KR101748575B1 - INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same - Google Patents

INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same Download PDF

Info

Publication number
KR101748575B1
KR101748575B1 KR1020160172849A KR20160172849A KR101748575B1 KR 101748575 B1 KR101748575 B1 KR 101748575B1 KR 1020160172849 A KR1020160172849 A KR 1020160172849A KR 20160172849 A KR20160172849 A KR 20160172849A KR 101748575 B1 KR101748575 B1 KR 101748575B1
Authority
KR
South Korea
Prior art keywords
diabetic
animal model
diabetes
present
gene knockout
Prior art date
Application number
KR1020160172849A
Other languages
Korean (ko)
Inventor
박광욱
강정택
조범래
김수진
Original Assignee
주식회사 엠젠플러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엠젠플러스 filed Critical 주식회사 엠젠플러스
Priority to KR1020160172849A priority Critical patent/KR101748575B1/en
Application granted granted Critical
Publication of KR101748575B1 publication Critical patent/KR101748575B1/en
Priority to PCT/KR2017/010196 priority patent/WO2018110805A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/108Swine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0362Animal model for lipid/glucose metabolism, e.g. obesity, type-2 diabetes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • C12N2015/8527Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic for producing animal models, e.g. for tests or diseases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Plant Pathology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 sgRNA(small guide RNA)를 암호화하는 DNA 서열 및 Cas9 유전자를 포함하는 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터를 이용한 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법에 관한 것이다. 본 발명에 따른 INS 유전자의 녹아웃을 위한 특이적 sgRNA 및 CRISPR/Cas9법을 이용한 재조합 벡터는 형질전환된 동물에서 INS 유전자를 암호화하는 DNA 가닥을 전부 또는 일부를 변형시켜 당뇨병, 특히 제1형 당뇨병을 효과적으로 유도할 수 있으며 아울러 당뇨병 합병증을 수반할 수 있다. 당뇨병은 만성 질환으로, 당뇨병 환자들은 대개 합병증으로 고통으로 받고 있는바, 이에 대한 실질적인 예방 또는 치료를 위하여 장기간 연구를 가능하게 하는 본 발명에 따른 당뇨병 또는 당뇨병 합병증 동물 모델을 이용하는 것이 매우 유용하다. 따라서 본 발명에 따른 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델은 관련 질병의 기전의 규명, 치료물질의 탐색, 진단법의 개발 등에 다양하게 활용될 수 있다. The present invention relates to an animal model of INS gene knockout diabetes or diabetic complication and a method for producing the same. More particularly, the present invention relates to a DNA sequence encoding a small guide RNA (sgRNA) and a recombinant protein for producing a diabetic or diabetic complicated animal model The present invention relates to an animal model of diabetes mellitus or diabetic complication and a method for producing the same. The recombinant vector using the specific sgRNA and the CRISPR / Cas9 method for knocking out the INS gene according to the present invention can be used for transforming the DNA strand encoding the INS gene in the transformed animal in whole or in part to prevent diabetes, Can be effectively induced and can accompany diabetes complications. It is very useful to use an animal model of diabetic or diabetic complication according to the present invention which enables long-term studies for the practical prevention or treatment of diabetes mellitus, which is suffering from diabetes mellitus and complications. Therefore, the animal model of INS gene knockout diabetes or diabetic complication according to the present invention can be used variously to identify the mechanism of the related diseases, search for therapeutic substances, and develop diagnostic methods.

Description

INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법{INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same}[0001] The present invention relates to an INS gene knockout diabetes mellitus or diabetic complication animal model and a method for producing the same,

본 발명은 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법에 관한 것으로, 보다 구체적으로는 sgRNA(small guide RNA) 및 Cas9 유전자를 포함하는 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터를 이용한 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법에 관한 것이다.The present invention relates to an animal model of INS gene knockout diabetes or diabetic complication and a method for producing the same. More particularly, the present invention relates to a method for producing diabetic or diabetic complicated diabetes or a diabetic complicated animal model using a recombinant vector for producing animal models of diabetic or diabetic complications comprising sgRNA (small guide RNA) An animal model of diabetic complication and a method for manufacturing the same.

CRISPR(무리 지어진 규칙적 공간 사이의 짧은 회문구조 반복부(Clustered Regularly Interspaced Short Palindromic Repeat))는 바이러스 공격을 방어하기 위한 적응성 면역계로서 박테리아에서 진화하였다. 바이러스에 노출 시, 바이러스 DNA의 짧은 세그먼트는 CRISPR 좌위 내로 통합된다. RNA는 바이러스 서열을 포함하는, CRISPR 좌위의 일부로부터 전사된다. 바이러스 게놈에 상보적인 서열을 함유하는 해당 RNA는 바이러스 게놈 내 표적 서열에 대해 Cas9 단백질의 표적화를 매개한다. Cas9 단백질은 절단되고, 이에 의해 바이러스 표적을 침묵시킨다. 즉, CRISPR/Cas 시스템에 기반하여 표적화된 유전자 조절이 가능하다. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is an adaptive immune system to defend against virus attacks and has evolved from bacteria. Upon exposure to the virus, a short segment of the viral DNA is integrated into the CRISPR locus. RNA is transcribed from a portion of the CRISPR locus, including the viral sequence. The corresponding RNA containing the sequence complementary to the viral genome mediates the targeting of the Cas9 protein to the target sequence in the viral genome. The Cas9 protein is cleaved, thereby silencing the virus target. That is, targeted gene regulation is possible based on the CRISPR / Cas system.

노령화 사회로의 진입, 생활양식, 식생활, 사회문화의 변화로 인하여 고혈압, 심장병, 동맥경화증 및 당뇨병 합병증 등의 만성퇴행성 질환의 발생률이 높아지고 있다. 특히 당뇨병 합병증 환자의 수는 지난 약 20년간에 걸쳐 최고 12배 이상 급격히 증가하고 있다. 제1형 당뇨병 합병증은 전체 당뇨병 합병증의 약 10% 정도를 차지하며, 인슐린을 분비하는 췌장의 베타세포가 파괴되어 인슐린 결핍이 유발되어 고혈당, 당뇨, 조갈(polydipsia) 및 체중감소의 증상이 나타난다. 전체 당뇨병 합병증 중 약 90%를 차지하는 제2형 당뇨병 합병증에서는 인슐린 민감 세포가 정상농도의 인슐린에 반응하지 않는 인슐린 저항성을 극복하기 위해 췌장의 베타세포가 인슐린 분비를 증가시키는데, 시간이 경과함에 따라 베타세포의 과부하에 의해 기능이 악화되면서 인슐린 분비가 감소하고 그로 인해 고혈당이 나타나게 된다. 이와 같이 각각의 베타세포의 기능 감소 또는 전체 베타세포의 양의 감소로 정의되는 베타세포의 기능 장애가 당뇨병 합병증의 전형적인 특징이다. The incidence of chronic degenerative diseases such as hypertension, heart disease, arteriosclerosis and diabetic complications is increasing due to the entry into the aging society, lifestyle, dietary life, and social culture. In particular, the number of diabetic complications has risen sharply by at least 12 times over the past 20 years. Type 1 diabetes complications account for approximately 10% of all diabetic complications, and the insulin-deficient beta cells of the pancreas are destroyed, leading to insulin deficiency, leading to hyperglycemia, diabetes, polydipsia and weight loss. In type 2 diabetes complications, which account for about 90% of all diabetic complications, insulin sensitivity cells increase insulin secretion in the pancreatic beta cells in order to overcome insulin resistance that does not respond to insulin at normal levels. Overload of the cells deteriorates the function of insulin secretion is reduced, resulting in hyperglycemia. Thus, a deficiency of beta cell function, defined as a decrease in the function of each beta cell or a decrease in the amount of total beta cells, is a typical characteristic of diabetic complications.

마우스와 같은 동물들은 인간과의 디멘존, 번식, 수명 및 행동양상의 확연한 차이로 인해 보다 인간과 가까운 종을 이용한 질환동물 모델에 대한 필요성이 제기되었고, 영장류의 경우 그 희소성, 사육관리비용 및 사육관리의 어려움으로 인해 극히 제한적인 분야에서만 질환연구에 활용 가능한 제약이 있으므로, 이에 따라 비교적 저렴한 비용과 시설에서 보다 정확한 난치질환 연구를 할 수 있는 돼지를 새로운 모델 동물로서 바이오 메디컬 분야에 활용하고자 하는 요구가 증가되고 있다.Animals such as mice have evolved a need for animal models of disease using more closely related species because of the significant differences in dimenomening, reproduction, lifespan and behavior with humans, and in the case of primates, the scarcity, As a result of the difficulties in management, there are limitations that can be applied to disease research only in extremely limited fields. Therefore, it is necessary to utilize pigs as a new model animal in biomedical field, Is increasing.

돼지는 해부 생리학적으로 인간과 유사성이 인정되어 이미 각종 질환의 병리학적 기전과 치료를 위한 연구에 이용되고 있으며, 특히 오랫동안 경제 동물로 가치가 인정되어 다른 중/대 동물을 질환모델로 사용할 때보다 윤리적인 문제점을 피해갈 수 있으며, 안정적인 사육 시스템이 구축되어 있어 실험동물 모델 개발시 유지 및 관리가 용이한 장점이 있다. 특히 돼지의 췌장은 인간의 췌장과 유사한 크기, 모양, 혈류 및 내분비 세포의 분포를 가지는 것이 널리 인정되어 있으므로 당뇨병 동물모델로서 돼지를 이용하여 인간의 당뇨병을 연구하는 것이 유용하다.Pigs have been recognized for similarity with human anatomy physiologically and have already been used for the pathological mechanism and treatment of various diseases. Especially, when pigs are valued as economic animals for a long time, It can avoid ethical problems and has a stable breeding system, so it is easy to maintain and manage when developing animal models. Particularly, it is widely recognized that the pancreas of a pig has a similar size, shape, blood flow and endocrine cells to human pancreas. Therefore, it is useful to study human diabetes using pig as a diabetic animal model.

이에, 본 발명자들은 sgRNA 및 Cas9 유전자를 포함하는 재조합 벡터를 제작하였고, 이를 이용하여 효율적으로 INS 유전자를 녹아웃시켜 당뇨병 동물모델, 특히 제1형 당뇨병 및 당뇨병 합병증에 대한 동물모델을 제조할 수 있음을 확인하고 본 발명을 완성하였다.Accordingly, the present inventors prepared a recombinant vector containing sgRNA and Cas9 gene, and knocked out the INS gene efficiently using the recombinant vector to produce an animal model for a diabetic animal model, especially for type 1 diabetes and diabetic complication And completed the present invention.

한국특허 공개번호 제10-2010-0045192호Korean Patent Publication No. 10-2010-0045192 한국특허 공개번호 제10-2013-0117165호Korean Patent Publication No. 10-2013-0117165

본 발명의 목적은 sgRNA(small guide RNA)를 암호화하는 DNA 서열 및 Cas9 유전자를 포함하는 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터 및 상기 재조합 벡터가 도입된 당뇨병 또는 당뇨병 합병증 동물모델 제작용 형질전환 세포주를 제공하는 것이다.It is an object of the present invention to provide a recombinant vector for producing an animal model of diabetes or diabetic complication including a DNA sequence coding for sgRNA (small guide RNA) and Cas9 gene and a recombinant vector for the production of an animal model and a diabetic or diabetic complication .

또한, 본 발명의 목적은 상기 형질전환 세포주를 탈핵된 난자에 이식하여 핵 이식란을 형성하는 단계; 및 상기 핵이식란을 대리모의 난관에 이식하는 단계;를 포함하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법 및 상기 방법으로 생산한 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델을 제공하는 것이다.It is another object of the present invention to provide a method for producing a nuclear transfer embryo, comprising: transplanting the transformed cell line into a enucleated oocyte to form a nuclear transfer embryo; And transplanting the nuclear transfer embryos to the tubal duct of a surrogate mother. The present invention also provides an INS gene knockout diabetes or diabetic complication animal model, and an INS gene knockout diabetic or diabetic complication animal model produced by the method.

또한, 본 발명의 목적은 상기 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델을 이용한 당뇨병 또는 당뇨병 합병증 개선 또는 치료제의 스크리닝 방법을 제공하는 것이다.It is also an object of the present invention to provide a method for screening for a diabetic or diabetic complication improving or therapeutic agent using the INS gene knockout diabetic or diabetic complication animal model.

상기 목적을 달성하기 위하여, 본 발명은 sgRNA(small guide RNA)를 암호화하는 서열번호 1 및 2 중 어느 하나 이상의 염기서열로 표시되는 DNA 서열; 및 Cas9 유전자;를 포함하는 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터를 제공한다.In order to achieve the above object, the present invention provides a DNA sequence encoding a small guide RNA (sgRNA), which is represented by any one of SEQ ID NOS: 1 and 2; And a Cas9 gene. The recombinant vector for producing an animal model of diabetic or diabetic complication is provided.

또한, 본 발명은 상기 재조합 벡터가 도입된, 당뇨병 또는 당뇨병 합병증 동물모델 제작용 형질전환 세포주를 제공한다.In addition, the present invention provides a transformed cell line for producing an animal model of diabetes or diabetic complication, into which said recombinant vector has been introduced.

또한, 본 발명은 상기 형질전환 세포주를 탈핵된 난자에 이식하여 핵 이식란을 형성하는 단계; 및 상기 핵이식란을 대리모의 난관에 이식하는 단계;를 포함하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법을 제공한다.In addition, the present invention provides a method for producing a nuclear transfer embryo, comprising: transplanting the transformed cell line into a enucleated oocyte to form a nuclear transfer embryo; And transplanting the nuclear transfer embryos into the fallopian tube of a surrogate mother. The present invention also provides a method for producing an animal model of INS gene knockout diabetes or diabetic complication.

또한, 본 발명은 상기 방법으로 생산한 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델을 제공한다.In addition, the present invention provides an animal model of INS gene knockout diabetes or diabetic complication produced by the above method.

또한, 본 발명은 상기 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델에 당뇨병 또는 당뇨병 합병증 개선 또는 치료제 후보물질을 투여하는 단계; 및 2) 상기 후보물질을 투여한 동물모델을 후보물질을 투여하지 않은 대조군과 비교하여 후보물질에 의해 혈당 수치가 감소되는 경우 이를 당뇨병 또는 당뇨병 합병증 개선 또는 치료제로 판단하는 단계;를 포함하는 당뇨병 또는 당뇨병 합병증 개선 또는 치료제의 스크리닝 방법을 제공한다.In addition, the present invention provides a method for preventing or treating diabetic complications or diabetic complications in an animal model of INS gene knockout diabetes or diabetic complication; And 2) comparing the animal model administered with the candidate substance to a control group to which the candidate substance is not administered, when the blood glucose level is decreased by the candidate substance, the diabetes or diabetic complication improvement or treatment is judged to be A method for screening a therapeutic agent for improving diabetic complications.

본 발명에 따른 INS 유전자의 녹아웃을 위한 특이적 sgRNA 및 CRISPR/Cas9법을 이용한 재조합 벡터는 형질전환된 동물에서 INS 유전자를 암호화하는 DNA 가닥을 전부 또는 일부를 변형시켜 당뇨병, 특히 제1형 당뇨병을 효과적으로 유도할 수 있으며 아울러 당뇨병 합병증을 수반할 수 있다. 당뇨병은 만성 질환으로, 당뇨병 환자들은 대개 합병증으로 고통으로 받고 있는바, 이에 대한 실질적인 예방 또는 치료를 위하여 장기간 연구를 가능하게 하는 본 발명에 따른 당뇨병 또는 당뇨병 합병증 동물 모델을 이용하는 것이 매우 유용하다. 따라서 본 발명에 따른 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델은 관련 질병의 기전의 규명, 치료물질의 탐색, 진단법의 개발 등에 다양하게 활용될 수 있다. The recombinant vector using the specific sgRNA and the CRISPR / Cas9 method for knocking out the INS gene according to the present invention can be used for transforming the DNA strand encoding the INS gene in the transformed animal in whole or in part to prevent diabetes, Can be effectively induced and can accompany diabetes complications. It is very useful to use an animal model of diabetic or diabetic complication according to the present invention which enables long-term studies for the practical prevention or treatment of diabetes mellitus, which is suffering from diabetes mellitus and complications. Therefore, the animal model of INS gene knockout diabetes or diabetic complication according to the present invention can be used variously to identify the mechanism of the related diseases, search for therapeutic substances, and develop diagnostic methods.

도 1은 본 발명에 따른 재조합 벡터가 INS 유전자 내 결실을 유도하는 염기를 나타내는 도이다.
도 2는 본 발명에 따른 재조합 벡터의 개열지도를 나타내는 도이다.
도 3은 시퀀싱을 통하여 본 발명에 따른 재조합 벡터로 형질전환된 세포주에서 INS 유전자 녹아웃된 염기서열을 확인한 결과를 나타내는 도이다.
도 4a는 한 대리모에서 태어난 INS 유전자 녹아웃이 이루어진 돼지에 대한 유전자형 검사를 통하여 INS 유전자 녹아웃이 이루어진 염기서열을 확인한 결과를 나타내는 도이다.
도 4b는 두번째 대리모에서 태어난 INS 유전자 녹아웃이 이루어진 돼지에 대한 유전자형 검사를 통하여 INS 유전자 녹아웃이 이루어진 염기서열을 확인한 결과를 나타내는 도이다.
도 4c는 세번째 대리모에서 태어난 INS 유전자 녹아웃이 이루어진 돼지에 대한 유전자형 검사를 통하여 INS 유전자 녹아웃이 이루어진 염기서열을 확인한 결과를 나타내는 도이다.
도 5는 INS 유전자 녹아웃이 이루어진 돼지에 대한 혈당 수치 분석을 통하여 당뇨병 발병을 확인한 결과를 나타내는 도이다.
도 6은 INS 유전자 녹아웃이 이루어진 돼지의 췌장에 대한 면역조직화학 분석을 통하여 당뇨병 발병을 확인한 결과를 나타내는 도이다.
도 7은 INS 유전자 녹아웃이 이루어진 돼지의 췌장에 대한 인슐린 및 C-펩타이드 발현 변화 분석을 통하여 당뇨병 발병을 확인한 결과를 나타내는 도이다.
FIG. 1 is a diagram showing a base in which a recombinant vector according to the present invention induces deletion in the INS gene.
2 is a diagram showing a cleavage map of a recombinant vector according to the present invention.
FIG. 3 is a diagram showing the results of confirming the INS gene knockout sequence in a cell line transformed with a recombinant vector according to the present invention through sequencing.
FIG. 4A is a diagram showing the nucleotide sequence of INS gene knockout through genotyping of pigs with INS gene knockout born in one surrogate mother.
FIG. 4B is a diagram showing a result of confirming the nucleotide sequence of INS gene knockout through a genotyping test on a pig having an INS gene knockout born in a second surrogate mother.
FIG. 4c is a diagram showing a result of confirming the nucleotide sequence of the INS gene knockout through the genotyping test on the pig having the INS gene knockout born in the third surrogate mother.
FIG. 5 is a graph showing the results of confirming the onset of diabetes by analyzing the blood glucose level of pigs with INS gene knockout.
FIG. 6 is a diagram showing the results of confirming the onset of diabetes through immunohistochemical analysis of the pancreas of a pig in which INS gene knockout has been performed.
FIG. 7 is a graph showing the results of confirming the onset of diabetes through analysis of changes in insulin and C-peptide expression in the pancreas of a pig in which INS gene knockout has been performed.

본 발명은 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델 및 이의 제조방법을 제공한다.The present invention provides an animal model of INS gene knockout diabetes or diabetic complication and a method for producing the same.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 sgRNA(small guide RNA)를 암호화하는 DNA 서열; 및 Cas9 유전자;를 포함하는 재조합 벡터를 제공한다.The present invention relates to a DNA sequence encoding a small guide RNA (sgRNA); And a Cas9 gene.

본 발명에 있어서 "벡터"는 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 포함하는 유전자 작제물을 의미하는 것으로, 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 본 발명의 벡터는 세포 내에서 복제 가능한 것이면 특별히 한정되지 않고 당업계에 알려진 임의의 벡터를 이용할 수 있으며, 예컨대 플라스미드, 코즈미드, 파지 입자, 바이러스 벡터일 수 있다.As used herein, the term "vector" means a gene construct comprising a base sequence of a gene operably linked to a suitable regulatory sequence so as to be capable of expressing the gene of interest in a suitable host, A promoter that may be present, any operator sequences for modulating such transcription, and sequences that regulate the termination of transcription and translation. The vector of the present invention is not particularly limited as long as it is replicable in cells, and any vector known in the art may be used, and may be, for example, a plasmid, a cosmid, a phage particle, or a viral vector.

본 발명에 있어서 상기 "재조합 벡터"는, 발현시키고자 하는 목적 폴리펩타이드의 암호화 유전자가 작동 가능하게 연결될 경우, 적절한 숙주 세포에서 상기 목적 폴리펩타이드를 높은 효율로 발현시킬 수 있는 목적 폴리펩타이드의 발현 벡터로 사용될 수 있으며, 상기 재조합 벡터는 숙주 세포에서 발현 가능할 수 있다. 숙주 세포는 바람직하게는 진핵세포일 수 있으며, 숙주세포의 종류에 따라 프로모터(promoter), 종결자(terminator), 인핸서(enhancer) 등과 같은 발현 조절 서열, 막 표적화 또는 분비를 위한 서열 등을 적절히 선택하고 목적에 따라 다양하게 조합할 수 있다.In the present invention, the above-mentioned "recombinant vector" means an expression vector of a desired polypeptide capable of expressing the desired polypeptide at a high efficiency in an appropriate host cell when the coding gene of the desired polypeptide to be expressed is operatively linked , And the recombinant vector can be expressed in host cells. The host cell is preferably a eukaryotic cell. Depending on the type of the host cell, an expression control sequence such as a promoter, a terminator, an enhancer, etc., a sequence for membrane targeting or secretion, And can be variously combined according to the purpose.

본 발명에 있어서, 상기 sgRNA는 Cas9 단백질과 복합체를 형성할 수 있고, Cas 단백질을 표적 DNA에 가져오는 RNA로서, 서열번호 1 또는 2의 염기서열로 표시되는 DNA로부터 전사될 수 있다. 특히 목적하는 표적 DNA와의 결합을 위해 상기 sgRNA는 서열번호 1 및 2의 염기서열로 표시되는 DNA로부터 전사되는 sgRNA를 모두 포함하는 것이 바람직하며, 이에 제한되는 것은 아니다.In the present invention, the sgRNA can form a complex with the Cas9 protein, and can bring the Cas protein into the target DNA, and can be transcribed from the DNA represented by the nucleotide sequence of SEQ ID NO: 1 or 2. In particular, the sgRNA preferably includes all of the sgRNA transcribed from the DNA represented by the nucleotide sequences of SEQ ID NOS: 1 and 2 for binding with the target DNA, but is not limited thereto.

Cas 유전자의 상대적으로 작은 크기(예를 들어, Cas9는 4.2 kbp)는 바이러스-매개 유전자 전달 같은 몇몇 적용 분야에서 RNA-가이드 엔도뉴클레아제 조성물에 이점을 제공한다. 추가로, 이러한 sgRNA는 오프-타겟(off-target) 효과를 갖지 않고, 이에 따라 원하지 않는 돌연변이, 결실, 반전 및 중복을 야기하지 않는다.The relatively small size of the Cas gene (e.g., Cas9 at 4.2 kbp) provides advantages for RNA-guided endonuclease compositions in some applications, such as virus-mediated gene delivery. Additionally, these sgRNAs do not have an off-target effect and therefore do not cause unwanted mutations, deletions, inversions and redundancies.

본 발명에 있어서, 상기 Cas9 단백질은 CRISPR/Cas 시스템에서 필수적인 단백질 요소를 의미하고, CRISPR RNA(crRNA) 및 트랜스-활성화 crRNA (trans-activating crRNA, tracrRNA)로 불리는 두 RNA와 복합체를 형성할 때, 활성 엔도뉴클레아제 또는 니카아제(nickase)를 형성한다. Cas9 단백질을 암호화하는 유전자는 일반적으로 CRISPR-반복 스페이서 배열(CRISPR repeat-spacer array)과 관련있으며, 40개 이상의 서로 다른 Cas 단백질 패밀리가 존재한다. 대표적으로 세 종류의 CRISPR-Cas 시스템이 존재하며 그 중 Cas9 단백질을 수반하는 타입 Ⅱ CRISPR/Cas 시스템이 대표적이다. In the present invention, the Cas9 protein means an essential protein element in the CRISPR / Cas system. When composing a complex with two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) To form an active endonuclease or nickase. Genes encoding the Cas9 protein are generally associated with the CRISPR repeat-spacer array, and there are more than 40 different Cas family of proteins. Typically, there are three types of CRISPR-Cas systems, of which type II CRISPR / Cas systems are associated with Cas9 proteins.

특히 본 발명에 있어서 상기 Cas9 단백질을 암호화하는 Cas9 유전자는 서열번호 3의 염기서열로 표시될 수 있으며, 이에 본 발명이 제한되는 것은 아니다.In particular, in the present invention, the Cas9 gene encoding the Cas9 protein may be represented by the nucleotide sequence of SEQ ID NO: 3, but the present invention is not limited thereto.

본 발명에 있어서, 상기 Cas9 단백질은 형광단백질과 결합되어 함께 발현되는 것을 특징으로 하며, 구체적으로 이를 위하여 Cas9 유전자를 링커, 예를들어 2A 펩타이드를 이용하여 형광단백질을 코딩하는 유전자와 결합시키는 것이 바람직하나, 이에 제한되지 않는다. 이에 따라 Cas9 단백질과 함께 형광단백질이 발현되고 발현된 형광단백질을 이용하여 유전자 편집된 세포들을 분리함으로써 유전자 편집 효율을 높일 수 있다. 상기와 같은 방법을 따라 제조된 재조합 벡터로 형질전환된 동물모델에서 당뇨병, 특히 제1형 당뇨병 및 당뇨병 합병증을 보다 효과적으로 유도할 수 있다.In the present invention, the Cas9 protein is expressed in combination with a fluorescent protein. Specifically, it is preferable to bind Cas9 gene to a gene encoding a fluorescent protein using a linker, for example, a 2A peptide But is not limited thereto. Therefore, it is possible to enhance gene editing efficiency by separating genetically modified cells using fluorescent protein expressed and expressed with Cas9 protein. Diabetes, particularly type 1 diabetes and diabetic complications, can be more effectively induced in an animal model transformed with the recombinant vector produced according to the above method.

상기 형광 단백질은 적색형광단백질(RFP), 녹색형광단백질(GFP), 노랑형광단백질(YFP), 청색형광단백질(CFC), DsRED, AsRED, AmCyan, ZsGreen 또는 ZsYellow일 수 있으나, GFP인 것이 바람직하며, 이에 본 발명이 제한되는 것은 아니고 상기 재조합 벡터가 형질주입(transfection)된 세포들을 보다 용이하게 검출할 수 있게 하는 것이라면 어느 것을 사용하여도 좋다. The fluorescent protein may be a red fluorescent protein (RFP), a green fluorescent protein (GFP), a yellow fluorescent protein (YFP), a blue fluorescent protein (CFC), DsRED, AsRED, AmCyan, ZsGreen or ZsYellow, However, the present invention is not limited thereto, and any of them may be used as long as the recombinant vector can more easily detect transfected cells.

상기 재조합 벡터 제조시 사용되는 제한효소는 EcoRI, BamHⅠ, BglⅡ, Hind Ⅲ, Pvu Ⅲ, BbsI일 수 있으며, 바람직하게는 BbsI일 수 있으며, 이에 본 발명이 제한되는 것은 아니다.The restriction enzyme used in the production of the recombinant vector may be EcoRI, BamHI, BglII, HindIII, PvuIII, BbsI, preferably BbsI, and the present invention is not limited thereto.

상기 서열번호 1, 2 또는 3으로 표시되는 염기서열의 변이체 또한 본 발명의 범위 내에 포함된다. 본 발명은 상기 염기서열의 등가물, 예를 들어, 일부 염기서열이 결실(deletion), 치환(substitution) 또는 삽입(insertion)에 의해 변형되었지만, INS 유전자 녹아웃 sgRNA 및 Cas9과 기능적으로 동일한 작용을 할 수 있는 변이체(variants)를 포함하는 개념이다. 구체적으로, 상기 sgRNA 및 Cas9은 각 서열번호 1, 2 또는 3의 염기 서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기 서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.Variants of the nucleotide sequence represented by SEQ ID NO: 1, 2 or 3 are also included within the scope of the present invention. Although the present invention is modified by deletion, substitution or insertion of an equivalent of the above base sequence, for example, some base sequences, it can function in the same manner as the INS gene knockout sgRNA and Cas9 Is a concept that includes variants that are present. Specifically, the sgRNA and the Cas9 each have at least 70% sequence identity, more preferably at least 80% sequence identity, more preferably at least 90% sequence identity, and most preferably at least 95% sequence identity with the nucleotide sequence of SEQ ID NO: 1, And may include nucleotide sequences having homology with each other. "% Of sequence homology to polynucleotides" is ascertained by comparing the comparison region with two optimally aligned sequences, and a portion of the polynucleotide sequence in the comparison region is the reference sequence for the optimal alignment of the two sequences (I. E., A gap) relative to the < / RTI >

본 발명에 있어서, 상기 재조합 벡터는 INS 유전자의 염기서열을 타겟으로 하여 염기서열을 변형 즉, 삽입 또는 결실시키는 것을 특징으로 하며, 서열번호 4의 염기서열로 표시되는 엑손 2 및 서열번호 5의 염기서열로 표시되는 엑손 3 중 어느 하나 이상을 타겟하는 염기서열에서 변형 즉, 삽입 또는 결실이 발생할 수 있다. In the present invention, the recombinant vector is characterized in that the base sequence is modified, that is, inserted or deleted, with the base sequence of the INS gene as a target, and the exon 2 represented by the nucleotide sequence of SEQ ID NO: 4 and the base of SEQ ID NO: A modification or insertion or deletion may occur in the base sequence targeting any one or more of the exons 3 represented by the sequence.

보다 바람직하게는 본 발명의 재조합 벡터에 의해 엑손 2의 각 대립형질(allele)에서 서열번호 6으로 표시되는 4개 염기의 결실, 서열번호 7로 표시되는 36개 염기의 결실, 서열번호 10으로 표시되는 1개 염기의 삽입 또는 서열번호 11로 표시되는 2개 염기의 결실이 발생할 수 있고, 엑손 3의 각 대립형질에서 서열번호 8로 표시되는 1개 염기의 삽입 및 서열번호 9로 표시되는 23개 염기의 결실이 발생할 수 있다. 한편, 상기 서열번호 6 내지 11의 염기서열은 단순한 예시일뿐, INS 유전자를 녹아웃하기 위한 것이라면 본 발명에 제한없이 포함된다.More preferably, the recombinant vector of the present invention deletes four bases of SEQ ID NO: 6, deletion of 36 bases of SEQ ID NO: 7, and deletion of 36 bases of SEQ ID NO: 10 in each allele of exon 2 The insertion of one base to be deleted or the deletion of two bases of SEQ ID NO: 11 may occur, and the insertion of one base represented by SEQ ID NO: 8 and the insertion of one base represented by SEQ ID NO: 9 in each allele of exon 3 Deletion of the base may occur. Meanwhile, the nucleotide sequences of SEQ ID NOS: 6 to 11 are merely examples, and the present invention is not limited thereto as long as it is for knocking out the INS gene.

본 발명에 있어서, 바람직하게는 상기 재조합 벡터는 하기 도에 기재된 개열 지도를 갖는 것으로, 본 발명의 INS 유전자의 녹아웃을 달성할 수 있는 벡터의 구성이라면, 이에 제한되지 않는다.In the present invention, the recombinant vector preferably has a cleavage map as shown in the following figures, but is not limited thereto, provided that it is a vector capable of knocking out the INS gene of the present invention.

[도][Degree]

Figure 112016123867918-pat00001
Figure 112016123867918-pat00001

본 발명에 있어서, 상기 재조합 벡터는 서열번호 12로 표시되는 염기서열로 이루어질 수 있으며, 이는 예시일 뿐 이에 본 발명이 제한되는 것은 아니다.In the present invention, the recombinant vector may consist of the nucleotide sequence shown in SEQ ID NO: 12, which is an example only, and thus the present invention is not limited thereto.

또한, 본 발명은 sgRNA를 암호화하는 DNA 서열 및 Cas9 유전자를 포함하는 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터가 도입된 당뇨병 또는 당뇨병 합병증 동물모델 제작용 형질전환 세포주를 제공한다.The present invention also provides a transformed cell line for producing an animal model of diabetes or a complication of diabetes into which a recombinant vector for producing an animal model of diabetes or diabetic complication including a DNA sequence encoding sgRNA and Cas9 gene is introduced.

본 발명에 있어서 "세포주"는 세포를 분리해서 순수 배양하여 계대배양해 나갈때 세포계의 각 개체를 말하며, 이때 세포주는 유전적 형질에 의해 다른 세포주와 구별될 수 있으며, 계대배양에도 원 세포의 형질이 유지되는 것을 말한다. In the present invention, the term "cell line" refers to each individual cell line when cells are separated and cultured and subcultured, wherein the cell line can be distinguished from other cell lines by genetic traits, It is said to be maintained.

본 발명에 있어서 상기 세포주는 난모세포주, 섬유아세포주 또는 신장세포주일 수 있으며, 바람직하게는 섬유아세포주이다. 상기 세포주는 보다 구체적으로 태아 유래 세포주를 이용할 수 있으며, 동시에 1차(primary) 세포주를 이용할 수 있는바, 본 발명의 세포주는 1차 신장세포주 또는 1차 태아섬유아세포주를 이용하는 것이 보다 바람직하고, 1차 태아섬유아세포주를 이용하는 것이 가장 바람직하나, 이에 본 발명이 제한되는 것은 아니다.In the present invention, the cell line may be a marrow cell line, a fibroblast cell line, or a kidney cell line, preferably a fibroblast cell line. The cell line may be more specifically a fetal-derived cell line, and at the same time, a primary cell line may be used. As the cell line of the present invention, a primary renal cell line or a primary fetal fibroblast cell line is more preferably used. It is most preferable to use a primary fetal fibroblast cell line, but the present invention is not limited thereto.

본 발명에 있어서 "형질전환"은 외부로부터 주어진 DNA에 의하여 생물의 유전적인 성질이 변하는 것으로, 즉 생물의 어떤 계통의 세포에서 추출된 핵산의 일종인 DNA를 다른 계통의 살아있는 세포의 주었을 때 DNA가 그 세포에 들어가서 유전형질이 변화하는 현상으로 형질변환, 형전환 또는 형변환 등이라고도 한다. 즉, "형질전환"이란 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것을 의미한다.In the present invention, "transformation" means that the genetic property of a living organism is changed by DNA given from outside, that is, when DNA, which is a kind of nucleic acid extracted from a cell of a certain line of an organism, It is a phenomenon that the genetic traits are changed by entering the cell, and it is called transformation, transformation, or transformation. In other words, "transformation" means introducing a gene into a host cell so that the gene can be expressed in the host cell.

본 발명의 재조합 벡터를 세포주에 도입하여 형질전환하는 방법은 본 발명의 재조합 벡터를 당업계에 공지된 방법, 예를 들어 이에 한정되지는 않으나, 일시적인 형질감염(transient transfection), 미세주사, 형질도입(transduction), 세포 융합, 칼슘 포스페이트 침전법, 리포좀 매개된 형질감염(liposem-mediated transfection), DEAE 덱스트란-매개된 형질감염(DEAE Dextran-mediated transfection), 폴리브렌-매개된 형질감염(polybrene-mediated transfection), 전기 침공법(electroporation) 등의 공지 방법으로 진핵세포에 도입하여 형질전환시킬 수 있으며, 바람직하게는 미세주사 방법을 이용하여 형질전환시킬 수 있다.The recombinant vector of the present invention can be transformed by introducing the recombinant vector into a cell line by transforming the recombinant vector of the present invention by a method known in the art such as, but not limited to, transient transfection, microinjection, transfection, transduction, cell fusion, calcium phosphate precipitation, liposome-mediated transfection, DEAE dextran-mediated transfection, polybrene- mediated transfection, and electroporation. The transformant can be transformed into a eukaryotic cell, and preferably, it can be transformed using a microscan method.

본 발명에 있어서 상기 형질전환 세포주는 수탁번호 KCLRF-BP-00374인 세포주일 수 있으며, 이에 본 발명이 제한되는 것은 아니다.In the present invention, the transformed cell line may be a cell strain having accession number KCLRF-BP-00374, and the present invention is not limited thereto.

또한, 본 발명은 상기 형질전환 세포주를 탈핵된 난자에 이식하여 핵 이식란을 형성하는 단계; 및 상기 핵이식란을 대리모의 난관에 이식하는 단계;를 포함하는 INS 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법을 제공한다.In addition, the present invention provides a method for producing a nuclear transfer embryo, comprising: transplanting the transformed cell line into a enucleated oocyte to form a nuclear transfer embryo; And transplanting the nuclear transfer embryos into a tubal duct of a surrogate mother. The present invention also provides a method for producing an animal model of INS knockout diabetes or diabetic complication.

상기 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법은 체세포 핵이식(SCNT; somatic cell nuclear transfer)에 의한 것이며, 본 발명에 있어서 "체세포 핵이식"은 생식과정에서 일반적으로 이루어지는 감수분열 및 반수 염색체 보유 생식세포를 경유하지 않고도 자손을 탄생시킬 수 있는 유전자 조작기술로서 성체가 가진 배수체 보유 체세포를 핵이 제거된 난자에 이식하여 수정란을 생산하고 상기 수정란을 생체 내로 이식하여 새로운 개체를 발생시키는 방법이다.In the present invention, the "somatic cell nuclear transfer" is a method for producing an animal model of diabetic or diabetic complication, which is a somatic cell nuclear transfer (SCNT) A genetic manipulation technique that can produce offspring without passing through the embryo body is a method of transplanting embryonic stem cells with embryonic stem cells into the nucleus-free embryos to produce embryos and transplanting the embryos into vivo to generate new embryos.

본 발명에 있어서, "핵 이식란"은 핵 공여 세포가 도입 또는 융합된 난자를 말한다.In the present invention, "nuclear transfer embryo" refers to an oocyte into which nuclear donor cells have been introduced or fused.

본 발명에 있어서 "융합"은 핵 공여 세포와 난자의 지질막 부분의 결합을 의미한다. 예를 들어, 지질막은 세포의 플라스마막 또는 핵막이 될 수 있다. 융합은 핵 공여 세포와 난자가 서로 인접하게 위치해 있는 경우 또는 핵 공여세포가 수핵 난자의 주란강(perivitelline space) 내에 위치해 있는 경우에 전기적 자극을 가함으로써 일어날 수 있다.In the present invention, "fusion" means the binding of the nuclear donor cell to the lipid membrane portion of the egg. For example, a lipid membrane can be a plasma membrane or a nuclear membrane of a cell. Fusion can occur by applying electrical stimulation when the nuclear donor cell and the oocyte are adjacent to each other or when the nuclear donor cell is located in the perivitelline space of the recipient oocyte.

본 발명에 있어서, 상기 형질전환 세포주는 핵 공여 세포로서, 핵 수용체인 난자로 핵을 전달하는 세포 또는 세포의 핵을 말한다. In the present invention, the transformed cell line is a nucleus donor cell, which refers to a nucleus of a cell or a cell that transfers nuclei to an egg cell, which is a nuclear receptor.

본 발명에 있어서, 난자는 바람직하게는 제2차 감수분열 중기까지 도달한 성숙난자를 말하며, 어떤 동물의 난자일 수 있으나, 바람직하게는 돼지의 난자를 말한다.In the present invention, the oocyte is preferably a mature oocyte which has reached the middle stage of the second meiosis, and may be an oocyte of an animal, preferably a porcine oocyte.

또한, 본 발명은 상기 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법으로 생산한 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델을 제공한다.In addition, the present invention provides an animal model of INS gene knockout diabetes or diabetic complication produced by the method for producing an animal model of diabetic or diabetic complication.

본 발명에 있어서 "당뇨병"은 혈장 내 인슐린 수준의 절대적 혹은 상대적 결핍으로 인슐린 작용의 부족에 의한 만성 고혈당증을 특징으로 하면서 여러 특징적인 대사 이상을 수반하는 질환군을 의미한다. 당뇨병은 제1형 및 제2형으로 구분되는데, 제1형 당뇨병은 이전에 '소아 당뇨병'이라고 불렸으며, 인슐린을 전혀 생산하지 못하는 것이 원인이 되어 발생하는 질환이다. 인슐린이 상대적으로 부족한 제2형 당뇨병은 인슐린 저항성(insulin resistance; 혈당을 낮추는 인슐린 기능이 떨어져 세포가 포도당을 효과적으로 연소하지 못하는 것)을 특징으로 한다. 제2형 당뇨병은 식생활의 서구화에 따른 고열량, 고지방, 고단백의 식단, 운동 부족, 스트레스 등 환경적인 요인이 크게 작용하는 것으로 보이지만, 이 외에 특정 유전자의 결함에 의해서도 당뇨병이 생길 수 있으며, 췌장 수술, 감염, 약제에 의해서도 생길 수 있다. 본 발명에 있어서 상기 당뇨병은 제1형 당뇨병인 것이 바람직하나, 이에 본 발명이 제한되는 것은 아니다.In the present invention, "diabetes" means a group of diseases characterized by chronic hyperglycemia due to lack of insulin action due to an absolute or relative deficiency of plasma insulin levels, and accompanying various characteristic metabolic abnormalities. Diabetes is divided into type 1 and type 2, type 1 diabetes was previously called 'child diabetes' and is caused by the inability to produce insulin at all. Type 2 diabetes, which is relatively insufficiently insulin-dependent, is characterized by insulin resistance (insulin resistance that lowers blood sugar and cells do not burn glucose effectively). Type 2 diabetes is caused by environmental factors such as high calorie, high fat, high protein diet, lack of exercise, and stress due to westernization of dietary habits. However, diabetes can also be caused by defects of specific genes, Infection, or drug. In the present invention, the diabetes is preferably type 1 diabetes, but the present invention is not limited thereto.

한편, 상기 당뇨병은 일반적으로 당뇨병 합병증을 수반하며, 본 발명의 동물모델은 당뇨병뿐만 아니라 급성 또는 만성 당뇨병 합병증에 대한 동물모델로 사용될 수 있으며, 보다 바람직하게는 만성 당뇨병 합병증에 대한 동물모델로 사용될 수 있으나, 이에 제한되는 것은 아니다.On the other hand, the diabetes mellitus generally involves diabetes complications, and the animal model of the present invention can be used as an animal model for acute or chronic diabetes complications as well as for diabetes, and more preferably for animal models for chronic diabetes complications But is not limited thereto.

본 발명에 있어서 "당뇨병 합병증"은 당뇨병으로 인하여 혈당이 높은 상태에서 치료를 받지 않아 고혈당인 상태가 지속됨에 따라 발생할 수 있는 다양한 병증을 모두 포함하여, 상기 합병증은 고혈당증(hyperglycemia), 고인슐린혈증(hyperinsulinemia), 고중성지방혈증(hypertriglyceridemia), 지질대사이상(dyslipidemia), 공복혈당장애(impaired fasting glucose), 내당능 이상(impaired glucose tolerance), 비만, 동맥경화증, 미세혈관병증, 신장질환, 심장질환, 족부궤양, 관절염, 골다공증, 당뇨병성 망막증 및 그 외 하나 이상의 안과질환일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, the term "diabetic complication" includes all the various diseases that may occur as a result of persistence of hyperglycemia due to the absence of treatment in a state of high blood sugar due to diabetes, and the complications include hyperglycemia, hyperinsulinemia hyperinsulinemia, hypertriglyceridemia, dyslipidemia, impaired fasting glucose, impaired glucose tolerance, obesity, arteriosclerosis, microangiopathy, renal disease, heart disease, Foot ulcer, arthritis, osteoporosis, diabetic retinopathy, and one or more other ophthalmic diseases.

본 발명에 있어서 "동물모델"이란 사람의 질병과 아주 유사한 형태의 질병을 가진 동물을 말한다. 사람의 질병 연구에 있어 질환모델 동물이 의미를 갖는 것은 사람과 동물들 간의 생리적 또는 유전적인 유사성에 의한다. 질병 연구에 있어 생체의학 질환모델 동물은 질병의 다양한 원인과 발병과정 및 진단에 대한 연구용 재료를 제공해주고, 질환모델 동물의 연구를 통해 질병에 관련된 유전자들을 알아내고, 유전자들 간의 상호작용을 이해할 수 있게 하고, 개발된 신약후보물질의 실제 효능 및 독성 검사를 통해 실용화 가능성의 여부를 판단하는 기초 자료를 얻을 수 있다.In the present invention, the term "animal model" refers to an animal having a disease closely resembling a human disease. Diseases in the study of human disease The significance of model animals is due to their physiological or genetic similarities between humans and animals. Biomedical disease models in disease studies Animals provide research materials for various causes of diseases, pathogenesis and diagnosis, and research on disease-related animals to identify disease-related genes and understand the interactions between genes And the basic efficacy and toxicity test of the developed new drug candidates will provide basic data for judging the possibility of practical use.

본 발명에 있어서 "동물" 또는 "실험동물"은 인간 이외의 임의의 포유류 동물을 의미한다. 상기 동물은 배아, 태아, 신생아 및 성인을 포함하는 모든 연령의 동물을 포함한다. 본 발명에서 사용하기 위한 동물들은, 예를 들어, 상업용 소스로부터 이용할 수 있다. 이런 동물들은 실험용 동물 또는 다른 동물, 토끼, 설치류(예를 들어, 생쥐, 쥐, 햄스터, 게르빌루스 및 기니피그), 소,양, 돼지, 염소, 말, 개, 고양이, 새(예를 들어, 닭, 칠면조, 오리, 거위), 영장류(예를 들어, 침팬지, 원숭이, 붉은털원숭이)를 포함하나 이에 한정되지 않는다. 가장 바람직한 동물은 돼지이다.In the present invention, "animal" or "experimental animal" means any mammal other than a human. The animal includes animals of all ages, including embryos, fetuses, neonates and adults. Animals for use in the present invention can be used, for example, from commercial sources. Such animals include, but are not limited to, laboratory animals or other animals, rabbits, rodents (such as mice, rats, hamsters, gerbils and guinea pigs), cows, sheep, pigs, goats, horses, (Eg, chickens, turkeys, ducks, geese), primates (eg, chimpanzees, monkeys, rhesus monkeys). The most preferred animal is a pig.

돼지는 해부 생리학적으로 인간과 유사성이 인정되어 이미 각종 질환의 병리학적 기전과 치료를 위한 연구에 이용되고 있으며, 특히 오랫동안 경제 동물로 가치가 인정되어 다른 중/대 동물을 질환모델로 사용할 때보다 윤리적인 문제점을 피해갈 수 있으며, 안정적인 사육 시스템이 구축되어 있어 실험동물 모델 개발시 유지 및 관리가 용이한 장점이 있다.Pigs have been recognized for similarity with human anatomy physiologically and have already been used for the pathological mechanism and treatment of various diseases. Especially, when pigs are valued as economic animals for a long time, It can avoid ethical problems and has a stable breeding system, so it is easy to maintain and manage when developing animal models.

또한, 본 발명은 1) 당뇨병 또는 당뇨병 합병증 동물모델에 당뇨병 또는 당뇨병 합병증 개선 또는 치료제 후보물질을 투여하는 단계; 및 2) 상기 후보물질을 투여한 동물모델을 후보물질을 투여하지 않은 대조군과 비교하여 후보물질에 의해 혈당 수치가 감소되는 경우 이를 당뇨병 또는 당뇨병 합병증 개선 또는 치료제로 판단하는 단계;를 포함하는 당뇨병 또는 당뇨병 합병증 개선 또는 치료제의 스크리닝 방법을 제공한다.The present invention also relates to a method for the treatment or prophylaxis of diabetic complications comprising: 1) administering a diabetic or diabetic complication improving or therapeutic agent candidate to an animal model of diabetic or diabetic complication; And 2) comparing the animal model administered with the candidate substance to a control group to which the candidate substance is not administered, when the blood glucose level is decreased by the candidate substance, the diabetes or diabetic complication improvement or treatment is judged to be A method for screening a therapeutic agent for improving diabetic complications.

본 발명에 있어서 "후보물질"은 당뇨병 또는 당뇨병 합병증 개선 및 치료제로서 테스트할 물질을 의미하며, 예컨대 추출물, 단백질, 올리고펩티드, 소형 유기 분자, 다당류, 폴리뉴클레오티드 및 광범위한 화합물 등의 임의 분자를 포함할 수 있다. 이러한 후보물질은 또한 천연물질뿐만 아니라, 합성물질도 포함한다."Candidate" in the present invention means a substance to be tested as a diabetes or diabetic complication improving and treating agent and includes any molecule such as an extract, protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide and a wide range of compounds . Such candidate materials also include synthetic materials as well as natural materials.

본 발명에 있어서 "개선"과 "치료"는, 상기 후보물질의 투여로 상기 동물모델의 당뇨병 또는 당뇨병 합병증 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.In the present invention, the terms " improvement "and" treatment "refer to all actions in which the symptom of diabetes or diabetic complications of the animal model is improved or changed by administration of the candidate substance.

본 발명에 있어서 "대조군"은 실험 결과가 제대로 도출되었는지 여부를 판단하기 위해 어떤 조작이나 조건도 가하지 않은 집단을 말하며, 실험의 직접적인 목적을 이루기 위해 설정된 집단인 실험군과 달리, 대조군은 실험군의 결과를 좀 더 확실하게 하기 위해 설정된 집단이다. 본 발명에서의 대조군은 바람직하게는 상기 당뇨병 또는 당뇨병 합병증 동물모델에 후보물질을 처리하지 않은 집단을 말한다.In the present invention, "control group" refers to a group which does not apply any manipulation or condition to judge whether or not the experimental result is properly derived. Unlike the experimental group which is set to achieve the direct purpose of the experiment, It is a group that is set up to make it more certain. The control group in the present invention preferably refers to a group not treated with candidate substances in the animal model of diabetes or diabetic complication.

본 발명에 있어서 당뇨병 또는 당뇨병 합병증 동물모델은 당뇨병 또는 당뇨병 합병증에 대한 질병 모델로서, 상기 스크리닝 방법에 의하여 얻은 물질을 당뇨병 또는 당뇨병 합병증 환자에 대한 치료물질의 탐색, 부작용 확인, 진단법의 개발 등에 다양하게 활용하여 당뇨병 또는 당뇨병 합병증과 이의 합병증에 대한 개선 또는 치료제를 개발할 수 있다.In the present invention, an animal model of diabetes or diabetic complication is a disease model for diabetes or diabetic complication, and the substance obtained by the screening method may be variously used for the search for a therapeutic substance for diabetic or diabetic complication, Can be used to develop an improved or therapeutic agent for diabetes or diabetic complications and their complications.

중복되는 내용은 본 명세서의 복잡성을 고려하여 생락하며, 본 명세서에서 달리 정의되지 않은 용어들은 본 발명이 속하는 기술분야에서 통상적으로 사용되는 의미를 갖는 것이다.The redundant contents are taken into consideration in the complexity of the present specification, and terms not otherwise defined herein have the meanings commonly used in the art to which the present invention belongs.

이하, 본 발명의 이해를 돕기 위하여 실시예 및 실험예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예 및 실험예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예 및 실험예에 한정되는 것은 아니다. 본 발명의 실시예 및 실험예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples in order to facilitate understanding of the present invention. It should be understood, however, that the following examples and experimental examples are illustrative of the present invention and are not intended to limit the scope of the present invention. The embodiments and experimental examples of the present invention are provided to enable those skilled in the art to more fully understand the present invention.

실시예Example 1.  One. CRISPRCRISPR // CasCas 9 시스템을9 system 통한  through INSINS (insulin) 유전자 녹아웃 재조합 벡터의 제조(insulin) gene knockout recombinant vector

INS 유전자를 녹아웃시키기 위한 재조합 벡터를 제조하기 위해 사용한 sgRNA(작은 가이드 RNA, small guide RNA)를 암호화하는 DNA 서열은 온라인 CRISPR 디자인 툴(http://crispr.mit.edu)을 이용하여 제조하였고, 구체적으로는 하기 표 1의 서열번호 1 및 2로 표시되는 서열을 사용하였으며, 이는 돼지의 INS 유전자를 특이적으로 인식하여 각각 INS 유전자의 엑손 2(서열번호 4) 및 엑손 3(서열번호 5)에서 DNA 가닥을 녹아웃하도록 고안된 sgRNA 서열을 암호화하는 DNA 서열이다. 굵은 색 글씨의 서열은 PAM 염기서열을 나타낸다. The DNA sequence encoding the sgRNA (small guide RNA) used to prepare the recombinant vector for knocking out the INS gene was prepared using an online CRISPR design tool (http://crispr.mit.edu) specifically, to we used sequence shown in SEQ ID NO: 1 and 2 in Table 1, which in each INS gene recognizes INS gene of swine specifically exon 2 (SEQ ID NO: 4) and exon 3 (SEQ ID NO: 5) Lt; RTI ID = 0.0 > sgRNA < / RTI > The bold-colored letters indicate PAM nucleotide sequences.

염기서열Base sequence sgRNA 1sgRNA 1 5'-GCTACACGCCCAAGGCCCGT(서열번호 1)CGG-3'5'-GCTACACGCCCAAGGCCCGT (SEQ ID NO: 1) CGG- 3 ' sgRNA 2sgRNA 2 5'-GCCGCAGAAGCGTGGCATCG(서열번호 2)TGG-3'5'-GCCGCAGAAGCGTGGCATCG (SEQ ID NO: 2) TGG- 3 '

상기 제조된 sgRNA를 BbsI 제한 효소(New England Biolabs, MA, USA)를 사용하여 px458 벡터(addgene, MA, USA)로 도입하였다. 상기 벡터는 생체 내 전사시에 서열번호 1 및 2의 염기서열로 표시되는 DNA로 부터 sgRNA를, 서열번호 3의 염기서열(Addgene사(비영리기관)로부터 구매한 Cas9 서열을 사용함)로 표시되는 Cas9 DNA 서열로부터 Cas9 mRNA를 생성하는 주형으로 사용되었다. 이때 Cas9 유전자는 링커인 2A 펩타이드를 통해 GFP를 암호화하는 유전자와 연결되어 있어, 한 번에 Cas9 단백질과 GFP 단백질이 발현될 수 있다. 상기 과정을 통해 제작한 재조합 벡터가 타겟하는 INS 유전자 내 서열을 나타내는 도식도는 도 1에 나타내고, 상기 재조합 벡터의 개열지도 및 전체 염기서열은 각각 도 2 및 서열번호 12로 나타내었다.The prepared sgRNA was introduced into px458 vector (addgene, MA, USA) using Bbs I restriction enzyme (New England Biolabs, MA, USA). These vectors include sgRNA from the DNA represented by the nucleotide sequences of SEQ ID NOS: 1 and 2, and cas9 (SEQ ID NO: Was used as a template to generate Cas9 mRNA from the DNA sequence. At this time, the Cas9 gene is linked to a gene encoding GFP through the linker 2A peptide, so that Cas9 protein and GFP protein can be expressed at once. FIG. 1 shows the sequence of the INS gene targeted by the recombinant vector produced by the above procedure, and the cleavage map and the entire nucleotide sequence of the recombinant vector are shown in FIG. 2 and SEQ ID NO: 12, respectively.

실시예Example 2. 재조합 벡터를 이용한 섬유아세포의 형질전환 2. Transformation of fibroblasts using recombinant vectors

상기 실시예 1에서 제조한 재조합 벡터를 NucleofectorTM(LONZA, Basel, Switzerland)를 사용하여 전기천공법으로 돼지 1차(primary) 섬유아세포로 도입하였다. 이때 사용한 섬유아세포는 PWG 마이크로돼지로부터 분리한 것이며, 5% 이산화탄소 및 37℃ 조건에서 20% 소태아혈청 및 1% 페니실린-스트렙토마이신(Gibco, CA, USA)이 포함된 DMEM(Biowest, Nuaille, France) 배지 내에서 유지하였다. 형질전환을 수행하고 48시간이 경과한 후, 유전적으로 변형된 세포를 풍부하게 하기 위하여 FACSAriaTM 세포 분류기(BD Biosience, CA, USA)를 사용하여 세포분류를 수행하였다. 분류된 세포를 제한 희석 방법(limiting dilution method)으로 시딩(seeding)하고 단일 세포 유래 세포주를 만들기 위해 배양하였다. 각 세포주를 48개, 24개, 6개의 웰 플레이트 및 100 mm 배양 디쉬에 연속적으로 하위 배양하였다. 단일 세포 세포주로부터 추출한 세포는 SCNT 공여 세포로 사용할 때까지 액체 질소 탱크에 얼려서 보관하였다. 상기 일련의 과정을 통해 수득한 형질전환된 세포주는 2016년 10월 12일자로 한국세포주연구재단(Korean Cell Line Bank, 서울, 한국)에 기탁하고 수탁번호 KCLRFBP00374를 부여받았다.Example 1 a was introduced into a recombinant vector into Nucleofector TM (LONZA, Basel, Switzerland) by electroporation pig primary (primary) fibroblasts using manufactured. The fibroblasts used were those isolated from PWG micropigs and were cultured in DMEM (Biowest, Naille, France) containing 5% carbon dioxide and 20% fetal bovine serum and 1% penicillin-streptomycin (Gibco, ) ≪ / RTI > medium. After 48 hours of transfection, cell sorting was performed using a FACSAria cell sorter (BD Bioscience, CA, USA) to enrich for genetically modified cells. The sorted cells were seeded with a limiting dilution method and cultured to make single cell-derived cell lines. Each cell line was serially subcultured in 48, 24, 6 well plates and 100 mm culture dishes. Cells from single cell lines were frozen in liquid nitrogen tanks until used as SCNT donor cells. The transformed cell line obtained through the series of procedures was deposited with the Korean Cell Line Bank (Seoul, Korea) on Oct. 12, 2016, and received the accession number KCLRFBP00374.

실시예Example 3. 섬유아세포에서  3. In fibroblasts INSINS 유전자의 녹아웃 확인 Confirm gene knockout

상기 실시예 2에서 생산한 형질전환 세포에서 INS 유전자 녹아웃이 정상적으로 발생하였는지 여부를 확인하기 위하여 PCR을 수행하였다. 먼저, INS 유전자 녹아웃 확인을 위한 형질전환 세포의 유전체 DNA는 제작자의 메뉴얼에 따라 DNA 추출 키트(iNtRon Biotechnology, Seongnam-si, Korea)를 사용하여 추출하였다. PCR은 Pfu Plus 5x master mix(ELPIS biotech, Daejeon, Korea)를 이용하여 수행하였다. 보다 구체적으로, 첫번째 PCR은 다음과 같은 방법으로 하기 표 2에 나타낸 돼지 INS 유전자 특이적 프라이머를 사용하여 30회 반복하여 수행하였다: 5분 동안 95℃에서 1차 변성을 1회 반복하였고, 후에 30초 동안 95℃에서 변성, 30초 동안 58℃에서 어닐링(annealing) 및 30초 동안 72℃에서 연장하는 단계를 30회 반복하였으며, 마지막으로 10분 동안 72℃에서 후-연장을 1회 반복하였다. 두번째 PCR은 주형으로 첫번째 PCR 산물을 희석(1:100)한 것을 사용하여 35회 반복하여 수행하였고 구체적인 35회 반복 PCR 방법은 하기 표 2에 나타낸 프라이머를 이용하여 첫번째 PCR과 동일한 조건으로 수행하였다.PCR was performed to confirm whether or not the INS gene knockout occurred normally in the transfected cells produced in Example 2 above. First, genomic DNA of transformed cells for INS gene knockout confirmation was extracted using a DNA extraction kit (iNtRon Biotechnology, Seongnam-si, Korea) according to the manufacturer's manual. PCR was performed using Pfu Plus 5x master mix (ELPIS biotech, Daejeon, Korea). More specifically, the first PCR was repeated 30 times using the porcine INS gene-specific primers shown in Table 2 in the following manner: the first denaturation at 95 ° C for 5 minutes was repeated once, then 30 Denaturation at 95 [deg.] C for 30 seconds, annealing at 58 [deg.] C for 30 seconds and extension at 72 [deg.] C for 30 seconds were repeated 30 times and finally post-extension at 72 [deg.] C for 10 minutes was repeated once. The second PCR was repeated 35 times using the first PCR product diluted (1: 100) as the template. The specific 35 times PCR method was performed under the same conditions as the first PCR using the primers shown in Table 2 below.

서열번호SEQ ID NO: 서열(5'→3')The sequence (5 '- > 3') 첫번째 PCRFirst PCR 1313 정방향 Forward 프라이머primer CTCCTCTCTCGGAGCCCTTCTCCTCTCTCGGAGCCCTT 1414 역방향 Reverse 프라이머primer TTATTGGGTTTTGGGGTGCTTATTGGGTTTTGGGGTGC 두번째 PCR(엑손 2)The second PCR (exon 2) 1515 정방향 Forward 프라이머primer GTCCCCCAGGTCCTCACCGTCCCCCAGGTCCTCACC 1616 역방향 Reverse 프라이머primer CCCACCCTGGAGTGGAAGCCCACCCTGGAGTGGAAG 두번째 PCR(엑손 3)The second PCR (exon 3) 1717 정방향 Forward 프라이머primer GTCGGGGGAGTTTTTAAGGAGTCGGGGGAGTTTTTAAGGA 1818 역방향 Reverse 프라이머primer GGAGCAGCAGGCGCCCTCAGGGAGCAGCAGGCGCCCTCAG

추가적으로 T7 엔도뉴클라아제 I(T7E1) 분석법을 수행하였다. 구체적으로 정제한 두번째 PCR 산물을 5분 동안 95℃에서 변성하고 -2℃/초로 85℃까지, -0.1℃/초로 25℃까지에서 리어닐링(re-anneal)하였고, 그 후 리어닐링한 산물을 37℃에서 30분 동안 T7E1(ToolGen labs) 효소로 분해하였다. 두번째 PCR 산물 및 T7E1으로 분해된 산물은 TAE 버퍼에서 2% 아가로스 겔을 사용하여 전기영동시키고, 이후 이를 UV 트랜스일루미네이터를 사용하여 시각화하였다. 또한, INS 유전자의 표적 부위에서 유전자 변형이 있어난 것으로 추측되는 두번째 PCR 산물은 시퀀싱(sequencing)으로 확인하였다. 10개의 세포주에 대하여 수행한 시퀀싱 결과는 도 3에 나타내었다. 붉은색으로 표시한 형질전환으로 추가된 염기를 나타내며, 파란색으로 표시한 염기는 형질전환으로 치환된 염기를 나타낸다. In addition, the T7 endonuclease I (T7E1) assay was performed. The specifically purified second PCR product was denatured at 95 ° C for 5 minutes and re-annealed at 85 ° C at -2 ° C / second to 25 ° C at -0.1 ° C / second, and then reannealed And digested with T7E1 (ToolGen labs) enzyme at 37 占 폚 for 30 minutes. The second PCR product and the product degraded with T7E1 were electrophoresed using 2% agarose gel in TAE buffer and then visualized using a UV transilluminator. In addition, a second PCR product, presumed to have genetic modification at the target site of the INS gene, was identified by sequencing. Sequencing results for 10 cell lines are shown in FIG. And the base in blue represents the base substituted by the transformation.

도 3에 나타낸 바와 같이, 엑손 2 또는 엑손 3 범위 내의 염기서열에서 삽입 또는 결실을 포함하는 변형이 발생하는 것을 확인하였다. 이 후 실험에서는 상기 변형이 발생한 세포주 중 세포주 #32 및 #33를 서열번호 1로 표시되는 sgRNA에 의한 INS 유전자 녹아웃 돼지의 SCNT 핵 공여 세포로 사용하였고, 세포주 #8를 서열번호 2로 표시되는 sgRNA에 의한 INS 유전자 녹아웃 돼지의 SCNT 핵 공여 세포로 사용하였다.As shown in Fig. 3, It was confirmed that a modification including insertion or deletion occurred in the nucleotide sequence within the region of exon 2 or exon 3. In the subsequent experiments, cell lines # 32 and # 33 among the cell lines in which the mutation occurred were used as SCNT nuclear donor cells of the INS gene knockout pig by sgRNA shown in SEQ ID NO: 1, and cell line # 8 was transformed into sgRNA The SCNT nuclear donor cell of INS gene knockout pig was used.

실시예Example 4. 핵 공여 세포의 체세포  4. Somatic cells of nuclear donor cells 핵이식Nuclear transfer (( SCNTSCNT ; Somatic cell nuclear transfer) 및 이에 따른 ; Somatic cell nuclear transfer) and INSINS 유전자 녹아웃 돼지의 제조 Manufacture of gene knockout pigs

4-1. 동물 실험에 사용된 돼지4-1. Pigs used in animal experiments

본 실험에 대리모로 사용한 돼지는 총 3마리로, MGENPLUS사(한국)의 동물실험윤리위원회(IACUC; Institutional Animal Care and Use Committee)에서 승인받아 사용하였고, 이하 돼지를 이용한 모든 실험 과정은 위원회의 가이드라인에 따라 수행하였다. 수술 과정은 일반적인 마취 하에 수행되었고, 최대한 동물의 고통을 줄이기 위한 방향으로 진행되었다. 일반적인 가축 사양조건에서 돼지를 사육하였다.A total of 3 pigs were used as surrogate mothers in this experiment and were approved by the Institutional Animal Care and Use Committee (IACUC) of MGENPLUS (Korea) Line. The surgical procedure was performed under general anesthesia and proceeded as far as possible to reduce animal pain. The pigs were raised under the general livestock specifications.

4-2. 4-2. SCNT에On SCNT 사용되는 난자의 제조 Manufacture of oocytes used

SCNT를 수행하기 위하여 핵 수여 세포가 될 난자를 제조하기 위해, 지역 도살장으로부터 수집한 돼지 난자를 25 내지 30℃에서 0.9%(W/V) NaCl 조건하의 실험실로 옮겨왔다. 난자는 동난포(antral follicle; 지름 3 내지 6 mm의 크기)로부터 얻었고, 100% 습소, 5% 이산화탄소 및 39℃ 조건 하에 성숙 배지에서 배양하였다. 44시간 경과 후, 성숙된 난자를 사이토칼라신 B(5mg/ml 스톡(stock), 10 ml 조작 배지 당 1.5 μm)로 보충한 조작된 배지에서 얇은 유리 파이펫(지름 20 μm)으로 제1 극제 및 인접 세포질을 흡입하여 탈핵화시켰다. 후에 이는 SCNT에 사용되는 핵 수여자 세포로 사용되었다.To prepare eggs to be nuclear donor cells to carry out SCNT, porcine eggs collected from local slaughterhouses were transferred to a laboratory under conditions of 0.9% (W / V) NaCl at 25-30 ° C. The oocytes were obtained from an antral follicle (size 3-6 mm in diameter) and cultured in mature medium at 100% wet, 5% carbon dioxide and 39 ° C conditions. After 44 hours, matured oocytes were fixed with a thin glass pipette (diameter 20 μm) in a conditioned medium supplemented with cytochalasin B (5 mg / ml stock (stock), 1.5 μm per 10 ml manipulation medium) And the adjacent cytoplasm was inhaled and denucleated. Later, it was used as a nuclear acceptor cell for SCNT.

4-3. 핵 공여 세포의 4-3. Nuclear donor cell SCNTSCNT 수행 Perform

상기 실시예 3을 통하여 선별된 정상적인 INS 유전자 녹아웃 돌연변이가 일어난 세포인, 핵 공여자 세포 하나를 실시예 4-2에서 제조한 탈핵화된 난자의 위란강(perivitelline space)으로 주입하였다. 핵 공여자 세포막은 난자의 세포질막과 접촉되어 있는 상태이다. 난자 세포질-세포막 복합체는 융합되었고 전기적인 펄스(BTX, 60초 동안 두 개의 1.1 kV/cm 직류 펄스)로 활성화되었다. 재구성된 수정란을 14 내지 16시간 동안 39℃ 및 5% 이산화탄소의 조건 하에 PZM3에서 히스톤 디아세틸라제 억제제인 Scriptaid 0.5 μM와 함께 배양하였다. One nucleus donor cell, which was a normal INS gene knockout mutant selected through Example 3, was injected into the perivitelline space of the denucleated oocyte prepared in Example 4-2. The nuclear donor cell membrane is in contact with the cytoplasmic membrane of the oocyte. The oocyte cytoplasmic-membrane complex was fused and activated with an electrical pulse (BTX, two 1.1 kV / cm DC pulses for 60 seconds). The reconstituted embryos were incubated with PZM3 at a temperature of 39 < 0 > C and 5% CO 2 for 14-16 hours with 0.5 uM of the histidine deacetylase inhibitor, Scriptaid.

4-4. 4-4. INSINS 유전자  gene 녹아웃 돼지의Knockout pig 제조 Produce

손상되지 않은 막을 가진 수정란을 발정기(estrus)가 2일 경과한 후에 수술을 통하여 대리모의 나팔관으로 주입하였다(평균 256개의 수정란). 임신이 성공적인지 여부는 수정란 이식 후 28일이 경과한 후에 초음파로 확인하였다. 약 114일이 경과한 후에, 복제된 돼지는 제왕절개(c-section)를 실시하여 대리모의 배에서 꺼냈다.Embryos with intact membranes were injected into the surrogate mother's fallopian tubes (mean 256 embryos) after two days of estrus have passed. Successful pregnancy was confirmed by ultrasonography 28 days after embryo transfer. After about 114 days, the cloned pigs were removed from the surrogate mother's embryos by a c-section.

실시예Example 5. 유전형질 분석( 5. Analysis of genetic traits genotypinggenotyping assay)을 통한  assay) INSINS 유전자  gene 녹아웃 돼지의Knockout pig 녹아웃 확인 Check knockout

SCNT를 통한 INS 유전자 녹아웃이 정상적으로 이루어졌는지 여부를 확인하기 위하여 돼지가 태어난 날에 각 돼지에 대하여 유전체 DNA 추출 및 유전자형 검사를 위해 꼬리 생체검사(tale biopsy)수행하였다. 먼저, 태어난 산자의 꼬리로부터 유전체 DNA 추출 시료를 얻었고, 각 유전체 DNA는 제작자의 메뉴얼에 따라 DNA 추출 키트(iNtRon Biotechnology, Seongnam-si, Korea)를 사용하여 추출하였다. 이 후 실시예 3에서 수행한 방법과 동일한 방법으로 꼬리 생체검사를 수행하였다. 유전자형 검사 결과는 도 4에 나타내었다. In order to confirm whether or not the INS gene knockout through SCNT was normally performed, tale biopsy was performed for genomic DNA extraction and genotyping of each pig on the day of pig birth. First, a genomic DNA extraction sample was obtained from the tail of a born animal, and each genomic DNA was extracted using a DNA extraction kit (iNtRon Biotechnology, Seongnam-si, Korea) according to the manufacturer's manual. Then, a tail biopsy was carried out in the same manner as in Example 3. The results of the genotype test are shown in Fig.

도 4에 나타낸 바와 같이, 실시예 4에서 형질전환된 세포, 즉 핵 공여자 세포에서 발견된 돌연변이와 동일한 돌연변이가 제조된 INS 유전자 녹아웃 돼지에서 나타남을 확인하였다. 이는 상기에서 제조한 CRISPR/Cas9 법으로 생산한 태아 섬유아세포에 SCNT를 수행하여도 그 성질이 변하지 않은 상태로 난자로 함입되어 하나의 개체로서 돼지가 생산되는 것을 의미한다. As shown in Fig. 4, it was confirmed that the same mutant as that found in the transformed cell, that is, the nuclear donor cell, in Example 4 appeared in the INS gene knockout pig produced. This means that even when SCNT is performed on the fetal fibroblast produced by the CRISPR / Cas9 method prepared above, the egg is impregnated with the unchanged nature of the fetus as an individual and the pig is produced as an individual.

또한, 본 발명에 따른 INS 유전자 녹아웃은 실험에 사용한 대리모에 따라 다양하게 확인되었다. 보다 구체적으로 도 4a에서 확인할 수 있는 바와 같이, 한 대리모에서는 ⅰ) 엑손 2의 각 대립형질(allele)에서 서열번호 6으로 표시되는 4개 염기의 결실 및 서열번호 7로 표시되는 36개 염기의 결실, ⅱ) 엑손 3의 각 대립형질에서 서열번호 8로 표시되는 1개 염기의 삽입 및 서열번호 9로 표시되는 23개 염기의 결실을 확인하였다. 도 4b에서 확인할 수 있는 바와 같이 두번째 대리모에서는 엑손 2의 각 대립형질에서 서열번호 10으로 표시되는 1개 염기의 삽입 및 서열번호 11으로 표시되는 2개 염기의 결실이 확인되었다. 마지막으로 도 4c에서 확인할 수 있는 바와 같이 세번째 대리모에서는 ⅰ) 엑손 3의 각 대립형질에서 서열번호 8로 표시되는 1개 염기의 삽입 및 서열번호 9로 표시되는 23개 염기의 결실, ⅱ) 엑손 3의 각 대립형질에서 한 가닥의 DNA 가닥에서 서열번호 9로 표시되는 23개 염기 결실을 확인하였다. 종합적으로 엑손 2에서 1개 염기의 삽입 또는 2개, 4개, 또는 36개의 결실이 발생하였고, 엑손 3에서는 1개의 염기 삽입 또는 23개의 염기 결실이 발생하였음을 확인할 수 있었다. 이를 통해 서열번호 4의 염기서열로 표시되는 엑손 2 및 서열번호 4의 염기서열로 표시되는 엑손 3의 범위에서 변형이 발생함을 확인할 수 있고, 이는 본 발명에 따른 sgRNA에 의하여 상기 해당되는 염기에서 삽입 또는 결실이 발생하여 당뇨병 또는 당뇨병 합병증이 발병한 동물모델을 제작할 수 있음을 나타낸다.In addition, the INS gene knockout according to the present invention was variously confirmed according to the surrogate used in the experiment. More specifically, as shown in Fig. 4A, in one surrogate moth, i) deletion of four bases of SEQ ID NO: 6 and deletion of 36 bases of SEQ ID NO: 7 in each allele of exon 2 , Ii) insertion of one base of SEQ ID NO: 8 and deletion of 23 bases of SEQ ID NO: 9 in each allele of exon 3 were confirmed. As can be seen in Fig. 4B, insertion of one base of SEQ ID NO: 10 and deletion of two bases of SEQ ID NO: 11 were confirmed in each allele of exon 2 in the second surrogate. Finally, as shown in FIG. 4C, in the third surrogate, i) insertion of one base represented by SEQ ID NO: 8 and deletion of 23 bases represented by SEQ ID NO: 9 in each allele of exon 3, ii) Lt; RTI ID = 0.0 > 9 < / RTI > nucleotide deletion in one strand of the DNA strand in each allele of SEQ ID NO: 9. Comprehensively, it was confirmed that insertion of one base, 2, 4, or 36 deletions occurred in exon 2, and insertion of 1 base or deletion of 23 bases occurred in exon 3. As a result, it can be seen that deformation occurs in the range of exon 2 represented by the nucleotide sequence of SEQ ID NO: 4 and exon 3 represented by the nucleotide sequence of SEQ ID NO: 4, Insertions or deletions can occur to produce an animal model in which diabetes or diabetic complications have developed.

실시예Example 6.  6. 표현학적Expressionism 분석( analysis( phenotypingphenotyping assay)을 통한  assay) INSINS 유전자  gene 녹아웃 돼지의Knockout pig 당뇨병 확인 Diabetes Check

6-1. 혈당 수치 분석6-1. Blood glucose level analysis

실시예 4에서 제조한 INS 유전자 녹아웃 돼지에서 INS 유전자의 녹아웃이 잘 이루어졌는지 확인하기 위하여 혈당 수치를 분석하여 INS 녹아웃 돼지의 당뇨병 발병을 확인하였다. 상기 혈당 수치는 ACCU-CHEK? 혈당 미터 및 시험 스트립(Roche, IN, USA)을 이용하여 확인하였고, 채혈 후 복제 돼지가 죽을 때까지 4시간에 한 번씩 상기 혈당 수치를 확인하였다. 그 결과는 도 5에 나타내었다. 정상 범주의 혈당은 약 200 mg/dl 내외이다.In order to confirm the knockout of the INS gene in the INS gene knockout pig prepared in Example 4, the blood glucose level was analyzed to confirm the onset of diabetes in the INS knockout pig. The blood glucose level was determined by ACCU-CHEK? Blood glucose meter and test strips (Roche, IN, USA), and the blood glucose levels were checked every 4 hours until the replica pigs died after the blood collection. The results are shown in Fig. Normal blood sugar levels are around 200 mg / dl.

도 5에 나타낸 바와 같이, INS 유전자 녹아웃 돼지는 높은 혈당 수치를 나타내었고, 이는 INS 유전자 녹아웃이 정상적으로 이루어져 상기 INS 유전자 녹아웃 돼지가 당뇨병 또는 당뇨병 합병증 동물 모델로 사용될 수 있음을 나타낸다.As shown in FIG. 5, the INS gene knockout pig showed a high blood glucose level, indicating that the INS gene knockout was normally performed, so that the INS gene knockout pig could be used as an animal model for diabetes or diabetic complication.

6-2. 면역조직화학(IHC; 6-2. Immunohistochemistry (IHC; immunohistochemistryimmunohistochemistry ) 분석) analysis

실시예 4에서 제조한 INS 유전자 녹아웃 돼지에서 INS 유전자의 녹아웃이 잘 이루어졌는지 확인하기 위하여 돼지 췌장의 β-세포에 면역조직화학을 수행하여 INS 녹아웃 돼지의 당뇨병 발병을 확인하였다. 먼저, INS 유전자 녹아웃 돼지로부터 췌장을 분리하여 10% 중성 버퍼된 포르말린에서 고정하였다. 고정된 조직을 파라핀에 넣고 보관하다가 이 후에 조각으로 나눈 조직을 두 그룹으로 나눈 뒤 인슐린의 발현 여부를 분석하기 위해 두 그룹 중 한 그룹은 제작자의 메뉴얼에 따라 일반적인 H&E 염색 키트를 사용하여 H&E로 염색하고, 나머지 한 그룹에는 마우스 항-돼지 인슐린(AbD Serotec, Kidlington, UK)을 첨가하였다. 이를 현미경으로 관찰하였고, 그 결과를 도 6에 나타내었다. INS 유전자를 녹아웃시키지 않은 동일한 연령대의 야생형 돼지는 양성 대조군으로 사용하였다.In order to confirm that the INS gene knockout was successfully performed in the INS gene knockout pig prepared in Example 4, the β-cells of the pancreatic pancreas were immunohistochemically examined to detect the onset of diabetes in the INS knockout pig. First, the pancreas was isolated from INS gene knockout pigs and fixed in 10% neutral buffered formalin. The fixed tissue was stored in paraffin, and then divided into two groups. The tissue was divided into two groups. To analyze the expression of insulin, one of the two groups was stained with H & E using a general H & E staining kit according to the manufacturer's manual And mouse anti-swine insulin (AbD Serotec, Kidlington, UK) was added to the other group. This was observed with a microscope, and the results are shown in Fig. Wild-type pigs of the same age without knocking out the INS gene were used as positive control.

도 6에 나타낸 바와 같이, 세 마리의 돼지 중 두 마리의 돼지는 췌장에서 인슐린의 발현을 나타내지 않았고, 나머지 한 마리의 돼지는 양성 대조군인 돼지와 비교할 때 매우 약한 정도의 인슐린 발현을 나타내었다. 이는 INS 유전자 녹아웃이 정상적으로 이루어져 상기 INS 유전자 녹아웃 돼지를 당뇨병 또는 당뇨병 합병증 동물 모델로 사용될 수 있음을 나타낸다.As shown in Fig. 6, two pigs out of three pigs did not express insulin expression in the pancreas, and the other pig showed very weak insulin expression as compared with the positive control pig. This indicates that the INS gene knockout is normally performed, and that the INS gene knockout pig can be used as an animal model for diabetes or diabetic complication.

6-3. 혈청에서 인슐린 및 C-6-3. Insulin and C- 펩타이드Peptides 수치 분석 Numerical analysis

실시예 4에서 제조한 INS 유전자 녹아웃 돼지에서 INS 유전자의 녹아웃이 잘 이루어졌는지 확인하기 위하여 혈청 내 인슐린 및 C-펩타이드 농도를 효소결합 면역흡수 분석법으로 측정하여 INS 녹아웃 돼지의 당뇨병 발병을 확인하였다. 사용된 혈청은 원심분리를 이용하여 각 돼지(사산된 돼지 제외)의 전체 혈액으로부터 분리하였다. INS 유전자 녹아웃 돼지에서 인슐린 및 C-펩타이드 수치는 제조자의 메뉴얼에 따라 돼지 인슐린 및 C-펩타이드 키트(Mercodia, Uppsala, Sweden)을 이용하여 확인하였다. 그 결과는 도 7에 나타내었다. INS 유전자를 녹아웃시키지 않은 동일한 연령대의 야생형 돼지는 양성 대조군으로 사용하였다.Insulin and C-peptide concentrations in the serum were measured by enzyme-linked immunosorbent assay to confirm that the INS gene knockout was successfully performed in the INS gene knockout pig prepared in Example 4, and the onset of diabetes in INS knockout pig was confirmed. Serum used was separated from whole blood of each pig (except dead pig) by centrifugation. Insulin and C-peptide levels in INS gene knockout pigs were determined using pig insulin and C-peptide kits (Mercodia, Uppsala, Sweden) according to the manufacturer's manual. The results are shown in Fig. Wild-type pigs of the same age without knocking out the INS gene were used as positive control.

도 7에 나타낸 바와 같이, 양성 대조군으로 사용한 돼지는 먹이를 준 후 혈장에서 인슐린 및 C-펩타이드 농도의 증가를 나타낸 반면, INS 유전자 녹아웃이 일어난 돼지는 먹이를 준 후에도 먹이를 주기 전과 비슷한 수준의 인슐린 및 C-펩타이드 농도를 나타내었다. 이는 INS 유전자 녹아웃이 정상적으로 이루어져 상기 INS 유전자 녹아웃 돼지를 당뇨병 또는 당뇨병 합병증 동물 모델로 사용될 수 있음을 나타낸다.As shown in FIG. 7, pigs used as positive control groups showed an increase in insulin and C-peptide concentration in plasma after feeding, whereas pigs with INS gene knockout showed similar levels of insulin And C-peptide concentrations. This indicates that the INS gene knockout is normally performed, and that the INS gene knockout pig can be used as an animal model for diabetes or diabetic complication.

종합적으로, 이상의 실험 결과를 통해 본 발명에 따른 INS 유전자의 녹아웃을 위한 특이적 sgRNA 및 CRISPR/Cas9법을 이용한 재조합 벡터는 형질전환된 동물에서 INS 유전자를 암호화하는 DNA 가닥을 전부 또는 일부를 녹아웃시켜 당뇨병을 효과적으로 유도할 수 있음을 확인하였다. 당뇨병은 만성 질환으로, 당뇨병 환자들은 대개 합병증으로 고통으로 받고 있는바, 이에 대한 실질적인 예방 또는 치료를 위하여 장기간 연구를 가능하게 하는 본 발명에 따른 당뇨병 동물 모델을 이용하는 것이 매우 유용하다. 따라서 본 발명에 따른 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델은 관련 질병의 기전의 규명, 치료물질의 탐색, 진단법의 개발 등에 다양하게 활용될 수 있다. Taken together, from the above results, the recombinant vector using the specific sgRNA and CRISPR / Cas9 method for knocking out the INS gene according to the present invention can be obtained by knocking out all or a part of the DNA strand encoding the INS gene in the transformed animal It was confirmed that diabetes can be effectively induced. It is very useful to use a diabetic animal model according to the present invention which enables long-term studies for the practical prevention or treatment of diabetes mellitus, which is suffering from chronic diseases and diabetes mellitus. Therefore, the animal model of INS gene knockout diabetes or diabetic complication according to the present invention can be used variously to identify the mechanism of the related diseases, search for therapeutic substances, and develop diagnostic methods.

비록 본 발명이 상기에 언급된 바람직한 실시예로서 설명되었으나, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 또한 첨부된 청구 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함한다.Although the present invention has been described in terms of the preferred embodiments mentioned above, it is possible to make various modifications and variations without departing from the spirit and scope of the invention. It is also to be understood that the appended claims are intended to cover such modifications and changes as fall within the scope of the invention.

한국세포주연구재단Korea Cell Line Research Foundation KCLRFBP00374KCLRFBP00374 2016101220161012

<110> MGENPLUS CO., LTD. <120> INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same <130> p1-3 <160> 18 <170> KoPatentIn 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA coding DNA sequence <400> 1 gctacacgcc caaggcccgt 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA coding DNA sequence <400> 2 gccgcagaag cgtggcatcg 20 <210> 3 <211> 4269 <212> DNA <213> Artificial Sequence <220> <223> Cas9 coding DNA sequence <400> 3 atggactata aggaccacga cggagactac aaggatcatg atattgatta caaagacgat 60 gacgataaga tggccccaaa gaagaagcgg aaggtcggta tccacggagt cccagcagcc 120 gacaagaagt acagcatcgg cctggacatc ggcaccaact ctgtgggctg ggccgtgatc 180 accgacgagt acaaggtgcc cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac 240 agcatcaaga agaacctgat cggagccctg ctgttcgaca gcggcgaaac agccgaggcc 300 acccggctga agagaaccgc cagaagaaga tacaccagac ggaagaaccg gatctgctat 360 ctgcaagaga tcttcagcaa cgagatggcc aaggtggacg acagcttctt ccacagactg 420 gaagagtcct tcctggtgga agaggataag aagcacgagc ggcaccccat cttcggcaac 480 atcgtggacg aggtggccta ccacgagaag taccccacca tctaccacct gagaaagaaa 540 ctggtggaca gcaccgacaa ggccgacctg cggctgatct atctggccct ggcccacatg 600 atcaagttcc ggggccactt cctgatcgag ggcgacctga accccgacaa cagcgacgtg 660 gacaagctgt tcatccagct ggtgcagacc tacaaccagc tgttcgagga aaaccccatc 720 aacgccagcg gcgtggacgc caaggccatc ctgtctgcca gactgagcaa gagcagacgg 780 ctggaaaatc tgatcgccca gctgcccggc gagaagaaga atggcctgtt cggaaacctg 840 attgccctga gcctgggcct gacccccaac ttcaagagca acttcgacct ggccgaggat 900 gccaaactgc agctgagcaa ggacacctac gacgacgacc tggacaacct gctggcccag 960 atcggcgacc agtacgccga cctgtttctg gccgccaaga acctgtccga cgccatcctg 1020 ctgagcgaca tcctgagagt gaacaccgag atcaccaagg cccccctgag cgcctctatg 1080 atcaagagat acgacgagca ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag 1140 cagctgcctg agaagtacaa agagattttc ttcgaccaga gcaagaacgg ctacgccggc 1200 tacattgacg gcggagccag ccaggaagag ttctacaagt tcatcaagcc catcctggaa 1260 aagatggacg gcaccgagga actgctcgtg aagctgaaca gagaggacct gctgcggaag 1320 cagcggacct tcgacaacgg cagcatcccc caccagatcc acctgggaga gctgcacgcc 1380 attctgcggc ggcaggaaga tttttaccca ttcctgaagg acaaccggga aaagatcgag 1440 aagatcctga ccttccgcat cccctactac gtgggccctc tggccagggg aaacagcaga 1500 ttcgcctgga tgaccagaaa gagcgaggaa accatcaccc cctggaactt cgaggaagtg 1560 gtggacaagg gcgcttccgc ccagagcttc atcgagcgga tgaccaactt cgataagaac 1620 ctgcccaacg agaaggtgct gcccaagcac agcctgctgt acgagtactt caccgtgtat 1680 aacgagctga ccaaagtgaa atacgtgacc gagggaatga gaaagcccgc cttcctgagc 1740 ggcgagcaga aaaaggccat cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg 1800 aagcagctga aagaggacta cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc 1860 ggcgtggaag atcggttcaa cgcctccctg ggcacatacc acgatctgct gaaaattatc 1920 aaggacaagg acttcctgga caatgaggaa aacgaggaca ttctggaaga tatcgtgctg 1980 accctgacac tgtttgagga cagagagatg atcgaggaac ggctgaaaac ctatgcccac 2040 ctgttcgacg acaaagtgat gaagcagctg aagcggcgga gatacaccgg ctggggcagg 2100 ctgagccgga agctgatcaa cggcatccgg gacaagcagt ccggcaagac aatcctggat 2160 ttcctgaagt ccgacggctt cgccaacaga aacttcatgc agctgatcca cgacgacagc 2220 ctgaccttta aagaggacat ccagaaagcc caggtgtccg gccagggcga tagcctgcac 2280 gagcacattg ccaatctggc cggcagcccc gccattaaga agggcatcct gcagacagtg 2340 aaggtggtgg acgagctcgt gaaagtgatg ggccggcaca agcccgagaa catcgtgatc 2400 gaaatggcca gagagaacca gaccacccag aagggacaga agaacagccg cgagagaatg 2460 aagcggatcg aagagggcat caaagagctg ggcagccaga tcctgaaaga acaccccgtg 2520 gaaaacaccc agctgcagaa cgagaagctg tacctgtact acctgcagaa tgggcgggat 2580 atgtacgtgg accaggaact ggacatcaac cggctgtccg actacgatgt ggaccatatc 2640 gtgcctcaga gctttctgaa ggacgactcc atcgacaaca aggtgctgac cagaagcgac 2700 aagaaccggg gcaagagcga caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac 2760 tactggcggc agctgctgaa cgccaagctg attacccaga gaaagttcga caatctgacc 2820 aaggccgaga gaggcggcct gagcgaactg gataaggccg gcttcatcaa gagacagctg 2880 gtggaaaccc ggcagatcac aaagcacgtg gcacagatcc tggactcccg gatgaacact 2940 aagtacgacg agaatgacaa gctgatccgg gaagtgaaag tgatcaccct gaagtccaag 3000 ctggtgtccg atttccggaa ggatttccag ttttacaaag tgcgcgagat caacaactac 3060 caccacgccc acgacgccta cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac 3120 cctaagctgg aaagcgagtt cgtgtacggc gactacaagg tgtacgacgt gcggaagatg 3180 atcgccaaga gcgagcagga aatcggcaag gctaccgcca agtacttctt ctacagcaac 3240 atcatgaact ttttcaagac cgagattacc ctggccaacg gcgagatccg gaagcggcct 3300 ctgatcgaga caaacggcga aaccggggag atcgtgtggg ataagggccg ggattttgcc 3360 accgtgcgga aagtgctgag catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag 3420 acaggcggct tcagcaaaga gtctatcctg cccaagagga acagcgataa gctgatcgcc 3480 agaaagaagg actgggaccc taagaagtac ggcggcttcg acagccccac cgtggcctat 3540 tctgtgctgg tggtggccaa agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa 3600 gagctgctgg ggatcaccat catggaaaga agcagcttcg agaagaatcc catcgacttt 3660 ctggaagcca agggctacaa agaagtgaaa aaggacctga tcatcaagct gcctaagtac 3720 tccctgttcg agctggaaaa cggccggaag agaatgctgg cctctgccgg cgaactgcag 3780 aagggaaacg aactggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac 3840 tatgagaagc tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag 3900 cacaagcact acctggacga gatcatcgag cagatcagcg agttctccaa gagagtgatc 3960 ctggccgacg ctaatctgga caaagtgctg tccgcctaca acaagcaccg ggataagccc 4020 atcagagagc aggccgagaa tatcatccac ctgtttaccc tgaccaatct gggagcccct 4080 gccgccttca agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag 4140 gtgctggacg ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac 4200 ctgtctcagc tgggaggcga caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa 4260 aagaaaaag 4269 <210> 4 <211> 200 <212> DNA <213> Sus scrofa <400> 4 ctcacccccc gccatggccc tgtggacgcg cctcctgccc ctgctggccc tgctggccct 60 ctgggcgccc gccccggccc aggccttcgt gaaccagcac ctgtgcggct cccacctggt 120 ggaggcgctg tacctggtgt gcggggagcg cggcttcttc tacacgccca aggcccgtcg 180 ggaggcggag aaccctcagg 200 <210> 5 <211> 189 <212> DNA <213> Sus scrofa <400> 5 caggtgccgt ggagctgggc ggaggcctgg gcggcctgca ggccctggcg ctggaggggc 60 ccccgcagaa gcgtggcatc gtggagcagt gctgcaccag catctgttcc ctctaccagc 120 tggagaacta ctgcaactag gccgcccctg agggcgcctg ctgctccccg caccccaaaa 180 cccaataaa 189 <210> 6 <211> 4 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 6 cccg 4 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 7 gtggcatcgt ggagcagtgc tgc 23 <210> 8 <211> 1 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 8 c 1 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 9 cggggagcgc ggcttcttct acacaaggcc cg 32 <210> 10 <211> 1 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 10 a 1 <210> 11 <211> 2 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 11 cc 2 <210> 12 <211> 9291 <212> DNA <213> Artificial Sequence <220> <223> recombinant vector <400> 12 gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60 ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120 aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180 atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240 cgaaacaccg ctacacgccc aaggcccgtg ttttagagct agaaatagca agttaaaata 300 aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tgttttagag 360 ctagaaatag caagttaaaa taaggctagt ccgtttttag cgcgtgcgcc aattctgcag 420 acaaatggct ctagaggtac ccgttacata acttacggta aatggcccgc ctggctgacc 480 gcccaacgac ccccgcccat tgacgtcaat agtaacgcca atagggactt tccattgacg 540 tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat 600 gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc attgtgccca 660 gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag tcatcgctat 720 taccatggtc gaggtgagcc ccacgttctg cttcactctc cccatctccc ccccctcccc 780 acccccaatt ttgtatttat ttatttttta attattttgt gcagcgatgg gggcgggggg 840 gggggggggg cgcgcgccag gcggggcggg gcggggcgag gggcggggcg gggcgaggcg 900 gagaggtgcg gcggcagcca atcagagcgg cgcgctccga aagtttcctt ttatggcgag 960 gcggcggcgg cggcggccct ataaaaagcg aagcgcgcgg cgggcgggag tcgctgcgac 1020 gctgccttcg ccccgtgccc cgctccgccg ccgcctcgcg ccgcccgccc cggctctgac 1080 tgaccgcgtt actcccacag gtgagcgggc gggacggccc ttctcctccg ggctgtaatt 1140 agctgagcaa gaggtaaggg tttaagggat ggttggttgg tggggtatta atgtttaatt 1200 acctggagca cctgcctgaa atcacttttt ttcaggttgg accggtgcca ccatggacta 1260 taaggaccac gacggagact acaaggatca tgatattgat tacaaagacg atgacgataa 1320 gatggcccca aagaagaagc ggaaggtcgg tatccacgga gtcccagcag ccgacaagaa 1380 gtacagcatc ggcctggaca tcggcaccaa ctctgtgggc tgggccgtga tcaccgacga 1440 gtacaaggtg cccagcaaga aattcaaggt gctgggcaac accgaccggc acagcatcaa 1500 gaagaacctg atcggagccc tgctgttcga cagcggcgaa acagccgagg ccacccggct 1560 gaagagaacc gccagaagaa gatacaccag acggaagaac cggatctgct atctgcaaga 1620 gatcttcagc aacgagatgg ccaaggtgga cgacagcttc ttccacagac tggaagagtc 1680 cttcctggtg gaagaggata agaagcacga gcggcacccc atcttcggca acatcgtgga 1740 cgaggtggcc taccacgaga agtaccccac catctaccac ctgagaaaga aactggtgga 1800 cagcaccgac aaggccgacc tgcggctgat ctatctggcc ctggcccaca tgatcaagtt 1860 ccggggccac ttcctgatcg agggcgacct gaaccccgac aacagcgacg tggacaagct 1920 gttcatccag ctggtgcaga cctacaacca gctgttcgag gaaaacccca tcaacgccag 1980 cggcgtggac gccaaggcca tcctgtctgc cagactgagc aagagcagac ggctggaaaa 2040 tctgatcgcc cagctgcccg gcgagaagaa gaatggcctg ttcggaaacc tgattgccct 2100 gagcctgggc ctgaccccca acttcaagag caacttcgac ctggccgagg atgccaaact 2160 gcagctgagc aaggacacct acgacgacga cctggacaac ctgctggccc agatcggcga 2220 ccagtacgcc gacctgtttc tggccgccaa gaacctgtcc gacgccatcc tgctgagcga 2280 catcctgaga gtgaacaccg agatcaccaa ggcccccctg agcgcctcta tgatcaagag 2340 atacgacgag caccaccagg acctgaccct gctgaaagct ctcgtgcggc agcagctgcc 2400 tgagaagtac aaagagattt tcttcgacca gagcaagaac ggctacgccg gctacattga 2460 cggcggagcc agccaggaag agttctacaa gttcatcaag cccatcctgg aaaagatgga 2520 cggcaccgag gaactgctcg tgaagctgaa cagagaggac ctgctgcgga agcagcggac 2580 cttcgacaac ggcagcatcc cccaccagat ccacctggga gagctgcacg ccattctgcg 2640 gcggcaggaa gatttttacc cattcctgaa ggacaaccgg gaaaagatcg agaagatcct 2700 gaccttccgc atcccctact acgtgggccc tctggccagg ggaaacagca gattcgcctg 2760 gatgaccaga aagagcgagg aaaccatcac cccctggaac ttcgaggaag tggtggacaa 2820 gggcgcttcc gcccagagct tcatcgagcg gatgaccaac ttcgataaga acctgcccaa 2880 cgagaaggtg ctgcccaagc acagcctgct gtacgagtac ttcaccgtgt ataacgagct 2940 gaccaaagtg aaatacgtga ccgagggaat gagaaagccc gccttcctga gcggcgagca 3000 gaaaaaggcc atcgtggacc tgctgttcaa gaccaaccgg aaagtgaccg tgaagcagct 3060 gaaagaggac tacttcaaga aaatcgagtg cttcgactcc gtggaaatct ccggcgtgga 3120 agatcggttc aacgcctccc tgggcacata ccacgatctg ctgaaaatta tcaaggacaa 3180 ggacttcctg gacaatgagg aaaacgagga cattctggaa gatatcgtgc tgaccctgac 3240 actgtttgag gacagagaga tgatcgagga acggctgaaa acctatgccc acctgttcga 3300 cgacaaagtg atgaagcagc tgaagcggcg gagatacacc ggctggggca ggctgagccg 3360 gaagctgatc aacggcatcc gggacaagca gtccggcaag acaatcctgg atttcctgaa 3420 gtccgacggc ttcgccaaca gaaacttcat gcagctgatc cacgacgaca gcctgacctt 3480 taaagaggac atccagaaag cccaggtgtc cggccagggc gatagcctgc acgagcacat 3540 tgccaatctg gccggcagcc ccgccattaa gaagggcatc ctgcagacag tgaaggtggt 3600 ggacgagctc gtgaaagtga tgggccggca caagcccgag aacatcgtga tcgaaatggc 3660 cagagagaac cagaccaccc agaagggaca gaagaacagc cgcgagagaa tgaagcggat 3720 cgaagagggc atcaaagagc tgggcagcca gatcctgaaa gaacaccccg tggaaaacac 3780 ccagctgcag aacgagaagc tgtacctgta ctacctgcag aatgggcggg atatgtacgt 3840 ggaccaggaa ctggacatca accggctgtc cgactacgat gtggaccata tcgtgcctca 3900 gagctttctg aaggacgact ccatcgacaa caaggtgctg accagaagcg acaagaaccg 3960 gggcaagagc gacaacgtgc cctccgaaga ggtcgtgaag aagatgaaga actactggcg 4020 gcagctgctg aacgccaagc tgattaccca gagaaagttc gacaatctga ccaaggccga 4080 gagaggcggc ctgagcgaac tggataaggc cggcttcatc aagagacagc tggtggaaac 4140 ccggcagatc acaaagcacg tggcacagat cctggactcc cggatgaaca ctaagtacga 4200 cgagaatgac aagctgatcc gggaagtgaa agtgatcacc ctgaagtcca agctggtgtc 4260 cgatttccgg aaggatttcc agttttacaa agtgcgcgag atcaacaact accaccacgc 4320 ccacgacgcc tacctgaacg ccgtcgtggg aaccgccctg atcaaaaagt accctaagct 4380 ggaaagcgag ttcgtgtacg gcgactacaa ggtgtacgac gtgcggaaga tgatcgccaa 4440 gagcgagcag gaaatcggca aggctaccgc caagtacttc ttctacagca acatcatgaa 4500 ctttttcaag accgagatta ccctggccaa cggcgagatc cggaagcggc ctctgatcga 4560 gacaaacggc gaaaccgggg agatcgtgtg ggataagggc cgggattttg ccaccgtgcg 4620 gaaagtgctg agcatgcccc aagtgaatat cgtgaaaaag accgaggtgc agacaggcgg 4680 cttcagcaaa gagtctatcc tgcccaagag gaacagcgat aagctgatcg ccagaaagaa 4740 ggactgggac cctaagaagt acggcggctt cgacagcccc accgtggcct attctgtgct 4800 ggtggtggcc aaagtggaaa agggcaagtc caagaaactg aagagtgtga aagagctgct 4860 ggggatcacc atcatggaaa gaagcagctt cgagaagaat cccatcgact ttctggaagc 4920 caagggctac aaagaagtga aaaaggacct gatcatcaag ctgcctaagt actccctgtt 4980 cgagctggaa aacggccgga agagaatgct ggcctctgcc ggcgaactgc agaagggaaa 5040 cgaactggcc ctgccctcca aatatgtgaa cttcctgtac ctggccagcc actatgagaa 5100 gctgaagggc tcccccgagg ataatgagca gaaacagctg tttgtggaac agcacaagca 5160 ctacctggac gagatcatcg agcagatcag cgagttctcc aagagagtga tcctggccga 5220 cgctaatctg gacaaagtgc tgtccgccta caacaagcac cgggataagc ccatcagaga 5280 gcaggccgag aatatcatcc acctgtttac cctgaccaat ctgggagccc ctgccgcctt 5340 caagtacttt gacaccacca tcgaccggaa gaggtacacc agcaccaaag aggtgctgga 5400 cgccaccctg atccaccaga gcatcaccgg cctgtacgag acacggatcg acctgtctca 5460 gctgggaggc gacaaaaggc cggcggccac gaaaaaggcc ggccaggcaa aaaagaaaaa 5520 ggaattcggc agtggagagg gcagaggaag tctgctaaca tgcggtgacg tcgaggagaa 5580 tcctggccca gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga 5640 gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc 5700 cacctacggc aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg 5760 gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc ttcagccgct accccgacca 5820 catgaagcag cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac 5880 catcttcttc aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga 5940 caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct 6000 ggggcacaag ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca 6060 gaagaacggc atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca 6120 gctcgccgac cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga 6180 caaccactac ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca 6240 catggtcctg ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta 6300 caaggaattc taactagagc tcgctgatca gcctcgactg tgccttctag ttgccagcca 6360 tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc 6420 ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg 6480 gggggtgggg tggggcagga cagcaagggg gaggattggg aagagaatag caggcatgct 6540 ggggagcggc cgcaggaacc cctagtgatg gagttggcca ctccctctct gcgcgctcgc 6600 tcgctcactg aggccgggcg accaaaggtc gcccgacgcc cgggctttgc ccgggcggcc 6660 tcagtgagcg agcgagcgcg cagctgcctg caggggcgcc tgatgcggta ttttctcctt 6720 acgcatctgt gcggtatttc acaccgcata cgtcaaagca accatagtac gcgccctgta 6780 gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca 6840 gcgccctagc gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcgccggct 6900 ttccccgtca agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc 6960 acctcgaccc caaaaaactt gatttgggtg atggttcacg tagtgggcca tcgccctgat 7020 agacggtttt tcgccctttg acgttggagt ccacgttctt taatagtgga ctcttgttcc 7080 aaactggaac aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc 7140 cgatttcggc ctattggtta aaaaatgagc tgatttaaca aaaatttaac gcgaatttta 7200 acaaaatatt aacgtttaca attttatggt gcactctcag tacaatctgc tctgatgccg 7260 catagttaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc 7320 tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga 7380 ggttttcacc gtcatcaccg aaacgcgcga gacgaaaggg cctcgtgata cgcctatttt 7440 tataggttaa tgtcatgata ataatggttt cttagacgtc aggtggcact tttcggggaa 7500 atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca 7560 tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc 7620 aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc 7680 acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt 7740 acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt 7800 ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg 7860 ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact 7920 caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg 7980 ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga 8040 aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg 8100 aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgtagcaa 8160 tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac 8220 aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc 8280 cggctggctg gtttattgct gataaatctg gagccggtga gcgtggaagc cgcggtatca 8340 ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga 8400 gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta 8460 agcattggta actgtcagac caagtttact catatatact ttagattgat ttaaaacttc 8520 atttttaatt taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc 8580 cttaacgtga gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt 8640 cttgagatcc tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac 8700 cagcggtggt ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct 8760 tcagcagagc gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact 8820 tcaagaactc tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg 8880 ctgccagtgg cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata 8940 aggcgcagcg gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga 9000 cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag 9060 ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg 9120 agcttccagg gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac 9180 ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca 9240 acgcggcctt tttacggttc ctggcctttt gctggccttt tgctcacatg t 9291 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 13 ctcctctctc ggagccctt 19 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 14 ttattgggtt ttggggtgc 19 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 15 gtcccccagg tcctcacc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 16 cccaccctgg agtggaag 18 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 17 gtcgggggag tttttaagga 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 18 ggagcagcag gcgccctcag 20 <110> MGENPLUS CO., LTD. <120> INSulin gene knockout diabetes mellitus or diabetic complications          animal model and a method for producing same <130> p1-3 <160> 18 <170> KoPatentin 3.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA coding DNA sequence <400> 1 gctacacgcc caaggcccgt 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> sgRNA coding DNA sequence <400> 2 gccgcagaag cgtggcatcg 20 <210> 3 <211> 4269 <212> DNA <213> Artificial Sequence <220> <223> Cas9 coding DNA sequence <400> 3 atggactata aggaccacga cggagactac aaggatcatg atattgatta caaagacgat 60 gacgataaga tggccccaaa gaagaagcgg aaggtcggta tccacggagt cccagcagcc 120 gacaagaagt acagcatcgg cctggacatc ggcaccaact ctgtgggctg ggccgtgatc 180 accgacgagt acaaggtgcc cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac 240 agcatcaaga agaacctgat cggagccctg ctgttcgaca gcggcgaaac agccgaggcc 300 acccggctga agagaaccgc cagaagaaga tacaccagac ggaagaaccg gatctgctat 360 ctgcaagaga tcttcagcaa cgagatggcc aaggtggacg acagcttctt ccacagactg 420 gaagagtcct tcctggtgga agaggataag aagcacgagc ggcaccccat cttcggcaac 480 atcgtggacg aggtggccta ccacgagaag taccccacca tctaccacct gagaaagaaa 540 ctggtggaca gcaccgacaa ggccgacctg cggctgatct atctggccct ggcccacatg 600 atcaagttcc ggggccactt cctgatcgag ggcgacctga accccgacaa cagcgacgtg 660 gacaagctgt tcatccagct ggtgcagacc tacaaccagc tgttcgagga aaaccccatc 720 aacgccagcg gcgtggacgc caaggccatc ctgtctgcca gactgagcaa gagcagacgg 780 ctggaaaatc tgatcgccca gctgcccggc gagaagaaga atggcctgtt cggaaacctg 840 attgccctga gcctgggcct gacccccaac ttcaagagca acttcgacct ggccgaggat 900 gccaaactgc agctgagcaa ggacacctac gacgacgacc tggacaacct gctggcccag 960 atcggcgacc agtacgccga cctgtttctg gccgccaaga acctgtccga cgccatcctg 1020 ctgagcgaca tcctgagagt gaacaccgag atcaccaagg cccccctgag cgcctctatg 1080 atcaagagat acgacgagca ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag 1140 cagctgcctg agaagtacaa agagattttc ttcgaccaga gcaagaacgg ctacgccggc 1200 tacattgacg gcggagccag ccaggaagag ttctacaagt tcatcaagcc catcctggaa 1260 aagatggacg gcaccgagga actgctcgtg aagctgaaca gagaggacct gctgcggaag 1320 cagcggacct tcgacaacgg cagcatcccc caccagatcc acctgggaga gctgcacgcc 1380 attctgcggc ggcaggaaga tttttaccca ttcctgaagg acaaccggga aaagatcgag 1440 aagatcctga ccttccgcat cccctactac gtgggccctc tggccagggg aaacagcaga 1500 ttcgcctgga tgaccagaaa gagcgaggaa accatcaccc cctggaactt cgaggaagtg 1560 gtggacaagg gcgcttccgc ccagagcttc atcgagcgga tgaccaactt cgataagaac 1620 ctgcccaacg agaaggtgct gcccaagcac agcctgctgt acgagtactt caccgtgtat 1680 aacgagctga ccaaagtgaa atacgtgacc gagggaatga gaaagcccgc cttcctgagc 1740 ggcgagcaga aaaaggccat cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg 1800 aagcagctga aagaggacta cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc 1860 ggcgtggaag atcggttcaa cgcctccctg ggcacatacc acgatctgct gaaaattatc 1920 aaggacaagg acttcctgga caatgaggaa aacgaggaca ttctggaaga tatcgtgctg 1980 accctgacac tgtttgagga cagagagatg atcgaggaac ggctgaaaac ctatgcccac 2040 ctgttcgacg acaaagtgat gaagcagctg aagcggcgga gatacaccgg ctggggcagg 2100 ctgagccgga agctgatcaa cggcatccgg gacaagcagt ccggcaagac aatcctggat 2160 ttcctgaagt ccgacggctt cgccaacaga aacttcatgc agctgatcca cgacgacagc 2220 ctgaccttta aagaggacat ccagaaagcc caggtgtccg gccagggcga tagcctgcac 2280 gagcacattg ccaatctggc cggcagcccc gccattaaga agggcatcct gcagacagtg 2340 aaggtggtgg acgagctcgt gaaagtgatg ggccggcaca agcccgagaa catcgtgatc 2400 gaaatggcca gagagaacca gaccacccag aagggacaga agaacagccg cgagagaatg 2460 aagcggatcg aagagggcat caaagagctg ggcagccaga tcctgaaaga acaccccgtg 2520 gaaaacaccc agctgcagaa cgagaagctg tacctgtact acctgcagaa tgggcgggat 2580 atgtacgtgg accaggaact ggacatcaac cggctgtccg actacgatgt ggaccatatc 2640 gtgcctcaga gctttctgaa ggacgactcc atcgacaaca aggtgctgac cagaagcgac 2700 aagaaccggg gcaagagcga caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac 2760 tactggcggc agctgctgaa cgccaagctg attacccaga gaaagttcga caatctgacc 2820 aaggccgaga gaggcggcct gagcgaactg gataaggccg gcttcatcaa gagacagctg 2880 gtggaaaccc ggcagatcac aaagcacgtg gcacagatcc tggactcccg gatgaacact 2940 aagtacgacg agaatgacaa gctgatccgg gaagtgaaag tgatcaccct gaagtccaag 3000 ctggtgtccg atttccggaa ggatttccag ttttacaaag tgcgcgagat caacaactac 3060 caccacgccc acgacgccta cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac 3120 cctaagctgg aaagcgagtt cgtgtacggc gactacaagg tgtacgacgt gcggaagatg 3180 atcgccaaga gcgagcagga aatcggcaag gctaccgcca agtacttctt ctacagcaac 3240 atcatgaact ttttcaagac cgagattacc ctggccaacg gcgagatccg gaagcggcct 3300 ctgatcgaga caaacggcga aaccggggag atcgtgtggg ataagggccg ggattttgcc 3360 accgtgcgga aagtgctgag catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag 3420 acaggcggct tcagcaaaga gtctatcctg cccaagagga acagcgataa gctgatcgcc 3480 agaaagaagg actgggaccc taagaagtac ggcggcttcg acagccccac cgtggcctat 3540 tctgtgctgg tggtggccaa agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa 3600 gagctgctgg ggatcaccat catggaaaga agcagcttcg agaagaatcc catcgacttt 3660 ctggaagcca agggctacaa agaagtgaaa aaggacctga tcatcaagct gcctaagtac 3720 tccctgttcg agctggaaaa cggccggaag agaatgctgg cctctgccgg cgaactgcag 3780 aagggaaacg aactggccct gccctccaaa tatgtgaact tcctgtacct ggccagccac 3840 tatgagaagc tgaagggctc ccccgaggat aatgagcaga aacagctgtt tgtggaacag 3900 cacaagcact acctggacga gatcatcgag cagatcagcg agttctccaa gagagtgatc 3960 ctggccgacg ctaatctgga caaagtgctg tccgcctaca acaagcaccg ggataagccc 4020 atcagagagc aggccgagaa tatcatccac ctgtttaccc tgaccaatct gggagcccct 4080 gccgccttca agtactttga caccaccatc gaccggaaga ggtacaccag caccaaagag 4140 gtgctggacg ccaccctgat ccaccagagc atcaccggcc tgtacgagac acggatcgac 4200 ctgtctcagc tgggaggcga caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa 4260 aagaaaaag 4269 <210> 4 <211> 200 <212> DNA <213> Sus scrofa <400> 4 ctcacccccc gccatggccc tgtggacgcg cctcctgccc ctgctggccc tgctggccct 60 ctgggcgccc gccccggccc aggccttcgt gaaccagcac ctgtgcggct cccacctggt 120 ggaggcgctg tacctggtgt gcggggagcg cggcttcttc tacacgccca aggcccgtcg 180 ggaggcggag aaccctcagg 200 <210> 5 <211> 189 <212> DNA <213> Sus scrofa <400> 5 caggtgccgt ggagctgggc ggaggcctgg gcggcctgca ggccctggcg ctggaggggc 60 ccccgcagaa gcgtggcatc gtggagcagt gctgcaccag catctgttcc ctctaccagc 120 tggagaacta ctgcaactag gccgcccctg agggcgcctg ctgctccccg caccccaaaa 180 cccaataaa 189 <210> 6 <211> 4 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 6 cccg 4 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 7 gtggcatcgt ggagcagtgc tgc 23 <210> 8 <211> 1 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 8 c 1 <210> 9 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 9 cggggagcgc ggcttcttct acacaaggcc cg 32 <210> 10 <211> 1 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 10 a 1 <210> 11 <211> 2 <212> DNA <213> Artificial Sequence <220> <223> knockout sequence <400> 11 cc 2 <210> 12 <211> 9291 <212> DNA <213> Artificial Sequence <220> <223> recombinant vector <400> 12 gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60 ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120 aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180 atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240 cgaaacaccg ctacacgccc aaggcccgtg ttttagagct agaaatagca agttaaaata 300 aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tgttttagag 360 ctagaaatag caagttaaaa taaggctagt ccgtttttag cgcgtgcgcc aattctgcag 420 acaaatggct ctagaggtac ccgttacata acttacggta aatggcccgc ctggctgacc 480 gcccaacgac ccccgcccat tgacgtcaat agtaacgcca atagggactt tccattgacg 540 tcaatgggtg gagtatttac ggtaaactgc ccacttggca gtacatcaag tgtatcatat 600 gccaagtacg ccccctattg acgtcaatga cggtaaatgg cccgcctggc attgtgccca 660 gtacatgacc ttatgggact ttcctacttg gcagtacatc tacgtattag tcatcgctat 720 taccatggtc gaggtgagcc ccacgttctg cttcactctc cccatctccc ccccctcccc 780 acccccaatt ttgtatttat ttatttttta attattttgt gcagcgatgg gggcgggggg 840 gggggggggg cgcgcgccag gcggggcggg gcggggcgag gggcggggcg gggcgaggcg 900 gagaggtgcg gcggcagcca atcagagcgg cgcgctccga aagtttcctt ttatggcgag 960 gcggcggcgg cggcggccct ataaaaagcg aagcgcgcgg cgggcgggag tcgctgcgac 1020 gctgccttcg ccccgtgccc cgctccgccg ccgcctcgcg ccgcccgccc cggctctgac 1080 tgaccgcgtt actcccacag gtgagcgggc gggacggccc ttctcctccg ggctgtaatt 1140 agctgagcaa gaggtaaggg tttaagggat ggttggttgg tggggtatta atgtttaatt 1200 acctggagca cctgcctgaa atcacttttt ttcaggttgg accggtgcca ccatggacta 1260 taaggaccac gacggagact acaaggatca tgatattgat tacaaagacg atgacgataa 1320 gatggcccca aagaagaagc ggaaggtcgg tatccacgga gtcccagcag ccgacaagaa 1380 gtacagcatc ggcctggaca tcggcaccaa ctctgtgggc tgggccgtga tcaccgacga 1440 gtacaaggtg cccagcaaga aattcaaggt gctgggcaac accgaccggc acagcatcaa 1500 gaagaacctg atcggagccc tgctgttcga cagcggcgaa acagccgagg ccacccggct 1560 gaagagaacc gccagaagaa gatacaccag acggaagaac cggatctgct atctgcaaga 1620 gatcttcagc aacgagatgg ccaaggtgga cgacagcttc ttccacagac tggaagagtc 1680 cttcctggtg gaagaggata agaagcacga gcggcacccc atcttcggca acatcgtgga 1740 cgaggtggcc taccacgaga agtaccccac catctaccac ctgagaaaga aactggtgga 1800 cagcaccgac aaggccgacc tgcggctgat ctatctggcc ctggcccaca tgatcaagtt 1860 ccggggccac ttcctgatcg agggcgacct gaaccccgac aacagcgacg tggacaagct 1920 gttcatccag ctggtgcaga cctacaacca gctgttcgag gaaaacccca tcaacgccag 1980 cggcgtggac gccaaggcca tcctgtctgc cagactgagc aagagcagac ggctggaaaa 2040 tctgatcgcc cagctgcccg gcgagaagaa gaatggcctg ttcggaaacc tgattgccct 2100 gagcctgggc ctgaccccca acttcaagag caacttcgac ctggccgagg atgccaaact 2160 gcagctgagc aaggacacct acgacgacga cctggacaac ctgctggccc agatcggcga 2220 ccagtacgcc gacctgtttc tggccgccaa gaacctgtcc gacgccatcc tgctgagcga 2280 catcctgaga gtgaacaccg agatcaccaa ggcccccctg agcgcctcta tgatcaagag 2340 atacgacgag caccaccagg acctgaccct gctgaaagct ctcgtgcggc agcagctgcc 2400 tgagaagtac aaagagattt tcttcgacca gagcaagaac ggctacgccg gctacattga 2460 cggcggagcc agccaggaag agttctacaa gttcatcaag cccatcctgg aaaagatgga 2520 cggcaccgag gaactgctcg tgaagctgaa cagagaggac ctgctgcgga agcagcggac 2580 cttcgacaac ggcagcatcc cccaccagat ccacctggga gagctgcacg ccattctgcg 2640 gcggcaggaa gatttttacc cattcctgaa ggacaaccgg gaaaagatcg agaagatcct 2700 gaccttccgc atcccctact acgtgggccc tctggccagg ggaaacagca gattcgcctg 2760 gatgaccaga aagaccgagg aaaccatcac cccctggaac ttcgaggaag tggtggacaa 2820 gggcgcttcc gcccagagct tcatcgagcg gatgaccaac ttcgataaga acctgcccaa 2880 cgagaaggtg ctgcccaagc acagcctgct gtacgagtac ttcaccgtgt ataacgagct 2940 gaccaaagtg aaatacgtga ccgagggaat gagaaagccc gccttcctga gcggcgagca 3000 gaaaaaggcc atcgtggacc tgctgttcaa gaccaaccgg aaagtgaccg tgaagcagct 3060 gaaagaggac tacttcaaga aaatcgagtg cttcgactcc gtggaaatct ccggcgtgga 3120 agatcggttc aacgcctccc tgggcacata ccacgatctg ctgaaaatta tcaaggacaa 3180 ggacttcctg gacaatgagg aaaacgagga cattctggaa gatatcgtgc tgaccctgac 3240 actgtttgag gacagagaga tgatcgagga acggctgaaa acctatgccc acctgttcga 3300 cgacaaagtg atgaagcagc tgaagcggcg gagatacacc ggctggggca ggctgagccg 3360 gaagctgatc aacggcatcc gggacaagca gtccggcaag acaatcctgg atttcctgaa 3420 gtccgacggc ttcgccaaca gaaacttcat gcagctgatc cacgacgaca gcctgacctt 3480 taaagaggac atccagaaag cccaggtgtc cggccagggc gatagcctgc acgagcacat 3540 tgccaatctg gccggcagcc ccgccattaa gaagggcatc ctgcagacag tgaaggtggt 3600 ggacgagctc gtgaaagtga tgggccggca caagcccgag aacatcgtga tcgaaatggc 3660 cagagagaac cagaccaccc agaagggaca gaagaacagc cgcgagagaa tgaagcggat 3720 cgaagagggc atcaaagagc tgggcagcca gatcctgaaa gaacaccccg tggaaaacac 3780 ccagctgcag aacgagaagc tgtacctgta ctacctgcag aatgggcggg atatgtacgt 3840 ggaccaggaa ctggacatca accggctgtc cgactacgat gtggaccata tcgtgcctca 3900 gagctttctg aaggacgact ccatcgacaa caaggtgctg accagaagcg acaagaaccg 3960 gggcaagagc gacaacgtgc cctccgaaga ggtcgtgaag aagatgaaga actactggcg 4020 gcagctgctg aacgccaagc tgattaccca gagaaagttc gacaatctga ccaaggccga 4080 gagaggcggc ctgagcgaac tggataaggc cggcttcatc aagagacagc tggtggaaac 4140 ccggcagatc acaaagcacg tggcacagat cctggactcc cggatgaaca ctaagtacga 4200 cgagaatgac aagctgatcc gggaagtgaa agtgatcacc ctgaagtcca agctggtgtc 4260 cgatttccgg aaggatttcc agttttacaa agtgcgcgag atcaacaact accaccacgc 4320 ccacgacgcc tacctgaacg ccgtcgtggg aaccgccctg atcaaaaagt accctaagct 4380 ggaaagcgag ttcgtgtacg gcgactacaa ggtgtacgac gtgcggaaga tgatcgccaa 4440 gagcgagcag gaaatcggca aggctaccgc caagtacttc ttctacagca acatcatgaa 4500 ctttttcaag accgagatta ccctggccaa cggcgagatc cggaagcggc ctctgatcga 4560 gacaaacggc gaaaccgggg agatcgtgtg ggataagggc cgggattttg ccaccgtgcg 4620 gaaagtgctg agcatgcccc aagtgaatat cgtgaaaaag accgaggtgc agacaggcgg 4680 cttcagcaaa gagtctatcc tgcccaagag gaacagcgat aagctgatcg ccagaaagaa 4740 ggactgggac cctaagaagt acggcggctt cgacagcccc accgtggcct attctgtgct 4800 ggtggtggcc aaagtggaaa agggcaagtc caagaaactg aagagtgtga aagagctgct 4860 ggggatcacc atcatggaaa gaagcagctt cgagaagaat cccatcgact ttctggaagc 4920 caagggctac aaagaagtga aaaaggacct gatcatcaag ctgcctaagt actccctgtt 4980 cgagctggaa aacggccgga agagaatgct ggcctctgcc ggcgaactgc agaagggaaa 5040 cgaactggcc ctgccctcca aatatgtgaa cttcctgtac ctggccagcc actatgagaa 5100 gctgaagggc tcccccgagg ataatgagca gaaacagctg tttgtggaac agcacaagca 5160 ctacctggac gagatcatcg agcagatcag cgagttctcc aagagagtga tcctggccga 5220 cgctaatctg gacaaagtgc tgtccgccta caacaagcac cgggataagc ccatcagaga 5280 gcaggccgag aatatcatcc acctgtttac cctgaccaat ctgggagccc ctgccgcctt 5340 caagtacttt gacaccacca tcgaccggaa gaggtacacc agcaccaaag aggtgctgga 5400 cccccaccctg atccaccaga gcatcaccgg cctgtacgag acacggatcg acctgtctca 5460 gctgggaggc gacaaaaggc cggcggccac gaaaaaggcc ggccaggcaa aaaagaaaaa 5520 ggaattcggc agtggagagg gcagaggaag tctgctaaca tgcggtgacg tcgaggagaa 5580 tcctggccca gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga 5640 gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc 5700 cacctacggc aagctgaccc tgaagttcat ctgcaccacc ggcaagctgc ccgtgccctg 5760 gcccaccctc gtgaccaccc tgacctacgg cgtgcagtgc ttcagccgct accccgacca 5820 catgaagcag cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac 5880 catcttcttc aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga 5940 caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct 6000 ggggcacaag ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca 6060 gaagaacggc atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca 6120 gctcgccgac cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga 6180 caaccactac ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca 6240 catggtcctg ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta 6300 caaggaattc taactagagc tcgctgatca gcctcgactg tgccttctag ttgccagcca 6360 tctgttgttt gcccctcccc cgtgccttcc ttgaccctgg aaggtgccac tcccactgtc 6420 ctttcctaat aaaatgagga aattgcatcg cattgtctga gtaggtgtca ttctattctg 6480 gggggtgggg tggggcagga cagcaagggg gaggattggg aagagaatag caggcatgct 6540 ggggagcggc cgcaggaacc cctagtgatg gagttggcca ctccctctct gcgcgctcgc 6600 tcgctcactg aggccgggcg accaaaggtc gcccgacgcc cgggctttgc ccgggcggcc 6660 tcagtgagcg agcgagcgcg cagctgcctg caggggcgcc tgatgcggta ttttctcctt 6720 acgcatctgt gcggtatttc acaccgcata cgtcaaagca accatagtac gcgccctgta 6780 gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag cgtgaccgct acacttgcca 6840 gcgccctagc gcccgctcct ttcgctttct tcccttcctt tctcgccacg ttcgccggct 6900 ttccccgtca agctctaaat cgggggctcc ctttagggtt ccgatttagt gctttacggc 6960 acctcgaccc caaaaaactt gatttgggtg atggttcacg tagtgggcca tcgccctgat 7020 agacggtttt tcgccctttg acgttggagt ccacgttctt taatagtgga ctcttgttcc 7080 aaactggaac aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc 7140 cgatttcggc ctattggtta aaaaatgagc tgatttaaca aaaatttaac gcgaatttta 7200 acaaaatatt aacgtttaca attttatggt gcactctcag tacaatctgc tctgatgccg 7260 catagttaag ccagccccga cacccgccaa cacccgctga cgcgccctga cgggcttgtc 7320 tgctcccggc atccgcttac agacaagctg tgaccgtctc cgggagctgc atgtgtcaga 7380 ggttttcacc gtcatcaccg aaacgcgcga gacgaaaggg cctcgtgata cgcctatttt 7440 tataggttaa tgtcatgata ataatggttt cttagacgtc aggtggcact tttcggggaa 7500 atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca 7560 tgagacaata accctgataa atgcttcaat aatattgaaa aaggaagagt atgagtattc 7620 aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct gtttttgctc 7680 acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt 7740 acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt 7800 ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc cgtattgacg 7860 ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg gttgagtact 7920 caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta tgcagtgctg 7980 ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga 8040 aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg 8100 aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg cctgtagcaa 8160 tggcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct tcccggcaac 8220 aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc tcggcccttc 8280 cggctggctg gtttattgct gataaatctg gagccggtga gcgtggaagc cgcggtatca 8340 ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga 8400 gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc tcactgatta 8460 agcattggta actgtcagac caagtttact catatatact ttagattgat ttaaaacttc 8520 atttttaatt taaaaggatc taggtgaaga tcctttttga taatctcatg accaaaatcc 8580 cttaacgtga gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt 8640 cttgagatcc tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac 8700 cagcggtggt ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct 8760 tcagcagagc gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact 8820 tcaagaactc tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg 8880 ctgccagtgg cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata 8940 aggcgcagcg gtcgggctgc acggggggtt cgtgcacaca gcccagcttg gagcgaacga 9000 cctacaccga actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag 9060 ggagaaaggc ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg 9120 agcttccagg gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac 9180 ttgagcgtcg atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca 9240 acgcggcctt tttacggttc ctggcctttt gctggccttt tgctcacatg t 9291 <210> 13 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 13 ctcctctctc ggagccctt 19 <210> 14 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 14 ttattgggtt ttggggtgc 19 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 15 gtcccccagg tcctcacc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 16 cccaccctgg agtggaag 18 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for PCR <400> 17 gtcgggggag tttttaagga 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for PCR <400> 18 ggagcagcag gcgccctcag 20

Claims (18)

서열번호 12로 표시되는 염기서열로 이루어진, 당뇨병 또는 당뇨병 합병증 동물모델 제작용 재조합 벡터.
A recombinant vector for producing an animal model of diabetes or diabetic complication comprising the nucleotide sequence shown in SEQ ID NO:
제1항에 있어서,
상기 재조합 벡터는 서열번호 2의 sgRNA를 암호화하는 염기서열 및; 서열번호 3의 Cas9 유전자를 포함하는 것을 특징으로 하는, 재조합 벡터.
The method according to claim 1,
The recombinant vector comprises a nucleotide sequence encoding the sgRNA of SEQ ID NO: 2; A recombinant vector comprising the Cas9 gene of SEQ ID NO: 3.
제1항에 있어서,
상기 재조합 벡터는 Cas9 유전자와 형광단백질을 코딩하는 유전자가 결합되어 있는 구조를 포함하는 것을 특징으로 하는, 재조합 벡터.
The method according to claim 1,
Wherein the recombinant vector comprises a structure in which a Cas9 gene and a gene encoding a fluorescent protein are bound to each other.
삭제delete 삭제delete 제1항에 있어서,
상기 재조합 벡터는 하기 도에 기재된 개열 지도를 가지는 것을 특징으로 하는, 재조합 벡터.
[도]
Figure 112017040085616-pat00002

The method according to claim 1,
Wherein said recombinant vector has a cleavage map as set forth in the following figures.
[Degree]
Figure 112017040085616-pat00002

삭제delete 제1항 내지 제3항 및 제6항 중 어느 한 항의 재조합 벡터가 도입된, 당뇨병 또는 당뇨병 합병증 동물모델 제작용 형질전환 세포주.
A transformed cell line for the production of an animal model of diabetic or diabetic complication, wherein the recombinant vector of any one of claims 1 to 3 and 6 is introduced.
제8항에 있어서,
상기 세포주는 난모세포주, 섬유아세포주 또는 신장세포주인 것을 특징으로 하는, 형질전환 세포주.
9. The method of claim 8,
Wherein the cell line is an oocyte, fibroblast or kidney cell line.
제8항에 있어서,
상기 형질전환 세포주는 수탁번호 KCLRF-BP-00374인 것을 특징으로 하는, 형질전환 세포주.
9. The method of claim 8,
Wherein said transformed cell line is Accession No. KCLRF-BP-00374.
제8항의 형질전환 세포주를 인간을 제외한 동물로부터 수득한 탈핵된 난자에 이식하여 핵 이식란을 형성하는 단계; 및
상기 핵이식란을 인간을 제외한 동물인 대리모의 난관에 이식하는 단계;를 포함하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델의 제조방법.
Transplanting the transformed cell line of claim 8 into an enucleated oocyte obtained from an animal other than a human to form a nuclear transfer embryo; And
The method of containing, INS gene knockout diabetes or diabetic complications in animal models; step to implant the challenge of the animals except for human nuclear transfer embryo to the surrogate mother.
제11항의 방법으로 생산한 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델.
An INS gene knockout diabetic or diabetic complication animal model produced by the method of claim 11.
제12항에 있어서,
상기 동물모델은 돼지인 것을 특징으로 하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델.
13. The method of claim 12,
An animal model of INS gene knockout diabetes or diabetic complication, wherein said animal model is a pig.
삭제delete 삭제delete 제12항에 있어서,
상기 당뇨병은 제1형 당뇨병인 것을 특징으로 하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델.
13. The method of claim 12,
Wherein the diabetes is Type 1 diabetes. An INS gene knockout diabetic or diabetic complication animal model.
제12항에 있어서,
상기 당뇨병 합병증은 고혈당증, 고인슐린혈증, 고중성지방혈증, 지질대사이상, 공복혈당장애, 내당능 이상, 비만, 동맥경화증, 미세혈관병증, 신장질환, 심장질환, 족부궤양, 관절염, 골다공증 및 당뇨병성 망막증으로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 하는, INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델.
13. The method of claim 12,
The diabetic complication may be selected from the group consisting of hyperglycemia, hyperinsulinemia, hypertriglyceridemia, lipid metabolism disorder, fasting glucose insufficiency, impaired glucose tolerance, obesity, arteriosclerosis, microvascular disease, kidney disease, heart disease, foot ulcer, arthritis, osteoporosis and diabetic Retinopathy, an INS gene knockout diabetic or diabetic complication animal model.
1) 제12항의 INS 유전자 녹아웃 당뇨병 또는 당뇨병 합병증 동물모델에 당뇨병 또는 당뇨병 합병증 개선 또는 치료제 후보물질을 투여하는 단계; 및
2) 상기 후보물질을 투여한 동물모델을 후보물질을 투여하지 않은 대조군과 비교하여 후보물질에 의해 혈당 수치가 감소되는 경우 이를 당뇨병 또는 당뇨병 합병증 개선 또는 치료제로 판단하는 단계;를 포함하는 당뇨병 또는 당뇨병 합병증 개선 또는 치료제의 스크리닝 방법.
1) administering to the animal model of INS gene knockout diabetes or diabetic complication of claim 12 a candidate for diabetic or diabetic complication improvement or therapeutic agent; And
2) comparing the animal model administered with the candidate substance to a control group in which the candidate substance is not administered, and when the blood glucose level is decreased by the candidate substance, determining the animal model as diabetes mellitus or diabetic complication improvement or remedy, A method of improving complications or screening a therapeutic agent.
KR1020160172849A 2016-12-16 2016-12-16 INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same KR101748575B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160172849A KR101748575B1 (en) 2016-12-16 2016-12-16 INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same
PCT/KR2017/010196 WO2018110805A1 (en) 2016-12-16 2017-09-18 Animal model of diabetes with ins gene knockout or diabetic complications and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160172849A KR101748575B1 (en) 2016-12-16 2016-12-16 INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same

Publications (1)

Publication Number Publication Date
KR101748575B1 true KR101748575B1 (en) 2017-06-20

Family

ID=59281230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160172849A KR101748575B1 (en) 2016-12-16 2016-12-16 INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same

Country Status (2)

Country Link
KR (1) KR101748575B1 (en)
WO (1) WO2018110805A1 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101833225B1 (en) * 2017-09-26 2018-03-02 주식회사 엠젠플러스 Transgenic cloned piglet expressing human proinsulin and producing method thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
WO2018110805A1 (en) * 2016-12-16 2018-06-21 주식회사 엠젠플러스 Animal model of diabetes with ins gene knockout or diabetic complications and manufacturing method thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
KR101961667B1 (en) * 2018-09-12 2019-03-25 주식회사 엠젠플러스 Transgenic cloned pig resistant to the Porcine epidemic diarrhea virus and producing method thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
KR20200023728A (en) 2018-08-27 2020-03-06 고신대학교 산학협력단 An infectious eye disease animal model and method of manufacturing the same
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
KR20200125395A (en) 2019-04-25 2020-11-04 한국과학기술원 Knockout mouse
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111733159B (en) * 2020-06-01 2022-09-27 五邑大学 sgRNA composition for pig MBP gene knockout and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2926021T3 (en) * 2012-10-23 2022-10-21 Toolgen Inc Composition for cleaving a target DNA comprising a target DNA-specific guide RNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
EP3140403A4 (en) * 2014-05-09 2017-12-20 Université Laval Prevention and treatment of alzheimer's disease by genome editing using the crispr/cas system
KR101748575B1 (en) * 2016-12-16 2017-06-20 주식회사 엠젠플러스 INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
WO2018110805A1 (en) * 2016-12-16 2018-06-21 주식회사 엠젠플러스 Animal model of diabetes with ins gene knockout or diabetic complications and manufacturing method thereof
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
KR101833225B1 (en) * 2017-09-26 2018-03-02 주식회사 엠젠플러스 Transgenic cloned piglet expressing human proinsulin and producing method thereof
US11149284B2 (en) 2017-09-26 2021-10-19 Mgenplus Co., Ltd. Transgenic cloned piglet expressing human proinsulin and method of producing the same
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
KR20200023728A (en) 2018-08-27 2020-03-06 고신대학교 산학협력단 An infectious eye disease animal model and method of manufacturing the same
KR101961667B1 (en) * 2018-09-12 2019-03-25 주식회사 엠젠플러스 Transgenic cloned pig resistant to the Porcine epidemic diarrhea virus and producing method thereof
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
KR20200125395A (en) 2019-04-25 2020-11-04 한국과학기술원 Knockout mouse
KR20210114372A (en) 2019-04-25 2021-09-23 한국과학기술원 Knockout mouse
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
WO2018110805A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
KR101748575B1 (en) INSulin gene knockout diabetes mellitus or diabetic complications animal model and a method for producing the same
CN112779292B (en) Method for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage and rapid growth and capable of resisting blue ear diseases and serial diarrhea diseases and application of donor cells
CN112779291B (en) Method for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage, fast growth, high reproductive capacity and resistance to series epidemic diseases and application thereof
CN112852875B (en) Construction method of CD3e transgenic mouse model for tracing tumor T lymphocyte infiltration
CN112251464A (en) Method for inducing gene point mutation
CN112522260B (en) CRISPR system and application thereof in preparing TTN gene mutation dilated cardiomyopathy clone pig nuclear donor cells
CN112877362A (en) Gene editing system for constructing high-quality porcine nuclear transplantation donor cells with high fertility and capability of resisting porcine reproductive and respiratory syndrome and serial diarrhea diseases and application of gene editing system
CN114107231B (en) Recombinant adeno-associated virus for realizing whole brain postsynaptic neuron cell body marking and application thereof
CN112522264B (en) CRISPR/Cas9 system causing congenital deafness and application thereof in preparation of model pig nuclear donor cells
CN112522313B (en) CRISPR/Cas9 system for constructing depression cloned pig nuclear donor cells with TPH2 gene mutation
CN113046388B (en) CRISPR system for constructing atherosclerosis pig nuclear transfer donor cells with double genes in combined knockout mode and application of CRISPR system
CN112522261B (en) CRISPR system for preparing LMNA gene mutation dilated cardiomyopathy clone pig nuclear donor cell and application thereof
CN114958762A (en) Method for constructing Parkinson disease model pig with nerve tissue specifically over-expressing humanized SNCA and application of Parkinson disease model pig
KR101443937B1 (en) Method for production of TRACP5b
JP7317296B2 (en) pHluorin-Sema3A knock-in non-human animals
CN113584078B (en) CRISPR system for double-target gene editing and application thereof in construction of depressive pig nuclear transfer donor cells
CN114958761B (en) Construction method and application of stomach cancer model pig
CN112522255B (en) CRISPR/Cas9 system and application thereof in construction of porcine recombinant cell with insulin receptor substrate gene defect
CN112795566B (en) OPG gene editing system for constructing osteoporosis clone pig nuclear donor cell line and application thereof
CN112813101B (en) Gene editing system for constructing high-quality pig nuclear transplantation donor cells with high lean meat percentage and rapid growth and application thereof
CN112608941B (en) CRISPR system for constructing obese pig nuclear transplantation donor cells with MC4R gene mutation and application of CRISPR system
CN112680444B (en) CRISPR system for OCA2 gene mutation and application thereof in construction of albino clone pig nuclear donor cells
CN112899306B (en) CRISPR system and application thereof in construction of GABRG2 gene mutation cloned pig nuclear donor cells
CN112522311B (en) CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transfer donor cells
CN112575033B (en) CRISPR system and application thereof in construction of SCN1A gene mutated epileptic encephalopathy clone pig nuclear donor cell

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant