KR102125041B1 - Method of synthesis of ferrocene derivatives - Google Patents

Method of synthesis of ferrocene derivatives Download PDF

Info

Publication number
KR102125041B1
KR102125041B1 KR1020180154177A KR20180154177A KR102125041B1 KR 102125041 B1 KR102125041 B1 KR 102125041B1 KR 1020180154177 A KR1020180154177 A KR 1020180154177A KR 20180154177 A KR20180154177 A KR 20180154177A KR 102125041 B1 KR102125041 B1 KR 102125041B1
Authority
KR
South Korea
Prior art keywords
ferrocenyl
butanoic acid
scheme
formula
solution
Prior art date
Application number
KR1020180154177A
Other languages
Korean (ko)
Other versions
KR20200067384A (en
Inventor
이학준
임민경
장유림
반재영
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR1020180154177A priority Critical patent/KR102125041B1/en
Publication of KR20200067384A publication Critical patent/KR20200067384A/en
Application granted granted Critical
Publication of KR102125041B1 publication Critical patent/KR102125041B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 로켓 추진체의 성능을 향상시킬 수 있는 4-ferrocenyl butanoic acid를 합성하는 방법으로 수소화붕소나트륨과 폴리메틸하이드로실록산을 사용하여, 그리고 수소화붕소나트륨과 포름산을 사용하여 보다 안전하고 경제적으로 대량 합성할 수 있어 상업화 적용이 가능한 4-ferrocenyl butanoic acid를 제조하는 방법에 관한 것이다.The present invention is a method of synthesizing 4-ferrocenyl butanoic acid that can improve the performance of a rocket propellant, using sodium borohydride and polymethylhydrosiloxane, and using sodium borohydride and formic acid for safe and economical mass synthesis It relates to a method for producing 4-ferrocenyl butanoic acid that can be applied commercially.

Description

페로신 유도체의 제조방법 {Method of synthesis of ferrocene derivatives}Method of synthesis of ferrocene derivatives {Method of synthesis of ferrocene derivatives}

본 발명은 페로신 (ferrocene) 유도체의 제조방법으로서, 더욱 상세하게는 로켓 추진체의 성능을 향상시킬 수 있는 4-ferrocenyl butanoic acid를 합성하는 방법으로 수소화붕소나트륨과 폴리메틸하이드로실록산을 사용하여, 그리고 수소화붕소나트륨과 포름산을 사용하여 보다 안전하고 경제적으로 4-ferrocenyl butanoic acid을 제조하는 방법에 관한 것이다.The present invention is a method for producing a ferrocene (ferrocene) derivative, and more specifically, using sodium borohydride and polymethylhydrosiloxane as a method of synthesizing 4-ferrocenyl butanoic acid that can improve the performance of a rocket propellant, and It relates to a method for preparing 4-ferrocenyl butanoic acid more safely and economically using sodium borohydride and formic acid.

성능이 우수한 로켓 추진제의 개발을 위해서는 결합제와 연소 첨가제의 개발이 중요한 요소이다. 로켓 추진제의 연소속도를 증가시키기 위하여 주로 Fe, Cr 등과 같은 전이금속 화합물을 사용하여 왔다. 일반적으로 페로신 (ferrocene) 화합물은 iron(Ⅲ) oxide와 같은 철 산화물에 비하여 연소속도 증가 효과가 크며 연소압력지수 (burning rate pressure exponent)가 낮은 장점을 가지고 있어 매우 가능성 있는 연소 촉매로 알려져 있다.For the development of a superior performance rocket propellant, the development of a binder and a combustion additive is an important factor. In order to increase the combustion speed of the rocket propellant, transition metal compounds such as Fe and Cr have been mainly used. In general, ferrocene (ferrocene) compounds are known as very probable combustion catalysts because they have a large combustion rate increase effect and a low burning rate pressure exponent compared to iron oxides such as iron(III) oxide.

그러나 기존의 물질들은 주위 단열재를 향하여 이동하는 의도치 않은 이동성을 띄게 되면서 첨가해준 양이 시간이 지남에 따라 점차 감소하여 연소가 고르지 못하게 발생하는 문제가 있으며, 이로 인하여 안정성에서도 문제가 발생한다.However, the existing materials have an unintended mobility to move toward the surrounding insulating material, and the amount added is gradually decreased over time, resulting in an uneven combustion, which causes stability problems.

이러한 문제점을 개선하기 위하여 페로신 (ferrocene)에 Friedel-Crafts alkylation을 통하여 분자량이 큰 알킬기 (alkyl group)을 치환시키거나 바인더에 결합시켜 더 안정하고 고른 연소를 일으킬 수 있다. 이중 3-(feroocenoyl)propionic acid에 수소화알루미늄리튬 (Lithium aluminum hydride, LiAlH4)를 사용하여 4-ferrocenyl butanol를 생성하거나 수소화알루미늄리튬의 위험성으로 인하여 esterification을 통하여 우회하는 반응이 존재한다. 하지만 이 방법은 위험하고 값이 매우 비싸며 취급에 상당한 주의가 필요하다. 본 발명의 발명자들은 이를 개선하기 위하여 4-ferrocenyl butanol 제조방법 기술을 개발하였다 (국내등록특허 제10-1853565호, 제10-1853566호)In order to improve this problem, it is possible to replace the alkyl group having a high molecular weight or bind to a binder through Friedel-Crafts alkylation to ferrocene or cause more stable and even combustion. Among them, 3-(feroocenoyl)propionic acid is used to produce 4-ferrocenyl butanol using lithium aluminum hydride (LiAlH 4 ), or there is a bypass reaction through esterification due to the risk of lithium aluminum hydride. However, this method is dangerous, very expensive, and requires great care in handling. The inventors of the present invention have developed 4-ferrocenyl butanol manufacturing method technology to improve this (Domestic Registration No. 10-1853565, No. 10-1853566)

하지만, 4-ferrocenyl butanol의 경우, 연소촉진제로 로켓 추진제에 사용되는 바인더 copolymer에 친핵치환 반응에 적용하였을 때 부반응으로 제거 생성물이 형성되어 상업화 단계에서 어려움이 있다.However, in the case of 4-ferrocenyl butanol, the removal product is formed as a side reaction when applying to the nucleophilic substitution reaction to the binder copolymer used for the rocket propellant as a combustion accelerator, which is difficult in the commercialization step.

이에 본 발명의 발명자들은 상업화 단계에 적용할 수 있는 새로운 페로신 (ferrocene) 유도체로 4-ferrocenyl butanoic acid를 사용할 수 있음을 확인하고, 이를 안전하고 효율적으로 대량합성 공정에 적용할 수 있는 제조방법을 제공하고자 한다.Accordingly, the inventors of the present invention have confirmed that 4-ferrocenyl butanoic acid can be used as a new ferrocene derivative applicable to the commercialization stage, and that a method of production that can be safely and efficiently applied to mass synthesis processes Want to provide.

종래 4-ferrocenyl butanoic acid의 제조방법과 관련하여 주로 사용되는 Zn amalgam은 Hg과 Zn 합금을 만들어서 사용해야 하는 단점이 있다. 수은을 포함하는 Zn amalgam 합금은 제조 및 취급이 어렵고, 독성이 있는 수은 부산물이 생성될 수 있어 대량생산 공정에는 적용이 어려운 문제점이 있다.(J. Am. Chem. Soc., 1957, 79, 3420-3424; Dalton Trans., 2017, 46, 10847; Appl. Organometal. Chem. 2016, 30, 524-530; Adv. Synth. Catal. 2015, 357, 3453-3457)Zn amalgam, which is mainly used in connection with the conventional method of producing 4-ferrocenyl butanoic acid, has a disadvantage of using Hg and Zn alloys. Zn amalgam alloys containing mercury are difficult to manufacture and handle, and toxic mercury byproducts can be produced, making it difficult to apply to mass production processes.(J. Am. Chem. Soc., 1957, 79, 3420 -3424; Dalton Trans., 2017, 46, 10847; Appl. Organometal.Chem. 2016, 30, 524-530; Adv. Synth. Catal. 2015, 357, 3453-3457)

따라서, 본 발명이 해결하고자 하는 과제는 로켓 추진체의 성능을 향상시킬 수 있으며, 상업화 단계에 적용할 수 있는 새로운 페로신 (ferrocene) 유도체인 4-ferrocenyl butanoic acid를 안전하고 효율적으로 대량합성 공정에 적용할 수 있는 신규한 제조방법을 제공하고 한다.Therefore, the problem to be solved by the present invention is to improve the performance of a rocket propellant, and to apply a new ferrocene (ferrocene) derivative, 4-ferrocenyl butanoic acid, which can be applied to the commercialization stage, safely and efficiently in a mass synthesis process. Provides a new manufacturing method that can be done.

본 발명은 상기 과제를 해결하기 위하여, 하기 [반응식 A]에 따라 하기 화학식 [2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신 ((tetrahydro-5-oxo-2-furanyl)-ferrocene)을 포름산 (formic acid) 및 물과 반응시켜 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 제조방법을 제공한다.In order to solve the above problems, the present invention, (tetrahydro-5-oxo-2-furanyl)-ferrosine ((tetrahydro-5-oxo-2) represented by the following formula [2] according to the following [Scheme A] -Furanyl)-ferrocene is reacted with formic acid and water to provide a method for producing 4-ferrocenyl butanoic acid represented by the following formula [3].

[반응식 A][Scheme A]

Figure 112018121186080-pat00001
Figure 112018121186080-pat00001

또한, 상기 화학식 [2]는 하기 [반응식 B]에 따라 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드 (3-Ferrocenoyl propionic acid)를 수소화붕소나트륨 (sodium borohydride)와 반응시켜 하기 화학식 [2]를 제조하는 것을 특징으로 한다.In addition, the above formula [2] is reacted with sodium borohydride by reacting 3-ferrocenyl propionic acid represented by the following formula [1] according to the following [Reaction Scheme B] with sodium borohydride. [2] is characterized by manufacturing.

[반응식 B][Scheme B]

Figure 112018121186080-pat00002
Figure 112018121186080-pat00002

본 발명의 일 실시예에 의하면, 상기 [반응식 A]는 Pd/C (탄소 담지 팔라듐)을 촉매 하에서 반응이 수행되는 것일 수 있다.According to an embodiment of the present invention, [Scheme A] may be a Pd/C (carbon-supported palladium) reaction is performed under a catalyst.

본 발명의 일 실시예에 의하면, 상기 [반응식 A]에서 화학식 [2]는 용액 상태에서 포름산 및 물과 반응하는 것일 수 있다.According to an embodiment of the present invention, the formula [2] in [Scheme A] may be reacted with formic acid and water in a solution state.

본 발명의 일 실시예에 의하면, 상기 [반응식 B]에서 화학식 [1]은 용액 상태에서 수소화붕소나트륨과 반응하는 것일 수 있다.According to an embodiment of the present invention, the formula [1] in [Scheme B] may be reacted with sodium borohydride in a solution state.

또한, 본 발명은 하기 [반응식 C]에 따라 하기 단계를 포함하여 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 제조방법을 제공한다.In addition, the present invention provides a method for producing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) represented by the following formula [3], including the following steps according to the following [Scheme C].

(ⅰ) 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드를 포함하는 용액을 수소화붕소나트륨과 반응시키는 단계,(Iv) reacting a solution containing 3-ferrocenyl propionic acid represented by the following formula [1] with sodium borohydride,

(ⅱ) 상기 반응 후에 용매를 제거하고 포름산 및 물과 반응키는 단계.(Ii) removing the solvent after the reaction and reacting with formic acid and water.

[반응식 C][Scheme C]

Figure 112018121186080-pat00003
Figure 112018121186080-pat00003

본 발명의 일 실시예에 의하면, 상기 (ⅱ) 단계는 Pd/C (탄소 담지 팔라듐)을 촉매 하에서 반응이 수행되는 것일 수 있다.According to one embodiment of the present invention, the step (ii) may be that the reaction is performed under Pd/C (carbon-supported palladium) catalyst.

또한, 본 발명은 하기 [반응식 D]에 따라 하기 화학식 [2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신을 불화칼륨 (KF) 용액, 클로로벤젠 (chlorobenzene) 및 폴리메틸하이드로실록산 (PMHS)과 반응시켜 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 제조방법을 제공한다.In addition, the present invention is a solution of (tetrahydro-5-oxo-2-furanyl)-ferrosine represented by the following formula [2] according to the following [Scheme D], potassium fluoride (KF) solution, chlorobenzene and poly It provides a method for preparing 4-ferrocenyl butanoic acid represented by the following formula [3] by reacting with methylhydrosiloxane (PMHS).

[반응식 D][Scheme D]

Figure 112018121186080-pat00004
Figure 112018121186080-pat00004

한편, 상기 화학식 [2]는 하기 [반응식 B]에 따라 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드를 수소화붕소나트륨 (sodium borohydride)와 반응시켜 하기 화학식 [2]를 제조하는 것을 특징으로 한다.On the other hand, the formula [2] is to prepare the following formula [2] by reacting 3-ferrocenyl propionic acid represented by the following formula [1] with sodium borohydride according to the following reaction scheme B It is characterized by.

[반응식 E][Scheme E]

Figure 112018121186080-pat00005
Figure 112018121186080-pat00005

본 발명의 일 실시예에 의하면, 상기 [반응식 D]는 팔라듐아세테이트 (Pd(OAc)2) 촉매 하에서 반응이 수행되는 것일 수 있다.According to an embodiment of the present invention, [Scheme D] may be that the reaction is performed under a palladium acetate (Pd(OAc) 2 ) catalyst.

본 발명의 일 실시예에 의하면, 상기 [반응식 D]에서 상기 화학식 [2]는 용액 상태에서 불화칼륨 용액, 클로로벤젠 및 폴리메틸하이드로실록산과 반응하는 것일 수 있다.According to an embodiment of the present invention, the formula [2] in [Reaction Scheme D] may be reacted with a potassium fluoride solution, chlorobenzene and polymethylhydrosiloxane in a solution state.

본 발명의 일 실시예에 의하면, 상기 [반응식 E]에서 상기 화학식 [1]은 용액 상태에서 수소화붕소나트륨과 반응하는 것일 수 있다.According to an embodiment of the present invention, in [Scheme E], the formula [1] may be reacted with sodium borohydride in a solution state.

본 발명에 따르면 온화하고 반응 안정성이 우수한 환원제인 수소화붕소나트륨을 이용하여 합성하고, 취급이 손쉬운 시약을 사용하여 합성하기 때문에 4-ferrocenyl butanoic acid의 합성 반응이 안정적이며 합성 과정에서의 안전성을 도모할 수 있으며, 공정 효율성이 우수하고 대량으로 4-ferrocenyl butanoic acid의 합성이 가능하여 상업화를 거둘 수 있다. 또한, 4-ferrocenyl butanoic acid는 생물학적 활성을 띄는 ferrocenyl-podophyllotoxin conjugates의 합성 연구에도 유용하게 활용할 수 있다.According to the present invention, the synthesis reaction of 4-ferrocenyl butanoic acid is stable because it is synthesized using sodium borohydride, a reducing agent that is mild and has excellent reaction stability, and is easy to handle. It has excellent process efficiency and can synthesize 4-ferrocenyl butanoic acid in large quantities to achieve commercialization. In addition, 4-ferrocenyl butanoic acid can be useful in the synthesis of ferrocenyl-podophyllotoxin conjugates, which are biologically active.

도 1은 본 발명의 일 실시예에 따라 제조된 [화학식 2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신 ((tetrahydro-5-oxo-2-furanyl)-ferrocene)의 1H NMR 스펙트럼이다.
도 2는 본 발명의 일 실시예에 따라 제조된 [화학식 2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신 ((tetrahydro-5-oxo-2-furanyl)-ferrocene)의 13C NMR 스펙트럼이다.
도 3은 본 발명의 일 실시예에 따라 제조된 [화학식 3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 1H NMR 스펙트럼이다.
도 4는 본 발명의 일 실시예에 따라 제조된 [화학식 3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 13C NMR 스펙트럼이다.
도 5는 본 발명의 일 실시예에 따른 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 합성 반응도이다.
도 6은 본 발명의 일 실시예에 따른 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 합성 반응도이다.
도 7은 본 발명의 일 실시예에 따른 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)의 합성 반응도이다.
1 is (tetrahydro-5-oxo-2-furanyl)-ferrosine ((tetrahydro-5-oxo-2-furanyl)-ferrocene represented by [Formula 2] prepared according to an embodiment of the present invention ) 1 H NMR spectrum.
2 is (tetrahydro-5-oxo-2-furanyl)-ferrosine ((tetrahydro-5-oxo-2-furanyl)-ferrocene represented by [Formula 2] prepared according to an embodiment of the present invention ) 13 C NMR spectrum.
3 is a 1 H NMR spectrum of 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) represented by [Formula 3] prepared according to an embodiment of the present invention.
4 is a 13 C NMR spectrum of 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) represented by [Formula 3] prepared according to an embodiment of the present invention.
5 is a synthetic reaction diagram of 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) according to an embodiment of the present invention.
6 is a synthetic reaction diagram of 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) according to an embodiment of the present invention.
7 is a synthetic reaction diagram of 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid) according to an embodiment of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as limited by these examples. Therefore, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

합성예 1 : 4-ferrocenyl butanoic acid의 제조Synthesis Example 1: Preparation of 4-ferrocenyl butanoic acid

[반응식 1][Scheme 1]

Figure 112018121186080-pat00006
Figure 112018121186080-pat00006

(1) [화학식 2] (tetrahydro-5-oxo-2-furanyl)-ferrocene의 제조(1) [Formula 2] Preparation of (tetrahydro-5-oxo-2-furanyl)-ferrocene

상기 [반응식 1]에 따라 하기와 같은 방법으로 [화학식 2]로 표시되는 (tetrahydro-5-oxo-2-furanyl)-ferrocene을 제조하였다.(Tetrahydro-5-oxo-2-furanyl)-ferrocene represented by [Chemical Formula 2] was prepared in the following manner according to [Scheme 1].

[화학식 1] (3-Ferrocenoyl propionic acid) 1.43 g을 에탄올 20 mL에 넣고 교반하고, 0 ℃ ice bath에서 3-ferrocenoyl propionic acid가 용해된 에탄올에 수소화붕소나트륨 (NaBH4) 0.996 g을 10분 동안 천천히 첨가하고, 수소 기체의 발생이 종료되면 ice bath를 제거하였다. 혼합물을 60 ℃에서 5 시간 동안 교반하며 TLC를 측정하고, TLC 측정 결과 반응 종료가 확인되면 conc. HCl로 pH를 1로 맞추고, 에탄올을 증발시켜 제거하고 메탄올 20 mL를 첨가하여 증발시켰다. 메탄올을 증발시켜 제거한 후, methylene chloride 50 mL에 충분히 녹인 후 brine solution 20 mL를 첨가하여 혼합용액을 제조하였다. 분별 깔대기를 이용하여 상기 혼합용액에서 methylene chloride 50 mL를 첨가하고 추출하는 과정을 물 층에 생성물이 남아있지 않을 때까지 추출하였다 (50 mL × 3 회). 추출된 methylene chloride 용액에 MgSO4를 첨가하여 수분을 제거한 뒤, 감압 여과하고 methylene chloride를 증발시켜 제거하였다. 주황색의 고체 생성물을 methylene chloride 1 mL에 녹여 silica pad 위에 도포한 후 hexane과 ethyl acetate(2:1, v/v) 혼합용액으로 주황색 띠가 내려올 때까지 흘려주고, 얻어진 용액의 유기용매를 증발시켜 제거한 뒤 진공 건조 후 주황색을 띄는 목적 화합물인 [화학식 2] ((tetrahydro-5-oxo-2-furanyl)-ferrocene) 1.32 g (yield 98%)을 얻었다.1.43 g of (3-Ferrocenoyl propionic acid) was added to 20 mL of ethanol and stirred, and 0.996 g of sodium borohydride (NaBH 4 ) in ethanol with 3-ferrocenoyl propionic acid dissolved in 0°C ice bath for 10 minutes. It was added slowly, and when the generation of hydrogen gas was completed, the ice bath was removed. The mixture was stirred at 60° C. for 5 hours to measure TLC, and when the reaction was confirmed as a result of TLC measurement, conc. The pH was adjusted to 1 with HCl, ethanol was removed by evaporation, and 20 mL of methanol was added to evaporate. After removing the methanol by evaporation, it was sufficiently dissolved in 50 mL of methylene chloride, and then 20 mL of a brine solution was added to prepare a mixed solution. 50 mL of methylene chloride was added from the mixed solution using a separatory funnel and extracted until no product remained in the water layer (50 mL × 3 times). MgSO 4 was added to the extracted methylene chloride solution to remove moisture, followed by filtration under reduced pressure and removal of methylene chloride by evaporation. Dissolve the orange solid product in 1 mL of methylene chloride, apply it on silica pad, and pour it with a mixture of hexane and ethyl acetate (2:1, v/v) until the orange band descends, and evaporate the organic solvent of the obtained solution. After removal, vacuum drying followed to obtain 1.32 g (yield 98%) of the target compound that is orange in color ((tetrahydro-5-oxo-2-furanyl)-ferrocene).

1H NMR (400MHz, CDCl3): δ 5.340-5.304 (m, 1H), 4.226-4.185 (m, 9H), 2.677-2.502 (m, 3H), 2.290-2.189 (m, 1H). 1 H NMR (400 MHz, CDCl 3 ): δ 5.340-5.304 (m, 1H), 4.226-4.185 (m, 9H), 2.677-2.502 (m, 3H), 2.290-2.189 (m, 1H).

13C NMR (100MHz, CDCl3): δ176.906, 85.451, 79.217, 68.703, 68.641, 67.378, 66.184, 29.271, 29.020 13 C NMR (100 MHz, CDCl 3 ): δ176.906, 85.451, 79.217, 68.703, 68.641, 67.378, 66.184, 29.271, 29.020

(2) [화학식 3] 4-ferrocenyl butanoic acid의 제조(2) [Formula 3] Preparation of 4-ferrocenyl butanoic acid

상기 [반응식 1]에 따라 하기와 같은 방법으로 [화학식 3]로 표시되는 4-ferrocenyl butanoic acid를 제조하였다.According to [Scheme 1], 4-ferrocenyl butanoic acid represented by [Chemical Formula 3] was prepared in the following manner.

반응 플라스크에 Pd/C 0.053 g을 넣고 물 1 mL를 넣고, Pd/C 용액에 에탄올 5 mL와 [화학식 2] (tetrahydro-5-oxo-2-furanyl)-ferrocene 0.27 g 넣고 교반한하고, 혼합물에 formic acid 1 mL를 넣고 80 ℃로 4 시간 동안 교반해 주며 TLC로 반응을 체크하였다. 반응이 끝난 후, 필터하여 Pd/C을 제거한 후 유기용매를 증발시켰다. 혼합물을 methylene chloride 50 mL에 충분히 녹인 후 brine solution 10 mL를 첨가하여 혼합용액을 제조하였다. 이때 pH가 1인지 확인 후 아닐 경우에는 HCl로 맞춰주었다. 분별 깔대기를 이용하여 상기 혼합 용액에 methylene chloride 50 mL를 첨가하고 추출하는 과정을 물 층에 생성물이 남아있지 않을 때까지 추출하였다 (50 mL × 5 회). 추출된 methylene chloride 용액에 MgSO4를 첨가하여 수분을 제거한 뒤, 감압 여과하고 methylene chloride를 증발시켜 제거하였다. 주황색의 고체 생성물을 methylene chloride 1 mL에 녹여 silica pad 위에 도포한 후 hexane과 ethyl acetate(4:1, v/v) 혼합용액으로 주황색 띠가 내려올 때까지 흘려주고, 얻어진 용액의 유기용매를 증발시켜 제거한 뒤 진공 건조 후 주황색을 띄는 목적 화합물인 [화학식 3] (4-ferrocenyl butanoic acid) 0.24 g (yield 89%)을 얻었다.0.053 g of Pd/C was added to the reaction flask, 1 mL of water was added, and 5 mL of ethanol and 0.27 g of (tetrahydro-5-oxo-2-furanyl)-ferrocene were added to the Pd/C solution, followed by stirring. 1 mL of formic acid was added and stirred at 80° C. for 4 hours, and the reaction was checked by TLC. After the reaction was completed, the organic solvent was evaporated after filtering to remove Pd/C. After the mixture was sufficiently dissolved in 50 mL of methylene chloride, a mixed solution was prepared by adding 10 mL of brine solution. At this time, after checking whether the pH was 1, if not, it was adjusted with HCl. Using a separatory funnel, 50 mL of methylene chloride was added to the mixed solution and extraction was performed until no product remained in the water layer (50 mL × 5 times). MgSO 4 was added to the extracted methylene chloride solution to remove moisture, followed by filtration under reduced pressure and removal of methylene chloride by evaporation. After dissolving the orange solid product in 1 mL of methylene chloride and applying it on silica pad, hexane and ethyl acetate (4: 1, v/v) mixed solution flows until the orange band is lowered, and the organic solvent of the obtained solution is evaporated. After removal, 0.24 g (yield 89%) of a target compound that was orange after vacuum drying (4-ferrocenyl butanoic acid) was obtained.

1H NMR (400MHz, DMSO-d6): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H) 1 H NMR (400MHz, DMSO-d 6 ): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H)

13C NMR (100MHz, DMSO-d6): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145. 13 C NMR (100 MHz, DMSO-d 6 ): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145.

합성예 2 : 4-ferrocenyl butanoic acid의 제조Synthesis Example 2: Preparation of 4-ferrocenyl butanoic acid

[반응식 2][Scheme 2]

Figure 112018121186080-pat00007
Figure 112018121186080-pat00007

상기 [반응식 2]에 따라 하기와 같은 방법으로 [화학식 3]로 표시되는 4-ferrocenyl butanoic acid를 제조하였다.According to [Scheme 2], 4-ferrocenyl butanoic acid represented by [Chemical Formula 3] was prepared as follows.

[화학식 1] 3-Ferrocenoyl propionic acid 1.43 g을 에탄올 20 mL에 넣고 교반한 후에, 0 ℃ ice bath에서 3-ferrocenoyl propionic acid가 용해된 에탄올에 수소화붕소나트륨 (NaBH4) 0.996 g을 10분 동안 천천히 첨가하고, 수소 기체의 발생이 종료되면 ice bath를 제거하고, 혼합물을 60 ℃에서 5시간 동안 교반하며 TLC를 측정하였다. TLC 측정 결과 반응의 종료가 확인되면 에탄올을 증발시켜 제거하고, 용매를 제거한 혼합물을 formic acid 20 mL에 용해시켰다. Pd/C과 물 1mL 혼합물을 formic acid 혼합물에 넣고, 60 ℃에서 4 시간 동안 교반해주며 TLC로 반응을 체크하였다. 반응이 끝난 후, 필터하여 Pd/C을 제거한 후 유기용매를 증발시켰다. 혼합물을 methylene chloride 100 mL에 충분히 녹인 후 brine solution 20 mL를 첨가하여 혼합용액을 제조하고, 분별 깔대기를 이용하여 상기 혼합 용액에서 methylene chloride 100mL를 첨가하고 추출하는 과정을 물 층에 생성물이 남아있지 않을 때까지 추출하였다 (50 mL × 5 회). 추출된 methylene chloride 용액에 MgSO4를 첨가하여 수분을 제거한 뒤, 감압 여과하고 methylene chloride를 증발시켜 제거하였다. 주황색의 고체 생성물을 methylene chloride 2 mL에 녹여 silica pad 위에 도포한 후 hexane과 ethyl acetate(4:1, v/v) 혼합 용액으로 주황색 띠가 내려올 때까지 흘려주고, 얻어진 용액의 유기용매를 증발시켜 제거한 뒤 진공 건조 후 주황색을 띄는 목적 화합물인 [화학식 3] 4-ferrocenyl butanoic acid 1.22 g (yield 90%)을 얻었다.After adding 1.43 g of 3-Ferrocenoyl propionic acid to 20 mL of ethanol and stirring, 0.996 g of sodium borohydride (NaBH 4 ) in ethanol dissolved with 3-ferrocenoyl propionic acid in 0°C ice bath was slowly added for 10 minutes. When the addition, hydrogen gas generation was completed, the ice bath was removed, and the mixture was stirred at 60° C. for 5 hours, and TLC was measured. When the completion of the reaction was confirmed as a result of TLC measurement, ethanol was removed by evaporation, and the mixture from which the solvent was removed was dissolved in 20 mL of formic acid. The mixture of Pd/C and 1 mL of water was added to the formic acid mixture, stirred at 60° C. for 4 hours, and the reaction was checked by TLC. After the reaction was completed, the organic solvent was evaporated after filtering to remove Pd/C. After the mixture was sufficiently dissolved in 100 mL of methylene chloride, 20 mL of the brine solution was added to prepare a mixed solution, and the process of adding and extracting 100 mL of methylene chloride from the mixed solution using a separatory funnel did not leave any product in the water layer. Extracted until (50 mL × 5 times). MgSO 4 was added to the extracted methylene chloride solution to remove moisture, followed by filtration under reduced pressure and removal of methylene chloride by evaporation. After dissolving the orange solid product in 2 mL of methylene chloride and applying it on silica pad, hexane and ethyl acetate (4:1, v/v) mixed solution flows until the orange bands descend, and the organic solvent of the obtained solution is evaporated. After removal, vacuum drying followed to obtain 1.22 g (yield 90%) of 4-ferrocenyl butanoic acid, which is the target compound that exhibits an orange color.

1H NMR (400MHz, DMSO-d6): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H) 1 H NMR (400MHz, DMSO-d 6 ): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H)

13C NMR (100MHz, DMSO-d6): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145. 13 C NMR (100 MHz, DMSO-d 6 ): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145.

합성예 3 : 4-ferrocenyl butanoic acid의 제조Synthesis Example 3: Preparation of 4-ferrocenyl butanoic acid

[반응식 3][Scheme 3]

Figure 112018121186080-pat00008
Figure 112018121186080-pat00008

(1) [화학식 2] (tetrahydro-5-oxo-2-furanyl)-ferrocene의 제조(1) [Formula 2] Preparation of (tetrahydro-5-oxo-2-furanyl)-ferrocene

상기 [반응식 3]에 따라 하기와 같은 방법으로 [화학식 2]로 표시되는 (tetrahydro-5-oxo-2-furanyl)-ferrocene을 제조하였다.(Tetrahydro-5-oxo-2-furanyl)-ferrocene represented by [Chemical Formula 2] was prepared in the following manner according to [Scheme 3].

[화학식 1] 3-Ferrocenoyl propionic acid 1.43 g을 에탄올 20 mL에 넣고 교반한 후에, 0 ℃ ice bath에서 3-ferrocenoyl propionic acid가 용해된 에탄올에 수소화붕소나트륨 (NaBH4) 0.996 g을 10분 동안 천천히 첨가하고, 수소 기체의 발생이 종료되면 ice bath를 제거하고, 혼합물을 60 ℃에서 5시간 동안 교반하며 TLC를 측정하였다. TLC 측정 결과 반응 종료가 확인되면 conc. HCl로 pH를 1로 맞추고, 에탄올을 증발시켜 제거하고 메탄올 20 mL를 첨가하여 증발시켰다. 메탄올을 증발시켜 제거한 후, methylene chloride 50 mL에 충분히 녹인 후 brine solution 20 mL를 첨가하여 혼합용액을 제조하였다. 분별 깔대기를 이용하여 상기 혼합용액에서 methylene chloride 50 mL를 첨가하고 추출하는 과정을 물 층에 생성물이 남아있지 않을 때까지 추출하였다 (50 mL × 3 회). 추출된 methylene chloride 용액에 MgSO4를 첨가하여 수분을 제거한 뒤, 감압 여과하고 methylene chloride를 증발시켜 제거하였다. 주황색의 고체생성물을 methylene chloride 1mL에 녹여 silica pad 위에 도포한 후 hexane과 ethyl acetate(2:1, v/v) 혼합용액으로 주황색 띠가 내려올 때까지 흘려주고, 얻어진 용액의 유기용매를 증발시켜 제거한 뒤 진공 건조 후 주황색을 띄는 목적 화합물인 [화학식 2] ((tetrahydro-5-oxo-2-furanyl)-ferrocene) 1.32 g (yield 98%)을 얻었다.After adding 1.43 g of 3-Ferrocenoyl propionic acid to 20 mL of ethanol and stirring, 0 C. In the ice bath, 0.996 g of sodium borohydride (NaBH 4 ) was slowly added to ethanol dissolved with 3-ferrocenoyl propionic acid for 10 minutes, and when the generation of hydrogen gas was completed, the ice bath was removed and the mixture was removed. TLC was measured while stirring at ℃ for 5 hours. When the reaction was confirmed as a result of TLC measurement, conc. The pH was adjusted to 1 with HCl, ethanol was removed by evaporation, and 20 mL of methanol was added to evaporate. After removing the methanol by evaporation, it was sufficiently dissolved in 50 mL of methylene chloride, and then 20 mL of a brine solution was added to prepare a mixed solution. 50 mL of methylene chloride was added from the mixed solution using a separatory funnel and extracted until no product remained in the water layer (50 mL × 3 times). MgSO 4 was added to the extracted methylene chloride solution to remove moisture, followed by filtration under reduced pressure and removal of methylene chloride by evaporation. After dissolving the orange solid product in 1 mL of methylene chloride and applying it onto the silica pad, hexane and ethyl acetate (2:1, v/v) mixed solution flowed until the orange band descended, and the organic solvent of the obtained solution was evaporated and removed. After vacuum drying, 1.32 g (yield 98%) of the target compound ((tetrahydro-5-oxo-2-furanyl)-ferrocene), which was orange in color, was obtained.

1H NMR (400MHz, CDCl3): δ 5.340-5.304 (m, 1H), 4.226-4.185 (m, 9H), 2.677-2.502 (m, 3H), 2.290-2.189 (m, 1H). 1 H NMR (400 MHz, CDCl 3 ): δ 5.340-5.304 (m, 1H), 4.226-4.185 (m, 9H), 2.677-2.502 (m, 3H), 2.290-2.189 (m, 1H).

13C NMR (100MHz, CDCl3): δ176.906, 85.451, 79.217, 68.703, 68.641, 67.378, 66.184, 29.271, 29.020 13 C NMR (100 MHz, CDCl 3 ): δ176.906, 85.451, 79.217, 68.703, 68.641, 67.378, 66.184, 29.271, 29.020

(2) [화학식 3] 4-ferrocenyl butanoic acid의 제조(2) [Formula 3] Preparation of 4-ferrocenyl butanoic acid

상기 [반응식 3]에 따라 하기와 같은 방법으로 [화학식 3]으로 표시되는 4-ferrocenyl butanoic acid 을 제조하였다.According to [Scheme 3], 4-ferrocenyl butanoic acid represented by [Chemical Formula 3] was prepared in the following manner.

[화학식 2] (tetrahydro-5-oxo-2-furanyl)-ferrocene 0.27 g을 THF 5 mL에 용해시키고, (Tetrahydro-5-oxo-2-furanyl)-ferrocene이 용해된 THF에 Pd(OAc)2 0.0112 g을 첨가한 뒤, 2 M KF 용액 0.116 g과 chlorobenzene 0.01 mL를 차례대로 첨가하고, PMHS 0.09 mL을 천천히 첨가하고, 상온에서 1시간 동안 반응시킨다. 반응이 종료된 뒤, diehtyl ether 10 mL를 반응혼합물에 넣고 층분리가 되면 분별 깔대기를 이용하여 혼합용액에서 ether층을 추출한다 (10 mL ether × 3 회). 추출된 ether 용액에 MgSO4를 첨가하여 수분을 제거한 뒤, 감압 여과하고, ether를 증발시켜 제거하였다. 얻어진 주황색 고체 생성물을 컬럼크로마토그래피로 분리하여 반응 생성물인 [화학식 3] 4-ferrocenyl butanoic acid 0.24 g (yield 88%)을 제조하였다.0.27 g of (tetrahydro-5-oxo-2-furanyl)-ferrocene was dissolved in 5 mL of THF, and Pd(OAc) 2 was dissolved in THF in which (Tetrahydro-5-oxo-2-furanyl)-ferrocene was dissolved. After adding 0.0112 g, 0.116 g of 2 M KF solution and 0.01 mL of chlorobenzene are sequentially added, and 0.09 mL of PMHS is slowly added, and the mixture is reacted at room temperature for 1 hour. After the reaction is completed, 10 mL of diehtyl ether is added to the reaction mixture, and when the layer is separated, the ether layer is extracted from the mixed solution using a separatory funnel (10 mL ether × 3 times). MgSO 4 was added to the extracted ether solution to remove moisture, followed by filtration under reduced pressure and ether removal by evaporation. The obtained orange solid product was separated by column chromatography to prepare 0.24 g (yield 88%) of 4-ferrocenyl butanoic acid as a reaction product.

1H NMR (400MHz, DMSO-d6): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H) 1 H NMR (400MHz, DMSO-d 6 ): δ 12.044 (s, 1H), 4.121-4.049 (m, 9H), 2.322-2.227 (m, 4H), 1.732-1.701 (m, 2H)

13C NMR (100MHz, DMSO-d6): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145. 13 C NMR (100 MHz, DMSO-d 6 ): δ174.854, 88.653, 68.739, 68.153, 67.337, 33.866, 28.750, 26.145.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당 업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시예일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Since the specific parts of the present invention have been described in detail above, it will be apparent to those skilled in the art that this specific technique is only a preferred embodiment, whereby the scope of the present invention is not limited. will be. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (12)

Pd/C (탄소 담지 팔라듐) 촉매하에서, 하기 [반응식 A]에 따라 하기 화학식 [2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신 ((tetrahydro-5-oxo-2-furanyl)-ferrocene)을 포름산 (formic acid) 및 물과 반응시켜 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법:
[반응식 A]
Figure 112020032865561-pat00009
.
(Tetrahydro-5-oxo-2-furanyl)-ferrosine ((tetrahydro-5-oxo-) represented by the following formula [2] according to the following [Scheme A] under Pd/C (carbon-supported palladium) catalyst Method of preparing 4-ferrocenyl butanoic acid represented by the following formula [3] by reacting 2-furanyl)-ferrocene with formic acid and water:
[Scheme A]
Figure 112020032865561-pat00009
.
삭제delete 제1항에 있어서,
상기 화학식 [2]는 용액 상태에서 포름산 및 물과 반응하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법.
According to claim 1,
The formula [2] is a method for preparing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid), characterized in that it reacts with formic acid and water in solution.
제1항에 있어서,
상기 화학식 [2]는 하기 [반응식 B]에 따라 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드 (3-Ferrocenoyl propionic acid)를 수소화붕소나트륨 (sodium borohydride)와 반응시켜 하기 화학식 [2]를 제조하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법:
[반응식 B]
Figure 112020032865561-pat00010
According to claim 1,
In the above formula [2], 3-ferrocenyl propionic acid represented by the following formula [1] according to [Scheme B] is reacted with sodium borohydride to form the following formula [2] Method for producing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid), characterized in that to prepare:
[Scheme B]
Figure 112020032865561-pat00010
제4항에 있어서,
상기 화학식 [1]은 용액 상태에서 수소화붕소나트륨과 반응하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법.
The method of claim 4,
The formula [1] is a method for producing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid), characterized in that it reacts with sodium borohydride in solution.
하기 [반응식 C]에 따라 하기 단계를 포함하여 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법:
(ⅰ) 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드를 포함하는 용액을 수소화붕소나트륨과 반응시키는 단계,
(ⅱ) 상기 반응 후에 용매를 제거하고, Pd/C (탄소 담지 팔라듐) 촉매하에서 포름산 및 물과 반응시키는 단계,
[반응식 C]
Figure 112020032865561-pat00011
.
Method for preparing 4-ferrocenyl butanoic acid represented by the following formula [3], including the following steps according to the following [Reaction Scheme C]:
(Iv) reacting a solution containing 3-ferrocenyl propionic acid represented by the following formula [1] with sodium borohydride,
(Ii) removing the solvent after the reaction, and reacting with formic acid and water under a Pd/C (carbon-supported palladium) catalyst,
[Scheme C]
Figure 112020032865561-pat00011
.
삭제delete 팔라듐아세테이트 (Pd(OAc)2) 촉매하에서, 하기 [반응식 D]에 따라 하기 화학식 [2]로 표시되는 (테트라하이드로-5-옥소-2-퓨라닐)-페로신을 불화칼륨 (KF) 용액, 클로로벤젠 (chlorobenzene) 및 폴리메틸하이드로실록산 (PMHS)과 반응시켜 하기 화학식 [3]으로 표시되는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법:
[반응식 D]
Figure 112020032865561-pat00012
.
Potassium fluoride (KF) solution of (tetrahydro-5-oxo-2-furanyl)-ferrosine represented by the following formula [2] according to the following [Scheme D] under palladium acetate (Pd(OAc) 2 ) catalyst, Method for preparing 4-ferrocenyl butanoic acid represented by the following formula [3] by reacting with chlorobenzene and polymethylhydrosiloxane (PMHS):
[Scheme D]
Figure 112020032865561-pat00012
.
삭제delete 제8항에 있어서,
상기 화학식 [2]는 용액 상태에서 불화칼륨 용액, 클로로벤젠 및 폴리메틸하이드로실록산과 반응하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법.
The method of claim 8,
The formula [2] is a method for producing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid), characterized in that it reacts with a potassium fluoride solution, chlorobenzene and polymethylhydrosiloxane in solution.
제8항에 있어서,
상기 화학식 [2]는 하기 [반응식 E]에 따라 하기 화학식 [1]로 표시되는 3-페로세닐 프로피오닉 엑시드를 수소화붕소나트륨 (sodium borohydride)와 반응시켜 하기 화학식 [2]를 제조하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법:
[반응식 E]
Figure 112020032865561-pat00013
.
The method of claim 8,
The formula [2] is characterized by preparing the following formula [2] by reacting 3-ferrocenyl propionic acid represented by the following formula [1] with sodium borohydride according to the following reaction scheme E Method for preparing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid):
[Reaction Scheme E]
Figure 112020032865561-pat00013
.
제11항에 있어서,
상기 화학식 [1]은 용액 상태에서 수소화붕소나트륨과 반응하는 것을 특징으로 하는 4-페로세닐 부타노익 엑시드 (4-ferrocenyl butanoic acid)를 제조하는 방법.
The method of claim 11,
The formula [1] is a method for producing 4-ferrocenyl butanoic acid (4-ferrocenyl butanoic acid), characterized in that it reacts with sodium borohydride in solution.
KR1020180154177A 2018-12-04 2018-12-04 Method of synthesis of ferrocene derivatives KR102125041B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180154177A KR102125041B1 (en) 2018-12-04 2018-12-04 Method of synthesis of ferrocene derivatives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180154177A KR102125041B1 (en) 2018-12-04 2018-12-04 Method of synthesis of ferrocene derivatives

Publications (2)

Publication Number Publication Date
KR20200067384A KR20200067384A (en) 2020-06-12
KR102125041B1 true KR102125041B1 (en) 2020-06-19

Family

ID=71088418

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180154177A KR102125041B1 (en) 2018-12-04 2018-12-04 Method of synthesis of ferrocene derivatives

Country Status (1)

Country Link
KR (1) KR102125041B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106831389A (en) 2016-12-12 2017-06-13 中国科学技术大学 The preparation method of carboxylic acid compound
KR101853566B1 (en) 2016-11-14 2018-04-30 한양대학교 에리카산학협력단 Method of synthesis of ferrocene derivatives

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101853566B1 (en) 2016-11-14 2018-04-30 한양대학교 에리카산학협력단 Method of synthesis of ferrocene derivatives
CN106831389A (en) 2016-12-12 2017-06-13 中国科学技术大学 The preparation method of carboxylic acid compound

Also Published As

Publication number Publication date
KR20200067384A (en) 2020-06-12

Similar Documents

Publication Publication Date Title
KR20100102495A (en) Process for preparing prostaglandin derivatives
JP7109471B2 (en) Method for preparing deuterated ethanol from D2
CN114181191B (en) Synthesis method of cyclic sulfate
JP2015528434A (en) Method for producing trifluoromethyl-containing linear carbonate
CN104402834A (en) 1,4-disubstituted-1,2,3-triazole compound preparation method
JP3919128B2 (en) Method for producing butanetriol
EP3201171B1 (en) Method of preparing intermediate of salmeterol
KR102125041B1 (en) Method of synthesis of ferrocene derivatives
JP6225358B2 (en) Process for producing 2-amino substituted benzaldehyde compounds
JPH0639468B2 (en) Hydroquinone derivative
CN108715576B (en) Preparation method of 3-ethoxy-4-carboxyl phenylacetic acid
CN111018779B (en) 2- (3-isoquinolyl) -ethyl propionate derivative and synthetic method thereof
KR101853566B1 (en) Method of synthesis of ferrocene derivatives
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JP5574476B2 (en) Method for producing carbonate ester
CN110878025A (en) Method for reducing aromatic nitro compound into aromatic amine compound
CN112898244B (en) Method for synthesizing gamma-valerolactone
CN107915649B (en) Preparation method of 1- (Z-4-tert-butyl benzylidene) -4-tert-butylamine-1, 2,3, 4-tetrahydronaphthalene-2-alcohol
CN110128303B (en) Method for synthesizing musk extract (2R,5R) -Musclide-A1
CN111057031A (en) Preparation method of benzofuranone
JP4286694B2 (en) Novel Grignard reagent and method for producing aliphatic alkynyl Grignard compound using the same
CN117924140A (en) Preparation method of buvaracetam and intermediate thereof
JP5371545B2 (en) Method for producing naphthalene derivative
CN117682981A (en) Preparation method of gemagliptin prodrug
CN115583902A (en) Preparation method of alkynyl thioether compound

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant