KR102177130B1 - Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease - Google Patents

Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease Download PDF

Info

Publication number
KR102177130B1
KR102177130B1 KR1020180092805A KR20180092805A KR102177130B1 KR 102177130 B1 KR102177130 B1 KR 102177130B1 KR 1020180092805 A KR1020180092805 A KR 1020180092805A KR 20180092805 A KR20180092805 A KR 20180092805A KR 102177130 B1 KR102177130 B1 KR 102177130B1
Authority
KR
South Korea
Prior art keywords
mir
cells
expression
mctp1
rarb
Prior art date
Application number
KR1020180092805A
Other languages
Korean (ko)
Other versions
KR20190019838A (en
KR102177130B9 (en
Inventor
성정준
김기윤
Original Assignee
(주)큐라미스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)큐라미스 filed Critical (주)큐라미스
Priority to PCT/KR2018/009461 priority Critical patent/WO2019035690A1/en
Priority to CN201880053697.5A priority patent/CN111032058A/en
Priority to EP18846646.0A priority patent/EP3669880A4/en
Priority to JP2020531407A priority patent/JP6928179B2/en
Publication of KR20190019838A publication Critical patent/KR20190019838A/en
Priority to US16/791,185 priority patent/US11286484B2/en
Application granted granted Critical
Publication of KR102177130B1 publication Critical patent/KR102177130B1/en
Priority to US17/554,285 priority patent/US11891604B2/en
Publication of KR102177130B9 publication Critical patent/KR102177130B9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • C12N2310/113Antisense targeting other non-coding nucleic acids, e.g. antagomirs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • C12N2310/141MicroRNAs, miRNAs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 근육 질환 또는 신경근육 질환 예방, 치료 또는 진단을 위한 miR-18b의 용도에 관한 것으로, 구체적으로 유전자 돌연변이에 의한 근육 질환 모델에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, 이로 인해 칼슘 신호전달과 세포 분화 억제 및 세포사멸을 유도함을 확인하였다. 따라서, 본 발명의 miR-18b를 ALS, DMD와 같이 유전자 돌연변이에 의해 유발되는 근육 질환 진단 및 치료를 위한 표적 인자로 이용할 수 있다. The present invention relates to the use of miR-18b for preventing, treating, or diagnosing muscle diseases or neuromuscular diseases, and specifically, in a muscle disease model caused by gene mutation, a gene mutation reduces miR-18b expression, thereby transducing miR-18b It was confirmed that it induces impaired regulation of the pathway, thereby inducing calcium signaling, inhibition of cell differentiation, and apoptosis. Therefore, miR-18b of the present invention can be used as a target factor for diagnosis and treatment of muscle diseases caused by gene mutations such as ALS and DMD.

Description

근육 질환 및 신경근육 질환 예방, 치료 또는 진단을 위한 miR-18b의 용도{Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease}Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease {Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease}

본 발명은 근육 질환 또는 신경근육 질환 예방, 치료 또는 진단을 위한 miR-18b의 용도에 관한 것으로, 구체적으로 miR-18b를 유효성분으로 함유하는 근육 질환 예방 또는 치료용 약학조성물 및 miR-18b를 이용한 근육 질환 진단 방법에 관한 것이다.The present invention relates to the use of miR-18b for preventing, treating or diagnosing muscle diseases or neuromuscular diseases, and specifically, using a pharmaceutical composition for preventing or treating muscle diseases containing miR-18b as an active ingredient and miR-18b It relates to a method for diagnosing muscle diseases.

근육 질환은 유전성 및 퇴행성, 염증성, 내분비성, 대사성 원인 등에 의해 상지 또는 하지의 근력 약화, 이로 이한 전반적 근위축, 근의 긴장성 감소, 근경련, 근의 삼한 통증 등을 호소하는 질환이다. 특히 유전성 및 퇴행성 원인에 의해 근이영양증(muscular dystrophy), 근위축성 측삭 경화증(amyotrophic lateral sclerosis, ALS), 척수성 근위축(spinal muscular amyotrophy), 척수구근 근위축(spinobular muscular atrophy), 샤르코 마리 투스 질환(Charcot Marie Tooth disease, CMT), 폼페병(Pompe disease), 근육감소증(sacopenia), 카나반병(Canavan disease), 근육긴장이상(dystonia), 근육감소증(sacopenia), 근육퇴화증 등이 나타난다.Muscle disease is a disease that complains of weakness in upper or lower extremity muscles due to inherited and degenerative, inflammatory, endocrine, and metabolic causes, resulting in general muscular atrophy, decreased muscle tone, muscle spasms, and muscle pain. In particular, due to hereditary and degenerative causes, muscle dystrophy, amyotrophic lateral sclerosis (ALS), spinal muscular amyotrophy, spinobular muscular atrophy, and Charcoal Maritus disease Charcot Marie Tooth disease (CMT), Pompe disease, sacopenia, Canavan disease, dystonia, sacopenia, and muscle degeneration.

예를 들어, 근위축성 측삭 경화증은 다음의 유전자 돌연변이에 의해 발생한다: SOD1(Cu / Zn superoxide dismutase 1), TAF15(TATA-Box Binding Protein Associated Factor 15), EWSR1(Ewing sarcoma breakpoint region 1), FUS(Fused in Sarcoma) 및 TDP-43(TAR DNA-binding protein 4). 또한, 근위축성 측삭경화증(ALS)은 초기에는 근기능 장애를 진행시키고 궁극적으로 근육 마비를 초래하는 상위 및 하위 운동 뉴런의 퇴행성 질환으로, 불행하게도 ALS 환자의 질병 진행을 늦추거나 삶의 질을 향상시키는 옵션은 거의 없다. For example, amyotrophic lateral sclerosis is caused by the following gene mutations: SOD1 (Cu / Zn superoxide dismutase 1), TAF15 (TATA-Box Binding Protein Associated Factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), FUS. (Fused in Sarcoma) and TDP-43 (TAR DNA-binding protein 4). In addition, amyotrophic lateral sclerosis (ALS) is a degenerative disease of upper and lower motor neurons that initially progresses muscle dysfunction and ultimately leads to muscle paralysis.Unfortunately, it slows disease progression or improves quality of life in ALS patients. There are few options.

또한, 듀시엔형 및 베커형 근이영양증의 경우 X염색체에 존재하는 Dystrophin 유전자의 이상에 의해 발생하며 1/3 정도는 자연 돌연변이, 나머지는 반성유전에 기인하며, 근력저하, 심근 기능 장애 등이 나타난다.In addition, in the case of Duchenne-type and Becker-type muscular dystrophy, it is caused by an abnormality in the Dystrophin gene present in the X chromosome, and about 1/3 is caused by natural mutations, and the rest are due to remission, and muscle weakness and myocardial dysfunction appear.

또한, 척수성 근위축증의 경우 진핵생물에서 SMN(survival motor neuron) 단백질을 암호화하는 SMN1 유전자 돌연변이에 의해 발생하며, SMN 단백질의 감소로 인해 척수와 뇌간 사이에 존재하는 운동신경세포의 기능손상을 야기시켜 근육의 동작을 명령하는 신호를 받지못해 근육이 방치되며, 근력저하, 근위축 및 섬유속성 연축 등을 일으킨다. In addition, spinal muscular dystrophy is caused by a mutation in the SMN1 gene that encodes the SMN (survival motor neuron) protein in eukaryotes, and a decrease in the SMN protein causes functional damage to the motor neurons existing between the spinal cord and the brainstem. Muscles are neglected because they do not receive signals that command the movements of the muscles, causing muscle weakness, muscle atrophy, and fibrous spasm.

이러한 근육 질환 발병의 원인이 되는 유전자 돌연변이는 자가소화작용(autophagy), 단백질 응집, 미토콘드리아 스트레스 및 RNA 대사와 같은 다양한 세포 과정과 관련이 있다.Gene mutations responsible for the development of these muscle diseases are associated with various cellular processes such as autophagy, protein aggregation, mitochondrial stress and RNA metabolism.

한편, 마이크로 RNA(microRNA 또는 miRNA)는 RNA-의존적 전사후 유전자 조절을 통해 단백질 합성을 조절하는 작은 비-코딩 단일 가닥 RNA 분자로, miRNA는 두 단계의 과정을 거쳐 생성된다. 구체적으로, 핵 내에서 Drosha와 DGCR8에 의해 최초의 전사체 miRNA(pri-miRNA)에서 miRNAs 전구체(pre-miRNA)로 만들어지고, pre-miRNA는 세포질로 내보내진 후 Dicer에 의해 miRNA로 만들어진다. 최근, miRNA 또한 미토콘드리아 유전자 발현, 칼슘 신호전달, 세포 분화, 세포 사멸과 같은 세포 과정과 관련이 있고, 유전자 돌연변이가 miRNA 생합성을 조절한다는 것이 알려지면서, 유전자 돌연변이에 의해 유발되는 질환의 발병 기전에 있어서 miRNA의 역할을 밝혀 이를 질환의 진단 또는 치료에 이용하고자 하는 연구가 이루어지고 있다. 그러나, 아직까지 유전적 원인에 기인한 근육 질환에서 유전자 돌연변이와 miRNA의 특이적 상호작용 메커니즘은 완전히 밝혀지지 않았다.Meanwhile, microRNA (microRNA or miRNA) is a small non-coding single-stranded RNA molecule that regulates protein synthesis through RNA-dependent transcriptional gene regulation, and miRNA is produced through a two-step process. Specifically, in the nucleus, Drosha and DGCR8 are made from the first transcript miRNA (pri-miRNA) to miRNAs precursors (pre-miRNA), and pre-miRNAs are exported to the cytoplasm and then made into miRNAs by Dicer. Recently, miRNA is also related to cellular processes such as mitochondrial gene expression, calcium signaling, cell differentiation, and apoptosis, and as it is known that gene mutations regulate miRNA biosynthesis, in the pathogenesis of diseases caused by gene mutations, Research is being conducted to discover the role of miRNA and use it for diagnosis or treatment of diseases. However, the mechanism of specific interaction between gene mutations and miRNAs in muscle diseases caused by genetic causes has not been fully elucidated.

이에, 본 발명자들은 근육 질환 진단 및 치료에 이용할 수 있는 miRNA를 발굴하기 위해 노력한 결과, 유전자 돌연변이에 의한 근육 질환 모델에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, 이로 인해 칼슘 신호전달과 세포 분화 억제 및 세포사멸을 유도함을 확인하여, miR-18b를 ALS, DMD와 같이 유전자 돌연변이에 의해 유발되는 근육 질환 진단 및 치료를 위한 표적 인자로 이용할 수 있음을 밝힘으로써, 본 발명을 완성하였다.Accordingly, as a result of the present inventors' efforts to discover miRNAs that can be used for diagnosing and treating muscle diseases, gene mutations in a muscle disease model caused by gene mutations reduce miR-18b expression, thereby reducing the regulation of the miR-18b signaling pathway. And induces calcium signaling, inhibition of cell differentiation, and apoptosis, and that miR-18b can be used as a target factor for diagnosis and treatment of muscle diseases caused by gene mutations such as ALS and DMD. By revealing, the present invention has been completed.

Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59-62.Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993 Mar 4;362(6415):59-62. Narozna B, Langwinski W, Szczepankiewicz A. Non-Coding RNAs in Pediatric Airway Diseases. Genes (Basel). 2017 Nov 27;8(12).Narozna B, Langwinski W, Szczepankiewicz A. Non-Coding RNAs in Pediatric Airway Diseases. Genes (Basel). 2017 Nov 27;8(12). Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010 Jul 29;29(30):4362-8.Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010 Jul 29;29(30):4362-8. Choi E, Cha MJ, Hwang KC. Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury. Cells. 2014 Sep 11;3(3):899-913.Choi E, Cha MJ, Hwang KC. Roles of Calcium Regulating MicroRNAs in Cardiac Ischemia-Reperfusion Injury. Cells. 2014 Sep 11;3(3):899-913. Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007 Aug 3;27(3):435-48.Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007 Aug 3;27(3):435-48.

본 발명의 목적은 miR-18b를 유효성분으로 함유하는, 근육 질환 예방 또는 치료용 약학조성물을 제공하는 것이다.An object of the present invention is to provide a pharmaceutical composition for preventing or treating muscle diseases, containing miR-18b as an active ingredient.

본 발명의 다른 목적은 miR-18b를 이용한 근육 질환의 진단 방법을 제공하는 것이다.Another object of the present invention is to provide a method for diagnosing muscle diseases using miR-18b.

본 발명의 목적을 달성하기 위하여, 본 발명은 miR-18b를 유효성분으로 함유하는, 근육 질환 예방 또는 치료용 약학조성물을 제공한다.In order to achieve the object of the present invention, the present invention provides a pharmaceutical composition for preventing or treating muscle diseases containing miR-18b as an active ingredient.

또한, 본 발명은 피검체로부터 분리된 시료에서 miR-18b의 발현 수준을 측정하고 정상 대조군과 비교하는 단계를 포함하는, 근육 질환의 진단 방법을 제공한다.In addition, the present invention provides a method for diagnosing muscle disease, comprising measuring the expression level of miR-18b in a sample isolated from a subject and comparing it with a normal control.

본 발명은 유전자 돌연변이에 의한 근육 질환 모델에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, 이로 인해 칼슘 신호전달과 세포 분화 억제 및 세포사멸을 유도함을 확인하였다. 또한, miR-18b 발현을 증가시켜 유전자 돌연변이에 의해 유도된 세포사멸이 억제되고, 칼슘 신호전달과 세포 분화가 회복됨을 확인하였다. 따라서, 본 발명의 miR-18b를 ALS, DMD와 같이 유전자 돌연변이에 의해 유발되는 근육 질환 진단 및 치료를 위한 표적 인자로 이용할 수 있다. The present invention confirms that in a muscle disease model caused by gene mutation, gene mutation decreases miR-18b expression, resulting in impaired regulation of the miR-18b signaling pathway, thereby inhibiting calcium signaling and cell differentiation and inducing apoptosis. I did. In addition, it was confirmed that apoptosis induced by gene mutation was suppressed by increasing miR-18b expression, and calcium signaling and cell differentiation were restored. Therefore, miR-18b of the present invention can be used as a target factor for diagnosis and treatment of muscle diseases caused by gene mutations such as ALS and DMD.

도 1은 본 발명의 일 실시예에 따른 인간 SOD1(G93A)를 발현하는 NSC-34 운동신경세포(mtNSC-34 세포) 및 대조군으로 인간 SOD1를 발현하는 NSC-34 운동신경세포(wtNSC-34 세포)에서 RNA 생합성 변화, mtNSC-34 세포 및 wtNSC-34 세포 간 발현 차이가 있는 4종의 유전자, Hif1α(hypoxia inducible factor 1 alpha), Mef2c(myocyte specific enhancer factor 2c), Mctp1(multiple C2 domains transmembrane protein 1) 및 Rarb(retinoic acid receptor beta) 발현 변화를 확인한 도이다.
도 2는 본 발명의 일 실시예에 따른 mtNSC-34 세포, wtNSC-34 세포 및 마우스 SOD1을 발현하는 운동신경세포(NSC-34 cont 세포)에서 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인한 도이다.
도 3은 Hif1α를 조절하는 표적 miRNA로 miR-18b 및 Mctp1과 Rarb를 조절하는 표적 miRNA로 miR-206을 확인한 도이다.
도 4는 본 발명의 일 실시예에 따라 miR-18b 발현을 감소시킨 NSC-34 cont 세포에서 Hif1α, Mef2c, Mctp1, Rarb 및 miR-206 발현 변화, LDH 방출 변화를 확인하고, 본 발명의 일 실시예에 따른 miR-18b 발현을 감소시킨 신경줄기세포(Neural stem cell, NSC)에서 세포 사멸 변화를 확인한 도이다.
도 5는 본 발명의 일 실시예에 따라 miR-18b 발현을 증가시킨 mtNSC-34 세포에서 Hif1α, Mef2c, Mctp1, Rarb 및 miR-206 발현 변화, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인한 도이다.
도 6은 본 발명의 일 실시예에 따라 Hif1α 발현을 감소시킨 mtNSC-34 세포에서 Mef2c, Mctp1, Rarb 및 miR-206 발현 변화 및 세포 사멸 변화를 확인한 도이다.
도 7은 본 발명의 일 실시예에 따라 miR-206 발현을 증가시킨 NSC-34 cont 세포에서 Mctp1 및 Rarb 발현 변화를 확인한 도이다.
도 8은 본 발명의 일 실시예에 따라 miR-206 발현을 증가시킨 NSC-34 cont 세포에서 세포 내 칼슘 신호전달, 세포 분화를 확인하고, 본 발명의 일 실시예에 따라 miR-206 발현을 증가시킨 NSC-34 cont 세포 및 NSC 각각에서 세포 사멸 변화를 확인한 도이다.
도 9는 본 발명의 일 실시예에 따라 miR-206 발현을 감소시킨 mtNSC-34 세포에서 Mctp1 및 Rarb 발현 변화 및 세포 사멸 변화를 확인한 도이다.
도 10은 본 발명의 일 실시예에 따라 Mctp1 및/또는 Rarb 발현을 감소시킨 NSC-34 cont 세포에서 세포 내 칼슘 신호전달 및 세포 분화 변화를 확인한 도이다.
도 11은 본 발명의 일 실시예에 따라 Mctp1 및/또는 Rarb 발현을 감소시킨 NSC-34 cont 세포 및 신경줄기세포 각각에서 세포 사멸 변화를 확인한 도이다.
도 12는 본 발명의 일 실시예에 따라 Mctp1 및/또는 Rarb 발현을 증가시킨 mtNSC-34 세포에서 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인한 도이다.
도 13은 본 발명의 일 실시예에 따라 돌연변이된 SOD1 (G85R) 및 SOD1 (D90A) 발현을 증가시킨 NSC-34 cont 세포에서 Hif1α, Mef2c, Mctp1, Rarb, miR-18b 및 miR-206 발현 변화 및 세포 사멸 변화를 확인한 도이다.
도 14 및 도 15는 본 발명의 일 실시예에 따른 근위축성 측삭 경화증(ALS) 질환 마우스 모델의 척수(spinal cord) 조직 샘플 및 가족성 ALS (fALS (G86S)) 환자 척수 샘플에서 Hif1α, Mef2c, Mctp1, Rarb, miR-18b 및 miR-206 발현 변화 및 세포 사멸 변화를 확인한 도이다.
도 16은 본 발명의 일 실시예에 따라 SOD1 (G17S) fALS 환자의 혈액 샘플에서 유도된 hiPSC로부터 신경줄기세포(hNSCs)를 분화하고, 상기 분화된 hNSCs부터 유도된 운동뉴런(motor neuron, MN)을 확인한 도이다.
도 17은 본 발명의 일 실시예에 따른 SOD1 (G17S) fALS 환자의 hiPSC 유래 MN에서 Hif1α, Mef2c, Mctp1, Rarb, miR-18b 및 miR-206 발현 변화, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인한 도이다.
도 18은 본 발명의 일 실시예에 따라 Dystrophin 발현을 감소시킨 근아세포에서 miR-18b 발현 변화를 확인한 도이다.
도 19는 본 발명의 일 실시예에 따른 듀시엔형 근이영양증(DMD) 마우스 모델에서 miR-18b 발현 변화를 확인한 도이다.
도 20은 유전자 돌연변이에 의한 miR-18b 신호전달경로의 조절 장애를 모식화한 도이다.
1 is an NSC-34 motor neuron (mtNSC-34 cell) expressing human SOD1 (G93A) according to an embodiment of the present invention and an NSC-34 motor neuron (wtNSC-34 cell) expressing human SOD1 as a control. ) In RNA biosynthesis, mtNSC-34 cells and wtNSC-34 cells, 4 genes with differences in expression, Hif1α (hypoxia inducible factor 1 alpha), Mef2c (myocyte specific enhancer factor 2c), Mctp1 (multiple C2 domains transmembrane protein) 1) and Rarb (retinoic acid receptor beta) expression changes.
Figure 2 shows the changes in intracellular calcium signaling, cell differentiation, and apoptosis in mtNSC-34 cells, wtNSC-34 cells, and motor neurons (NSC-34 cont cells) expressing mouse SOD1 according to an embodiment of the present invention. It is a confirmed degree.
3 is a diagram illustrating miR-18b as a target miRNA regulating Hif1α and miR-206 as a target miRNA regulating Mctp1 and Rarb.
FIG. 4 shows changes in Hif1α, Mef2c, Mctp1, Rarb and miR-206 expression, LDH release changes in NSC-34 cont cells with reduced miR-18b expression according to an embodiment of the present invention, and an implementation of the present invention This is a diagram confirming apoptosis changes in neural stem cells (NSC) with reduced miR-18b expression according to examples.
5 shows changes in Hif1α, Mef2c, Mctp1, Rarb and miR-206 expression in mtNSC-34 cells with increased miR-18b expression according to an embodiment of the present invention, changes in intracellular calcium signaling, cell differentiation and apoptosis. It is a confirmed degree.
6 is a diagram illustrating changes in Mef2c, Mctp1, Rarb and miR-206 expression and apoptosis in mtNSC-34 cells with reduced Hif1α expression according to an embodiment of the present invention.
7 is a diagram illustrating changes in the expression of Mctp1 and Rarb in NSC-34 cont cells with increased miR-206 expression according to an embodiment of the present invention.
8 shows intracellular calcium signaling and cell differentiation in NSC-34 cont cells with increased miR-206 expression according to an embodiment of the present invention, and increases miR-206 expression according to an embodiment of the present invention. It is a diagram confirming the apoptosis change in each of the NSC-34 cont cells and NSCs.
9 is a diagram illustrating changes in expression of Mctp1 and Rarb and changes in cell death in mtNSC-34 cells with reduced miR-206 expression according to an embodiment of the present invention.
10 is a diagram illustrating changes in intracellular calcium signaling and cell differentiation in NSC-34 cont cells having reduced Mctp1 and/or Rarb expression according to an embodiment of the present invention.
FIG. 11 is a diagram confirming apoptosis changes in NSC-34 cont cells and neural stem cells with reduced Mctp1 and/or Rarb expression according to an embodiment of the present invention.
12 is a diagram illustrating changes in intracellular calcium signaling, cell differentiation, and apoptosis in mtNSC-34 cells with increased Mctp1 and/or Rarb expression according to an embodiment of the present invention.
13 is a change in expression of Hif1α, Mef2c, Mctp1, Rarb, miR-18b and miR-206 in NSC-34 cont cells with increased expression of mutated SOD1 (G85R) and SOD1 (D90A) according to an embodiment of the present invention and This is a diagram confirming changes in cell death.
14 and 15 are Hif1α, Mef2c, in spinal cord tissue samples and familial ALS (fALS (G86S)) patient spinal cord samples of amyotrophic lateral sclerosis (ALS) disease mouse model according to an embodiment of the present invention. It is a diagram confirming changes in expression and apoptosis of Mctp1, Rarb, miR-18b and miR-206.
16 is a differentiation of neural stem cells (hNSCs) from hiPSCs derived from a blood sample of a SOD1 (G17S) fALS patient according to an embodiment of the present invention, and motor neurons (MNs) derived from the differentiated hNSCs It is a confirmed degree.
Figure 17 is a change in the expression of Hif1α, Mef2c, Mctp1, Rarb, miR-18b and miR-206 in hiPSC-derived MN of SOD1 (G17S) fALS patient according to an embodiment of the present invention, intracellular calcium signaling, cell differentiation and cell This is the figure confirming the change of death.
18 is a diagram illustrating changes in miR-18b expression in myoblasts with reduced Dystrophin expression according to an embodiment of the present invention.
FIG. 19 is a diagram illustrating changes in miR-18b expression in a mouse model of Ducian-type muscular dystrophy (DMD) according to an embodiment of the present invention.
Fig. 20 is a diagram schematically illustrating impaired regulation of the miR-18b signaling pathway caused by gene mutations.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 miR-18b를 유효성분으로 함유하는, 근육 질환 예방 또는 치료용 약학조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing or treating muscle diseases, containing miR-18b as an active ingredient.

본 발명에서, 상기 miR-18b는 인간을 포함한 동물, 예를 들어 원숭이, 침팬지, 돼지, 말, 소, 양, 개, 고양이, 생쥐, 토끼 등으로부터 유래할 수 있다.In the present invention, the miR-18b may be derived from animals including humans, for example, monkeys, chimpanzees, pigs, horses, cows, sheep, dogs, cats, mice, rabbits, and the like.

본 발명에서, 상기 miR-18b를 구성하는 핵산 분자는 18 내지 100 nt(nucleotide) 길이를 가질 수 있다. 구체적으로, 상기 핵산 분자는 19 내지 25nt 길이, 보다 구체적으로 21, 22 또는 23nt 길이의 성숙 miRNA 형태일 수 있다. 또한, 상기 핵산 분자는 50 내지 100nt, 보다 구체적으로 65 내지 95nt 길이의 전구체 miRNA 형태일 수도 있다.In the present invention, the nucleic acid molecule constituting the miR-18b may have a length of 18 to 100 nt (nucleotide). Specifically, the nucleic acid molecule may be in the form of a mature miRNA of 19 to 25 nt in length, more specifically 21, 22 or 23 nt in length. Further, the nucleic acid molecule may be in the form of a precursor miRNA having a length of 50 to 100 nt, more specifically 65 to 95 nt.

또한, 상기 성숙 miRNA 형태의 miR-18b는 구체적으로 miR-18b-5p 또는 miR-18b-3p일 수 있고, 보다 구체적으로 miR-18b-5p일 수 있다. In addition, the mature miRNA form of miR-18b may be specifically miR-18b-5p or miR-18b-3p, and more specifically miR-18b-5p.

상기 성숙 miRNA 또는 전구체 miRNA 형태의 miR-18b는 핵산 분자의 염기서열 정보는 미국국립보건원 유전자은행(NIH GenBank) 및 miRBASE(http://www.mirbase.org/) 등의 공지된 유전자데이터베이스에서 확인할 수 있다. 예를 들어, 인간 miR-18b의 성숙 형태의 염기서열은 유전자 등록번호 MIMAT0001412(서열번호 1) 또는 MIMAT0004751(서열번호 2), 전구체 형태는 MI0001518(서열번호 3)로 등록되어 있다.In the mature miRNA or precursor miRNA form of miR-18b, the nucleotide sequence information of the nucleic acid molecule can be found in known genetic databases such as NIH GenBank and miRBASE (http://www.mirbase.org/). I can. For example, the nucleotide sequence of the mature form of human miR-18b is registered as the gene registration number MIMAT0001412 (SEQ ID NO: 1) or MIMAT0004751 (SEQ ID NO: 2), and the precursor form is MI0001518 (SEQ ID NO: 3).

유전자gene 서열정보Sequence information hsa-miR-18bhsa-miR-18b 성숙 형태Mature form miR-18b-5pmiR-18b-5p UAAGGUGCAUCUAGUGCAGUUAG(서열번호 1)UAAGGUGCAUCUAGUGCAGUUAG (SEQ ID NO: 1) miR-18b-3pmiR-18b-3p UGCCCUAAAUGCCCCUUCUGGC(서열번호 2)UGCCCUAAAUGCCCCUUCUGGC (SEQ ID NO: 2) 전구체 형태Precursor form UGUGUUAAGGUGCAUCUAGUGCAGUUAGUGAAGCAGCUUAGAAUCUACUGCCCUAAAUGCCCCUUCUGGCA(서열번호 3)UGUGUUAAGGUGCAUCUAGUGCAGUUAGUGAAGCAGCUUAGAAUCUACUGCCCUAAAUGCCCCUUCUGGCA (SEQ ID NO: 3)

또한, 본 발명에서 사용되는 miR-18b는 이를 구성하는 핵산 분자의 작용성 등가물, 예를 들어, miRNA 핵산 분자의 일부 염기서열이 결실, 치환 또는 삽입에 의해 변형되더라도 상기 miRNA 핵산 분자와 기능적으로 동등한 작용을 할 수 있는 변이체를 포함하는 개념이다. 예를 들어, 본 발명의 miR-18b는 각 해당 서열번호의 염기서열과 80% 이상의 상동성을 나타낼 수 있으며, 구체적으로 90%, 보다 구체적으로 95% 이상의 상동성을 나타내는 것을 포함할 수 있다. 이러한 상동성은 당 분야에 널리 공지된 컴퓨터 알고리즘, 예를 들어 Align 또는 BLAST 알고리즘을 이용하여 뉴클레오티드의 서열을 표적 유전자의 상응하는 부분과 비교하여 용이하게 결정할 수 있다.In addition, miR-18b used in the present invention is functional equivalent of the nucleic acid molecule constituting it, for example, functionally equivalent to the miRNA nucleic acid molecule even if some nucleotide sequences of the miRNA nucleic acid molecule are modified by deletion, substitution or insertion. It is a concept that includes variants that can act. For example, miR-18b of the present invention may exhibit 80% or more homology with the nucleotide sequence of each corresponding sequence number, and specifically may include 90% or more specifically 95% or more homology. Such homology can be readily determined by comparing the sequence of a nucleotide with a corresponding portion of a target gene using computer algorithms well known in the art, for example Align or BLAST algorithms.

또한, 본 발명에서 사용되는 miR-18b는 단일 가닥 또는 이중 가닥 형태로 존재할 수 있다. 성숙 miRNA 분자는 주로 단일 가닥으로 존재하지만, 전구체 miRNA 분자는 이중가닥을 형성할 수 있는 부분적인 자가-상보적인 구조(예를 들어 스템-루프 구조)를 포함할 수 있다. 또한, 본 발명의 핵산 분자는 RNA 또는 PNA(peptide nucleic acids) 같은 형태로 구성될 수 있다.Further, miR-18b used in the present invention may exist in a single-stranded or double-stranded form. Mature miRNA molecules exist primarily as single strands, but precursor miRNA molecules may contain partially self-complementary structures (eg stem-loop structures) capable of forming double strands. In addition, the nucleic acid molecule of the present invention may be constructed in the form of RNA or peptide nucleic acids (PNA).

또한, 본 발명에서 사용되는 miR-18b는 표준 분자 생물학 기술, 예를 들어 화학적 합성 방법 또는 재조합 방법을 이용하여 분리 또는 제조하거나, 시판되는 것을 사용할 수 있다.In addition, miR-18b used in the present invention may be isolated or prepared using standard molecular biology techniques, such as chemical synthesis or recombinant methods, or commercially available ones may be used.

본 발명에서, 상기 miR-18b 자체를 포함할 수도 있으나 이와 기능적으로 동등한 단편을 포함할 수도 있으며, 상기 miRNA 의 단편은 상기 miRNA 의 종자 서열(seed sequence)을 포함하는 폴리뉴클레오티드일 수 있다. 종자 서열(seed sequence)은 miRNA가 타겟을 인식할 때 완전한 상보성을 가지고 결합하는 miRNA 내 일부 영역의 뉴클레오타이드 서열을 의미하며, 이는 miRNA가 타겟에 결합하기 위해 필수적으로 요구되는 부분이다. In the present invention, the miR-18b itself may be included, but may include a fragment functionally equivalent thereto, and the fragment of the miRNA may be a polynucleotide including the seed sequence of the miRNA. The seed sequence refers to the nucleotide sequence of a partial region of the miRNA that binds with complete complementarity when the miRNA recognizes the target, and this is an essential part for the miRNA to bind to the target.

또한, 상기 miR-18b는 이의 생물학적 등가 효능을 발생시키는 다양한 miRNA 유도체(miRNA mimic)의 형태로 사용할 수 있는데, 동일한 씨앗 부분 (seed region)을 포함하는 miRNA 서열을 포함하는 변형된 miRNA를 사용할 수 있다. 상기 miRNA에 대한 miRNA 유도체로서는 RNA 인산 뼈대 구조 (phosphate backbone structure)를 황 등의 다른 원소로 치환한 형태인 포스포로사이오에이트 (phosphorothiolate) 구조를 부분적으로 포함할 수 있으며, RNA 대신 DNA 및 PNA(petide nucleic acids) 분자로의 전체 또는 부분적으로 치환한 형태로 사용 가능하고, 또한, RNA 당의 2'수산화기를 다양한 기능성 구조로 치환한 형태로 사용이 가능한데, 이는 메틸화, 메톡시화, 플르오르화 등을 포함하나 이러한 변형에 제한되는 것은 아니다.In addition, the miR-18b may be used in the form of a variety of miRNA derivatives (miRNA mimics) that generate its biologically equivalent efficacy, and a modified miRNA including a miRNA sequence including the same seed region may be used. . The miRNA derivative for the miRNA may partially include a phosphorothiolate structure in which the RNA phosphate backbone structure is substituted with another element such as sulfur, and instead of RNA, DNA and PNA ( Petide nucleic acids) molecules can be used in the form of a full or partial substitution, and can also be used in the form of substitution of the 2'hydroxyl group of an RNA sugar with various functional structures, including methylation, methoxylation, fluorination, etc. However, it is not limited to these variations.

본 발명에서, 상기 miR-18b는 벡터에 포함되거나 세포에 도입된 형태로 제공될 수 있다.In the present invention, the miR-18b may be provided in a form included in a vector or introduced into a cell.

구체적으로, 상기 miR-18b는 세포 내 전달을 위한 발현 벡터에 포함되어 제공될 수 있다. 상기 발현 벡터는 바이러스 벡터 및 비바이러스 벡터 모두 사용 가능하다. 바이러스 벡터(viral vector)로서 예를 들면, 렌티바이러스(lentivirus), 레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 허피스바이러스(herpes virus) 또는 아비폭스바이러스(avipox virus) 벡터 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.Specifically, the miR-18b may be included in an expression vector for intracellular delivery and provided. Both viral vectors and non-viral vectors can be used as the expression vector. As a viral vector, for example, a lentivirus, retrovirus, adenovirus, herpes virus, or abipox virus vector may be used. It is not limited thereto.

상기 발현 벡터는, 형질도입된 세포의 선별을 용이하게 하기 위하여 선별마커를 추가로 포함할 수 있다. 예를 들어, 약물 내성, 영양 요구성, 세포 독성제에 대한 내성 또는 표면 단백질의 발현과 같은 선택가능 표현형을 부여하는 마커들, 예를 들어 녹색 형광 단백질, 퓨로마이신, 네오마이신, 하이그로마이신, 히스티디놀디하이드로게나제(hisD) 및 구아닌 포스포리보실트랜스퍼라제(Gpt) 등을 예시할 수 있다.The expression vector may further include a selection marker to facilitate selection of the transduced cells. Markers that confer selectable phenotypes, such as, for example, drug resistance, auxotrophic, resistance to cytotoxic agents or expression of surface proteins, e.g. green fluorescent protein, puromycin, neomycin, hygromycin, Histidinoldihydrogenase (hisD), guanine phosphoribosyltransferase (Gpt), and the like can be illustrated.

또한, 상기 miR-18b는 세포에 도입된 형태로 제공될 수 있다. 이러한 세포는 miR-18b를 높은 수준으로 발현할 수 있게 된다. 세포 내로 도입하는 방법으로는, 예를 들어 G-fectin, Mirus TrasIT-TKO 지질친화성 시약, 리포펙틴, 리포펙타민, 셀펙틴(cellfectin), 양이온성 인지질 나노입자, 양이온성 고분자, 양이온성 미셀, 양이온성 에멀젼 또는 리포좀을 포함하는 전달시약과 함께 세포 내로 도입되거나, 폴리에틸렌글리콜과 같은 생체적합성 고분자를 접합하여 세포 내 흡수를 증가시킬 수 있다.In addition, the miR-18b may be provided in a form introduced into cells. These cells are able to express miR-18b at high levels. As a method of introducing into cells, for example, G-fectin, Mirus TrasIT-TKO lipophilic reagent, lipofectin, lipofectamine, cellfectin, cationic phospholipid nanoparticles, cationic polymer, cationic micelle , It can be introduced into cells together with a delivery reagent including a cationic emulsion or liposome, or by conjugating a biocompatible polymer such as polyethylene glycol to increase intracellular absorption.

본 발명에서, 상기 근육 질환은 유전자 돌연변이에 의해 유발된 근육 질환일 수 있으나 이에 제한되는 것은 아니다.In the present invention, the muscle disease may be a muscle disease caused by a gene mutation, but is not limited thereto.

또한, 상기 근육 질환은 중증근무력증(myasthenia gravis), 진행성 근이영양증(progressive muscular dystrophy), 근긴장성 근이영양증(myotonic muscular dystrophy), 듀시엔형 근이영양증(Duchenne muscular dystrophy), 베커형 근이영양증(Backer muscular dystrophy), 지대형 근이영양증(Limb Girdle muscular dystrophy), 안면견갑상완형 근이영양증(facioscapulohumeral muscular dystrophy), 척수성 근위축(spinal muscular amyotrophy), 근위축증(muscular atrophy), 근위축성 축삭 경화증(amyotrophic lateral sclerosis), 척수구근 근위축(spinobulbar muscular atrophy), 샤르코 마리 투스 질환(Charcot Marie Tooth disease, CMT), 폼페병(Pompe disease), 카나반병(Canavan disease), 근육긴장이상(dystonia), 근육감소증(sacopenia) 또는 근육퇴화증일 수 있으나, 이에 제한되는 것은 아니다.In addition, the muscle diseases are myasthenia gravis, progressive muscular dystrophy, myotonic muscular dystrophy, Duchenne muscular dystrophy, Becker-type muscular dystrophy, and backer muscular dystrophy. Limb Girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, spinal muscular amyotrophy, muscle atrophy, amyotrophic lateral muscular dystrophy, spinal cord muscular dystrophy (spinobulbar muscular atrophy), Charcot Marie Tooth disease (CMT), Pompe disease, Canavan disease, dystonia, sacopenia, or muscle degeneration However, it is not limited thereto.

본 발명의 구체적인 실시예에서, 본 발명자들은 유전자 돌연변이에 의한 근육 질환 모델로 근위축성 축삭 경화증에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하며, 상향 조절된 Hif1α가 Mef2c를 상향 조절하고, Mef2c가 miR-206 발현을 유도하며, miR-206이 Mctp1과 Rarb의 전사후 조절에 직접 관여하여 칼슘 신호전달과 신경세포 분화 억제 및 세포사멸을 유도함을 확인하였다. 또한, miR-18b 발현을 증가시켜 유전자 돌연변이에 의해 유도된 세포사멸이 억제되고, 칼슘 신호전달과 세포 분화가 회복됨을 확인하였다.In a specific embodiment of the present invention, the present inventors have shown that a gene mutation in amyotrophic axonal sclerosis decreases miR-18b expression in a muscle disease model caused by gene mutation, resulting in impaired regulation of the miR-18b signaling pathway, and miR-18b Dysregulation induces upregulation of Hif1α, upregulated Hif1α upregulates Mef2c, Mef2c induces miR-206 expression, and miR-206 is directly involved in the post-transcriptional regulation of Mctp1 and Rarb, resulting in calcium signaling and It was confirmed that it inhibits neuronal differentiation and induces apoptosis. In addition, it was confirmed that apoptosis induced by gene mutation was suppressed by increasing miR-18b expression, and calcium signaling and cell differentiation were restored.

또한, 본 발명자들은 유전자 돌연변이에 의한 근육 질환 모델로 듀시엔형 근이영양증에서 유전자 돌연변이에 의해 miR-18b 신호전달 경로의 조절 장애가 유발됨을 확인하였다. In addition, the present inventors have confirmed that the regulation of the miR-18b signaling pathway is caused by gene mutations in Ducian-type muscular dystrophy as a muscle disease model caused by gene mutation.

따라서, 본 발명자들은 유전자 돌연변이에 의한 근육 질환 모델에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, 이로 인해 칼슘 신호전달과 세포 분화 억제 및 세포사멸을 유도되고, miR-18b 발현을 증가시켜 유전자 돌연변이에 의해 유도된 세포사멸이 억제되고, 칼슘 신호전달과 세포 분화가 회복됨을 확인하였으므로, 본 발명의 miR-18b를 근육 질환 예방 또는 치료에 이용할 수 있다.Therefore, the present inventors have found that in a muscle disease model caused by gene mutation, a gene mutation decreases miR-18b expression, resulting in impaired regulation of the miR-18b signaling pathway, thereby inhibiting calcium signaling and cell differentiation and inducing apoptosis. It was confirmed that apoptosis induced by gene mutation was suppressed by increasing the expression of miR-18b, and calcium signaling and cell differentiation were restored. Therefore, the miR-18b of the present invention can be used for preventing or treating muscle diseases.

본 발명의 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있으며, 담체와 함께 제제화될 수 있다. The composition of the present invention may further include a pharmaceutically acceptable carrier, and may be formulated with a carrier.

상기 약학적으로 허용가능한 담체란, 생물체를 자극하지 않고 투여 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 말한다. 예를 들어, 액상 용액으로 제제화되는 조성물에 있어서 허용되는 약제학적 담체로는, 멸균 및 생체에 적합한 것으로서, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 및 이들 성분 중 1 성분 이상을 혼합하여 사용할 수 있으며, 필요에 따라 항산화제, 완충액, 정균제 등 다른 통상의 첨가제를 첨가할 수 있다. 또한 용액 또는 현탁액(예를 들어, 마이크로입자, 리포솜, 또는 세포와 통합된) 형태로 제제화될 수 있다.The pharmaceutically acceptable carrier refers to a carrier or diluent that does not stimulate an organism and does not inhibit the biological activity and properties of the administered compound. For example, as acceptable pharmaceutical carriers in a composition formulated as a liquid solution, as sterilization and biocompatible, saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, Glycerol, ethanol, and one or more of these components may be mixed and used, and other conventional additives such as antioxidants, buffers, and bacteriostatic agents may be added as needed. It can also be formulated in the form of a solution or suspension (eg, microparticles, liposomes, or integrated with cells).

본 발명의 조성물은 이를 유효성분으로 포함하는 어떠한 제형으로도 적용가능하며, 경구용 또는 비경구용 제형으로 제조되어 투여될 수 있다. 투여는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 핵산 분자의 바이러스성 또는 비바이러스성 기술에 의한 운반 또는 핵산 분자를 발현하는 세포의 이식을 포함한다. 본 발명의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다. 예를 들어, 경구 투여, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 비내 투여, 폐내 투여, 직장내 투여, 강내 투여, 복강 내 투여, 경막 내 투여가 이루어질 수 있으나, 이에 제한되지는 않는다.The composition of the present invention may be applied in any formulation containing it as an active ingredient, and may be prepared and administered in an oral or parenteral formulation. Administration refers to the introduction of the composition of the present invention into a patient by any suitable method, and includes delivery of a nucleic acid molecule by viral or non-viral techniques or implantation of cells expressing the nucleic acid molecule. The route of administration of the composition of the present invention may be administered through various routes, either oral or parenteral, as long as it can reach the target tissue. For example, oral administration, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, intranasal administration, intrapulmonary administration, rectal administration, intranasal administration, intraperitoneal administration, intrathecal administration, It is not limited thereto.

본 발명의 조성물 및 치료 방법은 근육 질환이 발생할 수 있는 임의의 동물에 적용가능하며, 동물은 인간 및 영장류뿐만 아니라, 소, 돼지, 양, 말, 개 및 고양이 등의 가축을 포함한다.The compositions and treatment methods of the present invention are applicable to any animal capable of developing muscle diseases, and the animals include humans and primates, as well as livestock such as cattle, pigs, sheep, horses, dogs and cats.

본 발명의 조성물의 유효량의 범위 또는 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있다는 것은 당업자에게 자명한 일이다. 특정 환자에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적 조성물, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 및 조사되는 방사선량을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다. 예를 들어, 1일 당 0.001 ㎍/kg-100 mg/kg(체중)으로 사용될 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 목적에 적합한 약학 조성물의 유효량은 전술한 사항을 고려하여 결정하는 것이 바람직하다.It is obvious to those skilled in the art that the range of the effective amount of the composition of the present invention or a suitable total daily use amount can be determined by the treating physician within the range of correct medical judgment. The specific therapeutically effective amount for a particular patient is the type and extent of the reaction to be achieved, the specific composition, including whether or not other agents are used in some cases, the patient's age, weight, general health status, sex and diet, administration time, It is preferable to apply differently depending on various factors including the route of administration and the secretion rate of the composition, the treatment period, and the amount of radiation to be irradiated, and similar factors well known in the medical field. For example, it may be used as 0.001 μg/kg-100 mg/kg (body weight) per day, but is not limited thereto. It is preferable to determine the effective amount of a pharmaceutical composition suitable for the purposes of the present invention in consideration of the above.

또한, 본 발명은 피검체로부터 분리된 시료에서 miR-18b의 발현 수준을 측정하고 정상 대조군과 비교하는 단계를 포함하는, 근육 질환의 진단 정보를 제공하는 방법을 제공한다.In addition, the present invention provides a method of providing diagnostic information for muscle disease, comprising measuring the expression level of miR-18b in a sample isolated from a subject and comparing it with a normal control.

본 발명의 방법에 있어서, 상기 시료는 조직, 세포, 혈장, 혈청, 혈액, 타액 또는 소변일 수 있으나, 이에 제한되는 것은 아니다.In the method of the present invention, the sample may be tissue, cells, plasma, serum, blood, saliva, or urine, but is not limited thereto.

본 발명의 방법에 있어서, 상기 발현 수준은 RT-PCR(Reverse transcription polymerase chain reaction), 정량적 RT-PCR, 실시간 RT-PCR, 노던 블럿팅(Northern blotting) 또는 전사체(transcriptome) 분석 방법을 이용하여 측정할 수 있으나, 이에 제한되는 것은 아니다.In the method of the present invention, the expression level is RT-PCR (Reverse transcription polymerase chain reaction), quantitative RT-PCR, real-time RT-PCR, Northern blotting (Northern blotting) or using a transcriptome analysis method It can be measured, but is not limited thereto.

본 발명의 방법에 있어서, 상기 시료에서 miR-18b의 발현 수준이 정상 대조군과 비교하여 감소하는 것을 확인하여 근육 질환으로 진단할 수 있다.In the method of the present invention, it can be confirmed that the expression level of miR-18b in the sample decreases compared to the normal control group to diagnose muscle disease.

또한, 상기 시료에서 추가적으로 Hif1α, Mef2c, Mctp1, Rarb 또는 miR-206의 발현 수준을 측정하고 정상 대조군과 비교하여 근육 질환을 진단할 수 있다. 구체적으로, 상기 시료에서 Hif1α, Mef2c 또는 miR-206의 발현 수준이 정상 대조군과 비교하여 증가하는 것을 확인하여 근육 질환을 진단할 수 있고, Mctp1 또는 Rarb의 발현 수준이 정상 대조군과 비교하여 감소하는 것을 확인하여 근육 질환을 진단할 수 있다.In addition, the expression level of Hif1α, Mef2c, Mctp1, Rarb or miR-206 in the sample may be additionally measured and compared with a normal control group to diagnose muscle disease. Specifically, muscle disease can be diagnosed by confirming that the expression level of Hif1α, Mef2c, or miR-206 in the sample increases compared to the normal control, and that the expression level of Mctp1 or Rarb decreases compared to the normal control. You can diagnose muscle disease by checking.

본 발명의 방법에 있어서, 상기 근육 질환은 유전자 돌연변이에 의해 유발된 근육 질환일 수 있으나 이에 제한되는 것은 아니다.In the method of the present invention, the muscle disease may be a muscle disease caused by a gene mutation, but is not limited thereto.

또한, 상기 근육 질환은 중증근무력증(myasthenia gravis), 진행성 근이영양증(progressive muscular dystrophy), 근긴장성 근이영양증(myotonic muscular dystrophy), 듀시엔형 근이영양증(Duchenne muscular dystrophy), 베커형 근이영양증(Backer muscular dystrophy), 지대형 근이영양증(Limb Girdle muscular dystrophy), 안면견갑상완형 근이영양증(facioscapulohumeral muscular dystrophy), 척수성 근위축(spinal muscular amyotrophy), 근위축증(muscular atrophy), 근위축성 축삭 경화증(amyotrophic lateral sclerosis), 척수구근 근위축(spinobulbar muscular atrophy), 샤르코 마리 투스 질환(Charcot Marie Tooth disease, CMT), 폼페병(Pompe disease), 카나반병(Canavan disease), 근육긴장이상(dystonia), 근육감소증(sacopenia) 또는 근육퇴화증일 수 있으나, 이에 제한되는 것은 아니다.In addition, the muscle diseases are myasthenia gravis, progressive muscular dystrophy, myotonic muscular dystrophy, Duchenne muscular dystrophy, Becker-type muscular dystrophy, and backer muscular dystrophy. Limb Girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, spinal muscular amyotrophy, muscle atrophy, amyotrophic lateral muscular dystrophy, spinal cord muscular dystrophy (spinobulbar muscular atrophy), Charcot Marie Tooth disease (CMT), Pompe disease, Canavan disease, dystonia, sacopenia, or muscle degeneration However, it is not limited thereto.

본 발명자들은 유전자 돌연변이에 의한 근육 질환 모델에서 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하며, 상향 조절된 Hif1α가 Mef2c를 상향 조절하고, Mef2c가 miR-206 발현을 유도하며, miR-206이 Mctp1과 Rarb의 전사후 조절에 직접 관여하여 칼슘 신호전달과 신경세포 분화 억제 및 세포사멸을 유도함을 확인하였으므로, 본 발명의 miR-18b 및 miR-18b에 의해 조절되는 상기 인자들을 근육 질환 진단을 위한 표적 인자로 이용할 수 있다. In the present inventors, in a muscle disease model caused by gene mutations, gene mutations induce miR-18b expression to decrease miR-18b signaling pathway, and miR-18b dysregulation induces upregulation of Hif1α, and upregulated It was confirmed that Hif1α upregulates Mef2c, Mef2c induces miR-206 expression, and miR-206 is directly involved in the post-transcriptional regulation of Mctp1 and Rarb to induce calcium signaling, neuronal differentiation, and apoptosis. The factors regulated by miR-18b and miR-18b of the present invention can be used as target factors for diagnosing muscle diseases.

이하, 본 발명을 실시예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail by examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의하여 한정되는 것은 아니다.However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples.

<실시예 1> 세포 배양 <Example 1> Cell culture

<1-1> <1-1> SOD1SOD1 돌연변이 Mutation 운동신경세포Motor neuron 배양 culture

유전자 돌연변이에 의한 근육 질환으로 근위축성측삭경화증(ALS)은 SOD1 돌연변이에 의해 발병하고 운동신경세포가 소실되는 것으로 잘 알려져 있다. 이에 ALS 진단 및 치료에 이용할 수 있는 표적 miRNA를 알아보기 위하여, SOD1 돌연변이 운동신경세포를 하기와 같이 배양하였다.As a muscle disease caused by a gene mutation, amyotrophic lateral sclerosis (ALS) is well known to be caused by the SOD1 mutation and the loss of motor neurons. Therefore, in order to investigate the target miRNA that can be used for diagnosis and treatment of ALS, SOD1 mutant motor neurons were cultured as follows.

구체적으로, 마우스 SOD1을 발현하는 운동신경세포주인 NSC-34 cont 세포, 인간 SOD1을 발현하는 운동신경세포주인 NSC-34 hSOD1 세포(wtNSC-34) 및 인간 SOD1 G93A 돌연변이를 발현하는 SOD1 돌연변이 운동신경세포주인 NSC-34 hSOD1(G93A) 세포(mtNSC-34)를 한국과학기술연구원(KIST)로부터 입수하였다. 그 다음, 10% FBS(Gibco), 100 U/ml 페니실린, 100 μg/ml 스트렙토마이신(Invitrogen Life Tech)이 첨가된 DMEM 배지(Hyclone)에서 배양하였다. 또한, 1% FBS, 100 U/ml 페니실린, 100 μg/ml 스트렙토마이신 및 20 uM all-trans-RA(Sigma)가 첨가된 DMEM 배지(Hyclone)에서 분화하였다.Specifically, NSC-34 cont cells, a motor neuron cell line expressing mouse SOD1, NSC-34 hSOD1 cells (wtNSC-34), a motor neuron cell line expressing human SOD1, and a SOD1 mutant motor neuron cell line expressing a human SOD1 G93A mutation Phosphorus NSC-34 hSOD1 (G93A) cells (mtNSC-34) were obtained from the Korea Institute of Science and Technology (KIST). Then, it was cultured in DMEM medium (Hyclone) to which 10% FBS (Gibco), 100 U/ml penicillin, and 100 μg/ml streptomycin (Invitrogen Life Tech) were added. In addition, it differentiated in DMEM medium (Hyclone) to which 1% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, and 20 uM all-trans-RA (Sigma) were added.

<1-2> <1-2> 신경줄기세포Neural stem cells 분리 및 배양 Isolation and culture

ALS 진단 및 치료에 이용할 수 있는 표적 miRNA를 알아보기 위하여, 신경줄기세포(Neural stem cell, NSC)를 하기와 같이 분리 및 배양하였다.In order to investigate the target miRNA that can be used for diagnosis and treatment of ALS, neural stem cells (NSC) were isolated and cultured as follows.

구체적으로, 동물 실험은 실험 동물 보호 및 사용을 위한 서울 대학교의 IACUC(Institutional Animal Care and Use Committee) 지침에 따라 수행되었다. 9 주된 마우스의 뇌실 영역(subventricular zone)의 뇌 조직을 적출한 후, HBSS를 함유하는 플레이트에서 파쇄하고, 트립신 처리 후 37℃에서 15 분간 세포를 배양하였다. 그 후, 원심분리 및 1% PSA(페니실린-스트렙토마이신-암포테리신, Invitrogen), 2% B27 보충제(Gibco BRL), 10 ng/mL EGF(Invitrogen) 및 10 ng/mL bEGF(Invitrogen)를 포함하는 DMEM/F12(Invitrogen) 배지로 재현탁한 다음, 6-웰 플레이트에 세포를 씨딩하여 NSC를 배양하였다. 세포분화를 유도하기 위하여, 세포가 직경이 약 50-100 μm 크기의 신경구(neurosphere)를 형성할 때, 재현탁하고 멸균된 15-ml 튜브로 옮겼다. 실온에서 5 분간 100 x g로 원심 분리하여 신경구가 포함된 펠렛(pellet)을 획득하고, 상기 펠렛을 분화배양배지(DMEM/F12, 1 % PSA, 2 % B27 및 5 % FBS)로 재현탁하여 배양하였다.Specifically, animal experiments were performed according to the guidelines of the Institutional Animal Care and Use Committee (IACUC) of Seoul National University for the protection and use of experimental animals. After extracting the brain tissue of the subventricular zone of 9 main mice, it was crushed in a plate containing HBSS, and the cells were cultured for 15 minutes at 37°C after trypsin treatment. Thereafter, centrifugation and containing 1% PSA (penicillin-streptomycin-amphotericin, Invitrogen), 2% B27 supplement (Gibco BRL), 10 ng/mL EGF (Invitrogen) and 10 ng/mL bEGF (Invitrogen) After resuspending in DMEM/F12 (Invitrogen) medium, the cells were seeded in a 6-well plate to culture NSCs. In order to induce cell differentiation, when the cells form neurospheres of about 50-100 μm in diameter, resuspended and transferred to a sterile 15-ml tube. Centrifugation at room temperature for 5 minutes at 100 xg to obtain a pellet containing neurospheres, and culture by resuspending the pellet in differentiation culture medium (DMEM/F12, 1% PSA, 2% B27 and 5% FBS) I did.

<1-3> <1-3> DystrophinDystrophin 발현 억제 Suppression of expression 근아세포의Myoblastic 배양 culture

유전자 돌연변이에 의한 근육 질환으로 Duchenne 근이영양증(Duchenn muscular dystrophy; DMD)은 Dystrophin 유전자 변이에 의한 Dystrophin 결핍에 의해 발병하는 것으로 잘 알려져 있다. 이에, 근이영양증 진단 및 치료에 이용할 수 있는 표적 miRNA를 알아보기 위하여, Dystrophin 발현 억제 근아세포를 하기와 같이 제작 및 배양하였다.Duchenne muscular dystrophy (DMD), a muscle disease caused by a gene mutation, is well known to be caused by a Dystrophin deficiency caused by a mutation in the Dystrophin gene. Accordingly, in order to investigate the target miRNA that can be used for diagnosis and treatment of muscular dystrophy, Dystrophin expression-inhibiting myoblasts were produced and cultured as follows.

구체적으로, 마우스 근아세포(C2C12 cell line)을 항생제가 첨가된 DMEM 배지(10% FBS 첨가)에 배양하였다. 배양한 C2C12 세포에 COSMO GENETECH에 의뢰하여 제작한 마우스용 siDystrophin(5'-GGCCUUACAGGGCAAAAACTT-3', 서열번호 4)을 RNAiMax transfection reagent (Invitrogen)를 이용하여 제조사의 절차에 따라 형질도입하여 Dystrophin 발현 억제 C2C12 세포를 제작 및 배양하였다.Specifically, mouse myoblasts (C2C12 cell line) were cultured in DMEM medium (10% FBS added) to which antibiotics were added. Inhibit Dystrophin expression by transducing mouse siDystrophin (5'-GGCCUUACAGGGCAAAAACTT-3', SEQ ID NO: 4) produced by COSMO GENETECH into cultured C2C12 cells according to the manufacturer's procedure using RNAiMax transfection reagent (Invitrogen). C2C12 Cells were prepared and cultured.

<실시예 2> SOD1 돌연변이 운동신경세포에서 비정상적인 유전자 발현 확인<Example 2> Confirmation of abnormal gene expression in SOD1 mutant motor neurons

유전자 돌연변이는 RNA 생합성과 관련이 있으므로, RNA 생합성에 관여하는 miRNA를 유전자 돌연변이에 의한 근육 질환으로서 ALS 진단 및 치료를 위한 표적 인자로 이용할 수 있다. 이에 SOD1 돌연변이에 의한 RNA 생합성 변화를 알아보기 위하여, mtNSC-34 세포를 핵 및 세포질로 분획화하고, 핵 분획 및 세포질 분획을 이용하여 전사체(transcriptome) 분석을 수행한 후, mtNSC-34 세포의 핵과 세포질 간 발현 차이가 있는 유전자의 발현을 RT-PCR 및 qRT-PCR을 수행하여 확인하였다.Since gene mutations are related to RNA biosynthesis, miRNAs involved in RNA biosynthesis can be used as target factors for diagnosis and treatment of ALS as muscle diseases caused by gene mutations. Accordingly, in order to investigate the changes in RNA biosynthesis due to SOD1 mutation, mtNSC-34 cells were fractionated into nucleus and cytoplasm, and transcriptome analysis was performed using the nuclear fraction and cytoplasmic fraction, and then the mtNSC-34 cells Expression of genes with differences in expression between the nucleus and cytoplasm was confirmed by performing RT-PCR and qRT-PCR.

구체적으로, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포 및 wtNSC-34 세포 각각을 3 세트로 10 cm 디쉬에서 배양한 후, 450 ㎕의 차가운 버퍼A(10 mM HEPES(pH 7.9), 10 mM KCl, 1 mM DTT 및 0.1 mM EDTA(pH 8.0))를 이용하여 회수하였다. mtNSC-34 세포 및 wtNSC-34 세포 각각을 재현탁하고, 얼음 위에서 25 분 동안 반응하였다. 그 다음 5 ㎕의 10% NP-40을 첨가하고 얼음 위에서 2 분 동안 반응한 후, 4℃에서 3 분간 5000 rpm으로 원심분리하였다. 펠렛을 분리하여 핵 분획을 획득하였고, 상등액을 분리하여 세포질 분획을 획득하였다. Macrogen Inc.에 의뢰하여 상기 총 12 샘플의 전사체(transcriptome)를 이용하여 RNA-seq 분석을 수행하였다(도 1A).Specifically, after culturing each of the mtNSC-34 cells and wtNSC-34 cells obtained in Example <1-1> in 3 sets in a 10 cm dish, 450 μl of cold buffer A (10 mM HEPES (pH 7.9)) , 10 mM KCl, 1 mM DTT and 0.1 mM EDTA (pH 8.0)). Each of mtNSC-34 cells and wtNSC-34 cells was resuspended and reacted on ice for 25 minutes. Then, 5 μl of 10% NP-40 was added and reacted on ice for 2 minutes, followed by centrifugation at 5000 rpm for 3 minutes at 4°C. The pellet was separated to obtain a nuclear fraction, and the supernatant was separated to obtain a cytoplasmic fraction. RNA-seq analysis was performed using the transcriptome of a total of 12 samples requested by Macrogen Inc. (Fig. 1A).

또한, mtNSC-34 세포 및 wtNSC-34 세포 간 발현 차이가 있는 4종의 유전자, Hif1α(hypoxia inducible factor 1 alpha), Mef2c(myocyte specific enhancer factor 2c), Mctp1(multiple C2 domains transmembrane protein 1) 및 Rarb(retinoic acid receptor beta) mRNA 발현을 RT-PCR 및 정량적 RT-PCR(qRT-PCR)로 확인하였다. 구체적으로, 핵과 세포질 간 발현 차이가 있는 2 종의 유전자, Mctp1 및 Rarb mRNA 발현 변화를 확인하기 위하여, 상기와 동일한 방법으로 mtNSC-34 세포 및 wtNSC-34 세포 각각에서 핵 분획 및 세포질 분획을 획득한 후, TRIzol 시약(MRC)을 이용하여 총 RNA를 추출하고 하기 표 2의 프라이머를 이용하여 RT-PCR을 수행하였다(도 1B). 또한, mtNSC-34 세포에서 Hif1α, Mef2c, Mctp1 및 Rarb mRNA 발현 변화를 확인하기 위하여, mtNSC-34 세포 및 wtNSC-34 세포 각각을 TRIzol 시약(MRC)을 이용하여 총 RNA를 추출하고, 50 ng RNA를 주형으로 하고 하기 표 3의 프라이머 및 SYBR Green Real-time PCR Master Mix (Toyobo)를 이용하여 제조사의 절차에 따라 qRT-PCR을 수행하였다. 마우스 GAPDH를 대조군으로 사용하였다(도 1C 및 도 1D).In addition, four genes with differences in expression between mtNSC-34 cells and wtNSC-34 cells, Hif1α (hypoxia inducible factor 1 alpha), Mef2c (myocyte specific enhancer factor 2c), Mctp1 (multiple C2 domains transmembrane protein 1) and Rarb (retinoic acid receptor beta) mRNA expression was confirmed by RT-PCR and quantitative RT-PCR (qRT-PCR). Specifically, in order to confirm the change in the expression of two kinds of genes, Mctp1 and Rarb mRNA, which have a difference in expression between the nucleus and cytoplasm, the nuclear fraction and the cytoplasmic fraction were obtained from each of mtNSC-34 cells and wtNSC-34 cells by the same method as above. Thereafter, total RNA was extracted using TRIzol reagent (MRC), and RT-PCR was performed using the primers in Table 2 below (FIG. 1B). In addition, in order to confirm the changes in Hif1α, Mef2c, Mctp1 and Rarb mRNA expression in mtNSC-34 cells, mtNSC-34 cells and wtNSC-34 cells were each extracted total RNA using TRIzol reagent (MRC), and 50 ng RNA As a template, qRT-PCR was performed according to the manufacturer's procedure using the primers of Table 3 below and SYBR Green Real-time PCR Master Mix (Toyobo). Mouse GAPDH was used as a control (FIGS. 1C and 1D ).

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') Mctp1 intronMctp1 intron 정방향Forward direction GACTCCAACATACCCATTTCTG(서열번호 5)GACTCCAACATACCCATTTCTG (SEQ ID NO: 5) 역방항Reverse port TAATATCTCTTCCCGCTCCTTC(서열번호 6)TAATATCTCTTCCCGCTCCTTC (SEQ ID NO: 6) Mctp1 exonMctp1 exon 정방향Forward direction TCATCCTTACGCCTAAGGAAG(서열번호 7)TCATCCTTACGCCTAAGGAAG (SEQ ID NO: 7) 역방향Reverse CCGGAACTTCACATATGGATC(서열번호 8)CCGGAACTTCACATATGGATC (SEQ ID NO: 8) Rarb intronRarb intron 정방향Forward direction CACCTGAAGGTGAATGTTGG(서열번호 9)CACCTGAAGGTGAATGTTGG (SEQ ID NO: 9) 역방향Reverse CACTTGAACTTGGGGTCAAG(서열번호 10)CACTTGAACTTGGGGTCAAG (SEQ ID NO: 10) Rarb exonRarb exon 정방향Forward direction GATCTACACTTGCCATCGAGA(서열번호11)GATCTACACTTGCCATCGAGA (SEQ ID NO: 11) 역방향Reverse CTTTCCGGATCTTCTCAGTGA(서열번호 12)CTTTCCGGATCTTCTCAGTGA (SEQ ID NO: 12) GAPDH
intron
GAPDH
intron
정방향Forward direction TGGTGCAACAGTATTCCACT(서열번호 13)TGGTGCAACAGTATTCCACT (SEQ ID NO: 13)
역방향Reverse CTGGAACATGTAGACCATGTAG(서열번호 14)CTGGAACATGTAGACCATGTAG (SEQ ID NO: 14) GAPDH
exon
GAPDH
exon
정방향Forward direction CATGTTTGTGATGGGTGTGA(서열번호 15)CATGTTTGTGATGGGTGTGA (SEQ ID NO: 15)
역방향Reverse GATGCAGGGATGATGTTCTG(서열번호 16)GATGCAGGGATGATGTTCTG (SEQ ID NO: 16)

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') Hif1αHif1α 정방향Forward direction GTTCACCAAAGTTGAATCAGAGG(서열번호 17)GTTCACCAAAGTTGAATCAGAGG (SEQ ID NO: 17) 역방항Reverse port CGATGAAGGTAAAGGAGACATTG(서열번호 18)CGATGAAGGTAAAGGAGACATTG (SEQ ID NO: 18) Mef2cMef2c 정방향Forward direction AGGATAATGGATGAGCGTAACAG(서열번호 19)AGGATAATGGATGAGCGTAACAG (SEQ ID NO: 19) 역방항Reverse port AGCAACACCTTATCCATGTCAGT(서열번호 20)AGCAACACCTTATCCATGTCAGT (SEQ ID NO: 20) Mctp1Mctp1 정방향Forward direction CGTTGTGTCATAGTGCTTGTAAA(서열번호 21)CGTTGTGTCATAGTGCTTGTAAA (SEQ ID NO: 21) 역방항Reverse port ATCATGTAGAGCTCAAAGTTCCA(서열번호 22)ATCATGTAGAGCTCAAAGTTCCA (SEQ ID NO: 22) RarbRarb 정방향Forward direction TTTCTCTGATGGCCTTACACTAA(서열번호 23)TTTCTCTGATGGCCTTACACTAA (SEQ ID NO: 23) 역방향Reverse AGATTAAACAGATGGCACTGAGA(서열번호 24)AGATTAAACAGATGGCACTGAGA (SEQ ID NO: 24) GAPDHGAPDH 정방향Forward direction ATAGCTGATGGCTGCAGGTT(서열번호 25)ATAGCTGATGGCTGCAGGTT (SEQ ID NO: 25) 역방향Reverse AATCTCCACTTTGCCACTGC(서열번호 26)AATCTCCACTTTGCCACTGC (SEQ ID NO: 26)

그 결과, 도 1에 나타낸 바와 같이, Hif1α 및 Hif1α에 의해 조절되는 Mef2c가 mtNSC-34 세포의 핵 및 세포질에서 증가함을 확인하였다(도 1A). 또한, mtNSC-34 세포에서 칼슘 신호전달과 관련된 것으로 알려진 Mctp1 및 세포 분화와 관련된 Rarb 수준이 변화하고, 특히 Mctp1 및 Rarb mRNA가 핵에서 상향 조절되었지만 세포질에서는 현저히 하향 조절됨을 확인하였다(도 1A 및 도 1B). 또한, mtNSC-34 세포에서 Hif1α와 Mef2c mRNA 발현 수준이 증가하고, Mctp1과 Rarb mRNA 발현 수준이 감소함을 확인하였다(도 1C 및 도 1D). As a result, as shown in FIG. 1, it was confirmed that Mef2c regulated by Hif1α and Hif1α increased in the nucleus and cytoplasm of mtNSC-34 cells (FIG. 1A ). In addition, it was confirmed that Mctp1 and Rarb levels related to cell differentiation, known to be related to calcium signaling in mtNSC-34 cells, were changed, and in particular, Mctp1 and Rarb mRNA were upregulated in the nucleus, but significantly downregulated in the cytoplasm (Fig. 1B). In addition, it was confirmed that Hif1α and Mef2c mRNA expression levels were increased in mtNSC-34 cells, and Mctp1 and Rarb mRNA expression levels were decreased (FIGS. 1C and 1D).

상기 결과를 통해 SOD1 돌연변이에 의해 Hif1α 및 Mef2c가 상향 조절되고, Mctp1과 Rarb가 하향 조절되며, 특히 Mctp1 및 Rarb는 세포질에서 전사후 조절됨을 확인하였다.Through the above results, it was confirmed that Hif1α and Mef2c were up-regulated and Mctp1 and Rarb were down-regulated by SOD1 mutation, and in particular, Mctp1 and Rarb were regulated after transcription in the cytoplasm.

<실시예 3> SOD1 돌연변이 운동신경세포에서 SOD1 돌연변이가 세포에 미치는 영향 확인<Example 3> Confirmation of the effect of SOD1 mutation on cells in SOD1 mutant motor neurons

SOD1 돌연변이가 세포에 미치는 영향을 알아보기 위하여, mtNSC-34 세포에서 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다.In order to investigate the effect of SOD1 mutation on cells, changes in intracellular calcium signaling, cell differentiation, and apoptosis were confirmed in mtNSC-34 cells.

Mctp1이 칼슘 신호전달과 관련된 것으로 알려져 있는 바, SOD1 돌연변이에 의한 Mctp1 발현 변화가 세포 내 칼슘 신호전달에 미치는 영향을 알아보기 위해 세포 내 Ca2+ 분석을 수행하였다. 구체적으로, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포 및 wtNSC-34 세포 각각을 4×104 내지 8×104 세포/웰로 96-웰 플레이트에 처리하고 성장 배지로 하루 동안 배양하였다. 48 시간 후 FLUOFORTE Dye-Loading Solution을 각 웰에 처리하고, 37℃에서 45 분간, 실온에서 15 분간 배양하였다. 그 다음, 형광 측정기를 이용하여 490/525 nm에서 형광을 측정하였다(도 2A, 오른쪽, 위).Since Mctp1 is known to be related to calcium signaling, intracellular Ca 2+ analysis was performed to investigate the effect of changes in Mctp1 expression by SOD1 mutation on intracellular calcium signaling. Specifically, each of the mtNSC-34 cells and wtNSC-34 cells obtained in Example <1-1> was treated in a 96-well plate at 4×10 4 to 8×10 4 cells/well and cultured in a growth medium for one day. I did. After 48 hours, the FLUOFORTE Dye-Loading Solution was treated in each well, and incubated at 37°C for 45 minutes and at room temperature for 15 minutes. Then, fluorescence was measured at 490/525 nm using a fluorescence meter (Fig. 2A, right, top).

또한, Rarb가 세포 분화와 관련된 것으로 알려져 있는 바, SOD1 돌연변이에 의한 Rarb 발현 변화가 SOD1 돌연변이가 세포 분화에 미치는 영향을 알아보기 위해 축삭생성 분석을 수행하였다. 구체적으로, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포 및 wtNSC-34 세포 각각을 4×104 내지 8×104 세포/웰로 96-웰 플레이트에 처리하고 성장 배지로 하루 동안 배양하였다. 그 다음, 면역형광염색법과 공초점 현미경을 사용하여 시각화한 후 축삭생성을 확인하였다(도 2A, 오른쪽, 아래).In addition, since it is known that Rarb is related to cell differentiation, axonal generation analysis was performed to determine the effect of the SOD1 mutation on the cell differentiation of the Rarb expression change caused by the SOD1 mutation. Specifically, each of the mtNSC-34 cells and wtNSC-34 cells obtained in Example <1-1> was treated in a 96-well plate at 4×10 4 to 8×10 4 cells/well and cultured in a growth medium for one day. I did. Then, after visualization using immunofluorescence staining and a confocal microscope, axon formation was confirmed (Fig. 2A, right, bottom).

아울러, SOD1 돌연변이가 세포 사멸에 미치는 영향을 알아보기 위해 웨스턴 블럿팅 및 qRT-PCR을 수행하여 세포 사멸 관련 인자의 발현을 확인하고, LDH(Lactate dehydrogenase) 방출 변화를 확인하였다. 구체적으로, 웨스턴 블럿팅을 수행하기 위해 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포, wtNSC-34 세포 NSC-34 cont 세포를 얼음에서 30 분 동안 용해버퍼(pH 7.4의 10mM Tris, pH 8.0의 1mM EDTA, 500 mM NaCl 및 0.5 % TritonX-100)를 처리하여 용해하고, 상기 세포의 단백질 용해물을 SDS-PAGE로 전기영동한 후, 니트로셀룰로오스 막(nitrocellulose membranes)(PALL Life Sciences)으로 전달시켰다. 그 다음, 일차 항체로 마우스 항-Hif1α 항체(NOVUS), 토끼 항-Mef2c 항체(LSBio), 마우스 항-Mctp1 항체(abcam), 토끼 항-Rarb 항체(LSBio), 토끼 항-Bax 항체(Cell signaling), 토끼 항-Bcl2 항체(abcam), 및 마우스 항-β-actin (Millipore), 토끼 항-SOD1 (Enzo) 항체를 처리하여 반응시킨 후, 상기 막에 붙은 일차 항체에 HRP-접합 이차 항체를 붙이고, 이를 ECL(Pierce chemical co, USA)을 이용하여 확인하였다(도 2B). 또한, 상기 <실시예 2>에 기재된 방법과 동일한 방법으로 mtNSC-34 세포, wtNSC-34 세포 및 NSC-34 cont 세포 각각에서 RNA를 추출하고, 하기 표 4의 프라이머를 이용하여 qRT-PCR을 수행하였다(도 2C). In addition, Western blotting and qRT-PCR were performed to determine the effect of the SOD1 mutation on apoptosis, to confirm the expression of apoptosis-related factors, and to confirm changes in LDH (Lactate dehydrogenase) release. Specifically, in order to perform Western blotting, mtNSC-34 cells, wtNSC-34 cells, and NSC-34 cont cells obtained in Example <1-1> were subjected to a lysis buffer (10 mM Tris at pH 7.4) for 30 minutes on ice. , pH 8.0 1mM EDTA, 500 mM NaCl, and 0.5% TritonX-100) were treated and lysed, and the protein lysate of the cells was electrophoresed by SDS-PAGE, and then nitrocellulose membranes (PALL Life Sciences ). Then, as primary antibodies, mouse anti-Hif1α antibody (NOVUS), rabbit anti-Mef2c antibody (LSBio), mouse anti-Mctp1 antibody (abcam), rabbit anti-Rarb antibody (LSBio), rabbit anti-Bax antibody (Cell signaling) ), rabbit anti-Bcl2 antibody (abcam), and mouse anti-β-actin (Millipore), rabbit anti-SOD1 (Enzo) antibody, and then reacted with HRP-conjugated secondary antibody to the primary antibody attached to the membrane. Attached, it was confirmed using ECL (Pierce chemical co, USA) (Fig. 2B). In addition, RNA was extracted from each of mtNSC-34 cells, wtNSC-34 cells, and NSC-34 cont cells by the same method as described in <Example 2>, and qRT-PCR was performed using the primers in Table 4 below. (Fig. 2C).

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') BaxBax 정방향Forward direction AAGCTGAGCGAGTGTCTCCG(서열번호 27)AAGCTGAGCGAGTGTCTCCG (SEQ ID NO: 27) 역방향Reverse GGAGGAAGTCCAGTGTCCAG(서열번호 28)GGAGGAAGTCCAGTGTCCAG (SEQ ID NO: 28) Bcl2Bcl2 정방향Forward direction AACCCAATGCCCGCTGTGCA(서열번호 29)AACCCAATGCCCGCTGTGCA (SEQ ID NO: 29) 역방향Reverse ACCGAACTCAAAGAAGGCCACAA(서열번호 30)ACCGAACTCAAAGAAGGCCACAA (SEQ ID NO: 30)

또한, LDH(Lactate dehydrogenase) 방출 변화를 확인하기 위하여, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포 및 wtNSC-34 세포의 세포 배양 배지를 회수 및 원심분리하여 상등액을 획득한 후 96-웰 플레이트에 옮겼다. 동량의 LDH 분석 기질 (SIGMA), 효소 및 염료 용액을 혼합하였다. 상기 혼합물의 절반 부피를 1 부피의 배지 상등액에 첨가하였다. 실온에서 30 분 동안 반응한 후, 각 웰에 1/10 부피의 1N HCl을 첨가하여 반응을 종결하였다. 그 다음, 분광 광도계를 이용하여 파장 490nm/690nm에서 흡광도를 측정하였다(도 2D).In addition, in order to confirm the change in LDH (Lactate dehydrogenase) release, the cell culture medium of the mtNSC-34 cells and wtNSC-34 cells obtained in Example <1-1> was recovered and centrifuged to obtain a supernatant. -Transferred to a well plate. Equal amounts of LDH assay substrate (SIGMA), enzyme and dye solutions were mixed. Half volume of the mixture was added to 1 volume of the medium supernatant. After reacting at room temperature for 30 minutes, 1/10 volume of 1N HCl was added to each well to terminate the reaction. Then, the absorbance was measured at a wavelength of 490 nm/690 nm using a spectrophotometer (FIG. 2D).

그 결과, 도 2에 나타낸 바와 같이, mtNSC-34 세포에서 세포 내 Ca2+ 수준이 증가하고, 총 신경돌기 성장은 SOD1 (G93A) 단백질의 응집과 함께 유의하게 감소함을 확인하였다(도 2A). 또한, mtNSC-34 세포에서 Hif1α및 Mef2c의 단백질 수준이 유의하게 상승하고, Mctp1 및 Rarb의 단백질 수준이 유의하게 감소함을 확인하였다(도 2B). 아울러, mtNSC-34 세포에서 Bax의 단백질 및 mRNA 수준이 증가하고, Bcl2의 단백질 및 mRNA 수준이 감소하며(도 2B 및 도 2C), LDH 방출이 증가하여(도 2D), 세포 사멸이 유도됨을 확인하였다.As a result, as shown in FIG. 2, it was confirmed that the intracellular Ca 2+ level was increased in mtNSC-34 cells, and total neurite growth was significantly decreased with the aggregation of SOD1 (G93A) protein (FIG. 2A ). . In addition, it was confirmed that the protein levels of Hif1α and Mef2c were significantly increased in mtNSC-34 cells, and the protein levels of Mctp1 and Rarb were significantly decreased (FIG. 2B). In addition, in mtNSC-34 cells, Bax protein and mRNA levels increased, Bcl2 protein and mRNA levels decreased (FIGS. 2B and 2C), and LDH release increased (FIG. 2D), confirming that cell death was induced. I did.

상기 결과를 통해 SOD1 돌연변이에 의해 세포 사멸이 유도되고, Mctp1과 Rarb 수준의 하향 조절 되어 각각 칼슘 신호전달과 세포 분화의 변화를 유발함을 확인하였다. Through the above results, it was confirmed that apoptosis was induced by the SOD1 mutation, and the levels of Mctp1 and Rarb were down-regulated to induce changes in calcium signaling and cell differentiation, respectively.

<실시예 4> Hif1α, Mef2c, Mctp1 및 Rarb를 조절하는 표적 miRNA 확인<Example 4> Identification of target miRNAs regulating Hif1α, Mef2c, Mctp1 and Rarb

miRNA는 가장 대표적인 전사후 조절자(post-transcriptional regulator) 중 하나로 잘 알려져 있다. 이에 mtNSC-34 세포에서 Hif1α및 Mef2c가 상향 조절되고, Mctp1과 Rarb가 하향 조절됨을 확인하였는바, Mef2c의 상위 조절자인 Hif1α를 조절할 수 있는 miRNA 및 Mctp1과 Rarb를 조절할 수 있는 miRNA를 알아보기 위하여, TargetScan 분석을 수행하였다.miRNA is well known as one of the most representative post-transcriptional regulators. Accordingly, it was confirmed that Hif1α and Mef2c are up-regulated and Mctp1 and Rarb are down-regulated in mtNSC-34 cells. TargetScan analysis was performed.

구체적으로, Hif1α와 공통염기서열을 갖는 miRNA, Mctp1 및 Rarb와 공통염기서열을 갖는 miRNA를 TargetScan(http://www.targetscan.org)을 이용하여 분석하였다(도 3A 및 도 3B).Specifically, miRNAs having a common base sequence with Hif1α, and miRNAs having a common base sequence with Mctp1 and Rarb were analyzed using TargetScan (http://www.targetscan.org) (FIGS. 3A and 3B).

또한, mtNSC-34 세포 및 wtNSC-34 세포에서 TargetScan으로 확인한 표적 miRNA의 발현 변화를 확인하기 위하여, 상기 <실시예 2>에 기재된 방법과 동일한 방법으로 mtNSC-34 세포, wtNSC-34 세포 및 NSC-34 cont 세포 각각에서 RNA를 추출하고, mmu-miR-18b 및 mmu-miR-206에 대한 프라이머(GenoSensor) 각각을 이용하여 qRT-PCR을 수행하였다(도 3C 및 도 3D).In addition, in order to confirm the expression change of the target miRNA identified by TargetScan in mtNSC-34 cells and wtNSC-34 cells, mtNSC-34 cells, wtNSC-34 cells and NSC- RNA was extracted from each of the 34 cont cells, and qRT-PCR was performed using each of the primers (GenoSensor) for mmu-miR-18b and mmu-miR-206 (FIGS. 3C and 3D ).

그 결과, 도 3에 나타낸 바와 같이, miR-206이 Mctp1 및 Rarb의 전사후 조절자가 될 수 있음을 확인하였고(도 3A), miR-206이 mtNSC-34 세포에서 현저하게 상향 조절됨을 확인하였다(도 3C). 또한, miR-18b가 Hif1α를 표적 할 수 있음을 확인하였고(도 3B), mtNSC-34 세포에서 miR-18b가 현저하게 감소되었음을 확인하였다(도 3D). As a result, as shown in Fig. 3, it was confirmed that miR-206 can be a post-transcriptional regulator of Mctp1 and Rarb (Fig. 3A), and it was confirmed that miR-206 is significantly upregulated in mtNSC-34 cells ( Figure 3C). In addition, it was confirmed that miR-18b can target Hif1α (FIG. 3B), and it was confirmed that miR-18b was significantly reduced in mtNSC-34 cells (FIG. 3D).

Mef2c는 miR-206의 전사조절인자로 작용함이 알려져 있는바, 상기 결과를 통해 SOD1 돌연변이에 의해 miR-18b 발현이 감소하는 miR-18b 조절 장애가 유발되고, miR-18b 조절 장애에 의해 Hif1α, Mef2c, miR-206, Mctp1 및 Rarb 발현을 순차적으로 조절될 수 있음을 확인하였다. It is known that Mef2c acts as a transcriptional regulator of miR-206. From the above results, miR-18b dysregulation in which miR-18b expression decreases by SOD1 mutation is induced, and Hif1α, Mef2c by miR-18b dysregulation , it was confirmed that miR-206, Mctp1 and Rarb expression can be sequentially regulated.

<실시예 5> miR-18b에 의한 Hif1α 조절 및 세포사멸 변화 확인<Example 5> Confirmation of Hif1α regulation and apoptosis change by miR-18b

<5-1> miR-18b 발현 억제에 의한 Hif1α 상향 조절 및 세포사멸 유도 확인<5-1> Confirmation of Hif1α upregulation and apoptosis induction by inhibition of miR-18b expression

SOD1 돌연변이에 의한 miR-18b 조절 장애가 하위 기전 조절 및 세포사멸과 관련이 있는지 알아 보기 위하여, LNA(locked nucleic acid inhibitor) 방법을 사용하여 wtNSC-34 세포에서 miR-18b를 감소시킨 후, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하고, 세포 사멸 변화를 확인하였다. To find out whether miR-18b dysregulation caused by SOD1 mutation is related to sub-mechanism regulation and apoptosis, miR-18b was reduced in wtNSC-34 cells using a locked nucleic acid inhibitor (LNA) method, followed by Western blotting. And qRT-PCR was performed to confirm the expression of related factors, and changes in cell death were confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 NSC-34 cont 세포에 miR-18b의 LNA(anti-18b, COSMOGENTECH)을 RNAiMax transfection reagent (Invitrogen)를 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 4A), qRT-PCR(도 4B 내지 도 4G, 도 4I 및 도 4J), LDH 방출 분석(도 4H)을 수행하였다. 대조군으로 NSC-34 cont 세포를 사용하였다.Specifically, the NSC-34 cont cells obtained in Example <1-1> were transfected with miR-18b LNA (anti-18b, COSMOGENTECH) according to the manufacturer's procedure using RNAiMax transfection reagent (Invitrogen), , Recovered after 48 hours. Then, Western blotting (Fig. 4A), qRT-PCR (Fig. 4B to Fig. 4G, Fig. 4I and Fig. 4J), LDH release analysis by the same method as described in the above <Example 2> to <Example 4> (Figure 4H) was carried out. NSC-34 cont cells were used as a control.

또한, 세포사멸 변화를 확인하기 위하여 추가로 Annexin V-FITC 및 PI 분석을 수행하였다. 구체적으로, 상기 실시예 <1-2>에서 배양한 NSC를 6-웰 조직 배양 플레이트에 씨딩하고, miR-18b의 LNA(anti-18b)를 처리하고 48시간 후 부착된 세포를 TripleExpress로 분리하고 배양 배지를 첨가하여 트립신을 비활성화하였다. 그 다음, 1,500 x g에서 5 분간 원심 분리하고 상등액을 제거하였다. 세포를 Annexin-V-FITC 및 PI Apoptosis Detection Kit(BD Bisosciences)를 이용하여 제조자의 절차에 따라 Annexin V-FITC 및 PI로 염색하였다. 염색 후 FACSCalibur(BD Biosciences)를 사용하여 분석하였다. 형광은 녹색 또는 적색 채널을 사용하였고, 데이터는 Flowwing Software(Version 2.5.1, Unversity of Turku, Filand)를 사용하여 분석하였다(도 4K).In addition, Annexin V-FITC and PI analysis were additionally performed to confirm changes in apoptosis. Specifically, the NSC cultured in Example <1-2> was seeded in a 6-well tissue culture plate, treated with LNA (anti-18b) of miR-18b, and the attached cells after 48 hours were separated by TripleExpress. Trypsin was inactivated by adding culture medium. Then, centrifugation was performed at 1,500 x g for 5 minutes, and the supernatant was removed. Cells were stained with Annexin V-FITC and PI according to the manufacturer's procedure using Annexin-V-FITC and PI Apoptosis Detection Kit (BD Bisosciences). After staining, it was analyzed using FACSCalibur (BD Biosciences). Fluorescence was used as a green or red channel, and data was analyzed using Flowwing Software (Version 2.5.1, Unversity of Turku, Filand) (Fig. 4K).

그 결과, 도 4에 나타낸 바와 같이, miR-18b의 LNA(anti-18b)는 Hif1α 및 Mef2c의 단백질 및 mRNA 발현을 증가시키고, Mctp1 및 Rarb의 단백질 및 mRNA 발현을 감소시킴을 확인하였다(도 4A 내지 도 4E). 또한, miR-206이 miR-18b 결핍 하에서 신속하게 유도됨을 확인하였다(도 4I 및 도 4J). 아울러, miR-18b 결핍 하에 세포사멸이 증가함을 확인하였다(도 4A, 도 4F 내지 도 4H, 도 4K).As a result, as shown in Figure 4, it was confirmed that the LNA (anti-18b) of miR-18b increased the protein and mRNA expression of Hif1α and Mef2c, and reduced the protein and mRNA expression of Mctp1 and Rarb (FIG. 4A To Figure 4E). In addition, it was confirmed that miR-206 is rapidly induced under miR-18b deficiency (Figs. 4I and 4J). In addition, it was confirmed that apoptosis was increased under miR-18b deficiency (FIGS. 4A, 4F to 4H, and 4K).

상기 결과를 통해 SOD1 돌연변이에 의한 miR-18b 조절 장애로 Hif1α가 상향 조절되고, 이후 하위 기전에 의해 세포사멸이 유도됨을 확인하였고, 따라서 miR-18b를 ALS 진단을 위한 표적 miRNA로 이용할 수 있음을 확인하였다. Through the above results, it was confirmed that Hif1α was upregulated due to miR-18b regulation disorder by SOD1 mutation, and then apoptosis was induced by a sub-mechanism, and thus miR-18b could be used as a target miRNA for ALS diagnosis. I did.

<5-2> miR-18b 과발현에 의한 Hif1α 하향 조절 및 세포사멸 억제 확인<5-2> Confirmation of Hif1α down-regulation and inhibition of apoptosis by miR-18b overexpression

miR-18b의 과발현이 SOD-1 돌연변이에 의해 유발된 Hif1α 상향 조절 및 세포사멸을 억제할 수 있는지 알아보기 위해, mtNSC-34 세포에 miR-18b를 과발현시킨 후, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하였다. 또한, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다. To investigate whether overexpression of miR-18b can inhibit Hif1α upregulation and apoptosis induced by SOD-1 mutation, miR-18b was overexpressed in mtNSC-34 cells, followed by Western blotting and qRT-PCR. Was carried out to confirm the expression of related factors. In addition, changes in intracellular calcium signaling, cell differentiation, and cell death were confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 NSC-34 cont 세포로부터 cDNA를 획득하고, 상기 cDNA를 주형으로 하여 하기 표 5의 프라이머를 이용해 PCR을 수행하여 miR-18b를 증폭하였다. 증폭한 miR-18b PCR 산물은 BamH IXho I (NEW ENGLAND BioLabs) 제한효소 부위를 갖는 pCDNA3 벡터(Invitrogen)로 클로닝하여, miR-18b 플라스미드 컨스트럭트를 제조하였다. Specifically, cDNA was obtained from the NSC-34 cont cells obtained in Example <1-1>, and miR-18b was amplified by PCR using the cDNA as a template using the primers shown in Table 5 below. The amplified miR-18b PCR product was cloned into a pCDNA3 vector (Invitrogen) having BamH I and Xho I ( NEW ENGLAND BioLabs) restriction enzyme sites to prepare a miR-18b plasmid construct.

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') miR-18bmiR-18b 정방향Forward direction CGCGGATCCACCATGGTGATTTAATCAGA(서열번호 31)CGCGGATCCACCATGGTGATTTAATCAGA (SEQ ID NO: 31) 역방향Reverse CCGCTCGAGCCGTTCAAATCATTTCTCAA(서열번호 32)CCGCTCGAGCCGTTCAAATCATTTCTCAA (SEQ ID NO: 32)

miR-18b를 과발현하는 mtNSC-34 세포를 제조하기 위하여, mtNSC-34 세포에 상기 miR-18b 플라스미드 컨스트럭트를 Lipofectamine 2000 (Invitorgen)을 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 5A), qRT-PCR(도 5B 내지 도 5F), 세포 내 Ca2 + 분석(도 5H, 오른쪽, 위), 축삭생성 분석(도 5H, 오른쪽, 아래), LDH 방출 분석(도 5G)을 수행하였다. 대조군으로 mtNSC-34 세포를 사용하였다.To prepare mtNSC-34 cells overexpressing miR-18b, the miR-18b plasmid construct was transfected into mtNSC-34 cells according to the manufacturer's procedure using Lipofectamine 2000 (Invitorgen), and recovered after 48 hours. I did. Then, Western blotting (Fig. 5A), qRT-PCR (Fig. 5B to Fig. 5F), intracellular Ca 2 + analysis (Fig. 5H) in the same manner as described in the above <Example 2> to <Example 4> , Right, upper), axonal analysis (Fig. 5H, right, lower), LDH release analysis (Fig. 5G) was performed. As a control, mtNSC-34 cells were used.

그 결과, 도 5에 나타낸 바와 같이, mtNSC-34 세포에서 miR-18b 과발현에 의해 Hif1α와 Mef2c 발현이 감소하는 반면, Mctp1과 Rarb 발현이 증가함을 확인하였다(도 5A 내지 도 5C). 또한, miR-206은 과발현된 miR-18b에 의해 하향 조절됨을 확인하였다(도 5E 및 도 5F). 또한, 과발현된 miR-18b는 mtNSC-34 세포에서 세포사멸을 억제함을 확인하였다(도 5A, 도 5D, 도 5G). 한편, mtNSC-34 세포에서 SOD1 응집이 나타남에도 불구하고, 과발현된 miR-18b에 의해 세포 내 Ca2+ 수준이 감소하고, 신경세포 분화가 활성화됨을 확인하였다(도 5H). As a result, as shown in FIG. 5, it was confirmed that Hif1α and Mef2c expression decreased by miR-18b overexpression in mtNSC-34 cells, whereas Mctp1 and Rarb expression increased (FIGS. 5A to 5C ). In addition, it was confirmed that miR-206 is down-regulated by overexpressed miR-18b (FIGS. 5E and 5F). In addition, it was confirmed that overexpressed miR-18b inhibits apoptosis in mtNSC-34 cells (Fig. 5A, Fig. 5D, Fig. 5G). On the other hand, despite the SOD1 aggregation in mtNSC-34 cells, it was confirmed that intracellular Ca 2+ levels were reduced by overexpressed miR-18b and neuronal differentiation was activated (FIG. 5H).

상기 결과를 통해 miR-18b의 과발현을 통해 SOD-1 돌연변이에 의해 유발된 세포사멸이 억제됨을 확인하였고, 따라서 miR-18b를 ALS 예방 및 치료에 이용할 수 있음을 확인하였다. Through the above results, it was confirmed that apoptosis induced by the SOD-1 mutation was suppressed through overexpression of miR-18b, and thus it was confirmed that miR-18b can be used for ALS prevention and treatment.

<실시예 6> Hif1α에 의한 Mef2c 조절 및 세포사멸 변화 확인<Example 6> Confirmation of Mef2c regulation and apoptosis change by Hif1α

miR-18b가 Hif1α의 표적 miRNA로 작용하고, miR-18b 조절 장애에 의해 Hif1α 발현이 상향 조절됨을 확인하였는바, miR-18b 경로에서 Hif1α가 상향 조절된 다음의 기전을 알아보기 위하여, RNAi를 이용하여 mtNSC-34 세포에서 Hif1α 발현을 감소시킨 후, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현 및 세포 사멸 변화를 확인하였다. It was confirmed that miR-18b acts as a target miRNA of Hif1α, and that Hif1α expression is upregulated by miR-18b dysregulation.In order to investigate the next mechanism of Hif1α upregulation in the miR-18b pathway, RNAi was used. After reducing Hif1α expression in mtNSC-34 cells, Western blotting and qRT-PCR were performed to confirm the expression of related factors and changes in cell death.

구체적으로, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포에 COSMO GENETECH에 의뢰하여 제작한 마우스용 siHif1α(5'-AAGCAUUUCUCUCAUUUCCUCAUGG-3', 서열번호 33)을 RNAiMax transfection reagent(Invitrogen)를 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 6A), qRT-PCR(도 6B 내지 도 6H), LDH 방출 분석(도 6I)을 수행하였다. 대조군으로 mtNSC-34 세포를 사용하였다.Specifically, siHif1α (5'-AAGCAUUUCUCUCAUUUCCUCAUGG-3', SEQ ID NO: 33) for mice produced by requesting COSMO GENETECH to the mtNSC-34 cells obtained in Example <1-1> was added to RNAiMax transfection reagent (Invitrogen) Was used, transfected according to the manufacturer's procedure, and recovered after 48 hours. Then, Western blotting (Fig. 6A), qRT-PCR (Fig. 6B to Fig. 6H), and LDH release analysis (Fig. 6I) are performed in the same manner as described in <Example 2> to <Example 4>. I did. As a control, mtNSC-34 cells were used.

그 결과, 도 6에 나타낸 바와 같이, mtNSC-34 세포에서 Hif1α 결핍 하에 Mef2c 단백질 및 mRNA 수준이 감소하고(도 6A 내지 도 6C), Mctp1과 Rarb 단백질 및 mRNA 수준이 증가함을 확인하였다(도 6A, 도 6D, 도 6E). 또한, Hif1α 결핍에 의한 Mef2c 발현 억제가 miR-206 수준을 감소시킴을 확인하였다(도 6H). 아울러, Hif1α 결핍 상태에서 세포사멸이 억제됨을 확인하였다(도 6F, 도 6G, 도 6I).As a result, it was confirmed that, as shown in FIG. 6, Mef2c protein and mRNA levels were decreased under Hif1α deficiency in mtNSC-34 cells (FIGS. 6A to 6C ), and Mctp1 and Rarb proteins and mRNA levels were increased (FIG. 6A , Figure 6D, Figure 6E). In addition, it was confirmed that inhibition of Mef2c expression by Hif1α deficiency reduced miR-206 levels (Fig. 6H). In addition, it was confirmed that apoptosis was inhibited in the Hif1α deficient state (FIGS. 6F, 6G, 6I).

상기 결과를 통해 SOD1 돌연변이에 의한 miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하고, 상향 조절된 Hif1α가 Mef2c를 상향 조절하여 세포사멸이 유도됨을 확인하였다.From the above results, it was confirmed that miR-18b dysregulation caused by SOD1 mutation induces upregulation of Hif1α, and upregulated Hif1α upregulates Mef2c to induce apoptosis.

<실시예 7> miR-206에 의한 Mctp1과 Rarb의 전사후 조절 및 세포사멸 변화 확인<Example 7> Post-transcriptional regulation of Mctp1 and Rarb by miR-206 and confirmation of apoptosis change

<7-1> miR-206 과발현에 의한 Mctp1과 Rarb 하향 조절 및 세포사멸 유도 확인<7-1> Confirmation of Mctp1 and Rarb downregulation and apoptosis induction by miR-206 overexpression

SOD1 돌연변이 조건 하에서 miR-206의 역할을 알아보기 위하여, miR-206이 과발현되는 NSC-34 cont 세포에서 Mctp1과 Rarb의 3'UTR을 사용하여 루시퍼라제 리포터 분석을 수행하였다. 또한, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하였다. 아울러, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다. In order to investigate the role of miR-206 under SOD1 mutation conditions, luciferase reporter analysis was performed in NSC-34 cont cells overexpressing miR-206 using 3'UTR of Mctp1 and Rarb. In addition, Western blotting and qRT-PCR were performed to confirm the expression of related factors. In addition, changes in intracellular calcium signaling, cell differentiation and cell death were confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 NSC-34 cont 세포로부터 cDNA를 획득하고, 상기 cDNA를 주형으로 하여 하기 표 7의 프라이머를 이용하여 PCR을 수행하여 miR-206을 증폭하였다. miR-206 PCR 산물은 BamH IXho I(NEW ENGLAND BioLabs) 제한효소 부위를 갖는 pCDNA3 벡터(Invitrogen)로 클로닝하여, miR-206 플라스미드 컨스트럭트를 제조하였다. 또한, 하기 표 6의 프라이머를 이용하여 PCR을 수행하여 Mctp1과 Rarb의 3'UTR 각각을 증폭하였다. 증폭한 Mctp1 3'UTR, Rarb 3'UTR PCR 산물 각각은 Xho I 및 Xba I(NEW ENGLAND BioLabs) 제한효소 부위를 갖는 pmirGLO 이중-루시퍼라제 벡터(Promega)로 클로닝하여, Mctp1 3'UTR 플라스미드 컨스트럭트 및 Rarb 3'UTR 플라스미 컨스트럭트를 제조하였다. Specifically, cDNA was obtained from the NSC-34 cont cells obtained in Example <1-1>, and miR-206 was amplified by PCR using the cDNA as a template using the primers shown in Table 7 below. The miR-206 PCR product was cloned into a pCDNA3 vector (Invitrogen) having BamH I and Xho I ( NEW ENGLAND BioLabs) restriction sites to prepare a miR-206 plasmid construct. In addition, PCR was performed using the primers in Table 6 below to amplify each of the 3'UTRs of Mctp1 and Rarb. Each of the amplified Mctp1 3'UTR and Rarb 3'UTR PCR products was cloned into a pmirGLO double-luciferase vector (Promega) having Xho I and Xba I ( NEW ENGLAND BioLabs) restriction sites, and a Mctp1 3'UTR plasmid construct. And Rarb 3'UTR plasmid constructs were prepared.

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') miR-206miR-206 정방향Forward direction CGCGGATCCATTCTTCACACTTCTCACTT(서열번호 34)CGCGGATCCATTCTTCACACTTCTCACTT (SEQ ID NO: 34) 역방향Reverse CCGCTCGAG ACGAAGAAGTCAACAGCATA(서열번호 35)CCGCTCGAG ACGAAGAAGTCAACAGCATA (SEQ ID NO: 35) Mctp1 3'UTRMctp1 3'UTR 정방향Forward direction CCGCTCGAGAAAGCTTGAATAATAGAAAT(서열번호 36)CCGCTCGAGAAAGCTTGAATAATAGAAAT (SEQ ID NO: 36) 역방향Reverse CTAGTCTAGAATACATGGGTTTTTTGTTTG(서열번호 37)CTAGTCTAGAATACATGGGTTTTTTGTTTG (SEQ ID NO: 37) Rarb 3'UTR Rarb 3'UTR 정방향Forward direction CCGCTCGAGAACGTGTAATTACCTTGAAA(서열번호 38)CCGCTCGAGAACGTGTAATTACCTTGAAA (SEQ ID NO: 38) 역방향Reverse CTAGTCTAGACAAAGTCTTCAGAAACTTAA(서열번호 39)CTAGTCTAGACAAAGTCTTCAGAAACTTAA (SEQ ID NO: 39)

그 다음, 상기 miR-206 플라스미드 컨스트럭트, Mctp1 3'UTR 플라스미드 컨스트럭트 및 Rarb 3'UTR 플라스미드 컨스트럭트를 NSC-34 cont 세포에 Lipofectamine 2000 (Invitorgen)을 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하여 루시퍼라제 활성을 측정하였다(도 7A 및 도 7C). 또한, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 7E), qRT-PCR(도 7B, 도 7D, 도 7F, 도 8C), 세포 내 Ca2 + 분석(도 8A, 오른쪽, 위), 축삭생성 분석(도 8A, 오른쪽, 아래), LDH 방출 분석(도 8D)을 수행하였다. 대조군으로 NSC-34 cont 세포를 사용하였다.Then, the miR-206 plasmid construct, Mctp1 3'UTR plasmid construct, and Rarb 3'UTR plasmid construct were transfected into NSC-34 cont cells using Lipofectamine 2000 (Invitorgen) according to the manufacturer's procedure. After infection, it was recovered 48 hours later, and luciferase activity was measured (FIGS. 7A and 7C ). In addition, Western blotting (Fig. 7E), qRT-PCR (Fig. 7B, Fig. 7D, Fig. 7F, Fig. 8C), intracellular Ca 2 by the same method as described in the above <Example 2> to <Example 4> + Analysis (Fig. 8A, right, top), axonal analysis (Fig. 8A, right, bottom), LDH release analysis (Fig. 8D) was performed. NSC-34 cont cells were used as a control.

또한, 상기 miR-206 플라스미드 컨스트럭트를 상기 실시예 <1-2>에서 배양한 NSC에 형질감염하고, 상기 실시예 <5-1>에 기재된 방법과 동일한 방법으로 Annexin-V-FITC 및 PI 분석(도 8E)을 수행하였다. 대조군으로 NSC를 사용하였다.In addition, the miR-206 plasmid construct was transfected into the NSC cultured in Example <1-2>, and Annexin-V-FITC and PI were used in the same manner as described in Example <5-1>. Analysis (Figure 8E) was performed. NSC was used as a control.

그 결과, 도 7 및 도 8에 나타낸 바와 같이, 과발현된 miR-206에 의해 Mctp1 수준이 감소하고, 세포 내 Ca2+ 수준이 증가하는 것을 확인하였다. 또한, 과발현된 miR-206에 의해 Rarb 수준이 감소하고, 신경세포 분화가 억제됨을 확인하였다(도 7A 내지 도 7E, 도 8A). 아울러, miR-206의 과발현에 의해 세포사멸이 유도됨을 확인하였다(도 8B 내지 도 8E).As a result, as shown in Figs. 7 and 8, it was confirmed that the level of Mctp1 decreased by the overexpressed miR-206 and the level of Ca 2+ in the cell increased. In addition, it was confirmed that the level of Rarb was reduced by the overexpressed miR-206, and neuronal differentiation was inhibited (FIGS. 7A to 7E, 8A). In addition, it was confirmed that apoptosis was induced by overexpression of miR-206 (FIGS. 8B to 8E ).

<7-2> miR-206 발현 억제에 의한 Mctp1과 Rarb 상향 조절 및 세포사멸 억제 확인<7-2> Confirmation of upregulation of Mctp1 and Rarb and inhibition of apoptosis by inhibition of miR-206 expression

SOD1 돌연변이 조건 하에서 miR-206의 역할을 알아보기 위하여, LNA 방법을 사용하여 mtNSC-34 세포에서 miR-206 발현을 감소시킨 후, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하고, 세포 사멸 변화를 확인하였다. To find out the role of miR-206 under SOD1 mutation conditions, after reducing miR-206 expression in mtNSC-34 cells using the LNA method, Western blotting and qRT-PCR were performed to confirm the expression of related factors. , Cell death change was confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 mtNSC-34 세포에 miR-206의 LNA(anti-206, COSMOGENTECH)을 RNAiMax transfection reagent(Invitrogen)를 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 9A), qRT-PCR(도 9B 내지 도 9E, 도 9G), LDH 방출 분석(도 9F)을 수행하였다. 대조군으로 mtNSC-34 세포를 사용하였다.Specifically, the mtNSC-34 cells obtained in Example <1-1> were transfected with miR-206 LNA (anti-206, COSMOGENTECH) according to the manufacturer's procedure using RNAiMax transfection reagent (Invitrogen), Recovered after 48 hours. Then, Western blotting (Fig. 9A), qRT-PCR (Fig. 9B to Fig. 9E, Fig. 9G), LDH release analysis (Fig. 9F) in the same manner as described in the above <Example 2> to <Example 4>. ) Was performed. As a control, mtNSC-34 cells were used.

그 결과, 도 9에 나타낸 바와 같이, mtNSC-34 세포에서 miR-206 발현 억제에 의해 Mctp1과 Rarb의 단백질 및 mRNA의 양이 유의하게 증가하는 것을 확인하였다(도 9A 내지 도 9C). 또한, miR-206 발현 억제에 의해 세포사멸이 억제됨을 확인하였다(도 9D 내지 도 9F).As a result, as shown in FIG. 9, it was confirmed that the amount of protein and mRNA of Mctp1 and Rarb significantly increased by suppressing miR-206 expression in mtNSC-34 cells (FIGS. 9A to 9C ). In addition, it was confirmed that apoptosis was suppressed by inhibition of miR-206 expression (FIGS. 9D to 9F).

상기 결과를 통해 SOD1 돌연변이에 의한 miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하고, 상향 조절된 Hif1α가 Mef2c를 상향 조절하며, Mef2c가 miR-206의 전자조절이자로 작용하여 miR-206 발현을 유도하고, miR-206이 Mctp1과 Rarb의 전자후조절에 직접 관여하여 세포사멸을 유도함을 확인하였다.Through the above results, miR-18b regulation disorder caused by SOD1 mutation induces upregulation of Hif1α, upregulated Hif1α upregulates Mef2c, and Mef2c acts as an electron regulator of miR-206 to induce miR-206 expression. And, it was confirmed that miR-206 induces apoptosis by directly involved in the pre-regulation of Mctp1 and Rarb.

<실시예 8> Mctp1 및 Rarb의 전사후 조절이 세포에 미치는 영향 확인<Example 8> Confirmation of the effect of Mctp1 and Rarb post-transcriptional regulation on cells

<8-1> Mctp1 및 Rarb 발현 감소에 의한 세포사멸 유도 확인<8-1> Confirmation of induction of apoptosis by decreasing Mctp1 and Rarb expression

상기의 실시예를 통해 miR-18b의 조절 장애에 의해 Hif1α의 발현이 유도되고, Hif1α에 의해 Mef2c 발현이 유도되며, Mef2c에 의해 miR-206 발현이 유도되고, miR-206에 의해 Mctp1 및 Rarb가 전사후 조절됨을 확인하였다. 이에 Mctp1 및 Rarb 결핍이 세포사멸을 직접 유도하는지 알아보기 위하여, RNAi를 이용하여 NSC-34 cont 세포에서 Mctp1 및/또는 Rarb 발현을 감소시킨 후 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하였다. 또한, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다. Through the above examples, expression of Hif1α is induced by impaired regulation of miR-18b, Mef2c expression is induced by Hif1α, miR-206 expression is induced by Mef2c, and Mctp1 and Rarb are induced by miR-206. It was confirmed that it was regulated after transcription. In order to find out whether Mctp1 and Rarb deficiency directly induce apoptosis, RNAi was used to reduce Mctp1 and/or Rarb expression in NSC-34 cont cells, followed by Western blotting and qRT-PCR to express related factors. Was confirmed. In addition, changes in intracellular calcium signaling, cell differentiation, and cell death were confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 NSC-34 cont 세포에 COSMO GENETECH에 의뢰하여 제작한 마우스용 siMctp1(5'-GCCACUAUAUAUCAAGGUATT-3', 서열번호 40) 및/또는 마우스용 siRarb(5'-GGAGCCUUCAAAGCAGGAATT-3', 서열번호 41)를 RNAiMax transfection reagent(Invitrogen)를 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 10A), qRT-PCR(도 10B, 도 10C, 도 11A, 도 11B), 세포 내 Ca2 + 분석(도 10D, 왼쪽, 위), 축삭생성 분석(도 10D, 왼쪽, 아래) 및 LDH 방출 분석(도 11C)을 수행하였다. 대조군으로 NSC-34 cont 세포를 사용하였다.Specifically, siMctp1 for mice (5'-GCCACUAUAUAUCAAGGUATT-3', SEQ ID NO: 40) and/or siRarb for mice produced by requesting COSMO GENETECH to the NSC-34 cont cells obtained in Example <1-1> ( 5'-GGAGCCUUCAAAGCAGGAATT-3', SEQ ID NO: 41) was transfected according to the manufacturer's procedure using RNAiMax transfection reagent (Invitrogen), and recovered after 48 hours. Then, Western blotting (Fig. 10A), qRT-PCR (Fig. 10B, Fig. 10C, Fig. 11A, Fig. 11B), intracellular Ca in the same method as described in the above <Example 2> to <Example 4> 2 + analysis (Fig. 10D, left, above), the axon generated analysis (Fig. 10D, left, below), and LDH release assay (Figure 11C) was performed. NSC-34 cont cells were used as a control.

또한, 상기 siMctp1 및 siRarb를 상기 실시예 <1-2>에서 배양한 NSC에 형질감염하고, 상기 실시예 <5-1>에 기재된 방법과 동일한 방법으로 Annexin-V-FITC 및 PI 분석(도 11D)을 수행하였다. 대조군으로 NSC를 사용하였다.In addition, the siMctp1 and siRarb were transfected into the NSC cultured in Example <1-2>, and Annexin-V-FITC and PI analysis (Fig. 11D) in the same manner as described in Example <5-1>. ) Was performed. NSC was used as a control.

그 결과, 도 10 및 도 11에 나타낸 바와 같이, Mctp1 발현이 억제되어 세포 내 Ca2 + 농도가 증가하는 반면, Bax와 Bcl2 발현에는 영향을 미치지 않음을 확인하였다. 또한, Rarb 발현이 억제되어 세포 분화가 억제되는 반면, Bax 및 Bcl2 발현의 유의적 변화는 나타나지 않음을 확인하였다. 한편, Mctp1 및 Rarb 발현이 동시에 억제된 경우, Bax 발현이 증가하고 Bx12의 발현이 감소하며, LDH 방출이 증가하여 세포사멸이 유도됨을 확인하였다(도 10A 내지 도 10D, 도 11A 내지 도 11D).As a result, as shown in Figs. 10 and 11, it was confirmed that the expression of Mctp1 was suppressed to increase the intracellular Ca 2 + concentration, but did not affect the expression of Bax and Bcl2. In addition, it was confirmed that Rarb expression was inhibited to inhibit cell differentiation, whereas no significant changes in Bax and Bcl2 expression were observed. On the other hand, when Mctp1 and Rarb expression were simultaneously inhibited, it was confirmed that Bax expression increased, Bx12 expression decreased, and LDH release increased, leading to apoptosis (FIGS. 10A to 10D, FIGS. 11A to 11D).

<8-2> Mctp1 및 Rarb 발현 증가에 의한 세포사멸 억제 확인<8-2> Confirmation of inhibition of apoptosis by increasing Mctp1 and Rarb expression

Mctp1과 Rarb 발현 유도에 의해 세포사멸이 직접적으로 억제되는지 알아보기 위하여, mtNSC-34 세포에 Mctp1 및/또는 Rarb를 과발현시킨 후, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현을 확인하였다. 또한, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다. In order to find out whether apoptosis is directly inhibited by induction of Mctp1 and Rarb expression, after overexpressing Mctp1 and/or Rarb in mtNSC-34 cells, Western blotting and qRT-PCR were performed to confirm the expression of related factors. . In addition, changes in intracellular calcium signaling, cell differentiation, and cell death were confirmed.

구체적으로, 상기 실시예 <1-1>에서 획득한 NSC-34 cont 세포로부터 cDNA를 획득하고, 상기 cDNA를 주형으로 하여 하기 표 7의 프라이머를 이용하여 PCR을 수행하여 Mctp1 및 Rarb를 증폭하였다. 증폭한 Mctp1 PCR 산물은 Hind III(NEW ENGLAND BioLabs) 제한효소 부위를 갖는 mCherry C1(Clontech)로 클로닝하여, Mctp1 플라스미드 컨스트럭트를 제조하였다. 증폭한 Rarb PCR 산물은 Nhe I 및 Age I(NEW ENGLAND BioLabs) 제한효소 부위를 eGFP N1(Clontech)로 클로닝하여, Rarb 플라스미드 컨스트럭트를 제조하였다. Specifically, cDNA was obtained from the NSC-34 cont cells obtained in Example <1-1>, and PCR was performed using the primers in Table 7 below using the cDNA as a template to amplify Mctp1 and Rarb. The amplified Mctp1 PCR product was cloned into mCherry C1 (Clontech) having a Hind III ( NEW ENGLAND BioLabs) restriction enzyme site to prepare a Mctp1 plasmid construct. As for the amplified Rarb PCR product, the restriction enzyme sites of Nhe I and Age I ( NEW ENGLAND BioLabs) were cloned into eGFP N1 (Clontech) to prepare a Rarb plasmid construct.

유전자gene 마우스용 프라이머(5'→3')Primer for mouse (5'→3') Mctp1Mctp1 정방향Forward direction CCCAAGCTTATGTACCAGTTGGATATCACACTA(서열번호 42)CCCAAGCTTATGTACCAGTTGGATATCACACTA (SEQ ID NO: 42) 역방향Reverse CCCAAGCTTGCCAAGGTTGTTTTTTCTTCC(서열번호 43)CCCAAGCTTGCCAAGGTTGTTTTTTCTTCC (SEQ ID NO: 43) RarbRarb 정방향Forward direction CCGCTAGCATGAGCACCAGCAGCCACGC(서열번호 44)CCGCTAGCATGAGCACCAGCAGCCACGC (SEQ ID NO: 44) 역방향Reverse CCACCGGTCTGCAGCAGTGGTGACTGAC(서열번호 45)CCACCGGTCTGCAGCAGTGGTGACTGAC (SEQ ID NO: 45)

Mctp1 및/또는 Rarb를 과발현하는 mtNSC-34 세포를 제조하기 위하여, mtNSC-34 세포에 상기 Mctp1 플라스미드 컨스트럭트 및/또는 Rarb 플라스미드 컨스트럭트를 Lipofectamine 2000 (Invitorgen)을 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 12A), qRT-PCR(도 12B, 도 12C, 도 12E, 오른쪽, 도 12F, 오른쪽), 세포 내 Ca2 + 분석(도 12E, 왼쪽), 축삭생성 분석(도 12F, 왼쪽), LDH 방출 분석(도 12D)을 수행하였다. 대조군으로 mtNSC-34 세포를 사용하였다.In order to prepare mtNSC-34 cells overexpressing Mctp1 and/or Rarb, the Mctp1 plasmid construct and/or Rarb plasmid construct were added to mtNSC-34 cells according to the manufacturer's procedure using Lipofectamine 2000 (Invitorgen). Transfection and recovery after 48 hours. Then, Western blotting (Fig. 12A), qRT-PCR (Fig. 12B, Fig. 12C, Fig. 12E, right, Fig. 12F, right) in the same method as described in the above <Example 2> to <Example 4>. , Intracellular Ca 2 + analysis (Fig. 12E, left), axon generation analysis (Fig. 12F, left), LDH release analysis (Fig. 12D) was performed. As a control, mtNSC-34 cells were used.

그 결과, 도 12에 나타낸 바와 같이, Mctp1 및 Rarb를 동시에 과발현된 경우 세포 사멸이 감소함을 확인하였다(도 12A 내지 도 12D). 또한, mtNSC-34 세포에서 Mctp1 발현 증가에 의해 세포 내 Ca2 + 수준이 감소하고, Rarb 발현 증가에 의해 신경세포 분화가 활성화됨을 확인하였다(도 12E 내지 도 12G). As a result, as shown in Fig. 12, it was confirmed that apoptosis was reduced when Mctp1 and Rarb were simultaneously overexpressed (FIGS. 12A to 12D). In addition, in mtNSC-34 cells, it was confirmed that the intracellular Ca 2 + level was decreased by an increase in Mctp1 expression, and neuronal differentiation was activated by an increase in Rarb expression (FIGS. 12E to 12G ).

상기 결과를 통해 SOD1 돌연변이에 의한 miR-18b 조절 장애로 Mctp1과 Rarb의 전사후 조절이 유도되어 Mctp1과 Rarb가 감소하고, 이로 인해 칼슘 신호전달과 신경세포 분화가 억제되며, 세포사멸이 유도됨을 확인하였다.From the above results, it was confirmed that post-transcriptional regulation of Mctp1 and Rarb is induced due to the impairment of miR-18b regulation caused by the SOD1 mutation, resulting in decrease of Mctp1 and Rarb, thereby inhibiting calcium signaling and neuronal differentiation, and inducing apoptosis. I did.

<실시예 9> SOD1 돌연변이에 의한 miR-18b 신호전달 경로의 조절 장애 확인<Example 9> Confirmation of impaired regulation of miR-18b signaling pathway by SOD1 mutation

돌연변이 종류에 상관없이 SOD1 돌연변이가 miR-18b 신호전달 경로 조절 장애에 중추적인 역할을 하는지 알아보기 위하여, NSC-34 cont 세포에서 돌연변이된 SOD1 (G85R) 및 SOD1 (D90A) 각각을 과발현한 후 웨스턴 블럿팅 및 qRT-PCR을 수행하여 관련 인자의 발현 및 세포 사멸 변화를 확인하였다. In order to investigate whether the SOD1 mutation plays a pivotal role in disturbance of miR-18b signaling pathway regulation regardless of the type of mutation, the Western label was overexpressed in NSC-34 cont cells, respectively, mutated SOD1 (G85R) and SOD1 (D90A) Routing and qRT-PCR were performed to confirm the expression of related factors and changes in cell death.

구체적으로, 상기 실시예<1-1>에서 배양한 NSC-34 cont 세포에 SOD1(G85R) 돌연변이 유전자 포함 플라스미드 컨스트럭트 및 SOD1(D90A) 돌연변이 유전자 포함 플라스미드 컨스트럭트 각각을 Lipofectamine 2000(Invitorgen)을 이용하여 제조사의 절차에 따라 형질감염하고, 48 시간 후 회수하였다. 그 다음, 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 13A), qRT-PCR(도 13B 내지 도 13G) 분석을 수행하였다. 대조군으로 NSC-34 cont 세포를 사용하였다.Specifically, each of the plasmid construct containing the SOD1 (G85R) mutant gene and the plasmid construct containing the SOD1 (D90A) mutant gene was added to the NSC-34 cont cells cultured in Example <1-1> Lipofectamine 2000 (Invitorgen). Was transfected according to the manufacturer's procedure, and recovered after 48 hours. Then, Western blotting (Fig. 13A) and qRT-PCR (Fig. 13B to Fig. 13G) analysis were performed in the same manner as described in <Example 2> to <Example 4>. NSC-34 cont cells were used as a control.

그 결과, 도 13에 나타낸 바와 같이, 돌연변이된 SOD1이 과발현된 NSC-34 cont 세포에서 Hif1α와 Mef2c의 단백질 및 mRNA 수준이 증가하고, Mctp1과 Rarb의 단백질 및 mRNA 수준이 감소함을 확인하였다(도 13A 내지 도 13C). 또한, 돌연변이된 SOD1이 과발현된 NSC-34 cont 세포에서 miR-18b가 감소하고, 이에 의해 miR-206이 상향 조절됨을 확인하였다(도 13E 내지 도 13G). 아울러, 돌연변이된 SOD1이 과발현된 NSC-34 cont 세포에서 세포사멸이 증가함을 확인하였다(도 13D).As a result, as shown in Figure 13, it was confirmed that the protein and mRNA levels of Hif1α and Mef2c increased, and the protein and mRNA levels of Mctp1 and Rarb decreased in NSC-34 cont cells overexpressed with mutated SOD1 (Fig. 13A-13C). In addition, it was confirmed that miR-18b was decreased in NSC-34 cont cells overexpressed with mutated SOD1, thereby upregulating miR-206 (FIGS. 13E to 13G ). In addition, it was confirmed that apoptosis was increased in NSC-34 cont cells overexpressing mutated SOD1 (FIG. 13D).

상기 결과를 통해 SOD1 돌연변이 종류에 상관없이 SOD1 돌연변이가 miR-18b 신호전달경로의 조절 장애가 유발하고, miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하며, 상향 조절된 Hif1α가 Mef2c를 상향 조절하고, Mef2c가 miR-206의 전자조절이자로 작용하여 miR-206 발현을 유도하며, miR-206이 Mctp1과 Rarb의 전사후 조절에 직접 관여하여 칼슘 신호전달과 신경세포 분화 억제 및 세포사멸을 유도함을 확인하였다.From the above results, regardless of the type of SOD1 mutation, the SOD1 mutation causes a dysregulation of the miR-18b signaling pathway, miR-18b dysregulation induces the upregulation of Hif1α, the upregulated Hif1α upregulates Mef2c, and Mef2c It was confirmed that miR-206 acts as an electronic regulator of miR-206 and induces miR-206 expression, and miR-206 is directly involved in the post-transcriptional regulation of Mctp1 and Rarb, thereby inhibiting calcium signaling, neuronal differentiation and inducing apoptosis .

<실시예 10> ALS에서 miR-18b 신호전달 경로의 조절 장애 확인<Example 10> Confirmation of dysregulation of miR-18b signaling pathway in ALS

<10-1> ALS 동물 모델 및 가족성 ALS 환자에서 miR-18b 신호전달 경로의 조절 장애확인<10-1> Identification of dysregulation of miR-18b signaling pathway in ALS animal models and familial ALS patients

ALS에서 유전자 돌연변이에 의해 miR-18b 신호전달 경로의 조절 장애가 유발되는지 알아보기 위하여, ALS 마우스 모델 및 가족성 ALS(fALS) 환자 샘플을 채취하고, 웨스턴 블럿팅 및 qRT-PCR을 수행하여 miR-18b 신호전달 경로 관련 인자의 발현 및 세포 사멸 변화를 확인하였다. In order to find out whether the regulation of the miR-18b signaling pathway is caused by a gene mutation in ALS, an ALS mouse model and a familial ALS (fALS) patient sample were taken, and Western blotting and qRT-PCR were performed to miR-18b. Changes in the expression of signaling pathway-related factors and cell death were confirmed.

구체적으로, 인간 G93A 돌연변이 SOD1 유전자를 발현하는 SOD1-G93A 형질전환 마우스(B6SJL-Tg(SOD1-G93A)1Gur/J)를 Jsackson Laboratory, Bar Harbor, Me, USA에서 제공받아 사용하였다. 대조군으로 일반 (B6) 정상 마우스(WT)를 사용하였다. 출생 후 120일에 상기 WT 및 SOD1-G93A 형질전환 마우스 각각의 척수(spinal cord) 조직을 적출하여 마우스의 척수 조직 샘플을 획득하였다. 또한, 정상인 및 가족성 ALS(fALS (G86S)) 환자의 척수 샘플 각각을 NBB로부터 제공받았다. 그 다음, 상기 척수 조직 샘플(도 14) 및 척수 샘플(도 15) 각각을 이용하여 상기 <실시예 2> 내지 <실시예 4>에 기재된 방법과 동일한 방법으로 웨스턴 블럿팅(도 14A, 도 15A) 및 qRT-PCR(도 14B, 도 14C, 도 15B, 도 15C)을 수행하였다. 척수 샘플의 경우 하기 표 8의 프라이머를 이용하여 qRT-PCR을 수행하였다. 또한, hsa-miR-18b 및 hsa-miR-206에 대한 프라이머(GenoSensor) 각각을 이용하여 qRT-PCR을 수행하였다.Specifically, SOD1-G93A transgenic mice (B6SJL-Tg(SOD1-G93A)1Gur/J) expressing the human G93A mutant SOD1 gene were provided and used by Jsackson Laboratory, Bar Harbor, Me, USA. As a control, normal (B6) normal mice (WT) were used. At 120 days after birth, spinal cord tissues of each of the WT and SOD1-G93A transgenic mice were excised to obtain samples of spinal cord tissues from mice. In addition, each of the spinal cord samples from normal and familial ALS (fALS (G86S)) patients were provided by NBB. Then, using each of the spinal cord tissue sample (Fig. 14) and spinal cord sample (Fig. 15), Western blotting (Fig. 14A, Fig. 15A) in the same manner as described in the above <Example 2> to <Example 4> ) And qRT-PCR (Fig. 14B, Fig. 14C, Fig. 15B, Fig. 15C) were performed. For spinal cord samples, qRT-PCR was performed using the primers shown in Table 8 below. In addition, qRT-PCR was performed using primers (GenoSensor) for hsa-miR-18b and hsa-miR-206, respectively.

유전자gene 인간용 프라이머(5'→3')Human Primer (5'→3') Hif1αHif1α 정방향Forward direction AGATAGCAAGACTTTCCTCAGTC(서열번호 46)AGATAGCAAGACTTTCCTCAGTC (SEQ ID NO: 46) 역방항Reverse port CTGTGGTGACTTGTCCTTTAGTA(서열번호 47)CTGTGGTGACTTGTCCTTTAGTA (SEQ ID NO: 47) Mef2cMef2c 정방향Forward direction CTACTTTACCAGGACAAGGAATG(서열번호 48)CTACTTTACCAGGACAAGGAATG (SEQ ID NO: 48) 역방향Reverse CTGAGATAAATGAGTGCTAGTGC(서열번호 49)CTGAGATAAATGAGTGCTAGTGC (SEQ ID NO: 49) Mctp1Mctp1 정방향Forward direction AGGAATAGTCAGCATCACCTTGA(서열번호 50)AGGAATAGTCAGCATCACCTTGA (SEQ ID NO: 50) 역방향Reverse CAATGACTCCTCCTCTTTCTTCA(서열번호 51)CAATGACTCCTCCTCTTTCTTCA (SEQ ID NO: 51) RarbRarb 정방향Forward direction CTTCTCAGTGCCATCTGCTTAAT(서열번호52)CTTCTCAGTGCCATCTGCTTAAT (SEQ ID NO: 52) 역방향Reverse AATTACACGCTCTGCACCTTTAG(서열번호 53)AATTACACGCTCTGCACCTTTAG (SEQ ID NO: 53) BaxBax 정방향Forward direction AAGCTGAGCGAGTGTCTCAA(서열번호 54)AAGCTGAGCGAGTGTCTCAA (SEQ ID NO: 54) 역방향Reverse AGTAGAAAAGGGCGACAACC(서열번호 55)AGTAGAAAAGGGCGACAACC (SEQ ID NO: 55) Bcl2Bcl2 정방향Forward direction ACGCCCCATCCAGCCGCATC(서열번호 56)ACGCCCCATCCAGCCGCATC (SEQ ID NO: 56) 역방향Reverse CACACATGACCCCACCGAACTCA(서열번호 57)CACACATGACCCCACCGAACTCA (SEQ ID NO: 57) GAPDHGAPDH 정방향Forward direction CTGCATTCGCCCTCTTAATG(서열번호 58)CTGCATTCGCCCTCTTAATG (SEQ ID NO: 58) 역방향Reverse TGAGGTCAATGAAGGGGTCA(서열번호 59)TGAGGTCAATGAAGGGGTCA (SEQ ID NO: 59) SOD1SOD1 정방향Forward direction GTGGGGAAGCATTAAAGGACTGAC(서열번호 60)GTGGGGAAGCATTAAAGGACTGAC (SEQ ID NO: 60) 역방향Reverse CAATTACACCACAAGCCAAACGAC(서열번호 61)CAATTACACCACAAGCCAAACGAC (SEQ ID NO: 61)

그 결과, 도 14 및 도 15에 나타낸 바와 같이, ALS 마우스 모델에서 Hif1α 및 Mef2c의 단백질 및 mRNA 발현은 G93A Tg 마우스에서 유의하게 증가하는 반면, Mctp1 및 Rarb의 단백질 및 mRNA 발현은 유의하게 감소함을 확인하였다. 또한, 증가된 Bax 및 감소된 Bcl2 발현을 통해 G93A Tg 마우스에서 세포사멸이 유도됨을 확인하였다(도 14A 및. 도 14B). 아울러, miR-18b가 G93A Tg 마우스에서 하향 조절되고, miR-206이 상향 조절됨을 확인하였다(도 14C). fALS (G86S) 환자 척수 샘플에서도 상기와 동일한 결과를 확인하였다(도 15A 내지 도 15C). As a result, as shown in FIGS. 14 and 15, protein and mRNA expressions of Hif1α and Mef2c in the ALS mouse model were significantly increased in G93A Tg mice, whereas protein and mRNA expressions of Mctp1 and Rarb were significantly decreased. Confirmed. In addition, it was confirmed that apoptosis was induced in G93A Tg mice through increased Bax and decreased Bcl2 expression (FIGS. 14A and 14B). In addition, it was confirmed that miR-18b was down-regulated and miR-206 was up-regulated in G93A Tg mice (FIG. 14C). The same results as described above were also confirmed in the fALS (G86S) patient's spinal cord sample (FIGS. 15A to 15C).

<10-2> SOD1 (G17S) fALS 환자의 hiPSC 유래 운동뉴런(motor neuron)에서 miR-18b 신호전달 경로의 조절 장애 확인<10-2> Identification of impaired regulation of miR-18b signaling pathway in hiPSC-derived motor neurons in SOD1 (G17S) fALS patients

miR-18b 신호 전달 경로가 인간 운동뉴런(motor neuron, MN)에 중추적인 역할을 하는지 알아보기 위하여, 가족성 ALS(fALS (G17S)) 환자 혈액을 채취하고, 혈액으로부터 인간 유도만능줄기세포(human Induced pluripotent stem cell, hiPSC)를 유도하고, 상기 hiPSC로부터 신경줄기세포(human neural stem cells, hNSCs) 분화 후 운동뉴런으로 분화시키고, qRT-PCR을 수행하여 miR-18b 신호전달 경로 관련 인자의 발현을 확인하였다. 또한, 세포 내 칼슘 신호전달, 세포 분화 및 세포 사멸 변화를 확인하였다. In order to find out if the miR-18b signaling pathway plays a pivotal role in human motor neurons (MN), blood from a patient with familial ALS (fALS (G17S)) was collected, and human induced pluripotent stem cells (human cells) were collected from the blood. Induced pluripotent stem cells, hiPSCs), differentiate into motor neurons after differentiation of human neural stem cells (hNSCs) from the hiPSCs, and perform qRT-PCR to confirm the expression of miR-18b signaling pathway related factors. I did. In addition, changes in intracellular calcium signaling, cell differentiation, and cell death were confirmed.

구체적으로, 혈액으로부터 hiPSC를 유도하기 위하여, 정상인 및 fALS SOD1(G17S) 환자의 혈액 샘플 각각을 서울대 병원 신경과(IRB number 1009-059-332)에서 기증받았다. 그 다음, Ficoll-Paque(GE Healthcare Life Sciences)를 사용하여 전혈로부터 말초혈액단핵세포(Peripheral blood mononuclear cell, PBMC)를 분리하고, 1 % 페니실린-스트렙토마이신, hSCF 100 ng/mL, hFLT-3 100 ng/mL, hIL-3 20 ng/mL, 및 hIL-6 20 ng/mL이 포함된 StemPro-34 배지에서 배양 및 증식하였다. 1×106 PBMC를 Oct3/4, Sox2, Klf4 및 cMyc(CytoTune®-iPS Sendai Reprogramming Kit, Life technologies)를 함유한 센다이 바이러스(Sendai virus) (MOI(multiplicity of infection) = 5)를 이용하여 형질도입하였다. 3 일 후, 형질도입된 세포를 사이토카인 불포함 StemPro-34 배지가 포함되고, 디쉬에 1.5×105 세포/디쉬 농도의 20 ug/ml mitomycin C 처리된 HFF(Human Scrotum foreskin fibrin)가 씨딩된 Cell Start-coated 35 mm 디쉬에 처리하고, hiPSC가 전이되기 시작할 때까지 매일 배지를 교체하였다. 그 다음, 15% 녹아웃 SR, 40 ng/ml bFGF, 1 % 비필수 아미노산, 50 U/ml 페니실린, 50 ㎍/㎖ 스트렙토 마이신 및 0.1 mM 2- 머캅토 에탄올이 포함된 DMEM F / 12를 기반으로 하는 iPSC 배지와 1/2 부피의 사이토카인 불포함 StemPro-34 배지로 교체하였다. 전이를 완료하기 위하여, iPSC 배지를 매일 교체하였다. 30 일 또는 그 이후에, 콜로니를 수거하고, 새로운 mitotically inactivated HFFs에 계대배양하여 hiPSC를 증식하였다. 또한, 다능성 마커를 이용해 면역세포화학염색법 및 RT-PCR 분석을 수행하여 정상 hiPSC 및 fALS SOD1(G17S) hiPSC가 유도됨을 확인하였다(도 16A 및 도 16B).Specifically, in order to induce hiPSC from blood, blood samples from normal individuals and fALS SOD1 (G17S) patients were donated from the Neurology Department of Seoul National University Hospital (IRB number 1009-059-332). Then, Peripheral blood mononuclear cells (PBMC) were isolated from whole blood using Ficoll-Paque (GE Healthcare Life Sciences), and 1% penicillin-streptomycin, hSCF 100 ng/mL, hFLT-3 100 It was cultured and propagated in StemPro-34 medium containing ng/mL, 20 ng/mL hIL-3, and 20 ng/mL hIL-6. Transformation of 1×10 6 PBMCs using Sendai virus (MOI (multiplicity of infection) = 5) containing Oct3/4, Sox2, Klf4 and cMyc (CytoTune ® -iPS Sendai Reprogramming Kit, Life technologies) Introduced. After 3 days, the transduced cells were seeded with HFF (Human Scrotum foreskin fibrin) treated with a cytokine-free StemPro-34 medium and treated with 20 ug/ml mitomycin C at a concentration of 1.5×10 5 cells/dish in a dish. Start-coated 35 mm dishes were treated, and the medium was changed daily until hiPSC started to metastasize. Then, based on DMEM F/12 containing 15% knockout SR, 40 ng/ml bFGF, 1% non-essential amino acids, 50 U/ml penicillin, 50 μg/ml streptomycin and 0.1 mM 2-mercaptoethanol The iPSC medium and 1/2 volume of the cytokine-free StemPro-34 medium were replaced. To complete the metastasis, iPSC medium was changed daily. On or after 30 days, colonies were harvested and hiPSCs were propagated by subculture to new mitotically inactivated HFFs. In addition, it was confirmed that normal hiPSC and fALS SOD1 (G17S) hiPSC were induced by performing immunocytochemical staining and RT-PCR analysis using a pluripotent marker (FIGS. 16A and 16B ).

그 다음, 신경줄기세포(Neuron stem cell, NSC)를 생성하기 위하여, 상기 콜로니를 2 mg/ml 디스파제(dispase, Gibco)를 이용하여 분리하고, 60-mm incoated 박테리아 플레이트에 처리하고 5 ~ 7 일 동안 37℃에서 15% 녹아웃 SR(Gibco), 50 U/ml 페니실린, 50 ug/ml 스트렙토마이신이 포함된 Essential 6 배지를 함유하는 EB(embryoid body) 배지로 매일 교체하였다. 그 다음, 형성된 EB를 Cell Start coated 35mm 배양 디쉬로 옮겼다. 2 ~ 3 일 후 EB가 디쉬에 부착되면, 신경 구조가 나타날 때까지, 0.5 % N2 보충제가 포함된 DMEM/F12(1% 비필수 아미노산, 50 U/ml 페니실린, 50 ug/ml 스트렙토마이신 및 0.1 mM 2-머캅토에탄올 포함) 배지에서 1 % N2 보충제와 40 bFGF가 포함된 DMEM/F12(1% 비필수 아미노산, 50 U/ml 페니실린, 50 ug/ml 스트렙토마이신 및 0.1 mM 2-머캅토에탄올 포함) 배지로 하루에 두 번씩 교체하였다. 그 다음, 신경 구조를 분리하고, 부유한 상태에서 배양하여 신경구를 획득하였다. 획득한 신경구를 단편화하고, 1 일 동안 Cell start-coated 배양 디쉬에서 하루 동안 배양하고, 37℃에서 1 시간 동안 Accutase(Gibco)를 처리하였다. NSC를 1 % 비필수 아미노산, 50 U/ml 페니실린, 50 ug/ml 스트렙토마이신 및 0.1 mM 2-머캅토에탄올과 0.5 % N2 보충제 및 40 ng/ml b- 섬유아세포 성장인자가 포함된 DMEM/F12 배지에서 배양하였다. 또한, NSC 마커를 이용해 면역세포화학염색법을 수행하여 정상 NSC 및 fALS SOD1(G17S) NSC가 생성됨을 확인하였다(도 16C).Then, in order to generate neural stem cells (NSC), the colonies were separated using 2 mg/ml dispase (Gibco), treated on a 60-mm incoated bacterial plate, and 5-7 days It was replaced daily with EB (embryoid body) medium containing Essential 6 medium containing 15% knockout SR (Gibco), 50 U/ml penicillin, 50 ug/ml streptomycin at 37°C. Then, the formed EB was transferred to a Cell Start coated 35mm culture dish. After 2-3 days, when EB is attached to the dish, DMEM/F12 with 0.5% N2 supplement (1% non-essential amino acids, 50 U/ml penicillin, 50 ug/ml streptomycin and 0.1) until neural structure appears. DMEM/F12 (1% non-essential amino acids, 50 U/ml penicillin, 50 ug/ml streptomycin, and 0.1 mM 2-mercaptoethanol) with 1% N2 supplement and 40 bFGF in medium containing mM 2-mercaptoethanol Included) was replaced twice a day with medium. Then, the nerve structure was separated and cultured in a floating state to obtain a neurosphere. The obtained neurospheres were fragmented, cultured in a cell start-coated culture dish for 1 day, and treated with Accutase (Gibco) for 1 hour at 37°C. DMEM/F12 with 1% non-essential amino acids, 50 U/ml penicillin, 50 ug/ml streptomycin and 0.1 mM 2-mercaptoethanol plus 0.5% N2 NSC and 40 ng/ml b-fibroblast growth factor Cultured in medium. In addition, it was confirmed that normal NSC and fALS SOD1 (G17S) NSC were generated by performing immunocytochemical staining using the NSC marker (FIG. 16C).

NSC에서 운동뉴런(MN)으로 분화하기 위하여, NSC를 1 ㎍/ml 라미닌 및 5 ug/ml 헤파린 코팅 플레이트를 포함하는 Cell Start에서 2 일 동안 비필수 아미노산, 페니실린/스트렙토마이신, 2- 머캅토에탄올, N2 및 b-FGF를 첨가 한 DMEM/F12에서 배양 한 다음, 0.1 mM 2- 머 캅토 에탄올, 0.5 % N2 보충제 및 40 ng/ml bFGF가 포함된 DMEM/F12 배지로 배양하고, DMEM/F12 배지 및 신경섬유 배지(0.1 mM 2-머캅토에탄올, 0.5% N2 보충제, 40 ng/ml bFGF, 10 ng/ml 신경성장인자(neural growth factor), 10 ng/ml 소닉헤지호그(sonic hedgehog, R&D Systems), 10 μM 포스콜린(forskolin, Sigma) 및 1 μM 레티노산(retinoic acid, Sigma), 10 ng/ml GDNF(glial cell-derived neurotrophic factor), 10 ng/ml BDNF(brain-derived neurotrophic factor), 10 ng/ml 섬모 향신경성 인자(ciliary neurotrophic factor), 10 ng/ml 인슐린 유사 성장 인자 1(insulin-like growth factor 1) 및 10 ng/ml NT3(neurotrophin-3))의 혼합물을 매일 또는 일주일 동안 매일 투여하였다. 또한, MN 마커를 이용해 면역세포화학염색법을 수행하여 정상 MN 및 fALS SOD1(G17S) MN으로 분화됨을 확인하였다(도 16D).In order to differentiate from NSC into motor neurons (MN), NSCs were converted to non-essential amino acids, penicillin/streptomycin, 2-mercaptoethanol for 2 days at Cell Start containing 1 μg/ml laminin and 5 ug/ml heparin coated plate. , Incubated in DMEM/F12 to which N2 and b-FGF were added, followed by incubation with DMEM/F12 medium containing 0.1 mM 2-mercaptoethanol, 0.5% N2 supplement and 40 ng/ml bFGF, and DMEM/F12 medium And nerve fiber medium (0.1 mM 2-mercaptoethanol, 0.5% N2 supplement, 40 ng/ml bFGF, 10 ng/ml neural growth factor, 10 ng/ml sonic hedgehog, R&D Systems ), 10 μM forskolin (Sigma) and 1 μM retinoic acid (Sigma), 10 ng/ml glial cell-derived neurotrophic factor (GDNF), 10 ng/ml brain-derived neurotrophic factor (BDNF), A mixture of 10 ng/ml ciliary neurotrophic factor, 10 ng/ml insulin-like growth factor 1 and 10 ng/ml NT3 (neurotrophin-3) daily or for a week It was administered daily. In addition, immunocytochemical staining was performed using the MN marker to confirm that it was differentiated into normal MN and fALS SOD1 (G17S) MN (FIG. 16D).

상기 분화된 정상 MN 및 fALS SOD1(G17S) MN 각각을 이용하여 상기 실시예 <10-1>에 기재된 방법과 동일한 방법으로 qRT-PCR(도 17A 내지 도 17D, 도 17F), 세포 내 Ca2 + 분석(도 17 C), 축삭생성 분석(도 17D), LDH 방출 분석(도 17G)을 수행하였다.Using the differentiated normal MN and fALS SOD1 (G17S) MN, respectively, qRT-PCR (Figs. 17A to 17D, Fig. 17F), intracellular Ca 2 + by the same method as described in Example <10-1> Analysis (FIG. 17C), axon formation analysis (FIG. 17D), and LDH release analysis (FIG. 17G) were performed.

그 결과, 도 17에 나타낸 바와 같이, fALS SOD1(G17S) MN에서 Hif1α 및 Mef2c의 mRNA 발현이 유의하게 증가하는 반면, Mctp1과 Rarb의 mRNA 수준은 현저하게 감소함을 확인하였다(도 17A 및 도 17B). 또한, fALS SOD1(G17S) MNs에서 miR-18b와 miR-206 수준을 측정하였고, miR-18b는 유의하게 감소하고 miR-206은 유의적으로 증가함을 확인하였다(도 17D). 또한, fALS SOD1(G17S) MNs에서 Ca2+가 축적되었고 신경세포 분화가 억제되며, 세포 사멸이 유도됨을 확인하였다(도 17C, 도 17E 내지 도 17G).As a result, as shown in FIG. 17, it was confirmed that mRNA expressions of Hif1α and Mef2c were significantly increased in fALS SOD1 (G17S) MN, whereas mRNA levels of Mctp1 and Rarb were significantly decreased (FIGS. 17A and 17B. ). In addition, the levels of miR-18b and miR-206 were measured in fALS SOD1 (G17S) MNs, and it was confirmed that miR-18b significantly decreased and miR-206 significantly increased (FIG. 17D). In addition, it was confirmed that Ca 2+ was accumulated in fALS SOD1 (G17S) MNs, neuronal differentiation was inhibited, and cell death was induced (FIGS. 17C, 17E to 17G).

상기 결과를 통해 miR-18b 신호 전달 경로가 SOD1 돌연변이 연관 ALS에 관여하고, SOD1 돌연변이 연관 ALS에서 miR-18b 신호 전달 경로의 조절 장애에 의해 세포 사멸을 유도됨을 확인하였다.Through the above results, it was confirmed that the miR-18b signaling pathway is involved in SOD1 mutation-associated ALS, and cell death is induced by impaired regulation of the miR-18b signaling pathway in SOD1 mutation-associated ALS.

<실시예 11> 듀시엔형 근이영양증(Duchenn muscular dystrophy; DMD)에서 miR-18 조절 장애 확인<Example 11> Confirmation of miR-18 control disorder in Duchenn muscular dystrophy (DMD)

<11-1> Dystrophin 발현 억제 근아세포에서 miR-18 조절 장애 확인<11-1> Dystrophin expression inhibition confirmed miR-18 regulation impairment in myoblasts

또 다른 유전자 돌연변이에 의한 근육 질환으로서 DMD에서 유전자 변이에 의해 miR-18b 조절 장애가 유발되는지 알아보기 위하여, Dystrophin 발현 억제 근아세포에서 miR-18 발현을 qRT-PCR을 수행하였 확인하였다.In order to investigate whether miR-18b regulation disorder is caused by genetic mutation in DMD as another muscle disease caused by gene mutation, it was confirmed by qRT-PCR for miR-18 expression in Dystrophin expression suppressing myoblasts.

구체적으로, 상기 실시예 <1-3>에서 획득한 Dystrophin 발현 억제 C2C12 세포를 회수하여 상기 <실시예 2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하였다(도 18). 대조군으로 siControl을 형질도입한 C2C12 세포를 사용하였다.Specifically, Dystrophin expression-inhibiting C2C12 cells obtained in Example <1-3> were recovered, and qRT-PCR was performed in the same manner as described in Example 2 (FIG. 18). As a control, C2C12 cells transduced with siControl were used.

그 결과, 도 18에 나타낸 바와 같이, Dystrophin 발현 억제 C2C12 세포에서 miR-18 발현이 감소하는 것을 확인하였다(도 18).As a result, as shown in FIG. 18, it was confirmed that miR-18 expression decreased in Dystrophin expression-inhibited C2C12 cells (FIG. 18).

<11-2> DMD 동물 모델에서 miR-18 조절 장애 확인<11-2> Confirmation of miR-18 dysregulation in DMD animal model

DMD에서 유전자 변이에 의해 miR-18b 조절 장애가 유발되는지 알아보기 위하여, DMD 동물 모델에서 miR-18 발현을 qRT-PCR을 수행하였 확인하였다.In order to determine whether miR-18b regulation disorder is caused by genetic mutation in DMD, it was confirmed by qRT-PCR for miR-18 expression in a DMD animal model.

구체적으로, DMD 동물 모델인 mdx 마우스(생후 2~4주)를 Jackson laboratory로부터 제공받았다. mdx 마우스에서 근육 조직을 적출하고, 상기 <실시예 2>에 기재된 방법과 동일한 방법으로 qRT-PCR을 수행하였다(도 19).Specifically, a DMD animal model, mdx mice (2-4 weeks of age), was provided from Jackson laboratory. Muscle tissue was removed from mdx mice, and qRT-PCR was performed in the same manner as described in <Example 2> (FIG. 19).

그 결과, 도 19에 나타낸 바와 같이 DMD 마우스에서 miR-18 발현이 감소하는 것을 확인하였다(도 19). As a result, it was confirmed that miR-18 expression decreased in DMD mice as shown in FIG. 19 (FIG. 19 ).

상기 결과를 통해 Dystrophin 돌연변이 연관 DMD에서 miR-18b 신호 전달 경로의 조절 장애에 유발됨을 확인하였고, 따라서 miR-18b를 DMD 진단을 위한 표적 miRNA로 이용할 수 있고, DMD의 예방 및 치료에 이용할 수 있음을 확인하였다.Through the above results, it was confirmed that the dystrophin mutation-associated DMD is caused to impair the regulation of the miR-18b signaling pathway, and thus miR-18b can be used as a target miRNA for DMD diagnosis, and that it can be used for the prevention and treatment of DMD. Confirmed.

상기 <실시예 1> 내지 <실시예 11>의 결과를 통해 도 20의 모식도와 같이 유전자 돌연변이가 miR-18b 발현을 감소시켜 miR-18b 신호전달경로의 조절 장애를 유발하고, miR-18b 조절 장애가 Hif1α의 상향 조절을 유도하며, 상향 조절된 Hif1α가 Mef2c를 상향 조절하고, Mef2c가 miR-206 발현을 유도하며, miR-206이 Mctp1과 Rarb의 전사후 조절에 직접 관여하여 칼슘 신호전달과 신경세포 분화 억제 및 세포사멸을 유도함을 확인하였다. 따라서, ALS, DMD와 같이 유전자 돌연변이에 의해 유발되는 근육 질환 진단 및 치료에 있어서 miR-18b를 표적 인자로 이용할 수 있다. According to the results of <Example 1> to <Example 11>, as shown in the schematic diagram of FIG. 20, gene mutations decrease miR-18b expression, resulting in impaired regulation of the miR-18b signaling pathway, and impaired miR-18b regulation. Induces upregulation of Hif1α, upregulated Hif1α upregulates Mef2c, Mef2c induces miR-206 expression, and miR-206 is directly involved in the post-transcriptional regulation of Mctp1 and Rarb, resulting in calcium signaling and neuronal cells. It was confirmed to inhibit differentiation and induce apoptosis. Therefore, miR-18b can be used as a target factor in the diagnosis and treatment of muscle diseases caused by gene mutations such as ALS and DMD.

<110> Seoul national university hospital <120> Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease <130> PB2018-093 <150> KR 10-2017-0105029 <151> 2017-08-18 <160> 61 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> RNA <213> Homo sapiens <400> 1 uaaggugcau cuagugcagu uag 23 <210> 2 <211> 22 <212> RNA <213> Homo sapiens <400> 2 ugcccuaaau gccccuucug gc 22 <210> 3 <211> 71 <212> RNA <213> Homo sapiens <400> 3 uguguuaagg ugcaucuagu gcaguuagug aagcagcuua gaaucuacug cccuaaaugc 60 cccuucuggc a 71 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siDystrophin <400> 4 ggccuuacag ggcaaaaact t 21 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 intron forward primer <400> 5 gactccaaca tacccatttc tg 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 intron reverse primer <400> 6 taatatctct tcccgctcct tc 22 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 exon forward primer <400> 7 tcatccttac gcctaaggaa g 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 exon reverse primer <400> 8 ccggaacttc acatatggat c 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb intron forward primer <400> 9 cacctgaagg tgaatgttgg 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb intron reverse primer <400> 10 cacttgaact tggggtcaag 20 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb exon forward primer <400> 11 gatctacact tgccatcgag a 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb exon reverse primer <400> 12 ctttccggat cttctcagtg a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH intron forward primer <400> 13 tggtgcaaca gtattccact 20 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH intron reverse primer <400> 14 ctggaacatg tagaccatgt ag 22 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH exon forward primer <400> 15 catgtttgtg atgggtgtga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH exon reverse primer <400> 16 gatgcaggga tgatgttctg 20 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Hif1a forward primer <400> 17 gttcaccaaa gttgaatcag agg 23 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Hif1a reverse primer <400> 18 cgatgaaggt aaaggagaca ttg 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mef2c forward primer <400> 19 aggataatgg atgagcgtaa cag 23 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mef2c reverse primer <400> 20 agcaacacct tatccatgtc agt 23 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 forward primer <400> 21 cgttgtgtca tagtgcttgt aaa 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 reverse primer <400> 22 atcatgtaga gctcaaagtt cca 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb forward primer <400> 23 tttctctgat ggccttacac taa 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb reverse primer <400> 24 agattaaaca gatggcactg aga 23 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH forward primer <400> 25 atagctgatg gctgcaggtt 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH reverse primer <400> 26 aatctccact ttgccactgc 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bax forward primer <400> 27 aagctgagcg agtgtctccg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bax reverse primer <400> 28 ggaggaagtc cagtgtccag 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bcl2 forward primer <400> 29 aacccaatgc ccgctgtgca 20 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Bcl2 reverse primer <400> 30 accgaactca aagaaggcca caa 23 <210> 31 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-18b forward primer <400> 31 cgcggatcca ccatggtgat ttaatcaga 29 <210> 32 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-18b reverse primer <400> 32 ccgctcgagc cgttcaaatc atttctcaa 29 <210> 33 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> mouse siHif1a <400> 33 aagcauuucu cucauuuccu caugg 25 <210> 34 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-206 forward primer <400> 34 cgcggatcca ttcttcacac ttctcactt 29 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-206 reverse primer <400> 35 ccgctcgaga cgaagaagtc aacagcata 29 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 3UTR forward primer <400> 36 ccgctcgaga aagcttgaat aatagaaat 29 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 3UTR reverse primer <400> 37 ctagtctaga atacatgggt tttttgtttg 30 <210> 38 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb 3UTR forward primer <400> 38 ccgctcgaga acgtgtaatt accttgaaa 29 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb 3UTR reverse primer <400> 39 ctagtctaga caaagtcttc agaaacttaa 30 <210> 40 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siMctp1 <400> 40 gccacuauau aucaagguat t 21 <210> 41 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siRarb <400> 41 ggagccuuca aagcaggaat t 21 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 forward primer <400> 42 cccaagctta tgtaccagtt ggatatcaca cta 33 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 reverse primer <400> 43 cccaagcttg ccaaggttgt tttttcttcc 30 <210> 44 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb forward primer <400> 44 ccgctagcat gagcaccagc agccacgc 28 <210> 45 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb reverse primer <400> 45 ccaccggtct gcagcagtgg tgactgac 28 <210> 46 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Hif1a forward primer <400> 46 agatagcaag actttcctca gtc 23 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Hif1a reverse primer <400> 47 ctgtggtgac ttgtccttta gta 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mef2c forward primer <400> 48 ctactttacc aggacaagga atg 23 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mef2c reverse primer <400> 49 ctgagataaa tgagtgctag tgc 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mctp1 forward primer <400> 50 aggaatagtc agcatcacct tga 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mctp1 reverse primer <400> 51 caatgactcc tcctctttct tca 23 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Rarb forward primer <400> 52 cttctcagtg ccatctgctt aat 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Rarb reverse primer <400> 53 aattacacgc tctgcacctt tag 23 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bax forward primer <400> 54 aagctgagcg agtgtctcaa 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bax reverse primer <400> 55 agtagaaaag ggcgacaacc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bcl2 forward primer <400> 56 acgccccatc cagccgcatc 20 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Bcl2 reverse primer <400> 57 cacacatgac cccaccgaac tca 23 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH forward primer <400> 58 ctgcattcgc cctcttaatg 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH reverse primer <400> 59 tgaggtcaat gaaggggtca 20 <210> 60 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> human SOD1 forward primer <400> 60 gtggggaagc attaaaggac tgac 24 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> human SOD1 reverse primer <400> 61 caattacacc acaagccaaa cgac 24 <110> Seoul national university hospital <120> Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease <130> PB2018-093 <150> KR 10-2017-0105029 <151> 2017-08-18 <160> 61 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> RNA <213> Homo sapiens <400> 1 uaaggugcau cuagugcagu uag 23 <210> 2 <211> 22 <212> RNA <213> Homo sapiens <400> 2 ugcccuaaau gccccuucug gc 22 <210> 3 <211> 71 <212> RNA <213> Homo sapiens <400> 3 uguguuaagg ugcaucuagu gcaguuagug aagcagcuua gaaucuacug cccuaaaugc 60 cccuucuggc a 71 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siDystrophin <400> 4 ggccuuacag ggcaaaaact t 21 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 intron forward primer <400> 5 gactccaaca tacccatttc tg 22 <210> 6 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 intron reverse primer <400> 6 taatatctct tcccgctcct tc 22 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 exon forward primer <400> 7 tcatccttac gcctaaggaa g 21 <210> 8 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 exon reverse primer <400> 8 ccggaacttc acatatggat c 21 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb intron forward primer <400> 9 cacctgaagg tgaatgttgg 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb intron reverse primer <400> 10 cacttgaact tggggtcaag 20 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb exon forward primer <400> 11 gatctacact tgccatcgag a 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb exon reverse primer <400> 12 ctttccggat cttctcagtg a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH intron forward primer <400> 13 tggtgcaaca gtattccact 20 <210> 14 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH intron reverse primer <400> 14 ctggaacatg tagaccatgt ag 22 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH exon forward primer <400> 15 catgtttgtg atgggtgtga 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH exon reverse primer <400> 16 gatgcaggga tgatgttctg 20 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Hif1a forward primer <400> 17 gttcaccaaa gttgaatcag agg 23 <210> 18 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Hif1a reverse primer <400> 18 cgatgaaggt aaaggagaca ttg 23 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mef2c forward primer <400> 19 aggataatgg atgagcgtaa cag 23 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mef2c reverse primer <400> 20 agcaacacct tatccatgtc agt 23 <210> 21 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 forward primer <400> 21 cgttgtgtca tagtgcttgt aaa 23 <210> 22 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 reverse primer <400> 22 atcatgtaga gctcaaagtt cca 23 <210> 23 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb forward primer <400> 23 tttctctgat ggccttacac taa 23 <210> 24 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb reverse primer <400> 24 agattaaaca gatggcactg aga 23 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH forward primer <400> 25 atagctgatg gctgcaggtt 20 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse GAPDH reverse primer <400> 26 aatctccact ttgccactgc 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bax forward primer <400> 27 aagctgagcg agtgtctccg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bax reverse primer <400> 28 ggaggaagtc cagtgtccag 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> mouse Bcl2 forward primer <400> 29 aacccaatgc ccgctgtgca 20 <210> 30 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> mouse Bcl2 reverse primer <400> 30 accgaactca aagaaggcca caa 23 <210> 31 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-18b forward primer <400> 31 cgcggatcca ccatggtgat ttaatcaga 29 <210> 32 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-18b reverse primer <400> 32 ccgctcgagc cgttcaaatc atttctcaa 29 <210> 33 <211> 25 <212> RNA <213> Artificial Sequence <220> <223> mouse siHif1a <400> 33 aagcauuucu cucauuuccu caugg 25 <210> 34 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-206 forward primer <400> 34 cgcggatcca ttcttcacac ttctcactt 29 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse miR-206 reverse primer <400> 35 ccgctcgaga cgaagaagtc aacagcata 29 <210> 36 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 3UTR forward primer <400> 36 ccgctcgaga aagcttgaat aatagaaat 29 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 3UTR reverse primer <400> 37 ctagtctaga atacatgggt tttttgtttg 30 <210> 38 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb 3UTR forward primer <400> 38 ccgctcgaga acgtgtaatt accttgaaa 29 <210> 39 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb 3UTR reverse primer <400> 39 ctagtctaga caaagtcttc agaaacttaa 30 <210> 40 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siMctp1 <400> 40 gccacuauau aucaagguat t 21 <210> 41 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> mouse siRarb <400> 41 ggagccuuca aagcaggaat t 21 <210> 42 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 forward primer <400> 42 cccaagctta tgtaccagtt ggatatcaca cta 33 <210> 43 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> mouse Mctp1 reverse primer <400> 43 cccaagcttg ccaaggttgt tttttcttcc 30 <210> 44 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb forward primer <400> 44 ccgctagcat gagcaccagc agccacgc 28 <210> 45 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> mouse Rarb reverse primer <400> 45 ccaccggtct gcagcagtgg tgactgac 28 <210> 46 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Hif1a forward primer <400> 46 agatagcaag actttcctca gtc 23 <210> 47 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Hif1a reverse primer <400> 47 ctgtggtgac ttgtccttta gta 23 <210> 48 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mef2c forward primer <400> 48 ctactttacc aggacaagga atg 23 <210> 49 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mef2c reverse primer <400> 49 ctgagataaa tgagtgctag tgc 23 <210> 50 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mctp1 forward primer <400> 50 aggaatagtc agcatcacct tga 23 <210> 51 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Mctp1 reverse primer <400> 51 caatgactcc tcctctttct tca 23 <210> 52 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Rarb forward primer <400> 52 cttctcagtg ccatctgctt aat 23 <210> 53 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Rarb reverse primer <400> 53 aattacacgc tctgcacctt tag 23 <210> 54 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bax forward primer <400> 54 aagctgagcg agtgtctcaa 20 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bax reverse primer <400> 55 agtagaaaag ggcgacaacc 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human Bcl2 forward primer <400> 56 acgccccatc cagccgcatc 20 <210> 57 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> human Bcl2 reverse primer <400> 57 cacacatgac cccaccgaac tca 23 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH forward primer <400> 58 ctgcattcgc cctcttaatg 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> human GAPDH reverse primer <400> 59 tgaggtcaat gaaggggtca 20 <210> 60 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> human SOD1 forward primer <400> 60 gtggggaagc attaaaggac tgac 24 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> human SOD1 reverse primer <400> 61 caattacacc acaagccaaa cgac 24

Claims (12)

miR-18b를 유효성분으로 함유하는, 듀시엔형 근이영양증(Duchenne muscular dystrophy), 베커형 근이영양증(Backer muscular dystrophy), 근위축증(muscular atrophy) 및 근위축성 측삭 경화증(amyotrophic lateral sclerosis)으로 이루어진 군으로부터 선택되는 근육 질환 예방 또는 치료용 약학조성물.
It is selected from the group consisting of Duchenne muscular dystrophy, Backer muscular dystrophy, muscular atrophy and amyotrophic lateral sclerosis containing miR-18b as an active ingredient. Pharmaceutical composition for preventing or treating muscle disease.
제 1항에 있어서, 상기 miR-18b는 벡터에 포함되거나 세포에 도입된 형태로 제공되는 것을 특징으로 하는, 근육 질환 예방 또는 치료용 약학조성물.
The pharmaceutical composition for preventing or treating muscle diseases according to claim 1, wherein the miR-18b is included in a vector or provided in a form introduced into cells.
제 1항에 있어서, 상기 miR-18b는 성숙 형태의 miR-18b 또는 전구체 형태의 miR-18b인 것을 특징으로 하는, 근육 질환 예방 또는 치료용 약학조성물.
The pharmaceutical composition for preventing or treating muscle disease according to claim 1, wherein the miR-18b is a mature miR-18b or a precursor miR-18b.
제 3항에 있어서, 상기 성숙 형태의 miR-18b는 서열번호 1 또는 서열번호 2로 표시되고, 상기 전구체 형태의 miR-18b는 서열번호 3으로 표시되는 것을 특징으로 하는, 근육 질환 예방 또는 치료용 약학조성물.
The method of claim 3, wherein the mature form of miR-18b is represented by SEQ ID NO: 1 or SEQ ID NO: 2, and the precursor form of miR-18b is represented by SEQ ID NO: 3, for preventing or treating muscle diseases Pharmaceutical composition.
삭제delete 삭제delete 피검체로부터 분리된 시료에서 miR-18b, Hif1α(hypoxia inducible factor 1 alpha), Mef2c(myocyte specific enhancer factor 2c), Mctp1(multiple C2 domains transmembrane protein 1), Rarb(retinoic acid receptor beta) 및 miR-206으로 구성된 군으로부터 선택되는 3종 이상의 발현 수준을 측정하고 정상 대조군과 비교하는 단계를 포함하는, 듀시엔형 근이영양증(Duchenne muscular dystrophy), 베커형 근이영양증(Backer muscular dystrophy), 근위축증(muscular atrophy) 및 근위축성 측삭 경화증(amyotrophic lateral sclerosis)으로 이루어진 군으로부터 선택되는 근육 질환의 진단 정보를 제공하는 방법으로서,
여기서 miR-18b, Mctp1 또는 Rarb의 발현 수준이 정상 대조군과 비교하여 감소하고, Hif1α, Mef2c 또는 miR-206의 발현 수준이 정상 대조군과 비교하여 증가하면 근육 질환으로 판단하는, 방법.
In samples isolated from the subject, miR-18b, Hif1α (hypoxia inducible factor 1 alpha), Mef2c (myocyte specific enhancer factor 2c), Mctp1 (multiple C2 domains transmembrane protein 1), Rarb (retinoic acid receptor beta), and miR-206 Duchenne muscular dystrophy, Becker muscular dystrophy, muscular atrophy, and muscle comprising the step of measuring the expression level of three or more selected from the group consisting of and comparing it with a normal control group. As a method of providing diagnostic information of a muscle disease selected from the group consisting of atrophic lateral sclerosis,
Herein, when the expression level of miR-18b, Mctp1 or Rarb decreases compared to the normal control, and the expression level of Hif1α, Mef2c or miR-206 increases compared to the normal control, it is determined as a muscle disease.
제 7항에 있어서, 상기 시료는 조직, 세포, 혈장, 혈청, 혈액, 타액 및 소변으로 구성된 군으로부터 선택되는 어느 하나인 것을 특징으로 하는, 근육 질환의 진단 정보를 제공하는 방법.
The method of claim 7, wherein the sample is any one selected from the group consisting of tissue, cells, plasma, serum, blood, saliva, and urine.
제 7항에 있어서, 상기 발현 수준은 RT-PCR(Reverse transcription polymerase chain reaction), 정량적 RT-PCR, 실시간 RT-PCR, 노던 블럿팅(Northern blotting), 전사체(transcriptome) 분석으로 구성된 군으로부터 선택되는 어느 하나 이상의 방법으로 측정하는 것을 특징으로 하는, 근육 질환의 진단 정보를 제공하는 방법.The method of claim 7, wherein the expression level is selected from the group consisting of Reverse transcription polymerase chain reaction (RT-PCR), quantitative RT-PCR, real-time RT-PCR, Northern blotting, and transcriptome analysis. A method of providing diagnostic information of a muscle disease, characterized in that the measurement is performed by any one or more methods. 삭제delete 삭제delete 삭제delete
KR1020180092805A 2017-08-18 2018-08-09 Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease KR102177130B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/KR2018/009461 WO2019035690A1 (en) 2017-08-18 2018-08-17 USE OF miR-18b FOR PREVENTION, TREATMENT, OR DIAGNOSIS OF MUSCLE DISEASE AND NEUROMUSCULAR DISEASE
CN201880053697.5A CN111032058A (en) 2017-08-18 2018-08-17 Use of miR-18b for preventing, treating or diagnosing muscle diseases and neuromuscular diseases
EP18846646.0A EP3669880A4 (en) 2017-08-18 2018-08-17 USE OF miR-18b FOR PREVENTION, TREATMENT, OR DIAGNOSIS OF MUSCLE DISEASE AND NEUROMUSCULAR DISEASE
JP2020531407A JP6928179B2 (en) 2017-08-18 2018-08-17 Uses of miR-18b for the prevention, treatment or diagnosis of muscular and neuromuscular disorders
US16/791,185 US11286484B2 (en) 2017-08-18 2020-02-14 Use of miR-18b for prevention, treatment, or diagnosis of muscle disease and neuromuscular disease
US17/554,285 US11891604B2 (en) 2017-08-18 2021-12-17 Use of miR-18b for prevention, treatment, or diagnosis of muscle disease and neuromuscular disease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170105029 2017-08-18
KR20170105029 2017-08-18

Publications (3)

Publication Number Publication Date
KR20190019838A KR20190019838A (en) 2019-02-27
KR102177130B1 true KR102177130B1 (en) 2020-11-10
KR102177130B9 KR102177130B9 (en) 2024-03-13

Family

ID=65560995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180092805A KR102177130B1 (en) 2017-08-18 2018-08-09 Use of miR-18b for preventing, treating or diagnosing muscular disease and neuromuscular disease

Country Status (5)

Country Link
US (2) US11286484B2 (en)
EP (1) EP3669880A4 (en)
JP (1) JP6928179B2 (en)
KR (1) KR102177130B1 (en)
CN (1) CN111032058A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111575280B (en) * 2019-08-23 2022-12-23 西北工业大学 miR-194-5p sequence for promoting MEF2C gene expression in mouse myoblast and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497827A1 (en) 2005-12-12 2012-09-12 University Of North Carolina At Chapel Hill Micro-RNAs that regulate muscle cell proliferation and differentiation
JP5653899B2 (en) * 2008-03-17 2015-01-14 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Identification of microRNAs involved in the maintenance and regeneration of neuromuscular synapses
US20120093936A1 (en) * 2009-04-07 2012-04-19 Velin-Pharma A/S Method and device for treatment of conditions associated with inflammation or undesirable activation of the immune system
CN102753689A (en) * 2010-02-26 2012-10-24 独立行政法人国立精神·神经医疗研究中心 Marker for detection of myogenic diseases, and method for detection of the diseases using same
KR101235256B1 (en) * 2010-09-13 2013-02-21 서울대학교산학협력단 Treatment of Neurodegenerative Diseases by Targeting a miRNA
US10718018B2 (en) * 2011-06-08 2020-07-21 Hummingbird Diagnostics Gmbh Complex sets of miRNAs as non-invasive biomarkers for dilated cardiomyopathy
EP2766482B1 (en) * 2011-10-11 2016-12-07 The Brigham and Women's Hospital, Inc. Micrornas in neurodegenerative disorders
WO2013070079A2 (en) * 2011-11-10 2013-05-16 Vereniging Voor Christelijk Hoger Onderwijs, Wetenschappelijk, miRNA IN BLOOD BRAIN BARRIER OF MS PATIENTS
CN104781424B (en) * 2012-09-19 2018-11-23 萨特西湾医院 The MIR-18B of the therapeutic targets of marker and treating cancer as cancer progression
JP2016088896A (en) * 2014-11-06 2016-05-23 国立研究開発法人国立精神・神経医療研究センター Muscle-cell damage inhibitor
KR101815734B1 (en) * 2015-05-29 2018-01-05 가톨릭대학교 산학협력단 Pharmaceutical composition comprising miR-7, miR-18a or miR-18b for prevention or treatment of metabolic disease

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Aging. 2017. Vol.9, No.3, pp.823-851
miR-18b dysregulation regulates miR-206 expression and induces cell death in SOD1 (G93A) ALS mice. (P-2-131). 대한신경과학회 2016년도 제35차 추계학술대회 (2016.11.4.)*

Also Published As

Publication number Publication date
US20200277603A1 (en) 2020-09-03
JP6928179B2 (en) 2021-09-01
KR20190019838A (en) 2019-02-27
EP3669880A4 (en) 2021-05-05
CN111032058A (en) 2020-04-17
KR102177130B9 (en) 2024-03-13
EP3669880A1 (en) 2020-06-24
US11891604B2 (en) 2024-02-06
US20220186220A1 (en) 2022-06-16
US11286484B2 (en) 2022-03-29
JP2020534349A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US20220228143A1 (en) Micrornas for cardiac regeneration through induction of cardiac myocyte proliferation
US20220133774A1 (en) Modulation of micrornas against myotonic dystrophy type 1 and antagonists of micrornas therefor
Zhang et al. miR-485-5p suppresses Schwann cell proliferation and myelination by targeting cdc42 and Rac1
Shi et al. MicroRNA-323-3p inhibits oxidative stress and apoptosis after myocardial infarction by targeting TGF-β2/JNK pathway.
US11891604B2 (en) Use of miR-18b for prevention, treatment, or diagnosis of muscle disease and neuromuscular disease
US11497762B2 (en) MiRNA molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation
KR101541974B1 (en) Composition and method for enhancing differentiation of neuronal stem cells comprising miR29b
KR101890874B1 (en) A composition for repression of muscle-aging and regeneration of old muscle
US20220186228A1 (en) Synthetic microrna mimics
WO2019245060A1 (en) Composition for preventing or treating neurodegenerative disease
US11013753B2 (en) TLX and MIR-219 as potential therapeutic targets for neurodevelopmental disorders
JP2010030956A (en) Promoter and inhibitor of osteoblast cell differentiation, osteogenesis promoter, osteoporosis drug, anti-obesity agent, and screening method
US20150111952A1 (en) Method for treating glioma using tarbp2 expression inhibitor
Pierattini SINEUP lncRNAs: from molecular mechanism to therapeutic application.

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]