KR101836644B1 - Method for improving charge acceptance of battery - Google Patents

Method for improving charge acceptance of battery Download PDF

Info

Publication number
KR101836644B1
KR101836644B1 KR1020160066285A KR20160066285A KR101836644B1 KR 101836644 B1 KR101836644 B1 KR 101836644B1 KR 1020160066285 A KR1020160066285 A KR 1020160066285A KR 20160066285 A KR20160066285 A KR 20160066285A KR 101836644 B1 KR101836644 B1 KR 101836644B1
Authority
KR
South Korea
Prior art keywords
battery
time
vehicle
charging
amount
Prior art date
Application number
KR1020160066285A
Other languages
Korean (ko)
Other versions
KR20170135040A (en
Inventor
정혁상
최선호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160066285A priority Critical patent/KR101836644B1/en
Publication of KR20170135040A publication Critical patent/KR20170135040A/en
Application granted granted Critical
Publication of KR101836644B1 publication Critical patent/KR101836644B1/en

Links

Images

Classifications

    • B60L11/185
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L11/1861
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • B60L2230/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/126
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 기존의 리플레쉬 알고리즘이 작동하여 배터리의 동적 충전 수입성을 증대시키는 것 외에 배터리의 동적 충전 수입성을 증대시킬 수 있도록 한 자동차용 배터리의 동적 충전 수입성 향상 방법에 관한 것이다.
즉, 본 발명은 기존의 리플레쉬 알고리즘과는 별도로, 즉 리프레쉬 알고리즘이 작동하기 전에 현재 차량 방치시간과 배터리 SOC 조건을 기반으로 동적 충전 수입성을 개선하는 로직을 더 진행함으로써, 배터리의 동적 충전 수입성을 증대시킬 수 있도록 한 자동차용 배터리의 동적 충전 수입성 향상 방법을 제공하고자 한 것이다.
The present invention relates to a method for enhancing dynamic charge importability of an automotive battery, which can increase dynamic charge rechargeability of a battery in addition to increasing dynamic charge rechargeability of the battery by operating an existing refresh algorithm.
That is, apart from the existing refresh algorithm, that is, the logic further improves the dynamic charge importability based on the current vehicle leaving time and the battery SOC condition before the refresh algorithm operates, The present invention provides a method for enhancing dynamic charge importability of a battery for an automobile,

Description

자동차용 배터리의 동적 충전 수입성 향상 방법{Method for improving charge acceptance of battery}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001]

본 발명은 자동차용 배터리의 동적 충전 수입성 향상 방법에 관한 것으로서, 더욱 상세하게는 기존의 리플레쉬 알고리즘이 작동하여 배터리의 동적 충전 수입성을 증대시키는 것 외에 배터리의 동적 충전 수입성을 증대시킬 수 있도록 한 자동차용 배터리의 동적 충전 수입성 향상 방법에 관한 것이다.
The present invention relates to a method for enhancing dynamic charge importability of an automotive battery, and more particularly, to a method for enhancing the dynamic charge importability of a battery, And more particularly, to a method for enhancing dynamic charge importability of an automobile battery.

일반적으로, 배터리는 일정 수준 방전된 상태로 유지되며, 그 이유는 알터네이터의 발전 제어에 따른 충전이 용이하게 이루어질 수 있도록 함에 있다.Generally, the battery is maintained in a discharged state at a constant level, because the charging of the alternator can be easily performed according to the generation control of the alternator.

차량의 휴지시간 동안 배터리 음극의 황산납(PbSO4)은 경화현상으로 인하여, 그 용해도가 감소하여 배터리의 동적 충전 수입성을 저하시키고, 또한 연비 개선을 위한 배터리 발전 제어의 효과를 감소시키는 원인이 되고 있다.The lead sulfate (PbSO 4 ) on the battery cathode during the rest period of the vehicle is caused by the curing phenomenon and its solubility is decreased to lower the dynamic charge importability of the battery and to reduce the effect of battery power control for fuel efficiency improvement .

대개, 상기 배터리의 동적 충전 수입성은 차량 주행 및 휴지시간이 반복될수록 황산납(PbSO4) 경화현상 및 황산염화 현상 등으로 인해 점차 안정화되어 낮아진다.Generally, dynamic charge importability of the battery is gradually stabilized and lowered due to curing of lead sulfate (PbSO 4 ) and sulfation, as the running time of the vehicle and the resting time are repeated.

참고로, 상기 배터리 동적 충전 수입성이란, 배터리가 일정한 방전상태에서 얼마나 빨리 충전을 받아들일 수 있는 가를 정의하는 배터리 성능 평가 항목 중 하나를 말하고, 상기 황산염화 현상은 배터리 충전반응에 참여하기 위한 PbSO4 이온화가 불가능한 비가역적 상태(배터리 용량감소)를 말하고, 상기 경화현상은 배터리 충전반응에 참여가 가능하지만 PbSO4의 용해도가 낮아진 상태(충전량 제한을 가져오는 현상)를 의미한다.For reference, the battery dynamic charge importability refers to one of battery performance evaluation items that defines how fast the battery can be charged in a constant discharge state, and the sulfation phenomenon is a PbSO 4 refers to an irreversible state (battery capacity decrease) in which ionization is not possible, and the curing phenomenon refers to a state where the solubility of PbSO 4 is lowered (a phenomenon that the charge amount is limited) although it can participate in the battery charging reaction.

이에, 상기 배터리의 황산납(PbSO4) 경화현상 및 황산염화 현상을 방지하기 위한 종래기술로는 리프레쉬 알고리즘이 사용되고 있다. Therefore, a refresh algorithm has been used as a conventional technique for preventing the curing of the lead sulfate (PbSO 4 ) of the battery and the development of sulfate.

즉, 상기 배터리 동적 충전 수입성을 저하시키는 배터리의 황산납(PbSO4) 경화현상 및 황산염화 현상을 방지하기 위하여, 주기적으로 리프레쉬 알고리즘이 작동하여 배터리를 만충전시킴으로써, 황산납(PbSO4) 경화현상 및 황산염화 현상을 해소시킬 수 있다.That is, in order to prevent the PbSO 4 hardening phenomenon and the sulfuric acid oxidation phenomenon of the battery which lowers the battery dynamic charge-importing property, the refresh algorithm is periodically operated so that the battery is fully charged, so that the PbSO 4 hardening The development and the sulfation phenomenon can be solved.

상기 리플레쉬 알고리즘은 차량의 주행횟수, 배터리 방치시간, 배터리 충전 및 방전 적산량 등을 기반으로 배터리의 경화 현상 즉, 배터리의 황산납(PbSO4) 경화현상 및 황산염화 현상이 발생된 것으로 판정한 후, 배터리를 만충전시키는 과정을 의미한다.The refresh algorithm is based on the number of running times of the vehicle, the battery remaining time, the battery charge and the accumulated amount of discharge, etc., and it is judged that the battery hardening phenomenon, that is, the lead sulfate (PbSO 4 ) And then the battery is fully charged.

이에, 상기 리프레쉬 알고리즘이 작동하게 되면 안정화되어 낮아져 있던 배터리의 동적 충전 수입성이 높아지고, 다시 주행과 휴지가 반복될수록 동적 충전 수입성이 낮아진다.Accordingly, when the refresh algorithm is operated, the dynamic charging rechargeability of the battery which has been stabilized and lowered is increased, and the dynamic charging rechargeability is lowered as the running and resting cycles are repeated.

그러나, 도 1에서 보듯이 배터리의 동적 충전 수입성이 낮아진 상태에서 리플레쉬 알고리즘이 작동하면, 동적 충전 수입성이 높아지게 됨을 볼 수 있지만, 이후 차량의 주행과 휴지가 반복될수록 다시 동적 충전 수입성이 낮아지게 된다.
However, as shown in FIG. 1, when the refreshing algorithm is operated in a state where the dynamic charge importability of the battery is lowered, the dynamic charge importability is increased. However, as the vehicle travels and stops repeatedly, .

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 기존의 리플레쉬 알고리즘과는 별도로, 즉 리프레쉬 알고리즘이 작동하기 전에 현재 차량 방치시간과 배터리 SOC 조건을 기반으로 동적 충전 수입성을 개선하는 로직을 더 진행함으로써, 배터리의 동적 충전 수입성을 증대시킬 수 있도록 한 자동차용 배터리의 동적 충전 수입성 향상 방법을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a method and a system for improving dynamic charge importability based on a current vehicle leaving time and a battery SOC condition before a refresh algorithm, The present invention also provides a method for enhancing dynamic charge importability of a battery for an automobile which can increase the dynamic charge importability of the battery.

상기한 목적을 달성하기 위하여 본 발명은: ⅰ) 차량 방치시간을 기준시간과 비교하는 동시에 배터리 SOC를 기준 SOC와 비교하는 단계; ⅱ) 상기 ⅰ) 단계의 비교 결과, 차량 방치시간이 기준시간보다 길고, 배터리 SOC가 기준 SOC에 비하여 낮으면, 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리에 대한 일정량 충전 및 방전을 실행하는 단계; 를 포함하는 것을 특징으로 하는 자동차용 배터리의 동적 충전 수입성 향상 방법을 제공한다.To achieve the above object, the present invention provides a method for controlling a vehicle, comprising: i) comparing a vehicle leaving time with a reference time and comparing a battery SOC with a reference SOC; Ii) when the vehicle leaving time is longer than the reference time and the battery SOC is lower than the reference SOC as a result of the comparison in the step i), the battery is charged and discharged for a predetermined amount regardless of acceleration and deceleration conditions ; And a method of improving the dynamic charge importability of the automobile battery.

또한, 상기 ⅰ) 단계의 비교 결과, 차량 방치시간이 기준시간보다 짧고, 배터리 SOC가 기준 SOC 이상으로 판정되면, 차량의 주행 초기시 가속 및 감속 조건에 따른 알터네이터 발전 제어가 이루어지는 것을 특징으로 한다.If it is determined that the vehicle SOC is equal to or greater than the reference SOC as a result of the comparison in the step (i), the alternator power generation control is performed according to the acceleration and deceleration conditions at the start of the vehicle.

특히, 상기 ⅱ) 단계에서 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리 충전 및 방전이 이루어지되, 차량 방치시간을 바탕으로 맵핑된 충전량(A(전류) * h(시간)) 및 충전시간 조건을 만족할 때까지 배터리 충전이 이루어지는 단계와, 차량 방치시간을 바탕으로 맵핑된 방전량 및 방전시간 조건을 만족할 때까지 배터리 방전이 이루어지는 단계가 순차적으로 진행되는 것을 특징으로 한다.Particularly, in the step (ii), the battery is charged and discharged regardless of the acceleration and deceleration conditions at the initial driving time of the vehicle, and the charged amount A (current) * h (time) mapped on the basis of the vehicle leaving time, Charging the battery until the condition is satisfied, and discharging the battery until the discharged amount and discharge time condition mapped on the basis of the vehicle leaving time are satisfied.

바람직하게는, 상기 ⅱ) 단계에서, 배터리 충전량 및 충전시간 조건에 네비게이션 목적지 정보에 따른 차량의 예상 주행시간이 반영되는 것을 특징으로 한다.Preferably, in the step (ii), the predicted running time of the vehicle according to the navigation destination information is reflected in the battery charge amount and the charging time condition.

더욱 바람직하게는, 상기 네비게이션 목적지 정보에 의거 차량의 목적지가 단거리일수록 배터리 충전량 및 충전시간을 단축시키고, 차량의 목적지가 장거리일수록 배터리 충전량 및 충전시간을 늘리는 것을 특징으로 한다.
More preferably, the shorter the destination of the vehicle is, the shorter the battery charging amount and the charging time are, and the longer the distance to the vehicle is, the more the battery charging amount and the charging time are increased based on the navigation destination information.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above-mentioned means for solving the problems, the present invention provides the following effects.

첫째, 기존의 리플레쉬 알고리즘과는 별도로, 현재 차량 방치시간과 배터리 SOC 조건을 기반으로 차량의 주행 초기 가감속 조건에 관계없이 배터리 충전 및 방전 제어를 실시하여 배터리의 동적 충전 수입성을 증대시킬 수 있다.First, apart from the existing refresh algorithm, it is possible to increase the dynamic charge importability of the battery by performing battery charging and discharging control irrespective of the initial acceleration / deceleration conditions of the vehicle based on the current vehicle leaving time and the battery SOC condition have.

둘째, 배터리의 동적 충전 수입성이 개선됨에 따라, 차량 감속시 알터네이터에 의한 회생제동 충전으로 변환되는 배터리의 화학에너지가 증가함으로써, 배터리 충전량이 증가하게 되고, 그에 따라 엔진 구동시 알터네이터의 부하 저감에 따른 구동계 부하도 저감되어 연비개선 효과를 제공할 수 있다.Secondly, as the dynamic chargeability of the battery is improved, the chemical energy of the battery, which is converted into the regenerative braking charge by the alternator when the vehicle decelerates, increases, thereby increasing the battery charge amount. As a result, The load of the driving system according to the present invention can be reduced, and the effect of improving the fuel economy can be provided.

셋째, 배터리의 동적 충전 수입성이 개선됨에 따라, 배터리의 경화현상에 이어 종국에 발생하는 황산염화 현상을 방지하여, 배터리 내구 성능을 개선하는 효과도 얻을 수 있다.
Thirdly, as the dynamic charge importability of the battery is improved, it is possible to prevent the sulfate phenomenon eventually occurring after the battery curing phenomenon and to improve the battery endurance performance.

도 1은 기존의 리플레쉬 공정에 의한 배터리의 동적 충전 수입성이 개선되는 것을 보여주는 그래프,
도 2는 본 발명에 따른 배터리의 동적 충전 수입성 개선 방법을 도시한 순서도,
도 3 및 도 4는 본 발명에 따른 배터리의 동적 충전 수입성 개선 방법에 대한 시험예 결과를 도시한 그래프.
FIG. 1 is a graph showing an improvement in dynamic charge rechargeability of a battery by a conventional refresh process,
FIG. 2 is a flowchart showing a method for improving dynamic charge importability of a battery according to the present invention,
FIG. 3 and FIG. 4 are graphs showing the results of a test example of a method for improving dynamic charge importability of a battery according to the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 2는 본 발명에 따른 배터리의 동적 충전 수입성 향상 방법을 도시한 순서도이다.FIG. 2 is a flowchart illustrating a method for improving dynamic charge importability of a battery according to the present invention.

먼저, 엔진 시동 직후, 차량 방치시간(엔진 시동이 걸리지 않은 시간)과 배터리 SOC(State of Charge)를 파악한다(S101).First, immediately after the start of the engine, the vehicle leaving time (the time when the engine is not started) and the battery SOC (state of charge) are grasped (S101).

예를 들어, 차량 방치시간은 엔진 ECU에서 판단할 수 있고, 배터리 SOC는 배터리 제어기에서 파악할 수 있다.For example, the vehicle idle time can be determined by the engine ECU, and the battery SOC can be determined by the battery controller.

또한, 본 발명의 동적 충전 수입성 향상을 위한 일련의 제어 과정을 실행하는 하드웨어 주체로서, 차량 IT 정보 및 차량의 가속 및 감속 정보, 차량의 방지시간 정보 등을 수신한 배터리 제어기에서 이루어질 수 있다.Further, the present invention may be implemented in a battery controller that receives vehicle IT information, acceleration / deceleration information of a vehicle, prevention time information of a vehicle, and the like as a hardware entity that executes a series of control processes for improving dynamic charge importability.

연이어, 상기 차량 방치시간을 기준시간과 비교하는 동시에 배터리 SOC를 기준 SOC와 비교한다(S102).Subsequently, the vehicle leaving time is compared with a reference time and the battery SOC is compared with a reference SOC (S102).

비교 결과, 차량 방치시간이 기준시간보다 짧고, 배터리 SOC가 기준 SOC 이상으로 판정되면, 차량의 주행 초기시 가속 및 감속 조건에 따른 알터네이터 발전 제어가 이루어지도록 한다(S107).If it is determined that the vehicle SOC is equal to or greater than the reference SOC, the alternator power generation control is performed according to the acceleration and deceleration conditions at the beginning of the running of the vehicle (S107).

좀 더 상세하게는, 차량 방치시간이 기준시간보다 짧고, 배터리 SOC가 기준 SOC 이상으로 판정되면(예를 들어, 리프레쉬 로직이 작동한지 얼마 지나지 않아, 동적 충전 수입성이 높은 상태), 차량의 주행 초기시 가속 조건에서 배터리에 대한 알터네이터의 발전량을 감소시키고(가속시 방전), 차량의 감속시 알터네이터의 발전량을 증가시키는(감속시 충전) 일반적인 알터네이터 발전 제어가 이루어진다.More specifically, when the vehicle leaving time is shorter than the reference time and the battery SOC is determined to be equal to or greater than the reference SOC (for example, the dynamic charge importability is high, not long after the refresh logic has been operated) A general alternator generation control is performed in which the amount of generated electricity of the alternator with respect to the battery is reduced (accelerated discharge) at the initial acceleration condition, and the amount of generated electricity of the alternator is increased at the time of deceleration of the vehicle (charging at deceleration).

반면, 차량 방치시간이 기준시간보다 길고, 배터리 SOC가 기준 SOC에 비하여 낮으면, 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리를 일정량 충전하고 방전하는 로직을 실행한다.On the other hand, when the vehicle leaving time is longer than the reference time and the battery SOC is lower than the reference SOC, the logic is executed to charge and discharge the battery by a certain amount regardless of the acceleration and deceleration conditions at the start of the vehicle.

이를 위해, 상기 S102 단계의 비교 결과, 차량 방치시간이 기준시간보다 길고, 배터리 SOC가 기준 SOC에 비하여 낮은 것으로 판정되면, 먼저 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리에 대한 충전이 이루어지도록 한다(S103).As a result of the comparison in step S102, if it is determined that the vehicle leaving time is longer than the reference time and the battery SOC is lower than the reference SOC, the battery is first charged regardless of acceleration and deceleration conditions at the start of the vehicle (S103).

위의 단계 S103에서의 배터리 충전은 알터네이터의 작동에 의하여 이루어지되, 차량 방치시간을 바탕으로 맵핑된 충전량(A(전류) * h(시간)) 및 충전시간 조건을 만족할 때까지 알터네이터가 작동하여 이루어진다.The battery charging in step S103 is performed by the operation of the alternator, and the alternator is operated until the charged amount (A (current) * h (time)) and the charging time condition mapped on the basis of the vehicle leaving time are satisfied .

한편, 차량의 IT정보(예, 네비게이션 목적지 입력)를 바탕으로 차량의 예상 주행시간이 계산되면, 이를 바탕으로 단계 S103에서의 배터리 충전량 및 충전시간 조건을 수정할 수 있다.On the other hand, if the estimated travel time of the vehicle is calculated based on the information of the vehicle (e.g., navigation destination), the battery charge amount and the charge time condition in step S103 can be corrected based on the estimated travel time.

예를 들어, 상기 IT 정보를 기반으로 차량의 목적지가 단거리로 판정되면, 단계 S103에서의 배터리 충전량 및 충전시간을 단축시키고, 반면 차량의 목적지가 장거리일수록 단계 S103에서의 배터리 충전량 및 충전시간을 늘릴 수 있다.For example, if the destination of the vehicle is determined to be a short distance based on the IT information, the battery charge amount and the charge time at step S103 are shortened, while the battery charge amount and the charge time at step S103 are increased .

이어서, 상기 단계 S103에 의한 배터리 충전시, 충전량을 기준량과 비교하거나, 충전시간을 기준시간과 비교한다(S104).Subsequently, at the battery charging in step S103, the charging amount is compared with the reference amount or the charging time is compared with the reference time (S104).

위의 단계 S104에서의 비교 결과, 상기 단계 S103에 의한 배터리 충전에 의거 충전량(Ah)이 기준량을 충족하거나 충전시간이 기준시간을 충족하면, 배터리 방전이 이루어진다(S105).As a result of the comparison at the above step S104, if the charging amount Ah satisfies the reference amount based on the battery charging in the step S103 or if the charging time satisfies the reference time, battery discharge is performed (S105).

위의 단계 S104에서 배터리 방전을 하는 이유는 단계 S103에서의 배터리 충전 직후에는 배터리의 동적 충전 수입성이 떨어지고, 방전 직후에 배터리의 동적 충전 수입성이 높아지기 때문이다.The reason why the battery is discharged in step S104 is because the dynamic charge importability of the battery immediately after the battery charging in step S103 is lowered and the dynamic charge rechargeability of the battery is increased immediately after the discharge.

바람직하게는, 위의 단계 S104에서의 배터리 방전은 차량 방치시간을 바탕으로 맵핑된 방전량 및 방전시간 조건을 만족할 때까지 작동한다.Preferably, the battery discharge in the above-described step S104 operates until the discharged amount and the discharged time condition mapped on the basis of the vehicle leaving time are satisfied.

이어서, 위의 단계 S104에 의한 배터리 방전시 방전량을 기준량과 비교하거나, 방전시간을 기준시간과 비교하고(S106), 비교 결과 방전량이 기준량을 충족하거나 방전시간이 기준시간을 충족하면, 차량 가감속 조건에 따른 기존 발전제어가 이루어진다(S107).If the discharge amount satisfies the reference amount or the discharge time satisfies the reference time, the vehicle acceleration / deceleration time is calculated by comparing the discharge amount at the battery discharge at step S104 with the reference amount, or comparing the discharge time with the reference time at step S106. Current generation control is performed according to the speed condition (S107).

여기서, 기존 발전제어는 상기와 같이 차량의 주행시 가속 조건에서 배터리에 대한 알터네이터의 발전량을 감소시키고(가속시 방전), 차량의 감속시 알터네이터의 발전량을 증가시키는(감속시 충전) 일반적인 알터네이터 발전 제어가 이루어지는 것을 말한다.Here, the conventional power generation control is a general alternator power generation control in which the generation amount of the alternator to the battery is decreased (accelerated discharge) in the acceleration condition when the vehicle is running, and the amount of generation of the alternator is increased .

이와 같이, 기존의 리플레쉬 알고리즘과는 별도로, 현재 차량 방치시간과 배터리 SOC 조건을 기반으로 차량의 주행 초기 가감속 조건에 관계없이 배터리 충전 및 방전 제어를 실시하는 등의 배터리 동적 충전 수입성을 개선하는 로직을 진행함으로써, 배터리의 동적 충전 수입성을 증대시킬 수 있다.In this way, apart from the existing refresh algorithm, it is possible to improve the battery dynamic charge rechargeability, such as charging and discharging control of the battery regardless of the initial acceleration / deceleration conditions of the vehicle based on the current vehicle leaving time and the battery SOC condition , It is possible to increase the dynamic charge importability of the battery.

다시 말해서, 리프레쉬 알고리즘과는 별도로 즉, 리플레쉬 알고리즘이 작동한 후 부터 다시 작동하기 전까지 실제 알터네이터에 의한 배터리 발전제어가 작동하는 구간 동안, 차량 방치에 따른 휴지시간에 발생하였던 배터리 경화현상으로 인한 배터리의 동적 충전 수입성 저하를 감소시킬 수 있다.In other words, in a period during which the battery generator control by the actual alternator operates, separately from the refresh algorithm, that is, before the operation of the refresh algorithm is resumed, the battery caused by the battery hardening phenomenon It is possible to reduce the dynamic charge impairment of the charge.

또한, 위와 같이 배터리의 동적 충전 수입성이 개선됨에 따라, 차량 감속시 알터네이터에 의한 회생제동 충전으로 변환되는 배터리의 화학에너지가 증가함으로써, 배터리 충전량이 증가하게 되고, 그에 따라 엔진 구동시 알터네이터의 부하 저감에 따른 구동계 부하도 저감되어 연비개선 효과를 제공할 수 있다.In addition, as described above, as the dynamic charge importability of the battery is improved, the chemical energy of the battery, which is converted into the regenerative braking charge by the alternator when the vehicle decelerates, is increased to increase the charged amount of the battery. The load on the driveline according to the reduction is also reduced, and the fuel efficiency improvement effect can be provided.

또한, 배터리의 경화현상에 이어 종국에 발생하는 황산염화 현상을 방지하여, 배터리 내구 성능을 개선하는 효과도 얻을 수 있다.In addition, it is possible to prevent the sulfurization phenomenon eventually occurring after the curing phenomenon of the battery and to improve the battery endurance performance.

여기서, 본 발명의 배터리 동적 충전 수입성 향상 방법에 대한 시험예를 살펴보면 다음과 같다.Hereinafter, a test example of a method for improving dynamic charging income of the battery of the present invention will be described.

차량의 가속 및 감속 조건에 관계없이 상기한 단계 S101 ~ 단계 S107에 의한 본 발명의 동적 충전 수입성 개선 방법과, 차량의 가속 및 감속 조건에 따른 기존 발전제어 과정에 대한 감속 및 가속시 평균 충전전류를 측정하였는 바, 그 결과는 아래의 표 1에 기재된 바와 같고, 또한 동적 충전 수입성 및 가속시 평균 방전전류를 측정하였는 바, 그 결과는 첨부한 도 3 및 도 4에 그래프로 나타낸 바와 같다.The dynamic charge importability improvement method of the present invention by the above-described steps S101 to S107 regardless of the acceleration and deceleration conditions of the vehicle and the average charging current during deceleration and acceleration for the existing power generation control process according to the acceleration and deceleration conditions of the vehicle The results were as shown in Table 1 below, and also the dynamic charge importability and the average discharge current during acceleration were measured, and the results are shown in the graphs of FIGS. 3 and 4 attached hereto.

Figure 112016051651807-pat00001
Figure 112016051651807-pat00001

위의 표 1에서 보듯이, 기존의 발전제어 과정에서 측정된 배터리의 감속시 평균 충전전류(차량 감속시 알터네이터의 회생제동에 따른 발전량) 및 가속시 평균 방전전류(차량 가속시 알터네이터의 발전량)에 비하여, 본 발명의 동적 충전 수입성 개선 방법에 따른 배터리의 감속시 평균 충전전류(차량 감속시 알터네이터의 회생제동에 따른 발전량) 및 가속시 평균 방전전류(차량 가속시 알터네이터의 발전량)이 더 크게 나타났음을 알 수 있다.As shown in Table 1, when the average charge current (the amount of power generated by the regenerative braking of the alternator when the vehicle decelerates) and the average discharge current during acceleration (the amount of generated electricity of the alternator at the time of vehicle acceleration) The average charge current (the amount of power generated by the regenerative braking of the alternator when the vehicle decelerates) and the average discharge current during acceleration (the amount of generated electricity of the alternator at the time of vehicle acceleration) were larger in decelerating the battery according to the method of improving dynamic charge importability of the present invention. .

상기 배터리의 감속시 평균 충전전류가 클수록 기계에너지 회수율이 증가하여 배터리의 동적 충전 수입성이 개선됨을 의미하고, 상기 배터리의 가속시 평균 방전전류가 클수록 엔진 구동시 알터네이터의 부하 저감이 더 이루어지는 것을 의미한다.The greater the average charge current during deceleration of the battery means the greater the mechanical energy recovery rate and the dynamic charge importability of the battery is improved. The greater the average discharge current during acceleration of the battery, the more the load reduction of the alternator do.

이에, 첨부한 도 3를 참조하면 기존의 발전 제어에 따른 동적 충전 수입성 대비 본 발명의 동적 충전 수입성 개선 방법에 따른 동적 충전 수입성이 향상됨을 볼 수 있고, 첨부한 도 4를 참조하면 기존의 발전 제어에 따른 가속시 평균 방전전류 대비 본 발명의 가속시 평균 방전전류가 향상됨을 볼 수 있다.Referring to FIG. 3, it can be seen that the dynamic charge importability according to the dynamic charge importability improvement method of the present invention is improved compared to the dynamic charge import performance according to the existing power generation control. Referring to FIG. 4, The average discharge current during acceleration according to the present invention is improved compared to the average discharge current during acceleration according to the power generation control of the present invention.

이때, 가속시 방전전류가 증가하는 것은 엔진 구동시 엔진의 크랭크축과 연결된 알터네이터의 부하가 저감됨을 의미하고, 이에 엔진 구동시 알터네이터 부하 저감에 따라 연비 개선을 도모할 수 있다.The increase in the discharge current during acceleration means that the load on the alternator connected to the crankshaft of the engine is reduced when the engine is driven. Thus, fuel efficiency can be improved by reducing the load on the alternator when the engine is driven.

Claims (5)

ⅰ) 차량 방치시간을 기준시간과 비교하는 동시에 배터리 SOC를 기준 SOC와 비교하는 단계;
ⅱ) 상기 ⅰ) 단계의 비교 결과, 차량 방치시간이 기준시간보다 길고, 배터리 SOC가 기준 SOC에 비하여 낮으면, 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리에 대한 일정량 충전 및 방전을 실행하는 단계;
를 포함하고,
상기 ⅰ) 단계의 비교 결과, 차량 방치시간이 기준시간보다 짧고, 배터리 SOC가 기준 SOC 이상으로 판정되면, 차량의 주행 초기시 가속 및 감속 조건에 따른 알터네이터 발전 제어가 이루어지며,
상기 ⅱ) 단계에서, 차량의 주행 초기시 가속 및 감속 조건과 관계없이 배터리 충전 및 방전이 이루어지되,
차량 방치시간을 바탕으로 맵핑된 충전량(A(전류) * h(시간)) 및 충전시간 조건을 만족할 때까지 배터리 충전이 이루어지는 단계와, 차량 방치시간을 바탕으로 맵핑된 방전량 및 방전시간 조건을 만족할 때까지 배터리 방전이 이루어지는 단계가 순차적으로 진행되는 것을 특징으로 하는 자동차용 배터리의 동적 충전 수입성 향상 방법.
I) comparing the vehicle leaving time with a reference time and comparing the battery SOC with a reference SOC;
Ii) when the vehicle leaving time is longer than the reference time and the battery SOC is lower than the reference SOC as a result of the comparison in the step i), the battery is charged and discharged for a predetermined amount regardless of acceleration and deceleration conditions ;
Lt; / RTI >
As a result of the comparison in the step i), when the vehicle leaving time is shorter than the reference time and the battery SOC is determined to be equal to or greater than the reference SOC, the alternator power generation control is performed according to the acceleration /
In the step (ii), the battery is charged and discharged regardless of acceleration and deceleration conditions at the time of starting the vehicle,
The battery charging is performed until the charged amount (A (current) * h (time)) and the charging time condition mapped on the basis of the vehicle leaving time are satisfied; and the step of calculating the discharged amount and the discharging time condition mapped based on the vehicle leaving time And the step of discharging the battery is performed in succession until it is satisfied.
삭제delete 삭제delete 청구항 1에 있어서,
상기 ⅱ) 단계에서, 배터리 충전을 위한 충전량 및 충전시간 조건에 네비게이션 목적지 정보에 따른 차량의 예상 주행시간이 반영되는 것을 특징으로 하는 자동차용 배터리의 동적 충전 수입성 향상 방법.
The method according to claim 1,
Wherein the charging time and charging time conditions for charging the battery are reflected in the estimated driving time of the vehicle according to the navigation destination information in the step (ii).
청구항 4에 있어서,
상기 네비게이션 목적지 정보에 의거 차량의 목적지가 단거리일수록 배터리 충전량 및 충전시간을 단축시키고, 차량의 목적지가 장거리일수록 배터리 충전량 및 충전시간을 늘리는 것을 특징으로 하는 자동차용 배터리의 동적 충전 수입성 향상 방법.
The method of claim 4,
Wherein the battery charging amount and the charging time are shortened as the destination of the vehicle is shortened based on the navigation destination information, and the battery charging amount and charging time are increased as the destination of the vehicle is long.
KR1020160066285A 2016-05-30 2016-05-30 Method for improving charge acceptance of battery KR101836644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160066285A KR101836644B1 (en) 2016-05-30 2016-05-30 Method for improving charge acceptance of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160066285A KR101836644B1 (en) 2016-05-30 2016-05-30 Method for improving charge acceptance of battery

Publications (2)

Publication Number Publication Date
KR20170135040A KR20170135040A (en) 2017-12-08
KR101836644B1 true KR101836644B1 (en) 2018-03-08

Family

ID=60919525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160066285A KR101836644B1 (en) 2016-05-30 2016-05-30 Method for improving charge acceptance of battery

Country Status (1)

Country Link
KR (1) KR101836644B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484242A (en) * 2018-10-20 2019-03-19 宁波洁程汽车科技有限公司 A kind of mobile charging system and method based on extended-range electric vehicle exploitation

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327247A (en) 2005-05-23 2006-12-07 Toyota Motor Corp Vehicle controller
JP2008172959A (en) 2007-01-12 2008-07-24 Toyota Motor Corp Vehicular power supply control unit
JP2008260384A (en) 2007-04-11 2008-10-30 Toyota Motor Corp Vehicular power source control device
JP2011083165A (en) 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The System and method for charging electric vehicle
JP2011229324A (en) 2010-04-22 2011-11-10 Toyota Industries Corp Charger and charging method
JP2012032354A (en) 2010-08-03 2012-02-16 Toyota Industries Corp Vehicle and recommended charging station display method
JP2012153257A (en) 2011-01-26 2012-08-16 Toyota Motor Corp Vehicle drive control device
JP2013086529A (en) 2011-10-13 2013-05-13 Daimler Ag Power control device of hybrid vehicle
JP2014143868A (en) 2013-01-25 2014-08-07 Toyota Motor Corp Power supply system for vehicle and vehicle having the same
JP2014204549A (en) 2013-04-04 2014-10-27 トヨタ自動車株式会社 Power supply system of vehicle and vehicle with the same
JP2015022923A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Method for charging lead-acid storage battery
JP2015233390A (en) * 2014-06-10 2015-12-24 トヨタ自動車株式会社 Charge control apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327247A (en) 2005-05-23 2006-12-07 Toyota Motor Corp Vehicle controller
JP2008172959A (en) 2007-01-12 2008-07-24 Toyota Motor Corp Vehicular power supply control unit
JP2008260384A (en) 2007-04-11 2008-10-30 Toyota Motor Corp Vehicular power source control device
JP2011083165A (en) 2009-10-09 2011-04-21 Chugoku Electric Power Co Inc:The System and method for charging electric vehicle
JP2011229324A (en) 2010-04-22 2011-11-10 Toyota Industries Corp Charger and charging method
JP2012032354A (en) 2010-08-03 2012-02-16 Toyota Industries Corp Vehicle and recommended charging station display method
JP2012153257A (en) 2011-01-26 2012-08-16 Toyota Motor Corp Vehicle drive control device
JP2013086529A (en) 2011-10-13 2013-05-13 Daimler Ag Power control device of hybrid vehicle
JP2014143868A (en) 2013-01-25 2014-08-07 Toyota Motor Corp Power supply system for vehicle and vehicle having the same
JP2014204549A (en) 2013-04-04 2014-10-27 トヨタ自動車株式会社 Power supply system of vehicle and vehicle with the same
JP2015022923A (en) * 2013-07-19 2015-02-02 株式会社Gsユアサ Method for charging lead-acid storage battery
JP2015233390A (en) * 2014-06-10 2015-12-24 トヨタ自動車株式会社 Charge control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109484242A (en) * 2018-10-20 2019-03-19 宁波洁程汽车科技有限公司 A kind of mobile charging system and method based on extended-range electric vehicle exploitation

Also Published As

Publication number Publication date
KR20170135040A (en) 2017-12-08

Similar Documents

Publication Publication Date Title
CN108944900B (en) Fuel cell automobile energy management control method
US9855854B2 (en) Charge control device and charge control method
US8570000B2 (en) Vehicle power-generation control apparatus
CN106004473B (en) Electric vehicle and its control method
US9263909B2 (en) Control device and control method for nonaqueous secondary battery
US9343920B2 (en) Storage capacity management system
KR101628516B1 (en) Method for controlling ldc voltage of hybrid vehicle
US20130241466A1 (en) Regenerative power supply system
KR101251502B1 (en) System for learning driver's propensity to drive of hybrid vehicle and method thereof
EP3103672B1 (en) Hybrid vehicle and control method thereof
JP2015076958A (en) Power storage system
JP2014051270A (en) Battery charge control method and system for hybrid vehicle
US10910971B2 (en) Alternator control unit, alternator driving control method, and power supply management system for engine vehicle
US9889764B2 (en) Apparatus and method for controlling battery of green car
US10315647B2 (en) Method for controlling driving of vehicle using driving information of vehicle and vehicle using the same
JP6269097B2 (en) Electric vehicle control system
KR101836644B1 (en) Method for improving charge acceptance of battery
CN110588632A (en) Method and device for switching working modes of hybrid electric vehicle
JP2008279970A (en) Control device for hybrid vehicle
JP2014011826A (en) Battery state of charge controller for vehicle
JP2006022710A (en) Control device for idling stop vehicle
CN111055724B (en) Energy management system and method for pure electric automobile, vehicle and storage medium
JP2005067293A (en) Control method for lead storage battery
KR101417363B1 (en) Generator Control Method in Vehicle
JP2012251907A (en) State of charge value estimation device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant