KR102013798B1 - Method for producing aging model and aging model of cell or animal produced thereby - Google Patents

Method for producing aging model and aging model of cell or animal produced thereby Download PDF

Info

Publication number
KR102013798B1
KR102013798B1 KR1020170139195A KR20170139195A KR102013798B1 KR 102013798 B1 KR102013798 B1 KR 102013798B1 KR 1020170139195 A KR1020170139195 A KR 1020170139195A KR 20170139195 A KR20170139195 A KR 20170139195A KR 102013798 B1 KR102013798 B1 KR 102013798B1
Authority
KR
South Korea
Prior art keywords
cell
animal
aging model
vector
aging
Prior art date
Application number
KR1020170139195A
Other languages
Korean (ko)
Other versions
KR20190046071A (en
Inventor
이연종
김효정
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020170139195A priority Critical patent/KR102013798B1/en
Publication of KR20190046071A publication Critical patent/KR20190046071A/en
Application granted granted Critical
Publication of KR102013798B1 publication Critical patent/KR102013798B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/20Animal model comprising regulated expression system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0318Animal model for neurodegenerative disease, e.g. non- Alzheimer's
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases
    • C12N2015/8536Animal models for genetic diseases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Neurosurgery (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본원은, 세포 노화 모델 제조용 벡터, 이를 이용한 세포 노화 모델 제조 방법, 이에 의해 제조된 세포 노화 모델, 및 이를 포함하는 세포 노화 모델 제조용 조성물에 관한 것이다. 본원은 또한, 동물 노화 모델 제조 방법 및 동물 노화 모델 제조용 조성물에 관한 것이다.The present application relates to a vector for producing a cell aging model, a method for producing a cell aging model using the same, a cell aging model produced thereby, and a composition for producing a cell aging model comprising the same. The present application also relates to a method for producing an animal aging model and a composition for producing an animal aging model.

Description

노화 모델 제조 방법 및 이에 의해 제조된 세포 또는 동물 노화 모델 {METHOD FOR PRODUCING AGING MODEL AND AGING MODEL OF CELL OR ANIMAL PRODUCED THEREBY}METHOD FOR PRODUCING AGING MODEL AND AGING MODEL OF CELL OR ANIMAL PRODUCED THEREBY}

본원은, 세포 노화 모델 제조용 벡터, 이를 이용한 세포 노화 모델 제조 방법, 이에 의해 제조된 세포 노화 모델, 및 이를 포함하는 세포 노화 모델 제조용 조성물에 관한 것이다. 본원은 또한, 동물 노화 모델 제조 방법 및 동물 노화 모델 제조용 조성물에 관한 것이다.The present application relates to a vector for producing a cell aging model, a method for producing a cell aging model using the same, a cell aging model produced thereby, and a composition for producing a cell aging model comprising the same. The present application also relates to a method for producing an animal aging model and a composition for producing an animal aging model.

세포의 노화는 병태 생리적인 세포 구조 및 유전자 발현의 변화를 수반한다. 이에, 노화와 연계된 특정 유전자 및 마이크로 RNA를 활용한 다양한 노화 모델이 개발되고 있으나, 복잡한 노화의 통합적인 변화를 대변하는 데에는 한계가 있었다. 세포의 지속적인 분열 및 성장은 게놈 말단의 구조인 텔로미어 길이의 단축을 유도하고, 이러한 현상은 게놈 안전성의 붕괴 및 노화와 연계된 것으로 보고되었다. 이와 같은 텔로미어 구조는 텔로머라제라고 하는 효소에 의해서 길이가 유지되지만, 병적 상황에서의 효소 활성 저해나 과도한 분열 성장 및 노화 과정에서 텔로미어 단축이 일어날 수 있다. 이에 텔로미어의 단축을 유발함으로써 세포 및 동물 노화 모델을 구축하려는 시도가 있었으며, 다양한 노화 연구에 활용되어 왔다. 여기에 주로 이용되는 방법으로는 텔로머라제 저해제 또는 이 유전자의 결손 세포주 또는 생쥐를 이용하여 인위적으로 텔로머라제의 길이를 단축시키는 것 등이 있었으며, 이러한 방법을 이용한 노화 유도 및 이에 따른 분자 기작 연구가 활발히 수행되어온 바 있다. 그러나, 반복적인 세포 배양 또는 생쥐를 이용한 실험의 경우에는 반복적인 교배를 통해 세포 분열을 유도할 경우에만 텔로미어 단축을 유도할 수 있기 때문에, 장시간의 계대 배양 및 교배가 주된 노화 연구의 제약점으로 작용하였다. 특히 신경세포의 경우에는 분열을 하지 않기 때문에 텔로머라제 효소 저해만으로는 텔로미어 단축을 유도할 수 없고, 따라서 상기 방법을 활용한 노화 연구가 불가하다는 한계가 있었다.Aging of cells involves changes in pathophysiological cell structure and gene expression. Accordingly, various aging models using specific genes and microRNAs associated with aging have been developed, but there is a limit in representing the integrative changes of complex aging. Sustained division and growth of cells leads to a shortening of the telomeres length, a structure at the end of the genome, and this phenomenon has been reported to be associated with disruption of genomic safety and aging. Such telomeres are maintained in length by an enzyme called telomerase, but telomeres may be shortened during enzymatic inhibition or excessive cleavage and aging during pathological conditions. Attempts have been made to establish cellular and animal aging models by inducing shortening of telomeres and have been utilized in various aging studies. Commonly used methods include the use of telomerase inhibitors or cell lines or mice lacking the genes to artificially shorten the length of telomerase, and induce senescence and molecular mechanism studies using these methods. Has been actively performed. However, in the case of repetitive cell culture or experiments using mice, telomeres can be shortened only by inducing cell division through repetitive crosses, so long-term passage and cross-linking act as a major limitation of aging studies. It was. In particular, since neurons do not divide, telomerase enzyme inhibition alone does not induce telomeres shortening, and thus there is a limitation that aging studies using the above method are impossible.

대한민국 특허공개공보 제 10-2015-0016588 호Republic of Korea Patent Publication No. 10-2015-0016588

급속히 노령화 사회로 진입하는 현대에는 대표적 신경 퇴행성 노인성 질환인 알츠하이머 치매 및 파킨슨 환자의 수도 급격히 증가 추세에 있으나, 노화와 밀접한 연관을 가진 여러 퇴행성 질환의 신경세포 사멸 원인 규명의 부재로 인해 효과적인 치료제가 전무한 실정이므로, 신경퇴행 질환을 포함한 다양한 노인성 질환들을 이해하고 적절한 치료타겟 발굴을 위해서는 노화의 분자적 기작의 이해가 필요한 실정이다.The number of patients with Alzheimer's dementia and Parkinson's disease, a representative neurodegenerative senile disease, is increasing rapidly in the modern age, but there is no effective treatment due to the lack of identification of the cause of neuronal cell death of several degenerative diseases closely related to aging. Therefore, in order to understand various senile diseases including neurodegenerative diseases and to find appropriate treatment targets, it is necessary to understand the molecular mechanism of aging.

이에 본원에서는, 기존의 텔로머라제 효소를 타겟으로 하는 노화 모델의 한계를 극복하기 위해서 CRISPR-Cas9 도구를 이용해 즉각적으로 텔로미어를 절단하는 것을 포함하는 신규한 노화 모델 제조 방법을 제공하고자 하였다. 또한, 이러한 방법을 이용하여 분열하는 세포뿐만 아니라 분열하지 않는 세포의 노화 모델 역시 제공함으로써 노화의 분자 기작 연구 및 노화 연계 인간 질환의 연구에 활용하고자 하였다.Therefore, in the present application, to overcome the limitations of the aging model targeting the existing telomerase enzyme, to provide a novel aging model manufacturing method including the instant telomeres cleavage using the CRISPR-Cas9 tool. In addition, by using this method to provide an aging model of cells that do not divide as well as dividing cells to study the molecular mechanism of aging and aging linked human diseases.

그러나 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the above-mentioned problem, another task not mentioned will be clearly understood by those skilled in the art from the following description.

본원의 제 1 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열; Cas9를 인코딩하는 DNA 서열; 및 상기 DNA 서열들에 작동가능하게 연결된 하나 이상의 프로모터를 포함하는 세포 노화 모델 제조용 벡터에 관한 것이다.A first aspect of the present disclosure is directed to a DNA sequence encoding a guide RNA (sgRNA) specific for a telomere sequence; DNA sequence encoding Cas9; And one or more promoters operably linked to the DNA sequences.

본원의 제 2 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터가 도입된 세포 노화 모델에 관한 것이다.A second aspect of the present application relates to a cell aging model into which a vector for preparing an aging model according to the first aspect of the present invention is introduced.

본원의 제 3 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터를 진핵세포 내로 도입하는 것을 포함하는 세포 노화 모델 제조 방법에 관한 것이다.A third aspect of the present application relates to a method for producing a cell aging model comprising introducing into an eukaryotic cell an aging model preparation vector according to the first aspect of the present application.

본원의 제 4 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터를 포함하는 세포 노화 모델 제조용 조성물에 관한 것이다.A fourth aspect of the present application relates to a composition for preparing a cell aging model comprising a vector for preparing an aging model according to the first aspect of the present application.

본원의 제 5 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA) 및 Cas9를 인간을 제외한 동물의 신경 조직에 주입하는 것을 포함하는 동물 노화 모델 제조 방법에 관한 것이다.A fifth aspect of the present invention relates to a method for preparing an animal aging model comprising injecting a guide RNA (sgRNA) and Cas9 specific for a telomere sequence into neural tissue of an animal other than a human.

본원의 제 6 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA) 및 Cas9를 포함하는 동물 노화 모델 제조용 조성물에 관한 것이다.A sixth aspect of the present invention relates to a composition for preparing an animal aging model comprising guide RNA (sgRNA) and Cas9 specific for a telomere sequence.

본원의 제 7 측면은, 본원의 제 1 측면에 따른 벡터가 도입된 신경퇴행성 질환 모델에 관한 것이다.A seventh aspect of the present application relates to a neurodegenerative disease model into which a vector according to the first aspect of the present invention has been introduced.

상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 구현예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 구현예 및 실시예가 존재할 수 있다.The above-mentioned means for solving the problems are merely exemplary, and should not be construed to limit the present invention. In addition to the exemplary embodiments described above, there may be additional embodiments and embodiments described in the drawings and detailed description of the invention.

본원발명에 따르면, CRISPR-Cas9 게놈 편집 기술을 적용하여 텔로미어 말단을 절단함으로써 효율적인 노화 모델 시스템을 구축할 수 있으며, 이러한 CRISPR-Cas9을 활용한 텔로미어 절단 기술은 노화 세포 및 동물 모델 제작에 적용됨으로써 노화 분자 기작 및 퇴행성 신경질환의 신규 타겟 발굴에 활용될 수 있다.According to the present invention, CRISPR-Cas9 genome editing technology can be applied to construct an efficient aging model system by cutting the telomeres, and the telomeres cutting technology utilizing CRISPR-Cas9 is applied to the production of senescent cells and animal models. Molecular mechanisms and new targets for neurodegenerative diseases can be used.

또한, 본원발명의 시스템을 종래 개발된 세포와 동물 질환 모델에 적용함으로써 병변 표현형의 증폭이 가능하며, 이는 신규 치료제를 검증하는 파이프 라인을 혁신적으로 개선시킬 수 있을 것으로 기대된다.In addition, by applying the system of the present invention to conventionally developed cell and animal disease models, it is possible to amplify the lesion phenotype, which is expected to revolutionize the pipeline for verifying new therapeutic agents.

도 1은 본원의 일 실시예에 따른 CRISPR-Cas9에 의한 텔로미어 단축을 보여주는 실시간 PCR (도 1a) 및 서던 블롯 (도 1b) 실험 결과이다.
도 2는 본원의 일 실시예에 따른 CRISPR-Cas9에 의한 텔로미어 단축에 의한 세포 독성 여부를 보여주는 세포 성장 분석 (도 2a) 및 콜로니 형성 분석 (도 2b) 결과이다.
도 3은 본원의 일 실시예에 따른 CRISPR-Cas9에 의한 텔로미어 단축에 의한 미토콘드리아 이상을 보여주는 미토콘드리아 막전위 분석 (도 3a), 산소 소모량 측정 (도 3b 및 3c) 및 세포 생존 분석 (도 3d) 결과이다.
도 4는 본원의 일 실시예에 따른 CRISPR-Cas9에 의한 텔로미어 단축에 의한 단백질 발현 이상을 보여주는 웨스턴 블롯 분석 (도 4a) 및 이의 정량 그래프 (도 4b)이다.
도 5는 본원의 일 실시예에 따른 CRISPR-Cas9 세포 노화 모델에서의 α-시뉴클레인 집적체 형성 촉진을 보여주는 웨스턴 블롯 분석 (도 5a) 및 이의 정량 그래프 (도 5b)이다.
1 is a result of real-time PCR (FIG. 1A) and Southern blot (FIG. 1B) showing telomeres shortening by CRISPR-Cas9 according to an embodiment of the present disclosure.
FIG. 2 shows the results of cell growth analysis (FIG. 2A) and colony formation (FIG. 2B) showing cytotoxicity due to telomere shortening by CRISPR-Cas9 according to an embodiment of the present disclosure.
Figure 3 is a mitochondrial membrane potential analysis (Fig. 3a), oxygen consumption measurement (Fig. 3b and 3c) and cell survival analysis (Fig. 3d) results showing mitochondrial abnormalities due to telomere shortening by CRISPR-Cas9 according to an embodiment of the present application .
4 is a Western blot analysis (FIG. 4A) and a quantitative graph thereof (FIG. 4B) showing protein expression abnormalities by telomeres shortening by CRISPR-Cas9 according to an embodiment of the present disclosure.
FIG. 5 is a Western blot analysis (FIG. 5A) and a quantitative graph thereof (FIG. 5B) showing the promotion of α-synuclein aggregate formation in a CRISPR-Cas9 cell aging model according to one embodiment herein.

아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present application.

본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.

본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."

본원 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout this specification, the term "combination of these" included in the expression of the makushi form means one or more mixtures or combinations selected from the group consisting of constituents described in the expression of the makushi form, wherein the constituents It means to include one or more selected from the group consisting of.

본원 명세서 전체에서, "A 및/또는 B" 의 기재는, "A, B, 또는, A 및 B" 를 의미한다. Throughout this specification, description of "A and / or B" means "A, B, or A and B."

용어 “작동가능하게 연결된"은 하나의 핵산 단편이 다른 핵산 단편과 결합되어 그의 기능 또는 발현이 다른 핵산 단편에 의해 영향을 받는 것을 의미한다.The term “operably linked” means that one nucleic acid fragment is combined with another nucleic acid fragment so that its function or expression is affected by the other nucleic acid fragment.

용어 "가이드 RNA"는 일반적으로 Cas 단백질에 결합할 수 있고 Cas 단백질을 표적 폴리뉴클레오타이드 (예를 들어, DNA)내의 특정 위치에 표적화하는 것을 도울 수 있는 RNA 분자(또는 집합적으로 RNA 분자들의 그룹)를 지칭할 수 있다. 가이드 RNA는 crRNA 분절 및 tracrRNA 분절을 포함할 수 있다. 본 명세서에 사용되는 "crRNA" 또는 "crRNA 분절"이란 용어는 폴리뉴클레오타이드-표적화 가이드 서열, 줄기 서열 및 임의로 5'-오버행 서열을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 본 명세서에 사용되는 "tracrRNA" 또는 "tracrRNA 분절"이란 용어는 단백질-결합 분절(예를 들어, 상기 단백질-결합 분절은 크리스퍼-결합된 단백질, 예를 들어 Cas9와 상호작용할 수 있다)을 포함하는 RNA 분자 또는 그의 부분을 지칭한다. 상기 "가이드 RNA"란 용어는 단일 가이드 RNA(sgRNA)를 포함하며, 이때 상기 crRNA 분절 및 상기 tracrRNA 분절은 동일한 RNA 분자 중에 위치한다. "가이드 RNA"란 용어는 또한 집합적으로 2개 이상의 RNA 분자들의 그룹을 포함하며, 이때 상기 crRNA 및 상기 tracrRNA 분절은 별도의 RNA 분자 중에 위치한다.The term “guide RNA” generally refers to an RNA molecule (or collectively a group of RNA molecules) that can bind to a Cas protein and can help target the Cas protein to a specific location within a target polynucleotide (eg, DNA). May be referred to. The guide RNA may comprise a crRNA segment and a tracrRNA segment. As used herein, the term "crRNA" or "crRNA segment" refers to an RNA molecule or portion thereof that comprises a polynucleotide-targeting guide sequence, a stem sequence, and optionally a 5'-overhang sequence. As used herein, the term "tracrRNA" or "tracrRNA segment" includes protein-binding segments (eg, the protein-binding segments may interact with a crisper-linked protein, eg Cas9). Refers to an RNA molecule or a portion thereof. The term "guide RNA" includes a single guide RNA (sgRNA), wherein the crRNA segment and the tracrRNA segment are located in the same RNA molecule. The term "guide RNA" also collectively includes a group of two or more RNA molecules, wherein the crRNA and the tracrRNA segments are located in separate RNA molecules.

용어 "핵산", "폴리뉴클레오타이드" 또는 "올리고뉴클레오타이드"란 용어는 DNA 분자, RNA 분자 또는 이들의 유사체를 지칭한다. 본 명세서에 사용되는 "핵산", "폴리뉴클레오타이드" 및 "올리고뉴클레오타이드"란 용어는 비제한적으로 DNA 분자, 예를 들어 cDNA, 게놈 DNA 또는 합성 DNA 및 RNA 분자, 예를 들어 가이드 RNA, 전령 RNA 또는 합성 RNA를 포함한다. 더욱이, 본 명세서에 사용되는 "핵산" 및 "폴리뉴클레오타이드"란 용어는 단일-가닥 및 이중-가닥 형태를 포함한다.The term "nucleic acid", "polynucleotide" or "oligonucleotide" refers to a DNA molecule, an RNA molecule or an analog thereof. As used herein, the terms "nucleic acid", "polynucleotide" and "oligonucleotide" include, but are not limited to, DNA molecules such as cDNA, genomic DNA or synthetic DNA and RNA molecules such as guide RNA, messenger RNA or Synthetic RNA. Moreover, the terms "nucleic acid" and "polynucleotide" as used herein include single-stranded and double-stranded forms.

또한, 본원에서 단백질, RNA, 혹은 DNA (벡터 포함)들의 세포 내 전달은 전기천공법(electroporation), 리포좀, 바이러스벡터, 나노파티클 (nanoparticles), PTD (Protein translocation domain) 융합 단백질 방법 등을 포함하여 당업계에 공지된 다양한 방법들을 제한 없이 사용하여 수행될 수 있다.In addition, intracellular delivery of proteins, RNA, or DNA (including vectors) herein includes electroporation, liposomes, viral vectors, nanoparticles, protein translocation domain (PTD) fusion protein methods, and the like. Various methods known in the art can be carried out using without limitation.

이하, 본원의 세포 노화 모델 제조용 벡터, 이를 이용해 제조된 세포 노화 모델, 이를 이용한 세포 노화 모델 제조 방법, 세포 노화 모델 제조용 조성물, 동물 노화 모델 제조 방법 및 동물 노화 모델 제조용 조성물에 대하여 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본원이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다. Hereinafter, embodiments and examples of the cell aging model manufacturing vector of the present application, a cell aging model prepared using the same, a cell aging model manufacturing method using the same, a composition for producing a cell aging model, a method for producing an animal aging model and a composition for preparing an animal aging model It will be described in detail with reference to the drawings. However, the present application is not limited to these embodiments, examples and drawings.

본원의 제 1 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열; Cas9를 인코딩하는 DNA 서열; 및 상기 DNA 서열들에 작동가능하게 연결된 하나 이상의 프로모터를 포함하는 세포 노화 모델 제조용 벡터를 제공할 수 있다.A first aspect of the present disclosure is directed to a DNA sequence encoding a guide RNA (sgRNA) specific for a telomere sequence; DNA sequence encoding Cas9; And one or more promoters operably linked to the DNA sequences.

기존의 텔로미어 단축에 의한 세포 노화 모델의 경우 상당한 세포 배양 시간을 필요로 하기 때문에, 그 과정에서 예상하지 못하는 신호 전달 체계의 교란 가능성 및 경제적인 측면에서 연구의 제약이 있었다. 본원발명에 따른 CRISPR-Cas9 세포 노화 모델 제조용 벡터를 사용하면 1~2 일 안에 텔로미어 단축 및 노화 표현형이 유도되기 때문에 신속하고 효과적인 노화 연구가 가능한 장점이 있다.Since the cell aging model by the conventional telomere shortening requires considerable cell incubation time, there are limitations in the research in terms of economic potential and disturbance of the signal transmission system that is unexpected in the process. Using the CRISPR-Cas9 cell aging model according to the present invention, the telomer shortening and aging phenotype is induced within 1 to 2 days, and thus, there is an advantage of enabling rapid and effective aging studies.

예를 들어, 상기 가이드 RNA를 인코딩하는 DNA 서열에 작동가능하게 연결된 프로모터와 Cas9를 인코딩하는 DNA 서열에 작동가능하게 연결된 프로모터는 하나의 프로모터일 수도 있으나, 각각의 DNA 서열에 별도로 연결된 두 개 이상의 프로모터일 수도 있다.For example, a promoter operably linked to the DNA sequence encoding the guide RNA and a promoter operably linked to the DNA sequence encoding Cas9 may be one promoter, but two or more promoters separately linked to each DNA sequence. It may be.

예를 들어, 상기 프로모터는 당업계에 알려진 세포 내에서 작동하는 프로모터들로부터 제한 없이 선택하여 사용할 수 있으며, 특정 발달 단계, 특정 시기, 특정 조건 및 특정 부위 등에서 선택적으로 작동하는 프로모터를 사용할 수 있으나, 이에 제한되지 않을 수 있다.For example, the promoter may be selected and used without limitation from promoters operating in cells known in the art, and promoters that selectively operate at specific stages of development, at specific times, at certain conditions, and at specific sites may be used. This may not be limited.

본원의 일 구현예에 따르면, 상기 텔로미어 서열은 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 텔로미어 서열일 수 있으나, 이에 제한되지 않을 수 있으며, 노화 모델을 제조하고자 하는 목적에 따라 텔로미어 서열을 가지는 진핵세포, 식물 또는 동물로부터 통상의 기술자가 제한 없이 선택할 수 있다.According to an embodiment of the present disclosure, the telomeres sequence may be a telomeres sequence of human, mouse, rat, rabbit, fruit fly, pig, or monkey, but may not be limited thereto, and according to the purpose of preparing an aging model, telomeres sequence Those skilled in the art can select from eukaryotic cells, plants or animals with no limitation.

본원의 일 구현예에 따르면, 상기 텔로미어 서열은 서열번호 1로 표시되는 핵산 서열을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the telomeres sequence may include a nucleic acid sequence represented by SEQ ID NO: 1, but may not be limited thereto.

본원의 일 구현예에 따르면, 상기 벡터는 바이러스 벡터 기반인 것일 수 있고, 예를 들어 렌티바이러스 벡터 기반일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the vector may be viral vector based, for example, may be based on lentiviral vector, but may not be limited thereto.

렌티바이러스 벡터를 사용할 경우, 신경세포를 포함한 다양한 종류의 세포주에 감염이 특히 용이하며, 염색체에 통합된 후 수일 내에 sgRNA 및 Cas9의 안정적인 발현 및 이를 통한 텔로미어 조작이 가능하다는 장점이 있다. 뿐만 아니라 AAV 바이러스와 함께 렌티바이러스 벡터의 경우 마우스 조직에의 입체 정위 주입을 통한 노화 모델 제작에도 효율적으로 활용될 수 있다.In the case of using lentiviral vectors, infection of various cell lines including neurons is particularly easy, and stable expression of sgRNA and Cas9 and integration of telomeres within a few days after integration into chromosomes are possible. In addition, the lentiviral vector, together with the AAV virus, can be efficiently used for the production of an aging model through steric stereotype injection into mouse tissue.

본원의 일 구현예에 따르면, 상기 세포 노화 모델 제조용 벡터는 서열번호 2로 표시되는 핵산 서열을 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the cell aging model preparation vector may include a nucleic acid sequence represented by SEQ ID NO: 2, but may not be limited thereto.

본원의 제 2 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터가 도입된 세포 노화 모델을 제공할 수 있다.The second aspect of the present application can provide a cell aging model into which a vector for preparing an aging model according to the first aspect of the present invention is introduced.

예를 들어, 상기 세포 노화 모델이 줄기세포인 경우 이를 이용하여 동물 노화 모델을 제조하는 것이 가능하나, 이에 제한되지 않을 수 있다.For example, when the cell aging model is a stem cell, it is possible to prepare an animal aging model using the same, but may not be limited thereto.

본원의 일 구현예에 따르면, 상기 세포가 신경세포일 수 있으나, 이에 제한되지 않을 수 있으며, 신경세포 외에도 분열을 하지 않거나 분열이 거의 일어나지 않는 세포에 상기 노화 모델 제조용 벡터를 도입하여 세포 노화 모델을 제조할 수 있다.According to the exemplary embodiment of the present disclosure, the cell may be a neuron, but may not be limited thereto, and the cell aging model may be introduced by introducing the vector for preparing the aging model into a cell that does not divide or hardly divide in addition to the neuron. It can manufacture.

본원의 일 구현예에 따르면, 상기 신경세포가 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 신경세포일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the neurons may be neurons of humans, mice, rats, rabbits, fruit flies, pigs or monkeys, but may not be limited thereto.

본원의 제 3 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터를 진핵세포 내로 도입하는 것을 포함하는 세포 노화 모델 제조 방법을 제공할 수 있다.The third aspect of the present application can provide a method for producing a cell aging model comprising introducing into a eukaryotic cell a vector for preparing an aging model according to the first aspect of the present application.

상기 벡터를 진핵세포 내로 도입하는 것은 전기천공법(electroporation), 리포좀, 바이러스벡터, 나노파티클 (nanoparticles), PTD (Protein translocation domain) 융합 단백질 방법 및 시중에서 판매하는 시약 등을 이용하는 것을 포함하는, 당업계에 공지된 다양한 방법들을 제한 없이 사용하여 수행될 수 있다.Introducing the vector into eukaryotic cells includes the use of electroporation, liposomes, viral vectors, nanoparticles, protein translocation domain (PTD) fusion protein methods, commercially available reagents, and the like. Various methods known in the art can be performed using without limitation.

본원의 일 구현예에 따르면, 상기 진핵세포가 신경세포일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the eukaryotic cells may be neurons, but may not be limited thereto.

본원의 일 구현예에 따르면, 상기 신경세포가 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 신경세포일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the neurons may be neurons of humans, mice, rats, rabbits, fruit flies, pigs or monkeys, but may not be limited thereto.

본원의 제 4 측면은, 본원의 제 1 측면에 따른 노화 모델 제조용 벡터를 포함하는 세포 노화 모델 제조용 조성물을 제공할 수 있다.The fourth aspect of the present application can provide a composition for preparing a cell aging model, comprising a vector for producing an aging model according to the first aspect of the present application.

본원의 제 5 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA) 및 Cas9를 인간을 제외한 동물의 신경 조직에 주입하는 것을 포함하는 동물 노화 모델 제조 방법을 제공할 수 있다. 상기 주입은 주사 또는 외과적 수술에 의해 수행될 수 있으나, 이에 제한되지 않을 수 있다.The fifth aspect of the present disclosure can provide a method for preparing an animal aging model comprising injecting guide RNAs (sgRNAs) and Cas9 specific for a telomere sequence into neural tissue of an animal other than a human. The injection may be performed by injection or surgical operation, but may not be limited thereto.

본원의 일 구현예에 따르면, 상기 신경 조직이 뇌를 포함하는 것일 수 있으나, 이에 제한되지 않을 수 있으며, 중추 신경 또는 말초 신경 등에 주입될 수도 있다.According to one embodiment of the present application, the neural tissue may include a brain, but may not be limited thereto, and may be injected into a central nerve or a peripheral nerve.

본원발명에 따라 Cas9과 텔로미어를 타겟하는 가이드 RNA를 동물의 뇌에 주입함으로써 더이상 분열하지 않는 신경세포에 대해서도 인 비보(in vivo) 노화 유도가 가능하다. 즉 기존의 퇴행성 뇌질환 동물 모델에서 수십 개월에 걸쳐 이루어져야 하는 노화 연계 병변 표현형 연구를 신속하게 수행할 수 있다.According to the present invention, by injecting the Cas9 and telomeres guide RNA into the animal brain, it is possible to induce in vivo aging even for neuronal cells that no longer divide. In other words, senescence-linked lesion phenotype studies that need to be carried out over several decades in existing degenerative brain disease animal models can be performed quickly.

본원의 일 구현예에 따르면, 상기 동물이 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the animal may be a mouse, rat, rabbit, fruit fly, pig, or monkey, but may not be limited thereto.

본원의 제 6 측면은, 텔로미어 서열에 특이적인 가이드 RNA (sgRNA) 및 Cas9를 포함하는 동물 노화 모델 제조용 조성물을 제공할 수 있다. 예를 들어, 상기 동물 노화 모델 제조용 조성물은 동물의 신경 조직에 주입하였을 때 독성, 쇼크 또는 부작용 등을 일으키지 않는, 당업계에서 널리 사용되는 생체적합성 부형제를 더 포함할 수 있으나, 이에 제한되지 않을 수 있다.A sixth aspect of the present disclosure may provide a composition for preparing an animal aging model comprising guide RNA (sgRNA) and Cas9 specific for a telomere sequence. For example, the composition for preparing an animal aging model may further include a biocompatible excipient widely used in the art, which does not cause toxicity, shock, or side effects when injected into an animal neural tissue, but may not be limited thereto. have.

본원의 제 7 측면은, 본원의 제 1 측면에 따른 벡터가 도입된, 신경퇴행성 질환 모델을 제공할 수 있다.A seventh aspect of the present disclosure can provide a neurodegenerative disease model in which a vector according to the first aspect of the present invention has been introduced.

본원의 일 구현예에 따르면, 상기 신경퇴행성 질환이 파킨슨 질환일 수 있으나, 이에 제한되지 않을 수 있다.According to one embodiment of the present application, the neurodegenerative disease may be Parkinson's disease, but may not be limited thereto.

파킨슨 질환은 대표적인 신경퇴행성 질환 중 하나로서, 세포의 노화와 밀접한 연관을 가지고 있다. 파킨슨 질환 외에도 피부 노화, 헌팅톤 질환, 뇌졸중, 퇴행성 관절 질환, 알츠하이머, 노인성 흑점, 골다공증, 탈모증, 다발성 경화증, 백반증, 죽상경화증, 관상동맥질환, 협심증, 간경화증, 전립선비대증, 만성신질환, 폐기종 및 당뇨병 등이 세포의 노화와 관련이 있는 질환으로 알려져 있다. Parkinson's disease is one of the representative neurodegenerative diseases and is closely related to aging of cells. In addition to Parkinson's disease, skin aging, Huntington's disease, stroke, degenerative joint disease, Alzheimer's, senile plaque, osteoporosis, alopecia, multiple sclerosis, vitiligo, atherosclerosis, coronary artery disease, angina pectoris, liver cirrhosis, prostatic hyperplasia, chronic kidney disease, emphysema and diabetes The back is known to be a disease associated with aging of cells.

신경퇴행성 질환은 특히 신경세포의 노화과 깊은 연관이 있는 것으로 알려져 있으므로, 신경세포 노화 모델은 노인성 질환, 특히 파킨슨 질환과 같은 신경퇴행성 질환 모델로서 유용하게 사용될 수 있을 것으로 예상된다.Since neurodegenerative diseases are known to be closely related to aging of neurons, in particular, neuronal aging models are expected to be useful as models of neurodegenerative diseases such as senile diseases, particularly Parkinson's disease.

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하고자 하나, 하기의 실시예는 단지 설명의 목적을 위한 것이며 본원의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the following examples are for illustrative purposes only and are not intended to limit the scope of the present application.

[실시예]EXAMPLE

실험 방법Experiment method

1. 세포 배양 및 형질감염1. Cell Culture and Transfection

사람 신경모세포종 세포주인 SH-SY5Y를 10% FBS와 1% 항생제 (페니실린/스트렙토마이신)가 함유된 DMEM을 이용하여 CO2 5%, 습도 95% 및 37℃에서 배양하였다. 각 그룹의 DNA 플라스미드를 Opti-MEM과 혼합한 후, 형질감염 시약인 X-tremeGENE을 넣고 15 분 내지 30 분간 실온에서 기다린 다음, SH-SY5Y 세포에 적하하고 흔들어 주어 세포 내로 DNA를 도입하였다.Human neuroblastoma cell line SH-SY5Y was incubated at 5% CO 2 , 95% humidity and 37 ° C. using DMEM containing 10% FBS and 1% antibiotics (penicillin / streptomycin). After mixing the DNA plasmids of each group with Opti-MEM, the transfection reagent, X-tremeGENE, was added and waited at room temperature for 15 to 30 minutes, and then dropped into SH-SY5Y cells and shaken to introduce DNA into the cells.

2. 실시간 2. Real time PCR을PCR 이용한 텔로미어 정량 Telomere Quantification Using

1) 유전체 DNA 추출1) Genomic DNA Extraction

형질감염된 SH-SY5Y 세포 표면을 1X PBS로 1 회 세척한 다음, Eppendorf 튜브 (E 튜브)에 모아서 2,000 rpm의 속도로 5 분 동안 원심분리하였다. 5 분 후, 상층액을 제거하고 세포 펠렛만을 남겼다. 여기에 세포 용해 버퍼 (pH 7.4-Tris 0.1 M, NaCl 0.2 M, EDTA 5 Mm, 0.4% SDS) 500 ㎕당 Proteinase K (20 ng/ml)을 5 ㎕ 첨가하여 혼합액을 준비한 다음, 펠렛에 혼합액 500 ㎕를 넣어 볼텍싱하였다. 이후 55℃ 히트-블록에서 2 시간 동안 인큐베이션하여 Proteinase K를 불활성화시켰다. 2 시간 후 각각의 E 튜브에 페놀 : 클로로포름 : 이소아밀알코올 = 25:24:1 (PCI) 500 ㎕를 넣고 볼텍싱하였다. 이어서 14000 rpm의 속도로 5 분 동안 원심분리하고, DNA 층에서 300 ㎕만을 새로운 E 튜브로 옮겼다. DNA 양의 1/10인 30 ㎕의 아세트산나트륨 (3 M)을 300 ㎕ DNA에 첨가하고, DNA 양의 7/10인 210 ㎕의 이소프로판올을 위 혼합액에 첨가하였다. 이후 14,000 rpm의 속도로 4℃ 조건에서 30 분 동안 원심분리한 후, 상층액을 제거하고, 70% 에탄올을 튜브당 500 ㎕씩 넣고 바로 14,000 rpm속도로 5 분 동안 원심분리하였다. 상층액 제거 후 10 분 동안 에탄올을 건조시킨 다음, 순수한 증류수 50 ㎕를 넣고 용리(elution) 하여 유전체 DNA(genomic DNA, gDNA)를 확보하였다.The transfected SH-SY5Y cell surface was washed once with 1X PBS, then collected in Eppendorf tubes (E tubes) and centrifuged for 5 minutes at a speed of 2,000 rpm. After 5 minutes, the supernatant was removed and only cell pellets were left. 5 μl of Proteinase K (20 ng / ml) per 500 μl of cell lysis buffer (pH 7.4-Tris 0.1 M, NaCl 0.2 M, EDTA 5 Mm, 0.4% SDS) was added thereto to prepare a mixed solution, and the mixed solution 500 was added to the pellet. Was added and vortexed. Proteinase K was then inactivated by incubation for 2 hours at 55 ° C. heat-block. After 2 hours, 500 μl of phenol: chloroform: isoamyl alcohol = 25: 24: 1 (PCI) was added to each E tube and vortexed. It was then centrifuged for 5 minutes at a speed of 14000 rpm and only 300 μl in the DNA layer was transferred to a new E tube. 30 μl of sodium acetate (3 M), 1/10 of the amount of DNA, was added to 300 μl DNA, and 210 μl of isopropanol, 7/10 of the amount of DNA, was added to the gastric mixture. After centrifugation for 30 minutes at 4 ℃ conditions at a speed of 14,000 rpm, the supernatant was removed, and 500 μl of 70% ethanol per tube was immediately centrifuged for 5 minutes at 14,000 rpm speed. After removing the supernatant, ethanol was dried for 10 minutes, 50 μl of pure distilled water was added, and elution was performed to obtain genomic DNA (gDNA).

2) RT-PCR2) RT-PCR

텔로미어 정량용 “Telomere” 프라이머, SYBR green PCR master mix와 분리 정제한 gDNA를 혼합한 다음 실시간 PCR 기계 (QuantStudio 6 flex Real-Time PCR System, Applied Biosystems)에 넣고 텔로미어의 양을 측정하였다. 이후 DNA와 “36B4u” 프라이머, SYBR green PCR master mix와 섞어서 측정한 값으로 정규화하였다. 사용된 프라이머의 서열은 아래와 같다.The telomeres “Telomere” primer, SYBR green PCR master mix, and the purified gDNA were mixed and placed in a real-time PCR machine (QuantStudio 6 flex Real-Time PCR System, Applied Biosystems) to measure the amount of telomeres. Then, the mixture was normalized to the measured value by mixing with DNA, “36B4u” primer, and SYBR green PCR master mix. The sequence of the primer used is as follows.

Telomere-F : GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT (서열번호 6)Telomere-F: GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT (SEQ ID NO: 6)

Telomere-R : TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA (서열번호 7)Telomere-R: TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA (SEQ ID NO: 7)

36B4u-F : CAGCAAGTGGGAAGGTGTAATCC (서열번호 8)36B4u-F: CAGCAAGTGGGAAGGTGTAATCC (SEQ ID NO: 8)

36B4u-R : CCCATTCTATCATCAACGGGTACAA (서열번호 9)36B4u-R: CCCATTCTATCATCAACGGGTACAA (SEQ ID NO: 9)

3. 텔로미어 분석3. Telomere Analysis

SH-SY5Y 세포에 공벡터(mock vector)와 텔로미어 gRNA를 형질감염시킨 다음, 72 시간 후에 유전체 DNA를 추출하고 Hinf1과 Rsa1 제한효소로 37℃에서 40 분 동안 소화시킨 다음 DNA 절편을 전기영동으로 분리하여 나일론 멤브레인에 옮겨서 디곡시제닌-라벨된 프로브로 텔로미어 반복의 길이를 측정하였다.After transfecting SH-SY5Y cells with mock vector and telomer gRNA, 72 hours later, genomic DNA was extracted, digested with Hinf1 and Rsa1 restriction enzymes for 40 minutes at 37 ° C, and DNA fragments were subjected to electrophoresis. Was transferred to a nylon membrane to measure the length of the telomere repeat with a digoxigenin-labeled probe.

4. 4. JCJC -1 미토콘드리아 기능 분석-1 Mitochondrial Function Analysis

SH-SY5Y 세포에 공벡터와 텔로미어 gRNA를 형질감염시킨 다음, 24 시간 후에 96 웰 플레이트로 세포를 옮기고 48 시간 후에 JC-1 분석을 수행하였다. 배양 배지 50 ㎕와 JC1 염색 용액 1 ㎕을 혼합한 용액을 웰 수만큼 준비하였다. 96 웰 플레이트에서 기존의 배지 50 ㎕를 제거하고 JC1 염색 용액 50 ㎕를 넣어준 후 37℃에서 15 분 동안 인큐베이션하였다. 15 분 후에 배지를 전부 흡입하여 제거 후 JC-1 분석 버퍼를 100 ㎕씩 첨가하고, 분광광도계로 측정하였다.SH-SY5Y cells were transfected with empty vectors and telomeres gRNAs, then 24 hours later, cells were transferred to 96 well plates and 48 hours later JC-1 analysis was performed. 50 μl of the culture medium and 1 μl of the JC1 staining solution were mixed to prepare a number of wells. 50 μl of the existing medium was removed from the 96 well plate, 50 μl of the JC1 staining solution was added thereto, and then incubated at 37 ° C. for 15 minutes. After 15 minutes, the medium was aspirated and removed, and then 100 μl of JC-1 assay buffer was added and measured by spectrophotometer.

5. 5. 트리판Trypan 블루를Blue 이용한 세포 생존 및 성장 분석 Cell Survival and Growth Analysis

1) 세포 생존 분석 1) Cell Viability Assay

SH-SY5Y 세포에 공벡터와 텔로미어 gRNA를 형질감염시키고 72 시간 후에 모두 E 튜브에 모은 다음 300 g의 속도로 5 분 동안 원심분리하였다. 5 분 후 상층액을 제거한 다음 PBS를 넣고 한번 세척하고, 다시 300 G의 속도로 5 분 동안 원심분리하였다. 5 분 후 상층액을 제거하고, PBS 500 ㎕를 각 튜브에 넣어서 세포 펠렛을 풀어주었다. 새로운 튜브에 트리판 블루 100 ㎕를 넣어 둔 다음, 세포 펠렛이 풀어진 PBS 100 ㎕를 넣어 혼합하였다. 실온에서 2 분 정도 방치한 다음, 세포계수 슬라이드에 혼합액 10 ㎕를 넣고 CountessII Automated Cell Counter (Life Technologies)기계를 이용하여 세포 생존율 (%)을 측정하였다.SH-SY5Y cells were transfected with empty vectors and telomeres gRNAs, and after 72 hours all were collected in E tubes and centrifuged for 5 minutes at a rate of 300 g. After 5 minutes, the supernatant was removed, PBS was added thereto, washed once, and centrifuged for 5 minutes at a speed of 300 G again. After 5 minutes, the supernatant was removed, and 500 µl of PBS was added to each tube to free the cell pellet. 100 μl of Trypan Blue was added to a new tube, followed by mixing with 100 μl of PBS freed of cell pellet. After standing at room temperature for 2 minutes, 10 μl of the mixed solution was added to the cell count slide, and cell viability (%) was measured using a Countess II Automated Cell Counter (Life Technologies) machine.

2) Cell 성장 분석 2) Cell Growth Analysis

SH-SY5Y 세포에 공벡터와 텔로미어 gRNA를 형질감염시킨 후 4 일 동안 세포의 총 개수를 세포 생존 분석과 같은 실험 방법으로 측정하였다.After transfecting the SH-SY5Y cells with the empty vector and the telomere gRNA, the total number of cells was measured for 4 days by an experimental method such as cell survival analysis.

6. 6. 웨스턴Weston 블롯Blot 분석 analysis

6 웰 플레이트에 있는 세포를 PBS로 한 번 세척한 후 용해 버퍼 (PBS 내 1% Nonidet P40, pH 7.4)를 1 웰당 500 ㎕ 넣고 E 튜브에 모아서 얼음에서 30 분 두어 용해시켰다. 이후 30 분 동안 5 분에 한 번씩 볼텍싱하였다. 30 분 후에 드라이아이스를 이용해 급속냉동 후 얼음물에서 녹여주는 과정을 2 회 반복하였다. 녹은 후, 4℃ 원심분리기에 넣고 13,000 g의 속도로 15 분 동안 원심분리하였다. 15 분 후 상층액 (단백질)을 새 E 튜브로 옮겼다. 정제되어 나온 단백질을 2X 램리 버퍼(laemmli buffer) (Bio-Rad)(+베타-머캅토에탄올)와 1:1로 섞은 후 5 분 동안 95℃서 끓였다. 준비된 샘플을 SDS-PAGE 겔을 이용하여 단백질 크기에 따라 분리시켰다 (100 V, 1 시간 30 분). 분리된 단백질이 들어있는 SDS-PAGE 겔을 니트로셀룰로스 멤브레인으로 옮겼다 (100 V, 1 시간 30 분). 단백질이 옮겨진 멤브레인을 5% 탈지유를 이용해 1 시간 동안 블로킹하였다. 1 시간 후 탈지유를 제거하고, 1 차 항체 (1:5,000)를 넣고 4℃ 셰이커에 16 시간 동안 두었다. 16 시간 후 1 차 항체를 제거해준 다음 2 차 항체를 5% 탈지유에 1:1000의 비율로 넣고 니트로셀룰로스 멤브레인에 넣었다 (실온, 2 시간). 2 시간 후 2 차 항체를 제거하고, ECL 용액 (SuperSignal™ West Pico Chemiluminescent Substrate, Thermo)를 넣고 암실에서 X-ray 필름을 이용하여 단백질 밴드를 확인하였다.After washing the cells in the 6-well plate once with PBS, 500 μl of lysis buffer (1% Nonidet P40 in PBS, pH 7.4) was added per well, collected in an E tube, and lysed for 30 minutes on ice. Thereafter vortexing every 5 minutes for 30 minutes. After 30 minutes, the process of rapid freezing using dry ice and dissolving in ice water was repeated twice. After melting, it was placed in a 4 ℃ centrifuge and centrifuged for 15 minutes at a speed of 13,000 g. After 15 minutes the supernatant (protein) was transferred to a new E tube. The purified protein was mixed 1: 1 with 2 × laemmli buffer (Bio-Rad) (+ beta-mercaptoethanol) and then boiled at 95 ° C. for 5 minutes. Prepared samples were separated according to protein size using an SDS-PAGE gel (100 V, 1 hour 30 minutes). SDS-PAGE gel containing the separated protein was transferred to nitrocellulose membrane (100 V, 1 hour 30 minutes). The membrane to which the protein was transferred was blocked with 5% skim milk for 1 hour. After 1 hour skim milk was removed, the primary antibody (1: 5,000) was added and placed in a 4 ° C shaker for 16 hours. After 16 hours, the primary antibody was removed and then the secondary antibody was added to 5% skim milk in a ratio of 1: 1000 and placed on a nitrocellulose membrane (room temperature, 2 hours). After 2 hours, the secondary antibody was removed, ECL solution (SuperSignal ™ West Pico Chemiluminescent Substrate, Thermo) was added, and protein bands were identified using an X-ray film in the dark.

7. 7. LentiCRISPRLentiCRISPR -- sgRNAsgRNA -텔로미어 Telomere 클로닝Cloning

본 실시예에서 사용된 sgTelomere 올리고머 서열은 아래와 같다.The sgTelomere oligomer sequence used in this example is as follows.

F : CACCGTAGGGTTAGGGTTAGGGTTA (서열번호 3) F: CACCGTAGGGTTAGGGTTAGGGTTA (SEQ ID NO: 3)

R : AAACTAACCCTAACCCTAACCCTAC (서열번호 4)R: AAACTAACCCTAACCCTAACCCTAC (SEQ ID NO: 4)

다만, 대안적으로, 아래의 올리고머 서열이 사용될 수도 있다.Alternatively, however, the following oligomer sequences may be used.

F: CACCGTTAGGGTTAGGGTTAGGGTT (서열번호 10)F: CACCGTTAGGGTTAGGGTTAGGGTT (SEQ ID NO: 10)

R: AAACAACCCTAACCCTAACCCTAAC (서열번호 11)R: AAACAACCCTAACCCTAACCCTAAC (SEQ ID NO: 11)

서열번호 3 및 4에 나타난 각각의 올리고머 쌍을 어닐링하였다 (1 ㎕ Oligo1 (Forward) (100 μM) + 1 ㎕ Oligo2 (Reverse) (100 μM) + 1 Ul 10X T4 Ligation Buffer + 7 ㎕ 증류수 = 총 10 ㎕, 조건 : 95℃ 5 분, 이후 25℃까지 5℃/분의 속도로 감소시킴)Each oligomeric pair shown in SEQ ID NOs: 3 and 4 was annealed (1 μl Oligo1 (Forward) (100 μM) + 1 μl Oligo2 (Reverse) (100 μM) + 1 Ul 10X T4 Ligation Buffer + 7 μl distilled water = total 10 Μl, conditions: 95 ° C. 5 min, then reduced to 25 ° C. at a rate of 5 ° C./min)

어닐링이 끝난 올리고머를 1/200으로 순수한 DW에 희석시키고, 절단 벡터 (Lenti CRISPR-V2) 50 ng + 올리고머 (1/200) 1 ㎕를 10X T4 결찰 버퍼, T4 리가아제, DW와 섞어 16℃에 16 시간동안 인큐베이션하여 결찰하였다. LentiCRISPR V2의 전체 서열은 서열번호 2에 나타나 있다. Stbl3 15 ㎕에 결찰 결과물 1 ㎕를 넣고 젠틀하게 섞은 후 얼음에 30 분 동안 두어 형질전환하였다. 42℃ 히트 블록을 이용해 30 초 동안 열충격을 준 후 5 분 동안 얼음에 두었다. SOC 배지 200 ㎕를 넣고 37℃ 셰이커에서 1 시간 동안 회복시켰다. 미리 데운 아가 플레이트에 플레이팅하고, 다음날 콜로니를 확인하여 5 ml 배지에서 배양하고, 미니 배양 미니 프렙 후 시퀀싱하였다.Dilute the annealed oligomer to pure DW at 1/200, mix 50 μg of the cleavage vector (Lenti CRISPR-V2) + 1 μl of oligomer (1/200) with 10 × T4 ligation buffer, T4 ligase, DW at 16 ° C. Ligation was incubated for 16 hours. The complete sequence of LentiCRISPR V2 is shown in SEQ ID NO: 2. 1 μl of the ligation result was added to 15 μl of Stbl3, mixed gently, and placed on ice for 30 minutes to transform. Thermal shock was applied using a 42 ° C. heat block for 30 seconds and then placed on ice for 5 minutes. 200 μl of SOC medium was added and recovered for 1 hour in a 37 ° C shaker. Plated on pre-warmed agar plates, the next day colonies were identified and incubated in 5 ml medium and sequenced after mini culture miniprep.

실험 결과Experiment result

1. One. CRISPRCRISPR -- Cas9에Cas9 의한 텔로미어 단축 Telomere shortening

lentiCRISPR-Tel-sgRNA를 제작하여 SH-SY5Y 세포에 도입함으로써 Cas9 효소와 텔로미어를 타겟하는 가이드 RNA (Tel-sgRNA)를 발현시킨 결과, 텔로미어 절편의 양이 50% 정도 감소하는 것을 RTQ-PCR을 통해 확인하였다. 도 1a는 lentiCRISPR-control-sgRNA (Cont) 및 lentiCRISPR-Tel-sgRNA를 발현시킨 SH-SY5Y 세포에 대한 텔로미어의 상대적인 양을 실시간 PCR로 정량한 결과를 나타낸 그래프이다 (n = 3). 텔로미어의 양은 36B4u에 대한 양을 내부 로딩 대조군으로 표준화한 것이다.lentiCRISPR-Tel-sgRNA was produced and introduced into SH-SY5Y cells to express Cas9 enzyme and telomeres targeting guide RNA (Tel-sgRNA), resulting in a 50% reduction in the amount of telomeres via RTQ-PCR. Confirmed. 1A is a graph showing the results of quantitative determination of the relative amount of telomeres by SH-SY5Y cells expressing lentiCRISPR-control-sgRNA (Cont) and lentiCRISPR-Tel-sgRNA by real-time PCR (n = 3). The amount of telomeres is normalized to the internal loading control for 36B4u.

또한 대조군과 Tel-sgRNA를 발현시킨 노화 모델 세포에 대해서 DNA 추출후 텔로미어 서열을 인지하는 프로브를 사용하여 서던 블롯(Southern blot)을 수행한 결과 대조군에 비해서 텔로미어의 현저한 양적인 감소를 확인할 수 있었다. 도 1b는 대조군과 실험군 SH-SY5Y로부터 정제 분리한 전 유전체 DNA에 대해서 텔로미어 프로브를 이용한 텔로미어 길이 서던 블롯 분석 결과 및 전체 로딩 DNA양에 대한 상대적인 텔로미어 신호 강도 정량 그래프이다 (n = 3). In addition, Southern blot was performed on the aging model cells expressing the control group and the tel-sgRNA using a probe that recognizes the telomer sequence after DNA extraction. As a result, a significant quantitative decrease of the telomeres was confirmed. FIG. 1B is a telomere length Southern blot analysis using a telomere probe and telomere signal intensity quantitative graphs relative to the total loading DNA amount of the whole genome DNA purified from the control group and the experimental group SH-SY5Y (n = 3).

본 실시예의 방법을 통해 세포의 계대 배양 없이 1 회의 형질감염으로 효율적으로 텔로미어를 절단할 수 있음을 확인하였다.Through the method of this Example it was confirmed that telomeres can be efficiently cleaved by one transfection without passage of cells.

2. 2. CRISPRCRISPR -- Cas9에Cas9 의한 텔로미어 단축에 의한 세포 독성 Cytotoxicity by shortening of telomeres

lentiCRISPR-Tel-sgRNA의 발현에 의한 노화 세포 모델에 대해서 1, 2, 3, 4, 5 일째 세포수를 분석한 결과 유의적인 세포 분열의 억제가 나타남을 확인하였다. 도 2a는 gTel-sgRNA 및 대조군 발현 SH-SY5Y 세포의 성장 곡선 그래프를 보여준다 (n = 그룹당 7). In the aging cell model by the expression of lentiCRISPR-Tel-sgRNA, the number of cells at day 1, 2, 3, 4 and 5 was analyzed and it was confirmed that significant cell division was suppressed. 2A shows a growth curve graph of gTel-sgRNA and control expressing SH-SY5Y cells (n = 7 per group).

뿐만 아니라, 콜로니 형성 분석시에도 마찬가지로 콜로니의 성장이 저해되는 것을 콜로니 크기의 감소를 통해 확인하였다. 도 2b는 gTel-sgRNA 및 대조군 발현 SH-SY5Y 세포에 대한 콜로니 형성 분석 결과이다. 콜로니의 분포는 쿠마시 염색 및 이미지 분석을 통한 콜로니 개수와 개별 콜로니의 평균적 사이즈를 통하여 분석하였다 (n = 그룹당 3). In addition, it was confirmed that the colony growth was also inhibited in the colony formation analysis through reduction of colony size. 2B shows colony formation assays for gTel-sgRNA and control expressing SH-SY5Y cells. The distribution of colonies was analyzed by the number of colonies by Coomassie staining and image analysis and the average size of individual colonies (n = 3 per group).

3. 3. CRISPRCRISPR -- Cas9에Cas9 의한 텔로미어 단축에 의한 미토콘드리아 이상 유도 Induction of Mitochondrial Abnormalities by Telomere Shortening

JC-1 화합물의 경우 미토콘드리아의 막전위가 정상일 경우에는 적색 형광이 강하게 나타나는 반면 막전위가 손상될 경우 녹색 형광이 상대적으로 강해진다. CRISPR-Cas9에 의한 텔로미어 단축을 유도한 SH-SY5Y 세포의 경우 JC-1의 상대적인 녹색 형광의 비율이 증가하였으므로 막전위의 손상이 유도된 것이 확인되었다. 도 3a는 gCont 및 gTel 발현 SH-SY5Y 세포에서의 미토콘드리아 막전위를 전위에 반응성의 JC-1의 상대적인 적색/녹색 형광 세기로 분석 및 정량한 결과이다 (n = 7).In the case of the JC-1 compound, red fluorescence is strong when the membrane potential of mitochondria is normal, whereas green fluorescence is relatively strong when the membrane potential is damaged. SH-SY5Y cells induced telomere shortening by CRISPR-Cas9 increased the ratio of the relative green fluorescence of JC-1, indicating that membrane potential damage was induced. FIG. 3A shows the results of analysis and quantification of mitochondrial membrane potentials in gCont and gTel expressing SH-SY5Y cells with relative red / green fluorescence intensities of JC-1 reactive to translocation (n = 7).

실제 미토콘드리아의 기능을 확인하기 위해 산소 소모량 (oxygen consumption rate)을 Seahorse 기기를 이용해서 측정해본 결과 미토콘드리아의 basal, maximal 그리고 reserve 역량이 텔로미어 단축에 의해 감소됨을 확인하였다. 도 3b는 gCont 및 gTel 발현 SH-SY5Y 세포에 대해 각각의 저해제들 (oligomycin, CCCP, rotenone) 처리에 따른 산소 소모량의 측정 결과이며 (n = 4 대조군, 3 실험군) 정량값은 각 샘플의 단백질 정량값으로 표준화하였다. 도 3c는 산소 소모량 그래프로부터 각구간의 평균 OCR로부터 basal, maximal, reserve 및 proton leaks 정도의 값을 계산하여 나타낸 그래프이다. 특히 maximal 역량의 경우에는 현저한 영향을 받았다 (도 3b 및 3c). Oxygen consumption rate was measured by Seahorse to confirm the function of mitochondria. The basal, maximal and reserve capacities of mitochondria were reduced by telomeres. Figure 3b is a result of measuring the oxygen consumption according to the inhibitors (oligomycin, CCCP, rotenone) treatment for gCont and gTel-expressing SH-SY5Y cells (n = 4 control, 3 experimental groups) quantitative value is the protein quantification of each sample Normalized to value. Figure 3c is a graph showing the calculated values of basal, maximal, reserve and proton leaks from the average OCR of each section from the oxygen consumption graph. In particular, in the case of maximal competence, it was markedly affected (FIGS. 3B and 3C).

노화 모델에서의 이러한 미토콘드리아의 기능 이상은 3, 4, 5 일째에 세포 사멸의 점진적인 증가로 나타났다. 도 3d는 gCont 및 gTel 발현 SH-SY5Y 세포의 해당 날짜에 따른 세포 생존능을 트리판 블루 제외 분석법을 통해 분석하고, 전체 세포수에 대한 생존 세포의 비율로 계산한 결과를 보여준다 (n = 그룹당 7).This mitochondrial dysfunction in the aging model showed a gradual increase in cell death on days 3, 4 and 5. FIG. 3D shows the cell viability according to the date of gCont and gTel expressing SH-SY5Y cells by trypan blue exclusion assay and shows the results calculated as ratio of viable cells to total cell number (n = 7 per group) .

4. 4. CRISPRCRISPR -- Cas9에Cas9 의한 텔로미어 단축에 의한 단백질 발현 이상 Abnormal expression of protein due to telomeres shortening

lentiCRISPR-Tel-sgRNA의 발현에 의한 노화 세포 모델에 대해서 주요 미토콘드리아 관련 및 파킨슨 질환 관련 단백질의 양적인 변화를 특이 항체를 이용한 웨스턴 블롯으로 확인하였다. 텔로미어의 절단은 미토콘드리아의 신생성 및 항산화 세포 보호 기능에 중요한 역할을 하는 유전자인 PGC-1α 와 NRF-1의 현저한 감소로 나타났다. 도 4는 gCont 및 gTel 발현 SH-SY5Y 세포에서의 단백질 발현 (PGC-1a, PINK1, NRF1, AIMP2)을 표시된 특이 항체를 이용하여 분석하고 이를 정량하나 결과를 나타낸다. 도 4a는 표시된 항체를 이용한 대표 웨스턴 블롯 이미지이며, 베타-액틴은 내부 로딩 대조군으로 사용되었다. 도 4b는 각 단백질의 웨스턴 블롯 상에서의 밴드 강도를 이미지 J를 통해 정량화한 후, gCont (V2) 대비 gTel 형질감염 샘플에서의 상대적인 발현량을 정량화한 막대 그래프이다 (n = 3).For senescent cell models by expression of lentiCRISPR-Tel-sgRNA, quantitative changes in major mitochondrial-related and Parkinson's disease-related proteins were confirmed by Western blot using specific antibodies. Telomere cleavage resulted in a significant decrease in PGC-1α and NRF-1, genes that play an important role in mitochondrial angiogenesis and antioxidant cell protective functions. FIG. 4 analyzes protein expression (PGC-1a, PINK1, NRF1, AIMP2) in gCont and gTel expressing SH-SY5Y cells using the indicated specific antibodies and quantifies them but shows the results. 4A Representative western blot images using the indicated antibodies, beta-actin was used as internal loading control. 4B is a bar graph quantifying the band intensities on Western blots of each protein via Image J, followed by quantifying the relative expression levels in gTel transfected samples versus gCont (V2) ( n = 3).

신기한 사실은 기존에 PGC-1a의 발현을 조절하고 미토콘드리아의 항상성 조절에 중요한 역할을 하는 미토콘드리아 키나아제인 PINK1의 발현 또한 신규 노화 세포 모델에서 감소된다는 것이었다 (도 4a 및 4b). 뿐만 아니라, 파킨(parkin)의 기질 단백질로서 postmortem PD 환자의 뇌에서 축적이 보고된 AIMP2의 유의적인 축적이 텔로미어 절단에 의한 노화 세포 모델에서 관찰되었다 (도 4a 및 4b). The novel fact was that expression of PINK1, a mitochondrial kinase that previously plays an important role in regulating the expression of PGC-1a and in the homeostatic regulation of mitochondria, is also reduced in novel senescent cell models (FIGS. 4A and 4B). In addition, significant accumulation of AIMP2, reported accumulation in the brain of postmortem PD patients, as a substrate protein of parkin, was observed in the senescent cell model by telomeres cleavage (FIGS. 4A and 4B).

노화 및 퇴행성 뇌질환에서 단백질 발현 억제가 보고된 PGC-1α 및 이의 타겟 유전자 NRF-1 그리고 미토콘드리아 키나아제이며 파킨슨 유전자인 PINK1이 모두 유의적으로 감소됨을 확인하였을 뿐만 아니라, 대표적인 열성 PD 유전자인 파킨의 기질 단백질이면서 도파민 신경세포의 선택적이고 점진적인 사멸을 유도하는 것으로 보고된 AIMP2 단백질의 축적이 관찰되었되었으므로, 이는 텔로미어 제거를 통한 세포 노화 모델이 파킨슨 질환의 주요 병변 단백질의 변화를 유도하며, 이를 기반으로 노화 및 미토콘드리아 기능이상의 분자 기작 연구를 위한 플랫폼으로 활용될 수 있음을 제시하는 것이다.In addition to the significant decrease of PGC-1α and its target gene NRF-1 and its mitochondrial kinase and Parkinson gene PINK1, which have been reported to inhibit protein expression in aging and degenerative brain diseases, Parkin's substrate, a representative recessive PD gene, has been significantly reduced. Accumulation of AIMP2 protein, a protein that has been reported to induce selective and gradual killing of dopamine neurons, has been observed, which suggests that cell aging models through telomeres induce changes in major lesion proteins in Parkinson's disease And it suggests that it can be used as a platform for the study of molecular mechanisms of mitochondrial dysfunction.

5. 5. CRISPRCRISPR -- Cas9Cas9 세포 노화 모델에서의 α- Α- in Cell Aging Models 시뉴클레인Synuclein 집적체Aggregate 형성 촉진 Promote formation

α-시뉴클레인의 집적체 형성능의 변화를 노화 세포 모델에서 확인하기 위해서 HA-α-시뉴클레인 과발현 플라스미드와 lentiCRISPR-Tel-sgRNA 플라스미드를 공통 발현 시킨후 대조군과 비교해서 HA-α-시뉴클레인의 1% Triton X 가용성 그리고 불용성 분획에서의 분포를 웨스턴 블롯으로 분석하였다. Tel-sgRNA 및 Cas9에 의한 텔로미어의 단축은 α-시뉴클레인의 용해도의 감소 및 불용성 분획으로의 분포를 증가시켰다. 도 5a는 gCont 및 gTel 발현시킨 SH-SY5Y 세포에서 HA-α-시뉴클레인 동시 발현에 의한 α-시뉴클레인의 1% 트리톤-X100 가용성/불용성 분획으로의 분포를 웨스턴 블랏 분석한 결과이며, 도 5b는 이를 정량화한 그래프이다. In order to confirm the change in the aggregate-forming ability of α-synuclein in the senescent cell model, HA-α-synuclein overexpression plasmid and lentiCRISPR-Tel-sgRNA plasmid were co-expressed and compared with the control group. The distribution in% Triton X soluble and insoluble fractions was analyzed by Western blot. Shortening of telomeres by Tel-sgRNA and Cas9 increased the solubility of α-synuclein and increased the distribution to insoluble fractions. FIG. 5A shows Western blot analysis of the distribution of α-synuclein to 1% Triton-X100 soluble / insoluble fraction by HA-α-synuclein co-expression in gCont and gTel-expressed SH-SY5Y cells, FIG. 5B Is a graph quantifying this.

파킨슨 질환의 주요 병변 표현형은 α-시뉴클레인으로 이루어진 단백질 집적체 루이체의 발현이며, 루이체는 산화 스트레스 및 α-시뉴클레인의 인산화 또는 양적인 증가에 의해서 유도되는 것으로 보고된다. 노화는 α-시뉴클레인의 집적체 형성에 기여하지만 그 기작에 대한 연구는 부족하였다. 본원의 CRISPR-Cas9 sgTel 모델의 경우 기존의 생쥐 실험에서 보고된 바와 같이 α-시뉴클레인의 불용성 분획으로의 분포가 증가됨을 확인하였으며, 이는 본원의 세포 노화 모델이 집적체 형성의 분자기작 연구를 위한 세포 모델로 활용될 수 있을 뿐 아니라 치료 선도물질 스크리닝에도 활용될 수 있음을 제시하는 것이다.The main lesion phenotype of Parkinson's disease is the expression of protein aggregate leucine consisting of α-synuclein, which is reported to be induced by oxidative stress and phosphorylation or quantitative increase of α-synuclein. Aging contributes to the formation of aggregates of α-synuclein, but research on its mechanism has been lacking. The CRISPR-Cas9 sgTel model of the present application was found to have increased distribution of the α-synuclein into the insoluble fraction as reported in previous mouse experiments, which suggests that the cell aging model of the present invention can be used to study the molecular mechanism of aggregate formation. It is suggested that it can be used not only as a cell model but also as a screening agent for treatment.

도 3b 및 3c를 제외한 모든 정량 데이터는 평균 +/­ 표준 오차로 표시하였으며, 도 3b 및 3c 그래프는 평균 +/- 표준 편차로 표시되었다. 두 그룹간의 유의성 검정은 양측 독립표본 스튜던트 t-검정을, 그리고 세 그룹이상의 유의성 비교는 ANOVA 분석후 각 그룹간의 비교는 Tukey's 사후분석을 하였다 (*P < 0.05, **P < 0.01, ***P < 0.001로 표시함).All quantitative data except FIGS. 3B and 3C are expressed as mean +/­ standard error, and FIGS. 3B and 3C graphs are shown as mean +/− standard deviation. Two groups of independent sampled t-tests were used for the significance test between the two groups, and ANOVA was analyzed for the significance comparison of three or more groups, and Tukey's post-analysis was compared between the groups (* P <0.05, ** P <0.01, ***). P <0.001).

상기 결과들은 본원발명에 따른 CRISPR-Cas9 노화 모델이 기존의 대표적인 노화 모델들의 주요 표현형인 세포 분열능 저하, 미토콘드리아 이상, 그리고 세포 독성등의 특징들을 충실히 반영하며 신규 노화 모델로서 활용될 수 있음을 제시하는 것이다.The above results suggest that the CRISPR-Cas9 aging model according to the present invention faithfully reflects the characteristics of the major phenotypes of existing representative aging models, such as cell division, mitochondrial abnormality, and cytotoxicity, and can be used as a new aging model. It is.

전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다. The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.

본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.

<110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> METHOD FOR PRODUCING AGING MODEL AND AGING MODEL OF CELL OR ANIMAL PRODUCED THEREBY <130> 1 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 6 <212> DNA <213> Mus musculus <400> 1 ttaggg 6 <210> 2 <211> 14873 <212> DNA <213> Artificial Sequence <220> <223> lentiCRISPR V2 full sequence <400> 2 tgatgcggtt ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 60 caagtctcca ccccattgac gtcaatggga gtttgttttg gcaccaaaat caacgggact 120 ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg cgtgtacggt 180 gggaggtcta tataagcagc gcgttttgcc tgtactgggt ctctctggtt agaccagatc 240 tgagcctggg agctctctgg ctaactaggg aacccactgc ttaagcctca ataaagcttg 300 ccttgagtgc ttcaagtagt gtgtgcccgt ctgttgtgtg actctggtaa ctagagatcc 360 ctcagaccct tttagtcagt gtggaaaatc tctagcagtg gcgcccgaac agggacttga 420 aagcgaaagg gaaaccagag gagctctctc gacgcaggac tcggcttgct gaagcgcgca 480 cggcaagagg cgaggggcgg cgactggtga gtacgccaaa aattttgact agcggaggct 540 agaaggagag agatgggtgc gagagcgtca gtattaagcg ggggagaatt agatcgcgat 600 gggaaaaaat tcggttaagg ccagggggaa agaaaaaata taaattaaaa catatagtat 660 gggcaagcag ggagctagaa cgattcgcag ttaatcctgg cctgttagaa acatcagaag 720 gctgtagaca aatactggga cagctacaac catcccttca gacaggatca gaagaactta 780 gatcattata taatacagta gcaaccctct attgtgtgca tcaaaggata gagataaaag 840 acaccaagga agctttagac aagatagagg aagagcaaaa caaaagtaag accaccgcac 900 agcaagcggc cgctgatctt cagacctgga ggaggagata tgagggacaa ttggagaagt 960 gaattatata aatataaagt agtaaaaatt gaaccattag gagtagcacc caccaaggca 1020 aagagaagag tggtgcagag agaaaaaaga gcagtgggaa taggagcttt gttccttggg 1080 ttcttgggag cagcaggaag cactatgggc gcagcgtcaa tgacgctgac ggtacaggcc 1140 agacaattat tgtctggtat agtgcagcag cagaacaatt tgctgagggc tattgaggcg 1200 caacagcatc tgttgcaact cacagtctgg ggcatcaagc agctccaggc aagaatcctg 1260 gctgtggaaa gatacctaaa ggatcaacag ctcctgggga tttggggttg ctctggaaaa 1320 ctcatttgca ccactgctgt gccttggaat gctagttgga gtaataaatc tctggaacag 1380 atttggaatc acacgacctg gatggagtgg gacagagaaa ttaacaatta cacaagctta 1440 atacactcct taattgaaga atcgcaaaac cagcaagaaa agaatgaaca agaattattg 1500 gaattagata aatgggcaag tttgtggaat tggtttaaca taacaaattg gctgtggtat 1560 ataaaattat tcataatgat agtaggaggc ttggtaggtt taagaatagt ttttgctgta 1620 ctttctatag tgaatagagt taggcaggga tattcaccat tatcgtttca gacccacctc 1680 ccaaccccga ggggacccga caggcccgaa ggaatagaag aagaaggtgg agagagagac 1740 agagacagat ccattcgatt agtgaacgga tcggcactgc gtgcgccaat tctgcagaca 1800 aatggcagta ttcatccaca attttaaaag aaaagggggg attggggggt acagtgcagg 1860 ggaaagaata gtagacataa tagcaacaga catacaaact aaagaattac aaaaacaaat 1920 tacaaaaatt caaaattttc gggtttatta cagggacagc agagatccag tttggttaat 1980 taaggtaccg agggcctatt tcccatgatt ccttcatatt tgcatatacg atacaaggct 2040 gttagagaga taattagaat taatttgact gtaaacacaa agatattagt acaaaatacg 2100 tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg ttttaaaatg 2160 gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt atatatcttg 2220 tggaaaggac gaaacaccgg agacggttgt aaatgagcac acaaaataca catgctaaaa 2280 tattatattc tatgaccttt ataaaatcaa ccaaaatctt ctttttaata actttagtat 2340 caataattag aatttttatg ttcctttttg caaactttta ataaaaatga gcaaaataaa 2400 aaaacgctag ttttagtaac tcgcgttgtt ttcttcacct ttaataatag ctactccacc 2460 acttgttcct aagcggtcag ctcctgcttc aatcattttt tgagcatctt caaatgttct 2520 aactccacca gctgctttaa ctaaagcatt gtctttaaca actgacttca ttagtttaac 2580 atcttcaaat gttgcacctg attttgaaaa tcctgttgat gttttaacaa attctaatcc 2640 agcttcaaca gctatttcac aagctttcat gatttcttct tttgttaata aacaattttc 2700 cataatacat ttaacaacat gtgatccagc tgcttttttt acagctttca tgtcttctaa 2760 aactaattca taatttttgt cttttaatgc accaatattt aataccatat caatttctgt 2820 tgcaccatct ttaattgctt cagaaacttc gaatgctttt gtagctgttg tgcatgcacc 2880 tagaggaaaa cctacaacat ttgttattcc tacatttgtg ccttttaata attctttaca 2940 atagcttgtt caatatgaat taacacaaac tgttgcaaaa tcaaattcaa ttgcttcatc 3000 acataattgt ttaatttcag ctttcgtagc atcttgtttt aataatgtgt gatctatata 3060 tttgtttagt ttcatttttt ctcctatata ttcattttta attttaattc tttaataatt 3120 tcgtctactt taactttagc gttttgaaca gattcaccaa cacctataaa ataaattttt 3180 agtttaggtt cagttccact tgggcgaaca gcaaatcatg acttatcttc taaataaaat 3240 tttagtaagt cttgtcctgg catattatac attccatcga tgtagtcttc aacattaaca 3300 actttaagtc cagcaatttg agttaagggt gttgctctca atgatttcat taatggttca 3360 atttttaatt tcttttcttc tggtttaaaa ttcaagttta aagtgaaagt gtaatatgca 3420 cccatttctt taaataaatc ttctaaatag tctactaatg ttttattttg ttttttataa 3480 aatcaagcag cctctgctat taatatagaa gcttgtattc catctttatc tctagctgag 3540 tcatcaatta catatccata actttcttca taagcaaaaa caaaatttaa tccgttatct 3600 tcttctttag caatttctct acccattcat ttaaatccag ttaaagtttt tacaatatta 3660 actccatatt tttcatgagc gattctatca cccaaatcac ttgttacaaa acttgaatat 3720 agagccggat tttttggaat gctatttaag cgttttagat ttgataattt tcaatcaatt 3780 aaaattggtc ctgtttgatt tccatctaat cttacaaaat gaccatcatg ttttattgcc 3840 attccaaatc tgtcagcatc tgggtcattc ataataataa tatctgcatc atgtttaata 3900 ccatattcaa gcggtatttt tcatgcagga tcaaattctg gatttggatt tacaacattt 3960 ttaaatgttt catcttcaaa tgcatgctct tcaacctcaa taacgttata tcctgattca 4020 cgtaatattt ttggggtaaa tttagttcct gttccattaa ctgcgctaaa aataattttt 4080 aaatcttttt tagcttcttg ctcttttttg tacgtctctg ttttagagct agaaatagca 4140 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 4200 tgaattcgct agctaggtct tgaaaggagt gggaattggc tccggtgccc gtcagtgggc 4260 agagcgcaca tcgcccacag tccccgagaa gttgggggga ggggtcggca attgatccgg 4320 tgcctagaga aggtggcgcg gggtaaactg ggaaagtgat gtcgtgtact ggctccgcct 4380 ttttcccgag ggtgggggag aaccgtatat aagtgcagta gtcgccgtga acgttctttt 4440 tcgcaacggg tttgccgcca gaacacagga ccggttctag agcgctgcca ccatggacaa 4500 gaagtacagc atcggcctgg acatcggcac caactctgtg ggctgggccg tgatcaccga 4560 cgagtacaag gtgcccagca agaaattcaa ggtgctgggc aacaccgacc ggcacagcat 4620 caagaagaac ctgatcggag ccctgctgtt cgacagcggc gaaacagccg aggccacccg 4680 gctgaagaga accgccagaa gaagatacac cagacggaag aaccggatct gctatctgca 4740 agagatcttc agcaacgaga tggccaaggt ggacgacagc ttcttccaca gactggaaga 4800 gtccttcctg gtggaagagg ataagaagca cgagcggcac cccatcttcg gcaacatcgt 4860 ggacgaggtg gcctaccacg agaagtaccc caccatctac cacctgagaa agaaactggt 4920 ggacagcacc gacaaggccg acctgcggct gatctatctg gccctggccc acatgatcaa 4980 gttccggggc cacttcctga tcgagggcga cctgaacccc gacaacagcg acgtggacaa 5040 gctgttcatc cagctggtgc agacctacaa ccagctgttc gaggaaaacc ccatcaacgc 5100 cagcggcgtg gacgccaagg ccatcctgtc tgccagactg agcaagagca gacggctgga 5160 aaatctgatc gcccagctgc ccggcgagaa gaagaatggc ctgttcggaa acctgattgc 5220 cctgagcctg ggcctgaccc ccaacttcaa gagcaacttc gacctggccg aggatgccaa 5280 actgcagctg agcaaggaca cctacgacga cgacctggac aacctgctgg cccagatcgg 5340 cgaccagtac gccgacctgt ttctggccgc caagaacctg tccgacgcca tcctgctgag 5400 cgacatcctg agagtgaaca ccgagatcac caaggccccc ctgagcgcct ctatgatcaa 5460 gagatacgac gagcaccacc aggacctgac cctgctgaaa gctctcgtgc ggcagcagct 5520 gcctgagaag tacaaagaga ttttcttcga ccagagcaag aacggctacg ccggctacat 5580 tgacggcgga gccagccagg aagagttcta caagttcatc aagcccatcc tggaaaagat 5640 ggacggcacc gaggaactgc tcgtgaagct gaacagagag gacctgctgc ggaagcagcg 5700 gaccttcgac aacggcagca tcccccacca gatccacctg ggagagctgc acgccattct 5760 gcggcggcag gaagattttt acccattcct gaaggacaac cgggaaaaga tcgagaagat 5820 cctgaccttc cgcatcccct actacgtggg ccctctggcc aggggaaaca gcagattcgc 5880 ctggatgacc agaaagagcg aggaaaccat caccccctgg aacttcgagg aagtggtgga 5940 caagggcgct tccgcccaga gcttcatcga gcggatgacc aacttcgata agaacctgcc 6000 caacgagaag gtgctgccca agcacagcct gctgtacgag tacttcaccg tgtataacga 6060 gctgaccaaa gtgaaatacg tgaccgaggg aatgagaaag cccgccttcc tgagcggcga 6120 gcagaaaaag gccatcgtgg acctgctgtt caagaccaac cggaaagtga ccgtgaagca 6180 gctgaaagag gactacttca agaaaatcga gtgcttcgac tccgtggaaa tctccggcgt 6240 ggaagatcgg ttcaacgcct ccctgggcac ataccacgat ctgctgaaaa ttatcaagga 6300 caaggacttc ctggacaatg aggaaaacga ggacattctg gaagatatcg tgctgaccct 6360 gacactgttt gaggacagag agatgatcga ggaacggctg aaaacctatg cccacctgtt 6420 cgacgacaaa gtgatgaagc agctgaagcg gcggagatac accggctggg gcaggctgag 6480 ccggaagctg atcaacggca tccgggacaa gcagtccggc aagacaatcc tggatttcct 6540 gaagtccgac ggcttcgcca acagaaactt catgcagctg atccacgacg acagcctgac 6600 ctttaaagag gacatccaga aagcccaggt gtccggccag ggcgatagcc tgcacgagca 6660 cattgccaat ctggccggca gccccgccat taagaagggc atcctgcaga cagtgaaggt 6720 ggtggacgag ctcgtgaaag tgatgggccg gcacaagccc gagaacatcg tgatcgaaat 6780 ggccagagag aaccagacca cccagaaggg acagaagaac agccgcgaga gaatgaagcg 6840 gatcgaagag ggcatcaaag agctgggcag ccagatcctg aaagaacacc ccgtggaaaa 6900 cacccagctg cagaacgaga agctgtacct gtactacctg cagaatgggc gggatatgta 6960 cgtggaccag gaactggaca tcaaccggct gtccgactac gatgtggacc atatcgtgcc 7020 tcagagcttt ctgaaggacg actccatcga caacaaggtg ctgaccagaa gcgacaagaa 7080 ccggggcaag agcgacaacg tgccctccga agaggtcgtg aagaagatga agaactactg 7140 gcggcagctg ctgaacgcca agctgattac ccagagaaag ttcgacaatc tgaccaaggc 7200 cgagagaggc ggcctgagcg aactggataa ggccggcttc atcaagagac agctggtgga 7260 aacccggcag atcacaaagc acgtggcaca gatcctggac tcccggatga acactaagta 7320 cgacgagaat gacaagctga tccgggaagt gaaagtgatc accctgaagt ccaagctggt 7380 gtccgatttc cggaaggatt tccagtttta caaagtgcgc gagatcaaca actaccacca 7440 cgcccacgac gcctacctga acgccgtcgt gggaaccgcc ctgatcaaaa agtaccctaa 7500 gctggaaagc gagttcgtgt acggcgacta caaggtgtac gacgtgcgga agatgatcgc 7560 caagagcgag caggaaatcg gcaaggctac cgccaagtac ttcttctaca gcaacatcat 7620 gaactttttc aagaccgaga ttaccctggc caacggcgag atccggaagc ggcctctgat 7680 cgagacaaac ggcgaaaccg gggagatcgt gtgggataag ggccgggatt ttgccaccgt 7740 gcggaaagtg ctgagcatgc cccaagtgaa tatcgtgaaa aagaccgagg tgcagacagg 7800 cggcttcagc aaagagtcta tcctgcccaa gaggaacagc gataagctga tcgccagaaa 7860 gaaggactgg gaccctaaga agtacggcgg cttcgacagc cccaccgtgg cctattctgt 7920 gctggtggtg gccaaagtgg aaaagggcaa gtccaagaaa ctgaagagtg tgaaagagct 7980 gctggggatc accatcatgg aaagaagcag cttcgagaag aatcccatcg actttctgga 8040 agccaagggc tacaaagaag tgaaaaagga cctgatcatc aagctgccta agtactccct 8100 gttcgagctg gaaaacggcc ggaagagaat gctggcctct gccggcgaac tgcagaaggg 8160 aaacgaactg gccctgccct ccaaatatgt gaacttcctg tacctggcca gccactatga 8220 gaagctgaag ggctcccccg aggataatga gcagaaacag ctgtttgtgg aacagcacaa 8280 gcactacctg gacgagatca tcgagcagat cagcgagttc tccaagagag tgatcctggc 8340 cgacgctaat ctggacaaag tgctgtccgc ctacaacaag caccgggata agcccatcag 8400 agagcaggcc gagaatatca tccacctgtt taccctgacc aatctgggag cccctgccgc 8460 cttcaagtac tttgacacca ccatcgaccg gaagaggtac accagcacca aagaggtgct 8520 ggacgccacc ctgatccacc agagcatcac cggcctgtac gagacacgga tcgacctgtc 8580 tcagctggga ggcgacaagc gacctgccgc cacaaagaag gctggacagg ctaagaagaa 8640 gaaagattac aaagacgatg acgataaggg atccggcgca acaaacttct ctctgctgaa 8700 acaagccgga gatgtcgaag agaatcctgg accgaccgag tacaagccca cggtgcgcct 8760 cgccacccgc gacgacgtcc ccagggccgt acgcaccctc gccgccgcgt tcgccgacta 8820 ccccgccacg cgccacaccg tcgatccgga ccgccacatc gagcgggtca ccgagctgca 8880 agaactcttc ctcacgcgcg tcgggctcga catcggcaag gtgtgggtcg cggacgacgg 8940 cgccgcggtg gcggtctgga ccacgccgga gagcgtcgaa gcgggggcgg tgttcgccga 9000 gatcggcccg cgcatggccg agttgagcgg ttcccggctg gccgcgcagc aacagatgga 9060 aggcctcctg gcgccgcacc ggcccaagga gcccgcgtgg ttcctggcca ccgtcggagt 9120 ctcgcccgac caccagggca agggtctggg cagcgccgtc gtgctccccg gagtggaggc 9180 ggccgagcgc gccggggtgc ccgccttcct ggagacctcc gcgccccgca acctcccctt 9240 ctacgagcgg ctcggcttca ccgtcaccgc cgacgtcgag gtgcccgaag gaccgcgcac 9300 ctggtgcatg acccgcaagc ccggtgcctg aacgcgttaa gtcgacaatc aacctctgga 9360 ttacaaaatt tgtgaaagat tgactggtat tcttaactat gttgctcctt ttacgctatg 9420 tggatacgct gctttaatgc ctttgtatca tgctattgct tcccgtatgg ctttcatttt 9480 ctcctccttg tataaatcct ggttgctgtc tctttatgag gagttgtggc ccgttgtcag 9540 gcaacgtggc gtggtgtgca ctgtgtttgc tgacgcaacc cccactggtt ggggcattgc 9600 caccacctgt cagctccttt ccgggacttt cgctttcccc ctccctattg ccacggcgga 9660 actcatcgcc gcctgccttg cccgctgctg gacaggggct cggctgttgg gcactgacaa 9720 ttccgtggtg ttgtcgggga aatcatcgtc ctttccttgg ctgctcgcct gtgttgccac 9780 ctggattctg cgcgggacgt ccttctgcta cgtcccttcg gccctcaatc cagcggacct 9840 tccttcccgc ggcctgctgc cggctctgcg gcctcttccg cgtcttcgcc ttcgccctca 9900 gacgagtcgg atctcccttt gggccgcctc cccgcgtcga ctttaagacc aatgacttac 9960 aaggcagctg tagatcttag ccacttttta aaagaaaagg ggggactgga agggctaatt 10020 cactcccaac gaagacaaga tctgcttttt gcttgtactg ggtctctctg gttagaccag 10080 atctgagcct gggagctctc tggctaacta gggaacccac tgcttaagcc tcaataaagc 10140 ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt gtgactctgg taactagaga 10200 tccctcagac ccttttagtc agtgtggaaa atctctagca gggcccgttt aaacccgctg 10260 atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc 10320 ttccttgacc ctggaaggtg ccactcccac tgtcctttcc taataaaatg aggaaattgc 10380 atcgcattgt ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa 10440 gggggaggat tgggaagaca atagcaggca tgctggggat gcggtgggct ctatggcttc 10500 tgaggcggaa agaaccagct ggggctctag ggggtatccc cacgcgccct gtagcggcgc 10560 attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg ccagcgccct 10620 agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg gctttccccg 10680 tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac ggcacctcga 10740 ccccaaaaaa cttgattagg gtgatggttc acgtagtggg ccatcgccct gatagacggt 10800 ttttcgccct ttgacgttgg agtccacgtt ctttaatagt ggactcttgt tccaaactgg 10860 aacaacactc aaccctatct cggtctattc ttttgattta taagggattt tgccgatttc 10920 ggcctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt aattctgtgg 10980 aatgtgtgtc agttagggtg tggaaagtcc ccaggctccc cagcaggcag aagtatgcaa 11040 agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc cccagcaggc 11100 agaagtatgc aaagcatgca tctcaattag tcagcaacca tagtcccgcc cctaactccg 11160 cccatcccgc ccctaactcc gcccagttcc gcccattctc cgccccatgg ctgactaatt 11220 ttttttattt atgcagaggc cgaggccgcc tctgcctctg agctattcca gaagtagtga 11280 ggaggctttt ttggaggcct aggcttttgc aaaaagctcc cgggagcttg tatatccatt 11340 ttcggatctg atcagcacgt gttgacaatt aatcatcggc atagtatatc ggcatagtat 11400 aatacgacaa ggtgaggaac taaaccatgg ccaagttgac cagtgccgtt ccggtgctca 11460 ccgcgcgcga cgtcgccgga gcggtcgagt tctggaccga ccggctcggg ttctcccggg 11520 acttcgtgga ggacgacttc gccggtgtgg tccgggacga cgtgaccctg ttcatcagcg 11580 cggtccagga ccaggtggtg ccggacaaca ccctggcctg ggtgtgggtg cgcggcctgg 11640 acgagctgta cgccgagtgg tcggaggtcg tgtccacgaa cttccgggac gcctccgggc 11700 cggccatgac cgagatcggc gagcagccgt gggggcggga gttcgccctg cgcgacccgg 11760 ccggcaactg cgtgcacttc gtggccgagg agcaggactg acacgtgcta cgagatttcg 11820 attccaccgc cgccttctat gaaaggttgg gcttcggaat cgttttccgg gacgccggct 11880 ggatgatcct ccagcgcggg gatctcatgc tggagttctt cgcccacccc aacttgttta 11940 ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 12000 ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 12060 gtataccgtc gacctctagc tagagcttgg cgtaatcatg gtcatagctg tttcctgtgt 12120 gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag 12180 cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt 12240 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 12300 gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 12360 ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 12420 caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 12480 aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 12540 atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 12600 cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 12660 ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 12720 gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 12780 accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 12840 cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 12900 cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta tttggtatct 12960 gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 13020 aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 13080 aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa 13140 actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt 13200 taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca 13260 gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 13320 tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 13380 ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 13440 accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 13500 agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 13560 acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 13620 tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 13680 cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 13740 tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 13800 ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 13860 gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 13920 tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 13980 ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 14040 gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 14100 cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 14160 gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 14220 ttccgcgcac atttccccga aaagtgccac ctgacgtcga cggatcggga gatctcccga 14280 tcccctatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatct 14340 gctccctgct tgtgtgttgg aggtcgctga gtagtgcgcg agcaaaattt aagctacaac 14400 aaggcaaggc ttgaccgaca attgcatgaa gaatctgctt agggttaggc gttttgcgct 14460 gcttcgcgat gtacgggcca gatatacgcg ttgacattga ttattgacta gttattaata 14520 gtaatcaatt acggggtcat tagttcatag cccatatatg gagttccgcg ttacataact 14580 tacggtaaat ggcccgcctg gctgaccgcc caacgacccc cgcccattga cgtcaataat 14640 gacgtatgtt cccatagtaa cgccaatagg gactttccat tgacgtcaat gggtggagta 14700 tttacggtaa actgcccact tggcagtaca tcaagtgtat catatgccaa gtacgccccc 14760 tattgacgtc aatgacggta aatggcccgc ctggcattat gcccagtaca tgaccttatg 14820 ggactttcct acttggcagt acatctacgt attagtcatc gctattacca tgg 14873 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer F <400> 3 caccgtaggg ttagggttag ggtta 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer R <400> 4 aaactaaccc taaccctaac cctac 25 <210> 5 <211> 423 <212> DNA <213> Mus musculus <400> 5 atggatgtat tcatgaaagg actttcaaag gccaaggagg gagttgtggc tgctgctgag 60 aaaaccaaac agggtgtggc agaagcagca ggaaagacaa aagagggtgt tctctatgta 120 ggctccaaaa ccaaggaggg agtggtgcat ggtgtggcaa cagtggctga gaagaccaaa 180 gagcaagtga caaatgttgg aggagcagtg gtgacgggtg tgacagcagt agcccagaag 240 acagtggagg gagcagggag cattgcagca gccactggct ttgtcaaaaa ggaccagttg 300 ggcaagaatg aagaaggagc cccacaggaa ggaattctgg aagatatgcc tgtggatcct 360 gacaatgagg cttatgaaat gccttctgag gaagggtatc aagactacga acctgaagcc 420 taa 423 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Telomere-F <400> 6 ggtttttgag ggtgagggtg agggtgaggg tgagggt 37 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Telomere-R <400> 7 tcccgactat ccctatccct atccctatcc ctatcccta 39 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 36B4u-F <400> 8 cagcaagtgg gaaggtgtaa tcc 23 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 36B4u-R <400> 9 cccattctat catcaacggg tacaa 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer F-1 <400> 10 caccgttagg gttagggtta gggtt 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer R-1 <400> 11 aaacaaccct aaccctaacc ctaac 25 <110> Research and Business Foundation SUNGKYUNKWAN UNIVERSITY <120> METHOD FOR PRODUCING AGING MODEL AND AGING MODEL OF CELL OR          ANIMAL PRODUCED THEREBY <130> 1 <160> 11 <170> KoPatentIn 3.0 <210> 1 <211> 6 <212> DNA <213> Mus musculus <400> 1 ttaggg 6 <210> 2 <211> 14873 <212> DNA <213> Artificial Sequence <220> LentiCRISPR V2 full sequence <400> 2 tgatgcggtt ttggcagtac atcaatgggc gtggatagcg gtttgactca cggggatttc 60 caagtctcca ccccattgac gtcaatggga gtttgttttg gcaccaaaat caacgggact 120 ttccaaaatg tcgtaacaac tccgccccat tgacgcaaat gggcggtagg cgtgtacggt 180 gggaggtcta tataagcagc gcgttttgcc tgtactgggt ctctctggtt agaccagatc 240 tgagcctggg agctctctgg ctaactaggg aacccactgc ttaagcctca ataaagcttg 300 ccttgagtgc ttcaagtagt gtgtgcccgt ctgttgtgtg actctggtaa ctagagatcc 360 ctcagaccct tttagtcagt gtggaaaatc tctagcagtg gcgcccgaac agggacttga 420 aagcgaaagg gaaaccagag gagctctctc gacgcaggac tcggcttgct gaagcgcgca 480 cggcaagagg cgaggggcgg cgactggtga gtacgccaaa aattttgact agcggaggct 540 agaaggagag agatgggtgc gagagcgtca gtattaagcg ggggagaatt agatcgcgat 600 gggaaaaaat tcggttaagg ccagggggaa agaaaaaata taaattaaaa catatagtat 660 gggcaagcag ggagctagaa cgattcgcag ttaatcctgg cctgttagaa acatcagaag 720 gctgtagaca aatactggga cagctacaac catcccttca gacaggatca gaagaactta 780 gatcattata taatacagta gcaaccctct attgtgtgca tcaaaggata gagataaaag 840 acaccaagga agctttagac aagatagagg aagagcaaaa caaaagtaag accaccgcac 900 agcaagcggc cgctgatctt cagacctgga ggaggagata tgagggacaa ttggagaagt 960 gaattatata aatataaagt agtaaaaatt gaaccattag gagtagcacc caccaaggca 1020 aagagaagag tggtgcagag agaaaaaaga gcagtgggaa taggagcttt gttccttggg 1080 ttcttgggag cagcaggaag cactatgggc gcagcgtcaa tgacgctgac ggtacaggcc 1140 agacaattat tgtctggtat agtgcagcag cagaacaatt tgctgagggc tattgaggcg 1200 caacagcatc tgttgcaact cacagtctgg ggcatcaagc agctccaggc aagaatcctg 1260 gctgtggaaa gatacctaaa ggatcaacag ctcctgggga tttggggttg ctctggaaaa 1320 ctcatttgca ccactgctgt gccttggaat gctagttgga gtaataaatc tctggaacag 1380 atttggaatc acacgacctg gatggagtgg gacagagaaa ttaacaatta cacaagctta 1440 atacactcct taattgaaga atcgcaaaac cagcaagaaa agaatgaaca agaattattg 1500 gaattagata aatgggcaag tttgtggaat tggtttaaca taacaaattg gctgtggtat 1560 ataaaattat tcataatgat agtaggaggc ttggtaggtt taagaatagt ttttgctgta 1620 ctttctatag tgaatagagt taggcaggga tattcaccat tatcgtttca gacccacctc 1680 ccaaccccga ggggacccga caggcccgaa ggaatagaag aagaaggtgg agagagagac 1740 agagacagat ccattcgatt agtgaacgga tcggcactgc gtgcgccaat tctgcagaca 1800 aatggcagta ttcatccaca attttaaaag aaaagggggg attggggggt acagtgcagg 1860 ggaaagaata gtagacataa tagcaacaga catacaaact aaagaattac aaaaacaaat 1920 tacaaaaatt caaaattttc gggtttatta cagggacagc agagatccag tttggttaat 1980 taaggtaccg agggcctatt tcccatgatt ccttcatatt tgcatatacg atacaaggct 2040 gttagagaga taattagaat taatttgact gtaaacacaa agatattagt acaaaatacg 2100 tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg ttttaaaatg 2160 gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt atatatcttg 2220 tggaaaggac gaaacaccgg agacggttgt aaatgagcac acaaaataca catgctaaaa 2280 tattatattc tatgaccttt ataaaatcaa ccaaaatctt ctttttaata actttagtat 2340 caataattag aatttttatg ttcctttttg caaactttta ataaaaatga gcaaaataaa 2400 aaaacgctag ttttagtaac tcgcgttgtt ttcttcacct ttaataatag ctactccacc 2460 acttgttcct aagcggtcag ctcctgcttc aatcattttt tgagcatctt caaatgttct 2520 aactccacca gctgctttaa ctaaagcatt gtctttaaca actgacttca ttagtttaac 2580 atcttcaaat gttgcacctg attttgaaaa tcctgttgat gttttaacaa attctaatcc 2640 agcttcaaca gctatttcac aagctttcat gatttcttct tttgttaata aacaattttc 2700 cataatacat ttaacaacat gtgatccagc tgcttttttt acagctttca tgtcttctaa 2760 aactaattca taatttttgt cttttaatgc accaatattt aataccatat caatttctgt 2820 tgcaccatct ttaattgctt cagaaacttc gaatgctttt gtagctgttg tgcatgcacc 2880 tagaggaaaa cctacaacat ttgttattcc tacatttgtg ccttttaata attctttaca 2940 atagcttgtt caatatgaat taacacaaac tgttgcaaaa tcaaattcaa ttgcttcatc 3000 acataattgt ttaatttcag ctttcgtagc atcttgtttt aataatgtgt gatctatata 3060 tttgtttagt ttcatttttt ctcctatata ttcattttta attttaattc tttaataatt 3120 tcgtctactt taactttagc gttttgaaca gattcaccaa cacctataaa ataaattttt 3180 agtttaggtt cagttccact tgggcgaaca gcaaatcatg acttatcttc taaataaaat 3240 tttagtaagt cttgtcctgg catattatac attccatcga tgtagtcttc aacattaaca 3300 actttaagtc cagcaatttg agttaagggt gttgctctca atgatttcat taatggttca 3360 atttttaatt tcttttcttc tggtttaaaa ttcaagttta aagtgaaagt gtaatatgca 3420 cccatttctt taaataaatc ttctaaatag tctactaatg ttttattttg ttttttataa 3480 aatcaagcag cctctgctat taatatagaa gcttgtattc catctttatc tctagctgag 3540 tcatcaatta catatccata actttcttca taagcaaaaa caaaatttaa tccgttatct 3600 tcttctttag caatttctct acccattcat ttaaatccag ttaaagtttt tacaatatta 3660 actccatatt tttcatgagc gattctatca cccaaatcac ttgttacaaa acttgaatat 3720 agagccggat tttttggaat gctatttaag cgttttagat ttgataattt tcaatcaatt 3780 aaaattggtc ctgtttgatt tccatctaat cttacaaaat gaccatcatg ttttattgcc 3840 attccaaatc tgtcagcatc tgggtcattc ataataataa tatctgcatc atgtttaata 3900 ccatattcaa gcggtatttt tcatgcagga tcaaattctg gatttggatt tacaacattt 3960 ttaaatgttt catcttcaaa tgcatgctct tcaacctcaa taacgttata tcctgattca 4020 cgtaatattt ttggggtaaa tttagttcct gttccattaa ctgcgctaaa aataattttt 4080 aaatcttttt tagcttcttg ctcttttttg tacgtctctg ttttagagct agaaatagca 4140 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 4200 tgaattcgct agctaggtct tgaaaggagt gggaattggc tccggtgccc gtcagtgggc 4260 agagcgcaca tcgcccacag tccccgagaa gttgggggga ggggtcggca attgatccgg 4320 tgcctagaga aggtggcgcg gggtaaactg ggaaagtgat gtcgtgtact ggctccgcct 4380 ttttcccgag ggtgggggag aaccgtatat aagtgcagta gtcgccgtga acgttctttt 4440 tcgcaacggg tttgccgcca gaacacagga ccggttctag agcgctgcca ccatggacaa 4500 gaagtacagc atcggcctgg acatcggcac caactctgtg ggctgggccg tgatcaccga 4560 cgagtacaag gtgcccagca agaaattcaa ggtgctgggc aacaccgacc ggcacagcat 4620 caagaagaac ctgatcggag ccctgctgtt cgacagcggc gaaacagccg aggccacccg 4680 gctgaagaga accgccagaa gaagatacac cagacggaag aaccggatct gctatctgca 4740 agagatcttc agcaacgaga tggccaaggt ggacgacagc ttcttccaca gactggaaga 4800 gtccttcctg gtggaagagg ataagaagca cgagcggcac cccatcttcg gcaacatcgt 4860 ggacgaggtg gcctaccacg agaagtaccc caccatctac cacctgagaa agaaactggt 4920 ggacagcacc gacaaggccg acctgcggct gatctatctg gccctggccc acatgatcaa 4980 gttccggggc cacttcctga tcgagggcga cctgaacccc gacaacagcg acgtggacaa 5040 gctgttcatc cagctggtgc agacctacaa ccagctgttc gaggaaaacc ccatcaacgc 5100 cagcggcgtg gacgccaagg ccatcctgtc tgccagactg agcaagagca gacggctgga 5160 aaatctgatc gcccagctgc ccggcgagaa gaagaatggc ctgttcggaa acctgattgc 5220 cctgagcctg ggcctgaccc ccaacttcaa gagcaacttc gacctggccg aggatgccaa 5280 actgcagctg agcaaggaca cctacgacga cgacctggac aacctgctgg cccagatcgg 5340 cgaccagtac gccgacctgt ttctggccgc caagaacctg tccgacgcca tcctgctgag 5400 cgacatcctg agagtgaaca ccgagatcac caaggccccc ctgagcgcct ctatgatcaa 5460 gagatacgac gagcaccacc aggacctgac cctgctgaaa gctctcgtgc ggcagcagct 5520 gcctgagaag tacaaagaga ttttcttcga ccagagcaag aacggctacg ccggctacat 5580 tgacggcgga gccagccagg aagagttcta caagttcatc aagcccatcc tggaaaagat 5640 ggacggcacc gaggaactgc tcgtgaagct gaacagagag gacctgctgc ggaagcagcg 5700 gaccttcgac aacggcagca tcccccacca gatccacctg ggagagctgc acgccattct 5760 gcggcggcag gaagattttt acccattcct gaaggacaac cgggaaaaga tcgagaagat 5820 cctgaccttc cgcatcccct actacgtggg ccctctggcc aggggaaaca gcagattcgc 5880 ctggatgacc agaaagagcg aggaaaccat caccccctgg aacttcgagg aagtggtgga 5940 caagggcgct tccgcccaga gcttcatcga gcggatgacc aacttcgata agaacctgcc 6000 caacgagaag gtgctgccca agcacagcct gctgtacgag tacttcaccg tgtataacga 6060 gctgaccaaa gtgaaatacg tgaccgaggg aatgagaaag cccgccttcc tgagcggcga 6120 gcagaaaaag gccatcgtgg acctgctgtt caagaccaac cggaaagtga ccgtgaagca 6180 gctgaaagag gactacttca agaaaatcga gtgcttcgac tccgtggaaa tctccggcgt 6240 ggaagatcgg ttcaacgcct ccctgggcac ataccacgat ctgctgaaaa ttatcaagga 6300 caaggacttc ctggacaatg aggaaaacga ggacattctg gaagatatcg tgctgaccct 6360 gacactgttt gaggacagag agatgatcga ggaacggctg aaaacctatg cccacctgtt 6420 cgacgacaaa gtgatgaagc agctgaagcg gcggagatac accggctggg gcaggctgag 6480 ccggaagctg atcaacggca tccgggacaa gcagtccggc aagacaatcc tggatttcct 6540 gaagtccgac ggcttcgcca acagaaactt catgcagctg atccacgacg acagcctgac 6600 ctttaaagag gacatccaga aagcccaggt gtccggccag ggcgatagcc tgcacgagca 6660 cattgccaat ctggccggca gccccgccat taagaagggc atcctgcaga cagtgaaggt 6720 ggtggacgag ctcgtgaaag tgatgggccg gcacaagccc gagaacatcg tgatcgaaat 6780 ggccagagag aaccagacca cccagaaggg acagaagaac agccgcgaga gaatgaagcg 6840 gatcgaagag ggcatcaaag agctgggcag ccagatcctg aaagaacacc ccgtggaaaa 6900 cacccagctg cagaacgaga agctgtacct gtactacctg cagaatgggc gggatatgta 6960 cgtggaccag gaactggaca tcaaccggct gtccgactac gatgtggacc atatcgtgcc 7020 tcagagcttt ctgaaggacg actccatcga caacaaggtg ctgaccagaa gcgacaagaa 7080 ccggggcaag agcgacaacg tgccctccga agaggtcgtg aagaagatga agaactactg 7140 gcggcagctg ctgaacgcca agctgattac ccagagaaag ttcgacaatc tgaccaaggc 7200 cgagagaggc ggcctgagcg aactggataa ggccggcttc atcaagagac agctggtgga 7260 aacccggcag atcacaaagc acgtggcaca gatcctggac tcccggatga acactaagta 7320 cgacgagaat gacaagctga tccgggaagt gaaagtgatc accctgaagt ccaagctggt 7380 gtccgatttc cggaaggatt tccagtttta caaagtgcgc gagatcaaca actaccacca 7440 cgcccacgac gcctacctga acgccgtcgt gggaaccgcc ctgatcaaaa agtaccctaa 7500 gctggaaagc gagttcgtgt acggcgacta caaggtgtac gacgtgcgga agatgatcgc 7560 caagagcgag caggaaatcg gcaaggctac cgccaagtac ttcttctaca gcaacatcat 7620 gaactttttc aagaccgaga ttaccctggc caacggcgag atccggaagc ggcctctgat 7680 cgagacaaac ggcgaaaccg gggagatcgt gtgggataag ggccgggatt ttgccaccgt 7740 gcggaaagtg ctgagcatgc cccaagtgaa tatcgtgaaa aagaccgagg tgcagacagg 7800 cggcttcagc aaagagtcta tcctgcccaa gaggaacagc gataagctga tcgccagaaa 7860 gaaggactgg gaccctaaga agtacggcgg cttcgacagc cccaccgtgg cctattctgt 7920 gctggtggtg gccaaagtgg aaaagggcaa gtccaagaaa ctgaagagtg tgaaagagct 7980 gctggggatc accatcatgg aaagaagcag cttcgagaag aatcccatcg actttctgga 8040 agccaagggc tacaaagaag tgaaaaagga cctgatcatc aagctgccta agtactccct 8100 gttcgagctg gaaaacggcc ggaagagaat gctggcctct gccggcgaac tgcagaaggg 8160 aaacgaactg gccctgccct ccaaatatgt gaacttcctg tacctggcca gccactatga 8220 gaagctgaag ggctcccccg aggataatga gcagaaacag ctgtttgtgg aacagcacaa 8280 gcactacctg gacgagatca tcgagcagat cagcgagttc tccaagagag tgatcctggc 8340 cgacgctaat ctggacaaag tgctgtccgc ctacaacaag caccgggata agcccatcag 8400 agagcaggcc gagaatatca tccacctgtt taccctgacc aatctgggag cccctgccgc 8460 cttcaagtac tttgacacca ccatcgaccg gaagaggtac accagcacca aagaggtgct 8520 ggacgccacc ctgatccacc agagcatcac cggcctgtac gagacacgga tcgacctgtc 8580 tcagctggga ggcgacaagc gacctgccgc cacaaagaag gctggacagg ctaagaagaa 8640 gaaagattac aaagacgatg acgataaggg atccggcgca acaaacttct ctctgctgaa 8700 acaagccgga gatgtcgaag agaatcctgg accgaccgag tacaagccca cggtgcgcct 8760 cgccacccgc gacgacgtcc ccagggccgt acgcaccctc gccgccgcgt tcgccgacta 8820 ccccgccacg cgccacaccg tcgatccgga ccgccacatc gagcgggtca ccgagctgca 8880 agaactcttc ctcacgcgcg tcgggctcga catcggcaag gtgtgggtcg cggacgacgg 8940 cgccgcggtg gcggtctgga ccacgccgga gagcgtcgaa gcgggggcgg tgttcgccga 9000 gatcggcccg cgcatggccg agttgagcgg ttcccggctg gccgcgcagc aacagatgga 9060 aggcctcctg gcgccgcacc ggcccaagga gcccgcgtgg ttcctggcca ccgtcggagt 9120 ctcgcccgac caccagggca agggtctggg cagcgccgtc gtgctccccg gagtggaggc 9180 ggccgagcgc gccggggtgc ccgccttcct ggagacctcc gcgccccgca acctcccctt 9240 ctacgagcgg ctcggcttca ccgtcaccgc cgacgtcgag gtgcccgaag gaccgcgcac 9300 ctggtgcatg acccgcaagc ccggtgcctg aacgcgttaa gtcgacaatc aacctctgga 9360 ttacaaaatt tgtgaaagat tgactggtat tcttaactat gttgctcctt ttacgctatg 9420 tggatacgct gctttaatgc ctttgtatca tgctattgct tcccgtatgg ctttcatttt 9480 ctcctccttg tataaatcct ggttgctgtc tctttatgag gagttgtggc ccgttgtcag 9540 gcaacgtggc gtggtgtgca ctgtgtttgc tgacgcaacc cccactggtt ggggcattgc 9600 caccacctgt cagctccttt ccgggacttt cgctttcccc ctccctattg ccacggcgga 9660 actcatcgcc gcctgccttg cccgctgctg gacaggggct cggctgttgg gcactgacaa 9720 ttccgtggtg ttgtcgggga aatcatcgtc ctttccttgg ctgctcgcct gtgttgccac 9780 ctggattctg cgcgggacgt ccttctgcta cgtcccttcg gccctcaatc cagcggacct 9840 tccttcccgc ggcctgctgc cggctctgcg gcctcttccg cgtcttcgcc ttcgccctca 9900 gacgagtcgg atctcccttt gggccgcctc cccgcgtcga ctttaagacc aatgacttac 9960 aaggcagctg tagatcttag ccacttttta aaagaaaagg ggggactgga agggctaatt 10020 cactcccaac gaagacaaga tctgcttttt gcttgtactg ggtctctctg gttagaccag 10080 atctgagcct gggagctctc tggctaacta gggaacccac tgcttaagcc tcaataaagc 10140 ttgccttgag tgcttcaagt agtgtgtgcc cgtctgttgt gtgactctgg taactagaga 10200 tccctcagac ccttttagtc agtgtggaaa atctctagca gggcccgttt aaacccgctg 10260 atcagcctcg actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc 10320 ttccttgacc ctggaaggtg ccactcccac tgtcctttcc taataaaatg aggaaattgc 10380 atcgcattgt ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa 10440 gggggaggat tgggaagaca atagcaggca tgctggggat gcggtgggct ctatggcttc 10500 tgaggcggaa agaaccagct ggggctctag ggggtatccc cacgcgccct gtagcggcgc 10560 attaagcgcg gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg ccagcgccct 10620 agcgcccgct cctttcgctt tcttcccttc ctttctcgcc acgttcgccg gctttccccg 10680 tcaagctcta aatcgggggc tccctttagg gttccgattt agtgctttac ggcacctcga 10740 ccccaaaaaa cttgattagg gtgatggttc acgtagtggg ccatcgccct gatagacggt 10800 ttttcgccct ttgacgttgg agtccacgtt ctttaatagt ggactcttgt tccaaactgg 10860 aacaacactc aaccctatct cggtctattc ttttgattta taagggattt tgccgatttc 10920 ggcctattgg ttaaaaaatg agctgattta acaaaaattt aacgcgaatt aattctgtgg 10980 aatgtgtgtc agttagggtg tggaaagtcc ccaggctccc cagcaggcag aagtatgcaa 11040 agcatgcatc tcaattagtc agcaaccagg tgtggaaagt ccccaggctc cccagcaggc 11100 agaagtatgc aaagcatgca tctcaattag tcagcaacca tagtcccgcc cctaactccg 11160 cccatcccgc ccctaactcc gcccagttcc gcccattctc cgccccatgg ctgactaatt 11220 ttttttattt atgcagaggc cgaggccgcc tctgcctctg agctattcca gaagtagtga 11280 ggaggctttt ttggaggcct aggcttttgc aaaaagctcc cgggagcttg tatatccatt 11340 ttcggatctg atcagcacgt gttgacaatt aatcatcggc atagtatatc ggcatagtat 11400 aatacgacaa ggtgaggaac taaaccatgg ccaagttgac cagtgccgtt ccggtgctca 11460 ccgcgcgcga cgtcgccgga gcggtcgagt tctggaccga ccggctcggg ttctcccggg 11520 acttcgtgga ggacgacttc gccggtgtgg tccgggacga cgtgaccctg ttcatcagcg 11580 cggtccagga ccaggtggtg ccggacaaca ccctggcctg ggtgtgggtg cgcggcctgg 11640 acgagctgta cgccgagtgg tcggaggtcg tgtccacgaa cttccgggac gcctccgggc 11700 cggccatgac cgagatcggc gagcagccgt gggggcggga gttcgccctg cgcgacccgg 11760 ccggcaactg cgtgcacttc gtggccgagg agcaggactg acacgtgcta cgagatttcg 11820 attccaccgc cgccttctat gaaaggttgg gcttcggaat cgttttccgg gacgccggct 11880 ggatgatcct ccagcgcggg gatctcatgc tggagttctt cgcccacccc aacttgttta 11940 ttgcagctta taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat 12000 ttttttcact gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct 12060 gtataccgtc gacctctagc tagagcttgg cgtaatcatg gtcatagctg tttcctgtgt 12120 gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag 12180 cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt 12240 tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag 12300 gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg cgctcggtcg 12360 ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 12420 caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 12480 aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 12540 atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 12600 cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 12660 ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 12720 gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 12780 accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 12840 cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 12900 cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta tttggtatct 12960 gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac 13020 aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 13080 aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa 13140 actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt 13200 taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca 13260 gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca 13320 tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc 13380 ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa 13440 accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc 13500 agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca 13560 acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat 13620 tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag 13680 cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac 13740 tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt 13800 ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt 13860 gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc 13920 tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat 13980 ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca 14040 gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga 14100 cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg 14160 gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg 14220 ttccgcgcac atttccccga aaagtgccac ctgacgtcga cggatcggga gatctcccga 14280 tcccctatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatct 14340 gctccctgct tgtgtgttgg aggtcgctga gtagtgcgcg agcaaaattt aagctacaac 14400 aaggcaaggc ttgaccgaca attgcatgaa gaatctgctt agggttaggc gttttgcgct 14460 gcttcgcgat gtacgggcca gatatacgcg ttgacattga ttattgacta gttattaata 14520 gtaatcaatt acggggtcat tagttcatag cccatatatg gagttccgcg ttacataact 14580 tacggtaaat ggcccgcctg gctgaccgcc caacgacccc cgcccattga cgtcaataat 14640 gacgtatgtt cccatagtaa cgccaatagg gactttccat tgacgtcaat gggtggagta 14700 tttacggtaa actgcccact tggcagtaca tcaagtgtat catatgccaa gtacgccccc 14760 tattgacgtc aatgacggta aatggcccgc ctggcattat gcccagtaca tgaccttatg 14820 ggactttcct acttggcagt acatctacgt attagtcatc gctattacca tgg 14873 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> 223 teromere primer F <400> 3 caccgtaggg ttagggttag ggtta 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> 223 teromere primer R <400> 4 aaactaaccc taaccctaac cctac 25 <210> 5 <211> 423 <212> DNA <213> Mus musculus <400> 5 atggatgtat tcatgaaagg actttcaaag gccaaggagg gagttgtggc tgctgctgag 60 aaaaccaaac agggtgtggc agaagcagca ggaaagacaa aagagggtgt tctctatgta 120 ggctccaaaa ccaaggaggg agtggtgcat ggtgtggcaa cagtggctga gaagaccaaa 180 gagcaagtga caaatgttgg aggagcagtg gtgacgggtg tgacagcagt agcccagaag 240 acagtggagg gagcagggag cattgcagca gccactggct ttgtcaaaaa ggaccagttg 300 ggcaagaatg aagaaggagc cccacaggaa ggaattctgg aagatatgcc tgtggatcct 360 gacaatgagg cttatgaaat gccttctgag gaagggtatc aagactacga acctgaagcc 420 taa 423 <210> 6 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Telomere-F <400> 6 ggtttttgag ggtgagggtg agggtgaggg tgagggt 37 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> Telomere-R <400> 7 tcccgactat ccctatccct atccctatcc ctatcccta 39 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 36B4u-F <400> 8 cagcaagtgg gaaggtgtaa tcc 23 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 36B4u-R <400> 9 cccattctat catcaacggg tacaa 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer F-1 <400> 10 caccgttagg gttagggtta gggtt 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> teromere primer R-1 <400> 11 aaacaaccct aaccctaacc ctaac 25

Claims (21)

텔로미어 서열에 특이적인 가이드 RNA (sgRNA)를 인코딩하는 DNA 서열;
Cas9를 인코딩하는 DNA 서열; 및
상기 DNA 서열들에 작동가능하게 연결된 하나 이상의 프로모터
를 포함하고, 서열번호 2로 표시되는 핵산 서열을 포함하는, 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터.
DNA sequences encoding guide RNAs (sgRNAs) specific for telomere sequences;
DNA sequence encoding Cas9; And
One or more promoters operably linked to said DNA sequences
Comprising, and comprising a nucleic acid sequence represented by SEQ ID NO: 2, a vector for producing an aging model of an animal other than a cell or a human.
제 1 항에 있어서,
상기 텔로미어 서열은 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 텔로미어 서열인, 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터.
The method of claim 1,
The telomeres sequence is a telomeres sequence of human, mouse, rat, rabbit, fruit flies, pigs or monkeys, cells or animals for aging models of humans except humans.
제 1 항에 있어서,
상기 텔로미어 서열은 서열번호 1로 표시되는 핵산 서열을 포함하는 것인, 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터.
The method of claim 1,
Wherein the telomere sequence comprises a nucleic acid sequence represented by SEQ ID NO: 1, a vector for preparing an aging model for cells or animals other than humans.
제 1 항에 있어서,
바이러스 벡터 기반인, 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터.
The method of claim 1,
A vector for producing an aging model of a cell or animal other than human, which is viral vector based.
제 4 항에 있어서,
렌티바이러스 벡터 기반인, 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터.
The method of claim 4, wherein
A vector for producing an aging model of a cell or animal other than human, based on a lentiviral vector.
삭제delete 제 1 항에 따른 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터가 도입된, 세포 또는 인간을 제외한 동물의 노화 모델.
An aging model of an animal other than a cell or a human, wherein a vector for preparing an aging model of the cell or an animal other than a human is introduced.
제 7 항에 있어서, 상기 세포가 신경세포인, 세포 또는 인간을 제외한 동물의 노화 모델.
The aging model of an animal other than a cell or a human according to claim 7, wherein the cell is a neuron.
제 8 항에 있어서,
상기 신경세포가 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 신경세포인, 세포 또는 인간을 제외한 동물의 노화 모델.
The method of claim 8,
Aging model of cells or animals other than humans, wherein the neurons are neurons of humans, mice, rats, rabbits, fruit flies, pigs or monkeys.
제 1 항에 따른 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터를 진핵세포 내로 도입하는 것을 포함하는, 세포 노화 모델 제조 방법.
A method of producing a cell aging model, comprising introducing into a eukaryotic cell a vector for producing an aging model of an animal other than a cell or a human according to claim 1.
제 10 항에 있어서,
상기 진핵세포가 신경세포인, 세포 노화 모델 제조 방법.
The method of claim 10,
The eukaryotic cells are neurons, cell aging model manufacturing method.
제 11 항에 있어서,
상기 신경세포가 인간, 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이의 신경세포인, 세포 노화 모델 제조 방법.
The method of claim 11,
The neurons are neurons of humans, mice, rats, rabbits, fruit flies, pigs or monkeys, cell aging model manufacturing method.
제 1 항에 따른 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터를 포함하는, 세포 노화 모델 제조용 조성물.
A composition for producing a cell aging model, comprising a vector for producing an aging model of a cell or an animal other than a human according to claim 1.
서열번호 1의 핵산 서열을 포함하는 텔로미어 서열에 특이적인 가이드 RNA 및 Cas9; 또는 제1항에 따른 노화 모델 제조용 벡터;를 인간을 제외한 동물의 신경 조직에 주입하는 것을 포함하는, 동물 노화 모델 제조 방법.
Guide RNA and Cas9 specific for a telomere sequence comprising the nucleic acid sequence of SEQ ID NO: 1; Or injecting an aging model manufacturing vector according to claim 1 into neural tissues of animals other than humans.
제 14 항에 있어서,
상기 신경 조직이 뇌를 포함하는 것인, 동물 노화 모델 제조 방법.
The method of claim 14,
The neural tissue comprises a brain, animal aging model manufacturing method.
제 14 항에 있어서,
상기 동물이 생쥐, 래트, 토끼, 초파리, 돼지 또는 원숭이인, 동물 노화 모델 제조 방법.
The method of claim 14,
The animal is a mouse, rat, rabbit, fruit flies, pigs or monkeys, animal aging model manufacturing method.
서열번호 1의 핵산 서열을 포함하는 텔로미어 서열에 특이적인 가이드 RNA 및 Cas9; 또는 제1항에 따른 노화 모델 제조용 벡터;를 포함하는, 동물 노화 모델 제조용 조성물.
Guide RNA and Cas9 specific for a telomere sequence comprising the nucleic acid sequence of SEQ ID NO: 1; Or a vector for producing an aging model according to claim 1, comprising a composition for producing an animal aging model.
제 1 항에 따른 세포 또는 인간을 제외한 동물의 노화 모델 제조용 벡터가 도입된, 세포 또는 인간을 제외한 동물의 신경퇴행성 질환 모델.
A neurodegenerative disease model of an animal other than a cell or a human, wherein a vector for preparing an aging model of the cell or an animal other than a human is introduced.
제 18 항에 있어서, 신경퇴행성 질환이 파킨슨 질환인, 세포 또는 인간을 제외한 동물의 신경퇴행성 질환 모델.
19. The neurodegenerative disease model of any animal other than cells or humans according to claim 18, wherein the neurodegenerative disease is Parkinson's disease.
제 1 항의 벡터를 세포 또는 인간을 제외한 동물 모델에 접종하는 단계; 및
상기 세포 또는 인간을 제외한 동물모델에 후보 약물을 투여하고, PGC-1α, NRF-1 또는 PINK1의 유전자 및 단백질 발현을 측정하는 단계;를 포함하는 노화 예방 또는 치료용 약물의 스크리닝 방법.
Inoculating the vector of claim 1 into an animal model other than a cell or a human; And
A method for screening a drug for preventing or treating aging, comprising: administering a candidate drug to an animal model other than the cell or human, and measuring gene and protein expression of PGC-1α, NRF-1 or PINK1.
제 1 항의 벡터를 세포 또는 인간을 제외한 동물 모델에 접종하는 단계; 및
상기 세포 또는 인간을 제외한 동물 모델에 후보 약물을 투여하고, PGC-1α, NRF-1 또는 PINK1의 유전자 및 단백질 발현을 측정하는 단계;를 포함하는 신경 퇴행성 질환의 예방 또는 치료용 약물의 스크리닝 방법.
Inoculating the vector of claim 1 into an animal model other than a cell or a human; And
A method of screening a drug for preventing or treating neurodegenerative diseases, comprising: administering a candidate drug to an animal model other than the cell or human, and measuring gene and protein expression of PGC-1α, NRF-1 or PINK1.
KR1020170139195A 2017-10-25 2017-10-25 Method for producing aging model and aging model of cell or animal produced thereby KR102013798B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170139195A KR102013798B1 (en) 2017-10-25 2017-10-25 Method for producing aging model and aging model of cell or animal produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170139195A KR102013798B1 (en) 2017-10-25 2017-10-25 Method for producing aging model and aging model of cell or animal produced thereby

Publications (2)

Publication Number Publication Date
KR20190046071A KR20190046071A (en) 2019-05-07
KR102013798B1 true KR102013798B1 (en) 2019-08-23

Family

ID=66655887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170139195A KR102013798B1 (en) 2017-10-25 2017-10-25 Method for producing aging model and aging model of cell or animal produced thereby

Country Status (1)

Country Link
KR (1) KR102013798B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148994A1 (en) * 2015-03-13 2016-09-22 The Jackson Laboratory A three-component crispr/cas complex system and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2960803T3 (en) 2012-05-25 2024-03-06 Univ California Methods and compositions for RNA-directed modification of target DNA and for modulation of RNA-directed transcription

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148994A1 (en) * 2015-03-13 2016-09-22 The Jackson Laboratory A three-component crispr/cas complex system and uses thereof

Also Published As

Publication number Publication date
KR20190046071A (en) 2019-05-07

Similar Documents

Publication Publication Date Title
KR20220128607A (en) Synthetic DNA Vectors and Methods of Use
CN103937836A (en) Detection method of aquaporin-4 autoantibody, fusion expression virus vector and application thereof
US6355415B1 (en) Compositions and methods for the use of ribozymes to determine gene function
CN115515646A (en) Compositions and methods for treating metabolic liver disease
JP2024041819A (en) Synthetic DNA vectors and their uses
KR20210121113A (en) Assays to characterize nucleobase editors and nucleobase editors with reduced non-target deamination
CN114736893B (en) Method for realizing A/T to G/C editing on mitochondrial DNA
CN114606251B (en) DNA delivery system using exosome as carrier
CN103224955A (en) Vector for efficiently labeling zebra fish PGC, and preparation method and use of transgenic fish
CN113201517B (en) Cytosine single base editor tool and application thereof
CN113906134A (en) Model of TAU proteinopathy
KR102013798B1 (en) Method for producing aging model and aging model of cell or animal produced thereby
KR101420274B1 (en) Animal Expression Vectors Carrying CSP-B 5&#39; SAR Factor and Methods for Preparing Recombinant Proteins Using the Same
CN113923983B (en) Delivery of CRISPR/MCAS9 by extracellular vesicles for genome editing
CN112111530B (en) Method for researching muscle growth by conditional induction of tcf3a gene knockout in zebra fish
CN111296364B (en) Gene modification method for mouse animal model and application thereof
US20100115640A1 (en) Methods for Conditional and Inducible Transgene Espression to Direct the Development of Embryonic, Embryonic Stem, Precursor and Induced Pluripotent Stem Cells
CN114364440B (en) AAV-mediated gene editing treatment of RPGRX-linked retinal degeneration
CN110484517A (en) A kind of composition and preparation method of the Rift Valley fever virus being used to prepare weak poison, RVFV attenuated vaccine
US20040161756A1 (en) Substrate linked directed evolution (slide)
CN113736790B (en) sgRNA (ribonucleic acid) for knocking out duck hnRNPA3 gene, cell line, construction method and application thereof
PL196578B1 (en) Method of cell-free in vitro transcribing a dna matrix, dna matrix a such and application of that method and such dna matrix
CN111424054B (en) Discovery and application of improved large-scale carrier in human cell delivery method
KR101146335B1 (en) TRANSGENIC MOUSE EXPRESSING REPORTER PROTEIN UNDER REGULATION OF α-FETOPROTEIN ENHANCER AND PROMOTER, METHOD FOR PREPARATION THEREOF AND METHOD FOR SCREENING COMPOUNDS INDUCING INCREASE OR DECREASE OF Α-FETOPROTEIN EXPRESSION USING THE SAME
CN111411072B (en) Anti-diabetic islet beta cell with SLC30A8 gene expression being reduced and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant