KR102099013B1 - Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System - Google Patents

Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System Download PDF

Info

Publication number
KR102099013B1
KR102099013B1 KR1020180102404A KR20180102404A KR102099013B1 KR 102099013 B1 KR102099013 B1 KR 102099013B1 KR 1020180102404 A KR1020180102404 A KR 1020180102404A KR 20180102404 A KR20180102404 A KR 20180102404A KR 102099013 B1 KR102099013 B1 KR 102099013B1
Authority
KR
South Korea
Prior art keywords
pressure
power generation
bidding
low pressure
power
Prior art date
Application number
KR1020180102404A
Other languages
Korean (ko)
Other versions
KR20200025279A (en
Inventor
성현경
김문수
김문기
Original Assignee
한국서부발전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국서부발전 주식회사 filed Critical 한국서부발전 주식회사
Priority to KR1020180102404A priority Critical patent/KR102099013B1/en
Publication of KR20200025279A publication Critical patent/KR20200025279A/en
Application granted granted Critical
Publication of KR102099013B1 publication Critical patent/KR102099013B1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

본 발명의 다양한 실시예는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법에 관한 것으로, 해결하고자 하는 기술적 과제는 전력거래상 비제약 입찰 시행 및 자동발전제어 추종에 따라 열병합발전 시 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 제공하는데 있다.
이를 위해 본 발명은 재열중압 계통인 증기터빈과 저압열교환기 사이에 재열중압차단변 및 재열중압유량조절변이 직렬로 연결되고, 저압증기 계통인 증기터빈과 저압열교환기 사이에 저압차단변 및 저압유량조절변이 직렬로 연결된 열병합발전장치의 운전방법에 있어서, 전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계; 전력계통 출력요구신호 및 주파수에 대하여 발전장치를 추종 제어하는 자동발전제어 수행 단계; 및 발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계를 포함하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 개시한다.
Various embodiments of the present invention relate to a method of operating a cogeneration system following automatic power generation control based on non-constrained bidding in a power transaction system, and a technical problem to be solved is to pay for fuel costs during cogeneration in accordance with unconstrained bidding and automatic generation control following a power transaction It is to provide a method for operating a combined heat and power generation system following automatic power generation control based on non-constrained bidding in a power transaction system that can prevent losses and secure economics of heat supply due to a decrease in the unit price of heat supply.
To this end, the present invention is a reheat medium pressure blocking valve and a reheat medium pressure flow control valve connected in series between a steam turbine which is a reheat medium pressure system and a low pressure heat exchanger, and a low pressure blocking valve and low pressure flow rate between a steam turbine which is a low pressure steam system and a low pressure heat exchanger. A method for operating a cogeneration unit connected in series with a regulated side, comprising: a power transaction bidding (non-constrained bidding) in which a restriction reason is not entered when a power generation system is bidding in a power transaction system; Performing an automatic power generation control to follow-up the power generation device with respect to the power system output request signal and frequency; And a power generation system non-constrained bidding-based automatic generation control tracking cogeneration operation method comprising a step of changing the electric output of the power generation device in real time.

Description

전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법{Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System}Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System}

본 발명의 다양한 실시예는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법에 관한 것이다.Various embodiments of the present invention relate to a method for driving a combined heat and power generation system following automatic power generation control based on non-constrained bidding in a power transaction system.

서인천복합화력 열병합설비는 2013년 준공 후 현재까지 주로 겨울철 증기터빈에 유입되는 고압, 중압, 저압의 증기열 일부를 인출하여 지역난방 열교환기를 통해 지역의 수용가에 난방수를 공급하는 열병합발전을 시행하고 있다.Seoincheon Combined Heat and Power Co., Ltd. completed its construction in 2013 and is currently performing a combined heat and power plant to supply heating water to local customers through a district heating and heat exchanger by drawing out a part of the steam heat of high pressure, medium pressure, and low pressure that mainly flows into the steam turbine in winter. have.

그러나 기존의 열병합발전을 통한 열공급 방식은 정해진 양의 열인출을 위해서 사전에 제약입찰 후 운전 시 자동발전제어장치를 해제해야만 했다. 따라서 자동발전제어 해제에 따른 전력계통 추종성 저하, 전기출력 고정에 따른 전력판매 손실금 발생 및 열공급 단가 상승 등 경제성이 저하되는 문제점이 발생했으며 이에 전력계통 추종성 제고 및 열공급의 경제성 확보 목적의 개량 열방합발전 운전방법에 대한 필요성이 제기되었다.However, in the conventional heat supply method through cogeneration, the automatic power generation control device had to be released during operation after the pharmaceutical bidding in advance for a predetermined amount of heat extraction. Accordingly, there was a problem that economic efficiency was deteriorated, such as a decrease in power system follow-up due to the release of automatic power generation control, loss of electricity sales due to fixing of electrical output, and an increase in the price of heat supply. Accordingly, improved thermal power generation for the purpose of improving power system follow-up and securing economic feasibility of heat supply The need for a driving method was raised.

이러한 발명의 배경이 되는 기술에 개시된 상술한 정보는 본 발명의 배경에 대한 이해도를 향상시키기 위한 것뿐이며, 따라서 종래 기술을 구성하지 않는 정보를 포함할 수도 있다.The above-described information disclosed in the background of the present invention is only for improving the understanding of the background of the present invention, and thus may include information that does not constitute the prior art.

본 발명의 다양한 실시 예에 따른 해결하고자 하는 과제는 열병합발전 시 전력거래시스템 비제약 입찰 시행 및 전력거래소에서 운영하는 자동발전제어시스템에 대한 추종이 가능함에 따라 궁극적으로 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있는 '전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법'을 제공하는데 있다.The problem to be solved according to various embodiments of the present invention is to ultimately prevent fuel cost loss and at the same time heat supply cost, as it is possible to conduct non-constrained bidding of the power trading system during cogeneration and follow the automatic power generation control system operated by the power exchange. The aim is to provide a 'cooperative operation method for automatic power generation control based on non-constrained bidding based on a power transaction system' that can secure the economics of heat supply following a drop.

본 발명의 다양한 실시 예는 재열중압 계통인 증기터빈과 저압열교환기 사이에 재열중압차단변 및 재열중압유량조절변이 직렬로 연결되고, 저압증기 계통인 증기터빈과 저압열교환기 사이에 저압차단변 및 저압유량조절변이 직렬로 연결된 열병합 발전장치의 운전방법에 있어서, 전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계; 전력계통 출력요구신호 및 주파수에 대응하여 발전장치가 추종하도록 하는 자동발전제어 수행 단계; 및 발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계를 포함함을 특징으로 한다.In various embodiments of the present invention, a reheat medium pressure blocking valve and a reheat medium pressure flow control valve are connected in series between a steam turbine which is a reheat medium pressure system and a low pressure heat exchanger, and a low pressure block valve between a steam turbine which is a low pressure steam system and a low pressure heat exchanger. A method for operating a cogeneration system connected in series with a low-pressure flow control variable, the power transaction bidding (non-constrained bidding) step of not entering a restriction reason when bidding the power generation system in the power transaction system; An automatic power generation control step of causing the power generation device to follow in response to a power system output request signal and frequency; And it characterized in that it comprises a step of changing the electric power in real time to change the electric power of the power generation device in real time.

자동발전제어 수행 단계는 발전장치의 전기출력 제어가 콘솔(DCS: Distribute Control System)에서 원격지 급전자동화설비(RTU:Remote Terminal Unit)로 변경됨을 포함할 수 있다.The step of performing the automatic power generation control may include that the electrical output control of the power generation device is changed from a console (DCS: Distribute Control System) to a remote power supply automation facility (RTU: Remote Terminal Unit).

전기출력 실시 간 변동 단계에서 재열중압차단변의 개도는 100%로 유지되고, 재열중압유량조절변의 개도는 20~30%로 고정되며, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소될 수 있다.The opening degree of the reheat medium pressure blocking valve is maintained at 100% during the fluctuation phase between the electric outputs, and the opening degree of the reheat medium pressure flow control valve is fixed at 20 to 30%, and when the electric power increases, the steam withdrawal amount increases due to the increase in the reheat medium pressure steam pressure. , When the electric output falls, the steam withdrawal amount may decrease as the pressure of the reheat medium pressure steam decreases.

전기출력 실시 간 변동 단계에서 저압차단변의 개도는 100%로 유지되고, 저압유량조절변의 개도는 5~10%로 고정되며, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소될 수 있다.The opening of the low-pressure shut-off valve is maintained at 100% during the fluctuation phase between electric outputs, and the opening of the low-pressure flow control valve is fixed at 5 to 10%, and when the electric power rises, the steam withdrawal increases as the pressure of the low-pressure steam increases. When it falls, the steam withdrawal amount may decrease as the pressure of low-pressure steam decreases.

증기압력 변동에 따라 저압열교환기를 통해 공급되는 재열중압증기 및 저압기의 공급량이 변동될 수 있다.Depending on the steam pressure fluctuation, the supply amount of the reheat medium pressure steam and the low pressure supplied through the low pressure heat exchanger may be changed.

본 발명의 다양한 실시예는 전력거래상 비제약 입찰 시행 및 자동발전제어 추종이 가능하여 열병합발전 시 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 제공한다.Various embodiments of the present invention are capable of conducting unconstrained bidding in power transactions and following automatic power generation control to prevent fuel cost loss during cogeneration, as well as to base the non-constrained bidding system on power transactions that can secure the economics of heat supply due to a drop in the heat supply price. Provides automatic power generation control tracking cogeneration operation method.

즉, 기존의 열병합발전을 통한 열공급 방식은 정해진 양의 열인출을 위해서 사전에 제약 입찰 후 운전시 자동발전제어 장치를 해제해야만 했고, 따라서 자동발전제어 해제에 따른 전력계통 추종성 저하, 전기출력 고정에 따른 전력판매 손실금 발생 및 열공급 단가 상승 등 경제성이 저하되는 문제점이 발생했으며 이에 전력계통 추종성 제고 및 열공급의 경제성 확보를 위한 개량 열방합발전 운전방법을 제공한다.That is, the conventional heat supply method through cogeneration was required to release the automatic power generation control device at the time of operation after constraint bidding in advance for a predetermined amount of heat withdrawal. Accordingly, there was a problem in that economic feasibility such as loss of electricity sales and increase in the unit price of heat supply occurred. Accordingly, it provides an improved method for combined heat and power generation to improve the power system follow-up and secure the economics of heat supply.

도 1은 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 도시한 블럭도이다.
도 2는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 3은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 4는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 순서도 및 제어 화면이다.
도 5는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
도 6은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 도시한 블럭도이다.
1 is a block diagram showing a general power trading system constraint bid based automatic power generation control non-following cogeneration operation method.
FIG. 2 is a block diagram showing a method for driving automatic power generation control cogeneration based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.
Figure 3 is a block diagram showing a method for operating a combined heat and power control automatic power generation control non-constrained bidding based on the power transaction system according to an embodiment of the present invention.
4 is a flow chart and control screen showing a method of operating a combined heat and power control following automatic power generation control based on non-constrained bidding of a power transaction system according to an embodiment of the present invention.
5 is a block diagram showing a method for operating a cogeneration system following automatic power generation control based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.
6 is a block diagram showing a method for operating a cogeneration system following automatic power generation control based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.The embodiments of the present invention are provided to more fully describe the present invention to those of ordinary skill in the art, and the following embodiments can be modified in various other forms, and the scope of the present invention is as follows. It is not limited to the Examples. Rather, these examples are provided to make the present disclosure more faithful and complete, and to fully convey the spirit of the present invention to those skilled in the art.

또한, 이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 A 부재와 B 부재가 직접 연결되는 경우뿐만 아니라, A 부재와 B 부재의 사이에 C 부재가 개재되어 A 부재와 B 부재가 간접 연결되는 경우도 의미한다.In addition, in the following drawings, the thickness or size of each layer is exaggerated for convenience and clarity of description, and the same reference numerals in the drawings refer to the same elements. As used herein, the term “and / or” includes any and all combinations of one or more of the listed items. In addition, in this specification, "connected" means not only when the A member and the B member are directly connected, but also when the C member is interposed between the A member and the B member to indirectly connect the A member and the B member. do.

본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise, include)" 및/또는 "포함하는(comprising, including)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.The terminology used herein is used to describe a specific embodiment and is not intended to limit the present invention. As used herein, singular forms may include plural forms unless the context clearly indicates otherwise. Also, when used herein, "comprise, include" and / or "comprising, including" refer to the shapes, numbers, steps, actions, elements, elements and / or groups of these mentioned. It is to specify existence and not to exclude the presence or addition of one or more other shapes, numbers, actions, elements, elements and / or groups.

또한, 본 명세서에서 자주 사용되는 "제약입찰", "자동발전제어" 및 "열전비"에 대해서 설명하면 다음과 같다.In addition, the description of the "constrained bidding", "automatic power generation control" and "thermal power ratio" frequently used in the present specification are as follows.

○ 제약입찰(Self-constraint Bidding) ○ Self-constraint Bidding

전력량 판매 대금의 정산을 위해서 발전사업자는 사전에 전력거래소 입찰시스템을 통해 시간대별 발전량을 입찰(입력)하여야 한다. 또한 입찰 후 실제 발전기 운전 중에는 전력거래소 자동발전제어시스템 혹은 계통 주파수에 의해 발전기의 전기출력이 응동되도록(반응하도록) 자동발전제어를 추종(ON)해야 한다. 그러나 겨울철 열공급을 위한 입찰 시에는 증기열을 최대치로 공급하기 위해 발전기 전기출력의 최대값을 하한치(제한치)로 설정하여 제약 입찰을 시행한다. 제약 입찰을 하게 되면 발전사업자는 전력계통에 대한 기여도 저하로, 전력량 판매수익 감소 등 금전상의 손실을 보게 된다. 따라서 제약 입찰은 열공급, 시운전 등 불가피한 경우에만 시행하고 평소에는 전력량 판매수익 증대를 위해 비제약 입찰(정상 입찰) 시행 후 자동발전제어 수행(On, 추종) 운전을 한다.In order to settle the amount of electricity sold, the power generation company must bid (input) the amount of electricity generated for each time in advance through the electricity exchange bidding system. In addition, during the actual generator operation after the bidding, the automatic power generation control must be followed (ON) so that the electric output of the generator is reacted (reacted) by the power exchange automatic generation control system or system frequency. However, in the bidding for winter heat supply, in order to supply steam heat to the maximum, the maximum value of the electricity output of the generator is set as the lower limit (limit), and pharmaceutical bidding is conducted. When bidding for pharmaceuticals, power generation companies will lose money due to reduced contribution to the electricity system and reduced sales revenue from electricity. Therefore, pharmaceutical bidding is conducted only when it is inevitable, such as heat supply and commissioning. Normally, automatic power generation control is performed (on, following) after unconstrained bidding (normal bidding) is conducted to increase sales sales of electricity.

○ 자동발전제어(Automatic Generation Control, AGC)○ Automatic Generation Control (AGC)

자동발전제어란 전력거래소에 있는 급전자동화설비에 의해 원격지의 발전기출력과 주파수 추종이 동시에 이루어지는 제어 개념으로 자동발전제어(Automatic Generation Control, AGC)라고 한다. 그러나 발전사업자가 자사의 사정으로, 자동발전제어시스템을 해제(OFF, 비추종)후 발전기를 운전하게 되면, 전력계통의 주파수 안정에 기여를 못하게 되므로 결과적으로 전력량 판매수익이 감소된다. 그 반대로 자동발전제어를 수행(ON, 추종)하게 되면 전력량 판매수익이 증가된다.Automatic power generation control is a control concept in which a generator output and a frequency follow-up at a remote site are simultaneously performed by a power supply automation facility located at a power exchange, and is called Automatic Generation Control (AGC). However, if the power generation operator operates the generator after the automatic power generation control system is turned off (off, non-following) due to the company's circumstances, it will not contribute to the stability of the frequency of the power system, and consequently, the sales revenue of the power will be reduced. On the contrary, if the automatic power generation control is performed (ON, following), the sales revenue of the power amount increases.

○ 열전비(Plant Heat Ratio)○ Plant Heat Ratio

열전비란 열병합 발전기 기준으로 단위 시간 당 생산한 증기 열용량을 전기 생산 용량으로 나눈 값으로, "열생산 용량 및 전기생산 용량의 계산 방법 등" 산업통상자원부 고시 제2015-123호에 따라 정격 설계부하 기준(시간당 최대 열생산부하시) 전기생산 용량을 열량으로 환산하여 열생산 용량과의 비율로 열전비를 계산한다.Thermoelectric ratio is the value of steam heat capacity produced per unit time divided by electricity production capacity on the basis of a cogeneration generator, based on the rated design load according to the Ministry of Trade, Industry and Energy Notice No. 2015-123 (Maximum heat production load per hour) Convert the electricity production capacity to heat, and calculate the heat transfer ratio in proportion to the heat production capacity.

도 1을 참조하면, 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 1, a block diagram of a general power trading system constraint bid based automatic power generation control non-following cogeneration operation method is shown.

우선, 도 1에 도시된 바와 같이, 열병합발전시스템은 가스터빈, 보일러, 증기터빈, 고압열교환기, 저압열교환기를 포함한다. 여기서, 보일러, 증기터빈 및 고압열교환기의 사이에는 고압압력조절변(H1)이 연결되고, 또한 보일러 및 고압열교환기의 사이에는 고압유량조절변(H2)이 연결된다. 또한, 보일러, 저압열교환기 및 증기터빈 사이에는 재열중압압력조절변(M1)이 연결되고, 보일러와 저압열교환기의 사이에는 재열중압유량조절변(M2)이 연결된다. 더불어, 보일러, 증기터빈 및 저압열교환기의 사이에는 저압압력차단변(L1)이 연결되고, 보일러와 저압열교환기의 사이에는 저압유량조절변(L2)이 연결된다.First, as shown in FIG. 1, the cogeneration system includes a gas turbine, a boiler, a steam turbine, a high pressure heat exchanger, and a low pressure heat exchanger. Here, a high pressure control valve (H1) is connected between the boiler, the steam turbine and the high pressure heat exchanger, and a high pressure flow control valve (H2) is connected between the boiler and the high pressure heat exchanger. In addition, a reheat medium pressure control valve (M1) is connected between the boiler, the low pressure heat exchanger, and a steam turbine, and a reheat medium pressure flow control valve (M2) is connected between the boiler and the low pressure heat exchanger. In addition, a low pressure pressure shutoff valve (L1) is connected between the boiler, a steam turbine and a low pressure heat exchanger, and a low pressure flow control valve (L2) is connected between the boiler and the low pressure heat exchanger.

이러한 열병합발전시스템 하에서, 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법은 사전에 열공급을 위한 제약 입찰을 완료하고 당일 발전기 운전시 자동발전제어시스템을 해제(OFF, 비추종)한 후 입찰량에 따라 가스터빈 전기출력의 최대값을 하한치(제한치)로 운전하는 방식으로, 이때 증기터빈으로 유입되는 다량의 고압, 재열중압, 저압증기를 인출, 지역난방용 열교환기에 공급한 후 생산된 난방용 온수를 수용가에 공급한다.Under such a cogeneration system, the general power trading system pharmaceutical bidding-based automatic power generation control non-following cogeneration power generation method has previously completed the pharmaceutical bidding for heat supply and deactivated (OFF, non-following) the automatic power generation control system during generator operation on the day. After the maximum value of the gas turbine electric output is operated at the lower limit (limit) according to the bid amount, at this time, a large amount of high pressure, reheat medium pressure, low pressure steam flowing into the steam turbine is withdrawn, supplied to the local heat exchanger, and produced. Supply hot water for heating to the consumer.

여기서 열전비는 0.54~0.58로, 가스터빈 출력에 따라 증기터빈 출력은 대략 증기열 42~46%, 전기 54~58% 정도이다. 전기출력 최소 및 열인출량 최대 운전으로 대규모의 증기열 인출 시 고압열교환기는 60Gcal/h이고, 저압열교환기는 30Gcal/h의 열교환값을 갖는다.Here, the heat ratio is 0.54 to 0.58, and the steam turbine output is approximately 42 to 46% of steam heat and 54 to 58% of electricity depending on the gas turbine output. The high-pressure heat exchanger has a heat exchange value of 60 Gcal / h, and the low-pressure heat exchanger has a heat exchange value of 30 Gcal / h in the case of large-scale steam heat extraction with the minimum operation of the electrical output and the maximum heat extraction amount.

아래의 표 1은 일반적인 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 순차적으로 도시한 표이다.Table 1 below is a table sequentially showing the operation method of a non-following cogeneration system based on the general power transaction system, pharmaceutical bidding, and automatic power generation control.

순 번Turn 공 정fair 1One 전력거래 입찰(열공급을 위한 제약입찰) Power transaction bidding (constrained bidding for heat supply) 22 가스터빈 및 증기터빈 전기출력 자동발전제어 해제(AGC OFF)  Gas turbine and steam turbine electric output automatic power generation control release (AGC OFF) 33 가스터빈 전기출력 최대치(최대 182MW) 고정 유지
(단, 증기터빈 전기출력은 열공급량 증가시 최대치(80MW)에서 점점 감소되다가 최소치(45MW)까지 도달 후 유지)
Maintain the maximum value of gas turbine electric power (max. 182MW)
(However, the electric output of the steam turbine gradually decreases from the maximum (80MW) when the heat supply increases, and then remains after reaching the minimum (45MW))
44 보일러(HRSG) 증기압력은 최대치에서 열공급량 증가에 따라 감소
(고압 : 10%, 중압 : 30%, 저압 : 50% 감소)
Boiler (HRSG) steam pressure decreases with increasing heat supply at maximum
(High pressure: 10%, Medium pressure: 30%, Low pressure: 50% reduction)
고압계통High pressure system 고압압력조절변(H1) 100→30% 닫힘 및 고압유량조절변(H2) 50% 열림 High pressure control valve (H1) 100 → 30% closed and high pressure flow control valve (H2) 50% open 중압계통Medium pressure system 재열중압압력조절변(M1) 100→30% 닫힘 및 재열중압유량조절변(M2) 30% 열림 Reheat medium pressure pressure regulating valve (M1) 100 → 30% closed and reheat medium pressure flow regulating valve (M2) 30% open 저압계통Low pressure system 저압압력차단변(L1) 100% 열림 및 저압유량조절변(L2) 40% 열림 Low pressure pressure shutoff valve (L1) 100% open and low pressure flow control valve (L2) 40% open 55 최대 열생산량 유지(고압열교환기 : 60Gcal/H, 저압열교환기 : 30Gcal/H) Maintain maximum heat production (high pressure heat exchanger: 60Gcal / H, low pressure heat exchanger: 30Gcal / H)

이와 같이 하여, 일반적으로 종래에는 겨울철 수용가 측 단기 열공급 수요 증대에 따른 제약 입찰을 시행하였고, 이에 따라 자동발전제어 해제(Off, 비추종)에 따른 전력계통 추종성이 저하하였으며, 전기출력 고정(제약 발전)에 따른 전력판매 손실금이 발생하였고 열공급 단가가 상승하였다.In this way, in general, in the past, limited bidding was made in response to the increase in demand for short-term heat supply in winter by the consumer, and accordingly, the power system followingability was canceled due to the release of automatic power generation control (Off, non-following), and fixed electric output (constrained power generation). ), A loss in electricity sales occurred, and the heat supply cost increased.

도 2를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 2, there is shown a block diagram of an automatic power generation control method for cogeneration based on a non-constrained bidding system in accordance with an embodiment of the present invention.

본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 사전에 비제약 입찰(정상 입찰)을 완료하고, 당일 발전기 운전시 가스터빈 전기출력이 전력거래소의 급전자동화설비에 의해 자동 조절이 될 수 있도록 자동발전제어 수행(ON, 추종)후, 증기터빈으로 유입되는 일부 재열중압증기 및 저압증기를 인출, 지역난방용 열교환기에 공급하여 생산된 난방용 온수를 수용가에 공급하는 방식으로, 이때 열전비는 0.08~0.12로, 가스터빈 부하에 따라 증기터빈 출력은 증기열 8~12%, 전기 92~88% 정도이다.The power transaction system according to an embodiment of the present invention is based on the non-constrained bidding based automatic power generation control cogeneration operation method, and the non-constrained bidding (normal bidding) is completed in advance, and when the generator is operated on the same day, the gas turbine electric output automatically feeds the power exchange. After performing automatic power generation control (ON, following) so that it can be automatically controlled by facilities, some reheat medium and low pressure steam flowing into the steam turbine is withdrawn and supplied to the heat exchanger for district heating to supply the produced hot water to the consumer. In this way, the heat transfer ratio is 0.08 to 0.12, and the steam turbine output is about 8 to 12% of steam heat and 92 to 88% of electricity depending on the gas turbine load.

아래의 표 2는 본 발명의 실시예에 따른 전력거래시스템 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방법을 순차적으로 도시한 표이다.Table 2 below is a table sequentially showing a method of operating a non-following cogeneration system for automatic power generation control based on a pharmaceutical bidding system in accordance with an embodiment of the present invention.

순 번Turn 공 정fair 1One 전력거래 입찰(정상 입찰) Electric power transaction bidding (normal bidding) 22 가스터빈/증기터빈 전기출력 자동발전제어 수행(AGC ON)  Gas turbine / steam turbine electrical output automatic power generation control (AGC ON) 33 가스터빈/증기터빈 전기출력 실시간 변동
(가스터빈 전기출력 변동치 : 평균 175MW ~ 최소 100MW)
Gas turbine / steam turbine electric output real-time fluctuation
(Gas turbine electric output fluctuation: average 175MW ~ minimum 100MW)
44 보일러(HRSG) 증기압력 실시간 변동
(전기출력 변동에 따라 중압 및 저압계통 압력 증감)
Boiler (HRSG) steam pressure real-time fluctuation
(The pressure of the medium and low pressure systems increases or decreases depending on the fluctuation of the electrical output)
중압계통Medium pressure system 재열중압압력조절변(M1) 100% 전개 상태 유지 및 재열중압유량조절변(M2) 30% 부분 개도 유지 Reheat medium pressure control valve (M1) maintains 100% deployment and reheat medium pressure control valve (M2) maintains 30% partial opening 저압계통Low pressure system 저압압력차단변(L1)) 100% 전개 상태 유지 및 저압유량조절변(L2) 10% 부분 개도 유지 Low pressure pressure shutoff valve (L1) 100% maintenance and low pressure flow control valve (L2) 10% partial opening 55 전기출력 변동에 따른 증기압력 증감에 따라 열공급량 실시간 변동
(저압열교환기 : 15~21Gcal/h, 고압 열교환 공정 미시행)
Real-time fluctuation of heat supply according to increase and decrease of steam pressure according to fluctuation of electricity output
(Low pressure heat exchanger: 15 ~ 21Gcal / h, High pressure heat exchange process not implemented)

아래의 표 3은 일반적인 제약입찰 기반 자동발전제어 비추종 열병합발전 운전방식과 본 발명의 실시예에 따른 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방식을 비교한 표이다.Table 3 below is a table comparing the general pharmaceutical bidding-based automatic power generation control non-following cogeneration operation method and the non-constrained bidding-based automatic power generation control following cogeneration operation method according to an embodiment of the present invention.

구 분division 제약입찰 기반 자동발전제어 비추종 열병합발전(일반)Pharmaceutical bidding-based automatic power generation control non-following cogeneration (general) 비제약입찰 기반 자동발전제어 추종 열병합발전(본 발명)Non-constrained bidding based automatic power generation control following cogeneration (the present invention) 입찰방법How to bid 전력거래 제약입찰(열공급 계약)Power transaction pharmaceutical bidding (heat supply contract) 전력거래 비제약 입찰(정상 입찰)Non-constrained bidding for electricity trading (normal bidding) 전기출력Electric output - 가스터빈 최대치 운전(182MW)
- 증기터빈 최소치 운전(45MW)
-Maximum operation of gas turbine (182MW)
-Minimum operation of steam turbine (45MW)
전기출력 실시간 변동
- 가스터빈 전기출력 : 100~182MW
- 증기터빈 전기출력 : 65~75MW
Electric output real-time fluctuation
-Gas turbine electric output: 100 ~ 182MW
-Steam turbine electricity output: 65 ~ 75MW
압력조절변Pressure regulating valve - 고압조절변 100→30% 폐쇄
- 중압조절변 100→30% 폐쇄
- 저압차단변 100% 개방
-High pressure regulating valve 100 → 30% closed
-Medium pressure regulating valve 100 → 30% closed
-100% open of low pressure blocking valve
- 고압조절변 미조작
- 중압조절변 100% 개방
- 저압차단변 100% 개방
-High pressure control valve not operated
-Medium pressure control valve 100% open
-100% open of low pressure blocking valve
유량조절변 Flow control valve - 고압유량조절변 50%까지 폐쇄
- 중압유량조절변 30%까지 폐쇄
- 저압유량조절변 40%까지 개방
-Close up to 50% of high pressure flow control valve
-Close up to 30% of medium pressure flow control valve
-Low pressure flow control valve open up to 40%
- 고압유량조절변 미조작
- 중압유량조절변 30%까지 개방
- 저압유량조절변 10%까지 개방
-High pressure flow control valve not operated
-Open up to 30% of medium pressure flow control valve
-Open up to 10% of low pressure flow control valve
열인출량Heat withdrawal 고압 : 60, 저압 : 30Gcal/h 인출High pressure: 60, Low pressure: 30 Gcal / h withdrawal 저압 : 15~21Gcal/h 인출Low pressure: 15 ~ 21 Gcal / h withdrawal 차이점difference - 단시간(오전/오후/하루)에 최대 열인출로 설비 운용상 융통성 없음
- 다량의 열인출로 본설비 공정 안정성 저하
- 겨울철 외기 급강하로 인한 난방수요 급증시 최단시간 공급량 증대 가능함
- 고, 중, 저압 다량 인출로 물처리 비용이 증가함
-No flexibility in equipment operation due to maximum heat withdrawal in a short time (am / pm / day)
-Process stability deterioration of this facility due to large amount of heat draw
-It is possible to increase the supply of the shortest time when the demand for heating increases rapidly due to the sudden drop in outside air in winter.
-High, medium and low pressure withdrawal of large amount increases water treatment cost
- 상시, 수시 증기 열인출로 설비 운용상의 융통성 있음
- 소량의 열인출로 본설비 공정 안정성 확보 가능
- 지속적 열인출로 저장조 저장이 가능하여 평상적인 수요에 대비가 가능하나, 겨울철 외기 급강하로 인한 난방수요 급증시 공급량 부족 가능성 있음
- 중,저압 소량인출로 물처리 비용이 감소함
-Flexible operation of facilities through regular and frequent steam heat extraction
-Process stability can be secured with a small amount of heat extraction
-Storage tanks can be stored with continuous heat draw-out to prepare for normal demand, but there is a possibility of insufficient supply when heating demand surges due to the sudden drop in outside air in winter.
-The water treatment cost is reduced due to the small and medium pressure withdrawal

표 3을 참조하면, 일반 방식은 겨울철 지역의 난방수 공급을 위해 사전에 열공급 사유로 인한 제약 입찰을 시행한 후, 실제 발전기 운전시 전기출력을 최대치로 유지하기 위해 자동발전제어를 해제(OFF, 비추종)후 열병합발전을 하는 방식으로, 가스터빈 전기출력을 최대로 유지하는 동안 발생되는 다량의 고압, 중압, 저압계통 증기열을 공급하는데 각 3개의 유량조절변은 30~50% 범위에서 일정하게 유지된다.Referring to Table 3, the general method is to apply automatic bidding control in order to supply the heating water in the winter area, and then, in order to maintain electricity output at the maximum during actual generator operation, turn off automatic power generation control (OFF, After non-following), the combined heat and power generation method provides a large amount of high, medium, and low pressure steam heat generated while maintaining the maximum gas turbine electrical output. Each of the three flow control valves is constant in the range of 30-50%. Is maintained.

그러나, 본 발명의 실시예에 따른 방식은 증기열 공급을 위해 사전에 제약 입찰이 아닌 정상 입찰(비제약 입찰)을 시행하고, 실제 발전기 운전 시에는 자동발전제어를 수행(ON, 추종)한 후 가스터빈 전기출력의 실시 간 변동에 따라, 출력증가 시에는 열인출량이 증가하고 출력 감소 시에는 열인출량이 감소되는 가변적인 방식으로, 기존의 일반 방식과 달리 고압은 출력 변동성으로 인해 제외하고 재열중압, 저압증기열만을 인출한다. 각 유량조절변 개도는 가스터빈 최소 전기출력(100MW)에 맞게 조정이 된 적정 개도(약 10%~30%)로 유지되며, 전기출력이 증가하면 증기압력이 증가하여 인출량도 증가하게 된다.However, in the method according to the embodiment of the present invention, normal bidding (non-constraining bidding) is performed before steam restriction to supply steam heat, and automatic power generation control is performed (ON, following) after actual generator operation. Depending on the real-time fluctuation of the gas turbine electric output, the heat withdrawal increases when the output increases, and the heat withdrawal decreases when the output decreases. , Draw out only low pressure steam heat. The opening degree of each flow control valve is maintained at the proper opening degree (approximately 10% to 30%) adjusted to the minimum gas turbine electric power (100MW), and when the electric power increases, the steam pressure increases and the withdrawal amount increases.

아래 표 4는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 실증시험 및 시범운영 결과를 도시한 것이다.Table 4 below shows the results of the demonstration test and pilot operation of the combined power generation system based on non-constrained bidding based on automatic power generation control according to an embodiment of the present invention.

Figure 112018086075278-pat00001
Figure 112018086075278-pat00001

표 5는 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 최소 - 중간 - 최대 출력 구간별 저압열교환 인출 용량을 요약한 표이다.Table 5 is a table summarizing the low-pressure heat exchange withdrawal capacity for each of the minimum-middle-maximum output sections according to the automatic power control tracking cogeneration method based on non-constrained bidding in the power transaction system according to an embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electricity output (MW) 100MW(최소)100MW (minimum) 120MW120MW 140MW140MW 170MW170MW 182MW(최대)182MW (max) 재열중압 압력(Kg/cm2)Reheating medium pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 저압 압력(Kg/cm2)Low pressure pressure (Kg / cm 2 ) 3.03.0 3.13.1 3.43.4 3.53.5 3.53.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 17.717.7 18.718.7 20.720.7

표 5에 도시된 바와 같이, 가스터빈 최소 출력 100MW에서 저압열교환기 열인출량은 대략 15Gcal 발생됨을 볼 수 있고, 또한 가스터빈 최대출력 182MW에서 저압열교환기 열인출량은 대략 21Gcal 발생됨을 볼 수 있다.As shown in Table 5, it can be seen that the heat extraction amount of the low pressure heat exchanger at the gas turbine minimum output of 100 MW is approximately 15 Gcal, and the heat extraction amount of the low pressure heat exchanger at the gas turbine maximum output of 182 MW is approximately 21 Gcal.

표 6은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 가스터빈 최소 출력에서 증기터빈 주요 압력 계통에 영향 없는 적정 압력 실증 결과를 요약한 표이다.Table 6 is a table summarizing the results of proper pressure verification without affecting the main pressure system of the steam turbine at the minimum output of the gas turbine according to the automatic power control tracking cogeneration method based on the non-constrained bidding of the power transaction system according to the embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electricity output (MW) 100MW(최소)100MW (minimum) 120MW120MW 140MW140MW 170MW170MW 182MW(최대)182MW (max) 재열중압 압력(Kg/cm2)Reheating medium pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 보조증기압력(Kg/cm2)Auxiliary steam pressure (Kg / cm 2 ) 14.614.6 14.514.5 14.414.4 21.321.3 22.522.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

표 6에 도시된 바와 같이, 가스터빈 최소 출력 100MW에서 재열중압 17.3 K, 보조증기압력 14.6K 운전 하한치를 유지함을 볼 수 있고, 또한 가스터빈 최대 출력 182MW에서 재열중압 23K, 보조증기압력 22.5K를 유지함을 볼 수 있다.As shown in Table 6, it can be seen that the reheat medium pressure of 17.3 K and auxiliary steam pressure of 14.6 K are maintained at the minimum gas turbine output of 100 MW, and also the reheat medium pressure of 23 K and auxiliary steam pressure of 22.5 K at the maximum gas turbine output of 182 MW. You can see it keeps.

표 7은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 최소 - 중간- 최대 출력 구간별 주요 계통 압력 변동 및 저압열교환기 열인출량 실증 결과를 도시한 표이다.Table 7 is a table showing the main system pressure fluctuations for the minimum-medium-maximum output section and the heat withdrawal of the low-pressure heat exchanger according to the automatic power control tracking cogeneration method based on the non-constrained bidding of the power trading system according to the embodiment of the present invention. to be.

가스터빈 전기출력(MW)Gas turbine electricity output (MW) 100MW(최소)100MW (minimum) 120MW120MW 140MW140MW 170MW170MW 182MW(최대)182MW (max) 재열중압 압력(Kg/cm2)Reheating medium pressure (Kg / cm 2 ) 1717 1818 1919 2222 2323 저압압력(Kg/cm2)Low pressure pressure (Kg / cm 2 ) 3.03.0 3.13.1 3.43.4 3.53.5 3.53.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

표 8은 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 방법에 따른 출력 구간별 발전설비 영향도 검토, 분석 및 보호 로직 신설 관계를 도시한 표이다.Table 8 is a table showing the relationship of power generation facility impact review, analysis, and protection logic establishment according to the power generation system non-constrained bidding based automatic power generation control cogeneration method according to an embodiment of the present invention.

가스터빈 전기출력(MW)Gas turbine electricity output (MW) 100MW(최소)100MW (minimum) 120MW120MW 140MW140MW 170MW170MW 182MW(최대)182MW (max) 재열중압 압력(Kg/cm2)Reheating medium pressure (Kg / cm 2 ) 17.317.3 18.118.1 19.319.3 21.821.8 2323 보조증기압력(Kg/cm2)Auxiliary steam pressure (Kg / cm 2 ) 14.614.6 14.514.5 14.414.4 21.321.3 22.522.5 저압열교환기 유량(Gcal/hr)Low pressure heat exchanger flow rate (Gcal / hr) 1515 16.516.5 1818 2121 21.321.3

즉, 열공급 중 재열중압 압력 하락시 순차적으로 저온중압 압력 저하, 보조증기압력 저하 등 발전설비 불안정 발생 요인이 상존하나 실증 데이터 확보로 설비 불안정 요인을 검토하고 분석을 완료하였다.In other words, if the pressure of reheat and medium pressure decreases during heat supply, factors such as low temperature and medium pressure drop and subsidiary steam pressure continue to occur.

이에 따라, 설비 안정성 확보 차원의 주요 압력 계통 보호 로직을 신설하였다. 일례로, 재열중압유량조절변 개도 30% 및 저압유량조절변 개도 10% 이상 열림 제한 로직을 신설하였다. 또한, 보조증기압력이 14K로 저하 시 재열중압유량조절변 급속 닫힘 로직을 신설하였다.Accordingly, the main pressure system protection logic was established to secure facility stability. As an example, a limiting logic was opened to open the reheat medium-pressure flow control valve 30% and open the low-pressure flow control valve 10% or more. Also, when the auxiliary steam pressure drops to 14K, a logic for rapidly closing the reheat medium pressure flow control valve is newly established.

도 3을 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 3, there is shown a block diagram of an automatic power generation control tracking cogeneration operation method based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.

도 3에 도시된 바와 같이, 열병합발전장치(100)는 재열중압 계통인 증기터빈(111)과 저압열교환기(112) 사이에 재열중압차단변(114) 및 재열중압유량조절변(115)이 직렬로 연결되고, 저압증기 계통인 증기터빈(111)과 저압열교환기(112) 사이에 저압차단변(116) 및 저압유량조절변(117)이 직렬로 연결될 수 있다. 여기서, 재열중압 계통인 증기터빈과 재열중압차단변(114) 사이에는 재열중압압력조절변(113)이 더 연결될 수 있다.As shown in FIG. 3, the cogeneration unit 100 has a reheat medium pressure blocking valve 114 and a reheat medium pressure flow control valve 115 between a steam turbine 111 which is a reheat medium pressure system and a low pressure heat exchanger 112. Connected in series, a low pressure shut-off valve 116 and a low-pressure flow control valve 117 may be connected in series between the low-pressure steam system steam turbine 111 and the low-pressure heat exchanger 112. Here, the reheat medium pressure pressure regulating valve 113 may be further connected between the steam turbine which is the reheat medium pressure system and the reheat medium pressure blocking valve 114.

본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 다음과 같은 단계를 포함할 수 있다.The power transaction system non-constrained bid based automatic power generation control cogeneration operation method according to an embodiment of the present invention may include the following steps.

1 단계: 전력거래 비제약 입찰(정상입찰) 사전 시행Step 1: Advance bidding for unconstrained bidding for electricity (normal bidding)

2 단계: 자동발전제어(AGC) 수행(ON, 추종) 열병합 발전Step 2: Perform automatic power generation control (AGC) (ON, follow-up) Cogeneration

즉, 전력계통 출력요구신호 추종 및 주파수 추종을 위해 운전 콘솔(제어용 모니터) 상에서 발전기 전기출력 제어모드를 DCS에서 RTU로 선택한다.That is, the generator electrical output control mode is selected from DCS to RTU on the operation console (control monitor) for tracking the power system output request signal and following the frequency.

여기서, DCS(Distribute Control System)란 발전장치 출력 등 발전 설비주요 기기에 대한 정보와 명령을 처리하는 제어시스템으로 주로 운전용 콘솔(제어용 모니터)에서 주요 기기에 대한 명령을 수행한다. 또한, RTU(Remote Terminal Unit)란 급전 자동화 설비로서 원격지 발전장치의 전기출력을 제어하는데 주파수 변동 등 전력 계통의 실시 간 상황변동에 따라 해당 발전장치의 전기출력 제어값이 변경된다.Here, the DCS (Distribute Control System) is a control system that processes information and commands for the main equipment of power generation equipment such as output of power generation equipment, and mainly performs commands for main equipment in a driving console (control monitor). In addition, a remote terminal unit (RTU) is a power supply automation facility that controls the electrical output of a remote power generation device. The electrical output control value of the power generation device is changed according to changes in the real-time situation of the power system such as frequency fluctuations.

3 단계: 열병합 발전시 재열중압압력조절변(113)의 100% 전개 상태 유지 및 재열중압유량조절변(115)의 부분 개도(30%) 유지Step 3: Maintain 100% deployment state of the reheat medium pressure pressure regulating valve 113 and maintain partial opening (30%) of the reheat medium pressure flow regulating valve 115 during cogeneration.

4 단계: 열병합발전시 저압차단변(116)의 100% 전개 상태 유지 및 저압유량조절변(117)의 부분 개도(10%) 유지Step 4: Maintain 100% deployment state of the low pressure shutoff valve 116 during cogeneration, and maintain the partial opening (10%) of the low pressure flow control valve 117

5 단계: 지역난반용 저압열교환기(112)의 증기열 공급(재열중압증기 및 저압증기를 출력 별로 15~21Gcal/h 공급) Step 5: Supply of steam heat from the low-pressure heat exchanger 112 for regional warming (15 to 21 Gcal / h supplied per reheat medium pressure steam and low pressure steam)

이와 같이 하여, 본 발명의 실시예에 따르면 전력거래 상 비제약 입찰 시행 및 자동발전제어 추종에 따라 열병합발전 시 연료비 손실을 방지하고 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있게 된다.In this way, according to an embodiment of the present invention, it is possible to prevent fuel cost loss during cogeneration by following non-constrained bidding in the electricity transaction and following automatic power generation control, and also secure heat supply economic efficiency due to a decrease in the heat supply unit cost.

도 4를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법에 대한 순서도 및 제어 화면이 도시되어 있다.Referring to FIG. 4, a flow chart and a control screen are shown for a method of operating a combined power generation system based on non-constrained bidding for automatic power control according to an embodiment of the present invention.

도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계(S1), 전력 계통 출력요구신호 및 주파수에 대하여 발전장치를 추종 제어하는 자동발전제어 수행 단계(S2) 및 발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계(S3)를 포함할 수 있다.As shown in Figure 4, the power transaction system non-constrained bidding based automatic power generation control cogeneration operation method according to an embodiment of the present invention is a power transaction bidding that does not enter a constraint reason when bidding a power generation device in a power transaction system ( Non-constrained bidding) step (S1), automatic power generation control execution step (S2) of tracking and controlling the power generation device with respect to the power system output request signal and frequency, and electric power real-time change step of changing the electric power of the power generation device in real time (S3).

여기서, 열병합발전 시 전력거래시스템 비제약입찰 기반 자동발전제어 수행 단계는 발전장치 전기출력 제어를 콘솔(DCS)로부터 원격지 급전자동화설비(RTU)로 변경함을 포함할 수 있다.Here, the step of performing the automatic power generation control based on the non-constrained bidding of the power transaction system in the cogeneration may include changing the electrical output control of the power generation device from a console (DCS) to a remote power supply automation facility (RTU).

도 5를 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 5, there is shown a block diagram of an automatic power generation control tracking cogeneration operation method based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.

도 5에 도시된 바와 같이, 열병합발전 시 자동발전제어 추종 재열중압증기열 인출 공정을 보면, 전기출력 실시 간 변동 단계에서 재열중압차단변(114)의 개도는 100%로 유지되고, 재열중압유량조절변(115)의 개도는 20~30%(바람직하게는, 30%)로 고정되나, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소됨을 볼 수 있다.As shown in FIG. 5, when the heat generation process of auto-generation control following reheat medium pressure steam during cogeneration is observed, the opening degree of the reheat medium pressure blocking valve 114 is maintained at 100% in the fluctuation stage between electric outputs, and the reheat medium pressure flow rate The opening of the regulating valve 115 is fixed at 20 to 30% (preferably, 30%), but when the electric power rises, the steam withdrawal amount increases as the pressure of the reheat medium pressure increases, and when the electric power decreases, the pressure of the reheat medium pressure steam decreases. It can be seen that the steam withdrawal amount is reduced according to the.

도 6을 참조하면, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법의 블럭도가 도시되어 있다.Referring to FIG. 6, there is shown a block diagram of an automatic power generation control tracking cogeneration operation method based on non-constrained bidding in a power transaction system according to an embodiment of the present invention.

도 6에 도시된 바와 같이, 열병합발전 시 자동발전제어 추종 저압증기열 인출 공정을 보면, 전기출력 실시 간 변동 단계에서 저압차단변(116)의 개도는 100%로 유지되고, 저압유량조절변(117)의 개도는 5~10%로 고정되나, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소됨을 볼 수 있다.As shown in FIG. 6, in the cogeneration process, the automatic power generation control follow-up low pressure steam heat drawing process shows that the opening of the low pressure shut-off valve 116 is maintained at 100% in the fluctuation stage between electric outputs, and the low-pressure flow control valve ( The opening degree of 117) is fixed at 5 ~ 10%, but it can be seen that the steam withdrawal amount increases as the low pressure steam pressure rises when the electric power rises, and the steam withdrawal amount decreases as the low pressure steam pressure decreases when the electric power decreases.

이와 같이 하여, 본 발명의 실시예에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법은 전력거래 입찰(정상 입찰) -> 자동발전제어 수행(On, 추종) -> 전기출력 실시 간 변동 -> 증기압력 실시 간 변동 -> 열공급량 실시 간 변동방식으로 수행된다. 여기서, 열공급량 실시 간 변동은 증기압력 변동에 따라 저압열교환기(112)를 통해 공급되는 재열중압증기와 저압증기의 공급량이 변동됨을 의미한다.In this way, the power transaction system non-constrained bidding-based automatic power generation control tracking cogeneration operation method according to an embodiment of the present invention performs power transaction bidding (normal bidding)-> automatic power generation control execution (On, tracking)-> electricity output It is carried out in a method of inter-variation-> variation between steam pressure implementation-> heat supply. Here, the fluctuation between the heat supply amount implementation means that the supply amount of the reheat medium pressure steam and the low pressure steam supplied through the low pressure heat exchanger 112 changes according to the fluctuation of the steam pressure.

따라서, 본 발명의 실시예는 전력거래 상 비제약 입찰 시행 및 자동발전제어 추종에 따라 열병합발전 시 연료비 손실을 방지할 수 있고, 아울러 열공급 단가 하락에 따른 열공급 경제성을 확보할 수 있게 된다.Accordingly, the embodiment of the present invention can prevent fuel cost loss during cogeneration by following unenforced bidding and automatic power generation control in the power transaction, and also secure heat supply economic efficiency due to a decrease in the unit price of heat supply.

이상에서 설명한 것은 본 발명에 따른 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법을 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.What has been described above is only one embodiment for implementing the power transaction system non-constrained bidding-based automatic power generation control cogeneration operation method according to the present invention, and the present invention is not limited to the above-described embodiment, and the following patents As claimed in the claims, any person skilled in the art to which the present invention pertains without departing from the gist of the present invention will have the technical spirit of the present invention to the extent that various changes can be made.

100; 열병합발전장치
111; 증기터빈
112; 저압열교환기
113; 재열중압압력조절변
114; 재열중압차단변
115; 재열중압유량조절변
116; 저압차단변
117; 저압유량조절변
100; Cogeneration system
111; Steam turbine
112; Low pressure heat exchanger
113; Reheating medium pressure control valve
114; Reheat medium pressure blocking valve
115; Reheat medium pressure flow control valve
116; Low pressure blocking valve
117; Low pressure flow control valve

Claims (5)

가스터빈, 가스터빈에 연결된 보일러, 보일러에 연결되되 고압 터빈, 중압 터빈 및 저압 터빈을 갖는 증기터빈, 보일러의 고압계통 및 고압열교환기와 고압 터빈 사이에 설치된 고압압력조절변, 보일러의 고압계통 및 고압 터빈과 고압열교환기 사이에 설치된 고압유량조절변, 보일러의 재열중압계통 및 저압열교환기와 중압 터빈 사이에 설치된 재열중압차단변, 보일러의 재열중압계통 및 저압열교환기와 중압 터빈 사이로서 재열중압차단변에 직렬로 설치된 재열중압유량조절변, 보일러의 저압계통과 저압열교환기 및 저압 터빈 사이에 설치된 저압차단변, 보일러의 저압계통과 저압열교환기 및 저압 터빈 사이로서 저압차단변에 직렬로 설치된 저압유량조절변을 포함하는 열병합발전장치의 운전방법에 있어서,
전력거래시스템에서 발전장치의 입찰 시 제약 사유를 입력하지 않는 전력거래 입찰(비제약 입찰) 단계;
전력계통 출력요구신호 및 주파수에 대하여 발전장치를 추종 제어하는 자동 발전제어 수행 단계; 및
발전장치의 전기출력을 실시 간으로 변동시키는 전기출력 실시 간 변동 단계를 포함하되,
고압압력조절변 및 고압유량조절변은 조작하지 않고, 재열중압차단변, 재열중압유량조절변, 저압차단변 및 저압유량조절변을 조작하며,
전기출력 실시 간 변동 단계에서 재열중압차단변의 개도는 100%로 유지되고, 재열중압유량조절변의 개도는 20~30%로 고정되며, 전기출력 상승 시 재열중압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 재열중압증기압력 하락에 따라 증기 인출량이 감소되며,
전기출력 실시 간 변동 단계에서 저압차단변의 개도는 100%로 유지되고, 저압유량조절변의 개도는 5~10%로 고정되며, 전기출력 상승 시 저압증기압력 상승에 따른 증기 인출량이 증가하고, 전기출력 하락 시 저압증기압력 하락에 따라 증기 인출량이 감소됨을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
Gas turbines, boilers connected to gas turbines, steam turbines with high-pressure turbines, medium-pressure turbines and low-pressure turbines connected to boilers, high-pressure pressure control valves installed between high-pressure systems and high-pressure heat exchangers and high-pressure turbines of boilers, high-pressure systems and high-pressure systems of boilers High pressure flow control valve installed between turbine and high pressure heat exchanger, reheat medium pressure system of boiler and reheat medium pressure blocking valve installed between low pressure heat exchanger and medium pressure turbine, reheat medium pressure system of boiler and between low pressure heat exchanger and medium pressure turbine to reheat medium pressure blocking valve Reheat medium pressure flow control valve installed in series, low pressure shutoff valve installed between low pressure system and low pressure heat exchanger and low pressure turbine of the boiler, low pressure flow rate control installed in series on low pressure shutoff valve between low pressure system and low pressure heat exchanger and low pressure turbine of the boiler In the method of operating a cogeneration device comprising a stool,
A power transaction bidding (non-constrained bidding) step in which a restriction reason is not entered when the power generation device is bidding in the power transaction system;
An automatic power generation control performing step of controlling the power generation device following the power system output request signal and frequency; And
Including the step of changing the electric power in real time to change the electric power of the power generation device in real time,
The high pressure pressure control valve and the high pressure flow control valve are not operated, and the reheat medium pressure blocking valve, reheat medium pressure flow control valve, low pressure blocking valve, and low pressure flow control valve are operated.
The opening degree of the reheat medium pressure blocking valve is maintained at 100% during the fluctuation phase between the electric outputs, and the opening degree of the reheat medium pressure flow rate control valve is fixed at 20-30%. , When the electricity output decreases, the steam withdrawal amount decreases as the reheat medium pressure steam pressure decreases,
The opening of the low-pressure shut-off valve is maintained at 100% during the fluctuation phase between electric outputs, and the opening of the low-pressure flow control valve is fixed at 5 to 10%. A power trading system based on non-constrained bidding based automatic power generation control and combined heat and power operation method, characterized in that the steam withdrawal amount decreases when the low pressure steam pressure decreases when the pressure drops.
제 1 항에 있어서,
자동발전제어 수행 단계는 발전장치의 전기출력 제어가 콘솔(DCS: Distribute Control System)에서 원격지 급전자동화설비(RTU:Remote Terminal Unit)로 변경됨을 포함함을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동발전제어 추종 열병합발전 운전방법.
According to claim 1,
Power generation system non-constrained bidding-based automatic, characterized in that the step of performing automatic power generation control includes changing the electrical output control of the power generation device from a console (DCS: Distribute Control System) to a remote power supply automation facility (RTU: Remote Terminal Unit). Power generation control tracking cogeneration operation method.
삭제delete 삭제delete 제 1 항에 있어서,
증기압력 변동에 따라 저압열교환기를 통해 공급되는 재열중압증기 및 저압증기의 공급량이 변동됨을 특징으로 하는 전력거래시스템 비제약입찰 기반 자동 발전제어 추종 열병합발전 운전방법.
According to claim 1,
Power transaction system non-constrained bidding based automatic power generation control following cogeneration operation method, characterized in that the supply volume of reheat medium pressure steam and low pressure steam supplied through a low pressure heat exchanger varies according to steam pressure fluctuation.
KR1020180102404A 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System KR102099013B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Publications (2)

Publication Number Publication Date
KR20200025279A KR20200025279A (en) 2020-03-10
KR102099013B1 true KR102099013B1 (en) 2020-04-08

Family

ID=69800973

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180102404A KR102099013B1 (en) 2018-08-30 2018-08-30 Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System

Country Status (1)

Country Link
KR (1) KR102099013B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968796B1 (en) * 2008-10-31 2010-07-08 한국전력공사 Control method for fast and stable load control by compensating turbine and boiler response delays in power plants
KR101253750B1 (en) * 2011-06-17 2013-04-12 한국전력기술 주식회사 An apparatus controlling extraction steam of a top heater to improve speed regulation rate of power plant
KR101863159B1 (en) * 2016-11-08 2018-06-04 한국에너지기술연구원 Complex energy system and its control method in bi-directional energy networks

Also Published As

Publication number Publication date
KR20200025279A (en) 2020-03-10

Similar Documents

Publication Publication Date Title
US8826670B2 (en) Method for controlling a gas turbine in a power station, and a power station for carrying out the method
CN108035777B (en) Low-pressure cylinder combined zero-output heat supply system and method in thermal power generating unit
US6829898B2 (en) Gas turbine combined plant and method of operating the same
JP2000161014A5 (en)
JP5848010B2 (en) Combined cycle power plant starting method and apparatus
Gao et al. Research on coordinated control system of drum boiler units considering energy demand decoupling
KR102099013B1 (en) Operation method to the Combined Heat and Power Generation complying with the Demand of AGC and on the bases of Non self-constraint Bidding in the Power Trading System
KR20110047905A (en) Energy recovery apparatus of natural gas governing equipment and energy recovery method : Fuel Cell?Turboexpander integrated energy recovery system
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
CN208982123U (en) A kind of system for realizing three kinds of state switchover operations of thermoelectricity unit
CN111237735A (en) Emergency industrial steam supply system for realizing shutdown and non-shutdown of large coal-fired generator set
CN104074561B (en) Throttling adjusting system of cogeneration turbine unit and method of ordering power by heat
CN207762873U (en) A kind of system that boiler oxygen-enriched combusting combines auxiliary peak-frequency regulation equipment
JP2004048961A (en) Apparatus, method, and program for computing cost for generator operation
CN213298065U (en) Steam extraction and heat supply device for reheating heat section of 600MW steam turbine
CN109931581B (en) System combining oxygen-enriched combustion with auxiliary peak regulation and frequency modulation equipment of boiler
US9574462B2 (en) Method for operating a power plant installation
CN106884689A (en) A kind of method of small-sized steam-extracting type heat supply steam turbine steam discharge wet down
CN112282877A (en) Industrial steam extraction system of double reheating unit and operation method thereof
Martín et al. A Detailed Techno-Economic Analysis of Gas Turbines Applied to CSP Power Plants With Central Receiver
JP2999122B2 (en) Control equipment for complex plant
JPS5823206A (en) Thermal power plant equipped with stored steam power generation system
JP7288867B2 (en) Output command device and output command method
Yang et al. Peak load regulating capability and economic benefit analysis of industrial heating steam system upgrading for cogeneration units
CN115749999A (en) Multi-parameter steam supply system and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant