccaggagtgt catctccaga a 21 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT4_IR <400> 29 ttggactggg aagggacata 20 <210> 30 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_OF <400> 30 cctctgctcc ttttcattgc 20 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_OR <400> 31 ggtgggggtt cacaacact 19 <210> 32 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_IF <400> 32 aaaattgcca ggggcttatt 20 <210> 33 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KRT6A_IR <400> 33 gagagtttga gagccagtgg a 21 <210> 34 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> PPL_OF <400> 34 gagaaacaaa ggcaaataca gc 22 <210> 35 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PPL_OR <400> 35 tgtgtccacg atgttcttct c 21 <210> 36 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> PPL_IF <400> 36 ccggagcatc tctaacaagg a 21 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PPL_IR <400> 37 acctggtcgg cattcttctg 20 <210> 38 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_OF <400> 38 atggcaaaac cccaaaaga 19 <210> 39 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_OR <400> 39 ccaacctggt agtctattca 20 <210> 40 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_IF <400> 40 agccacgcat ccaataccag 20 <210> 41 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> RANBP9_IR <400> 41 tgagcagaaa gaccaattcc ca 22 <210> 42 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> S100A10_OF <400> 42 cagtgtagag atggcaaagt g 21 <210> 43 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> S100A10_OR <400> 43 ttatcaggga ggagcgaac 19 <210> 44 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> S100A10_IF <400> 44 ccagagcttc ttttccctaa ttgc 24 <210> 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> S100A10_IR <400> 45 ctgcctactt ctttcccttc tg 22 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_OF <400> 46 cagcctctac cagcctca 18 <210> 47 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_OR <400> 47 ctggaactgg acttgctca 19 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_IF <400> 48 atccaggaca tcgagggagc 20 <210> 49 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> SEMA4B_IR <400> 49 gttggtacaa aagacgggga c 21 <210> 50 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_OF <400> 50 cctgccccat cacataccta 20 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_OR <400> 51 agagcctggg atgatgaaga tg 22 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_IF <400> 52 catcacctat gggaatgaat gtc 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SPINK7_IR <400> 53 tccatcgtga agaaactgaa ctc 23 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_OF <400> 54 caacagcctc aagatcatca 20 <210> 55 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_OR <400> 55 ccatcacgcc acagtttc 18 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_IF <400> 56 ccaactgctt agcacccctg 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GAPDH_IR <400> 57 gggccatcca cagtcttctg 20 <210> 58 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_OF <400> 58 cagagcctcg cctttgcc 18 <210> 59 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_OR <400> 59 atgccggagc cgttgtcg 18 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> ACTB_IF <400> 60 cctcgccttt gccgatcc 18 <210> 61 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> ACTB_IR <400> 61 gagcgcggcg atatcatca 19 <210> 62 <211> 22 <212> RNA <213> Artificial Sequence <220> <223> miR-140-5p primer <400> 62 cagugguuuu acccuauggu ag 22 <210> 63 <211> 23 <212> RNA <213> Artificial Sequence <220> <223> miR-301a primer <400> 63 cagugcaaua guauugucaa agc 23

Claims (10)

SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준; 및
MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 제제를 포함하며,
상기 제1 유전자 그룹 및 제2 유전자 그룹은 타액에서 검출되는 것인, 한국인 위암 진단용 바이오마커 조성물.
MRNA expression level of the first gene group comprising SPINK7, PPL and SEMA4B; And
It includes an agent for measuring the miRNA expression level of the second gene group comprising MIR140-5p and MIR301a,
The first gene group and the second gene group are detected in saliva, a biomarker composition for diagnosing gastric cancer in Koreans.
삭제delete 청구항 1에 있어서,
상기 제제는 제1 유전자 그룹 및 제2 유전자 그룹을 구성하는 각각의 유전자에 특이적으로 결합하는 프라이머 세트, 프로브 및 안티센스 올리고뉴클레오티드로 이루어진 군에서 선택된 하나 이상인 것인 위암 진단용 바이오마커 조성물.
The method according to claim 1,
The agent is one or more selected from the group consisting of a primer set, a probe, and an antisense oligonucleotide that specifically binds to each gene constituting the first gene group and the second gene group.
청구항 1 또는 청구항 3의 조성물을 포함하는 위암 진단용 키트.
A kit for diagnosing gastric cancer comprising the composition of claim 1 or 3.
청구항 4에 있어서,
상기 키트는 제1 유전자 그룹 및 제2 유전자 그룹을 구성하는 각각의 유전자에 특이적으로 결합하는 프라이머 세트; 및 핵산 증폭용 시약을 포함하는 것인 위암 진단용 키트.
The method of claim 4,
The kit includes a set of primers specifically binding to respective genes constituting the first gene group and the second gene group; And gastric cancer diagnostic kit comprising a reagent for nucleic acid amplification.
(a) 한국인 피검자로부터 분리된 생물학적 시료에서 SPINK7, PPL 및 SEMA4B을 포함하는 제1 유전자 그룹의 mRNA 발현 수준과 MIR140-5p 및 MIR301a을 포함하는 제2 유전자 그룹의 miRNA 발현 수준을 측정하는 단계; 및
(b) 상기 측정된 유전자 발현 수준을 비위암 정상 대조군과 비교하는 단계
를 포함하며,
상기 (a) 단계의 생물학적 시료는 타액인 것인, 위암 진단을 위한 정보의 제공 방법.
(a) measuring the mRNA expression level of the first gene group including SPINK7, PPL and SEMA4B and the miRNA expression level of the second gene group including MIR140-5p and MIR301a in a biological sample isolated from a Korean subject; And
(b) comparing the measured gene expression level with a normal non-gastric cancer control
Including,
The biological sample of step (a) is saliva, the method of providing information for diagnosis of gastric cancer.
삭제delete 청구항 6에 있어서,
상기 (a) 단계의 mRNA 또는 miRNA 발현 수준은 RT-PCR(reverse transcription polymerase chain reaction), 경쟁적 RT-PCR(competitive reverse transcription polymerase chain reaction), 실시간 RT-PCR(real-time reverse transcription polymerase chain reaction), RNase 보호 분석법(RNase protection assay), 노던 블롯(Northern blot) 및 DNA 마이크로어레이(microarray)로 이루어진 군으로부터 선택된 하나 이상의 방법으로 측정되는 것인 위암 진단을 위한 정보의 제공 방법.
The method of claim 6,
The mRNA or miRNA expression level of step (a) is RT-PCR (reverse transcription polymerase chain reaction), competitive RT-PCR (competitive reverse transcription polymerase chain reaction), real-time reverse transcription polymerase chain reaction (RT-PCR). , RNase protection assay (RNase protection assay), Northern blot (Northern blot) and DNA microarray (microarray) that is measured by one or more methods selected from the group consisting of a method of providing information for gastric cancer diagnosis.
청구항 6에 있어서,
상기 (b) 단계는 측정된 유전자 발현 수준이 비위암 정상 대조군에 비해 낮을 경우, 위암으로 진단하는 것인 위암 진단을 위한 정보의 제공 방법.
The method of claim 6,
In the step (b), when the measured gene expression level is lower than that of the normal non-gastric cancer control group, the method of providing information for gastric cancer diagnosis is diagnosed as gastric cancer.
청구항 6에 있어서,
상기 방법은 진단 정확도로 AUC 값이 0.87 이상인 것인 위암 진단을 위한 정보의 제공 방법.
The method of claim 6,
The method is a method of providing information for diagnosis of gastric cancer, wherein the AUC value is 0.87 or more with diagnostic accuracy.
KR1020190079713A 2019-07-02 2019-07-02 Biomarkers for Diagnosing Gastric Cancer And Uses Thereof KR102194215B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190079713A KR102194215B1 (en) 2019-07-02 2019-07-02 Biomarkers for Diagnosing Gastric Cancer And Uses Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190079713A KR102194215B1 (en) 2019-07-02 2019-07-02 Biomarkers for Diagnosing Gastric Cancer And Uses Thereof

Publications (1)

Publication Number Publication Date
KR102194215B1 true KR102194215B1 (en) 2020-12-22

Family

ID=74086556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190079713A KR102194215B1 (en) 2019-07-02 2019-07-02 Biomarkers for Diagnosing Gastric Cancer And Uses Thereof

Country Status (1)

Country Link
KR (1) KR102194215B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151280A (en) * 2021-05-27 2021-07-23 暨南大学 Application of small molecular non-coding RNA and host gene in diagnosis and treatment of gastric cancer
CN114231618A (en) * 2021-12-30 2022-03-25 新乡市第一人民医院 Application of S100A10 detection reagent in preparation of COPD diagnostic product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180188256A1 (en) * 2011-09-08 2018-07-05 The Regents Of The University Of California Salivary Biomarkers for Gastric Cancer Detection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180188256A1 (en) * 2011-09-08 2018-07-05 The Regents Of The University Of California Salivary Biomarkers for Gastric Cancer Detection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151280A (en) * 2021-05-27 2021-07-23 暨南大学 Application of small molecular non-coding RNA and host gene in diagnosis and treatment of gastric cancer
CN113151280B (en) * 2021-05-27 2023-10-20 暨南大学 Application of small-molecule non-coding RNA and host gene in diagnosis and treatment of gastric cancer
CN114231618A (en) * 2021-12-30 2022-03-25 新乡市第一人民医院 Application of S100A10 detection reagent in preparation of COPD diagnostic product

Similar Documents

Publication Publication Date Title
EP2619321B1 (en) Biomarkers for differentiating melanoma from benign nevus in the skin
KR101437718B1 (en) Markers for predicting gastric cancer prognostication and Method for predicting gastric cancer prognostication using the same
US20080305493A1 (en) Determining Cancer-Linked Genes and Therapeutic Targets Using Molecular Cytogenetic Methods
ES2608322T3 (en) Procedure to predict the response to chemotherapy in a patient who suffers or is at risk of developing recurrent breast cancer
JP2009528825A (en) Molecular analysis to predict recurrence of Dukes B colorectal cancer
JP2009508493A (en) Methods for diagnosing pancreatic cancer
US20140336280A1 (en) Compositions and methods for detecting and determining a prognosis for prostate cancer
AU2017281099A1 (en) Compositions and methods for diagnosing lung cancers using gene expression profiles
US20070059697A1 (en) Determining cancer-linked genes and therapeutic targets using molecular cytogenetic methods
CN110229899B (en) Plasma marker combinations for early diagnosis or prognosis prediction of colorectal cancer
ES2828923T3 (en) DNA methylation test to detect prostate cancer
CN107630093B (en) Reagent, kit, detection method and application for diagnosing liver cancer
KR102194215B1 (en) Biomarkers for Diagnosing Gastric Cancer And Uses Thereof
KR102096498B1 (en) MicroRNA-4732-5p for diagnosing or predicting recurrence of colorectal cancer and use thereof
KR20130017525A (en) Biomarker for early diagnosis of colorectal cancer, breast cancer, renal cell carcinoma or thyroid cancer and uses thereof
US10301685B2 (en) Method for predicting the benefit from inclusion of taxane in a chemotherapy regimen in patients with breast cancer
KR102061891B1 (en) A marker for diagnosis of lung cancer
JP2022534591A (en) Detection of hypermethylated genes for diagnosing pancreatic cancer
US11519042B2 (en) Method for the diagnosis or prognosis, in vitro, of lung cancer
CN110573629A (en) Method and kit for diagnosing early pancreatic cancer
KR20190044330A (en) MicroRNA Biomarker for Predicting Lymph Node Metastasis of Gastric Cancer
WO2021191485A1 (en) Biomarkers for predicting a patient&#39;s response to bcg therapy, methods and uses based thereon
KR102096499B1 (en) MicroRNA-3960 for diagnosing or predicting recurrence of colorectal cancer and use thereof
KR20190113108A (en) MicroRNA-3656 for diagnosing or predicting recurrence of colorectal cancer and use thereof
WO2014160829A2 (en) Unbiased dna methylation markers define an extensive field defect in histologically normal porstate tissues associated with prostate cancer: new biomarkers for men with prostate cancer

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant