KR101373181B1 - A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits - Google Patents

A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits Download PDF

Info

Publication number
KR101373181B1
KR101373181B1 KR1020110068805A KR20110068805A KR101373181B1 KR 101373181 B1 KR101373181 B1 KR 101373181B1 KR 1020110068805 A KR1020110068805 A KR 1020110068805A KR 20110068805 A KR20110068805 A KR 20110068805A KR 101373181 B1 KR101373181 B1 KR 101373181B1
Authority
KR
South Korea
Prior art keywords
fruit
persimmon
softening
mcp
flesh
Prior art date
Application number
KR1020110068805A
Other languages
Korean (ko)
Other versions
KR20130008206A (en
Inventor
최성진
안광환
Original Assignee
경상남도
대구가톨릭대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상남도, 대구가톨릭대학교산학협력단 filed Critical 경상남도
Priority to KR1020110068805A priority Critical patent/KR101373181B1/en
Publication of KR20130008206A publication Critical patent/KR20130008206A/en
Application granted granted Critical
Publication of KR101373181B1 publication Critical patent/KR101373181B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/28Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with ultraviolet light
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/03Products from fruits or vegetables; Preparation or treatment thereof consisting of whole pieces or fragments without mashing the original pieces

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Storage Of Fruits Or Vegetables (AREA)

Abstract

본 발명은 수확한 단감 과실의 저장 중 과피착색 증진 및 연화방지방법을 제시하는 것으로, 부유 단감에 수확직후 1-MCP를 처리하고 자외선처리를 병행할 경우 상기 단감 과피에 carotenoid계 색소 함량이 증가하여 착색이 증진됨과 동시에 과육의 연화억제 효과를 달성하는 뛰어난 효과가 있다.The present invention proposes a method for enhancing the skin pigmentation and softening during storage of the harvested persimmon fruit, when 1-MCP is treated immediately after harvesting and floating in persimmon persimmon fruit, the content of carotenoid pigment in the persimmon peel increases. At the same time the coloring is enhanced, there is an excellent effect of achieving the softening inhibitory effect of the flesh.

Description

단감 과실의 연화방지 및 과피착색 증진방법{A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits}A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits}

본 발명은 단감 과실의 외관적 품질과 기능성에 관여하는 과피색소증진 및 과육의 연화 방지방법에 관한 것이다.
The present invention relates to a method for preventing hyperpigmentation and softening of pulp, which is involved in the appearance quality and functionality of sweet persimmon fruit.

자외선은 식물 조직의 괴사나 갈변과 같은 장해를 유발할 수 있다. 특히 280nm 보다 짧은 파장의 UV C는 DNA 분자에 직접적인 손상을 가하여 세포 사멸을 일으킨다(Danon과 Gallois, 1998). 그러나 일반적으로 치명적이지 않은 낮은 수준에서 가해지는 위해 요인은 식물에 장해를 유발하지 않으면서 오히려 스트레스에 대한 대응 반응을 활성화하는 자극으로 작용하기도 하는데, 이러한 현상을 호르메시스(hormesis)라 한다(Shama와 Alderson, 2005). 예를 들어, 생육 중의 포도에 저선량의 자외선을 조사할 경우 잎, 과실 등에서는 자외선에 의해 촉발되는 광산화 스트레스에 대응하여 강한 항산화 활성을 가지는 resveratrol로 대표되는 stilbene 화합물의 합성이 증가한다(Lancake와 Pryce, 1977). 이러한 UV hormesis는 원예 산물의 수확 후 병해 감소 또는 품질 향상의 목적으로 활용될 수 있다. 식물체에 조사된 낮은 선량의 자외선은 페놀 화합물, 폴리아민, 이소프레노이드 등 다양한 종류의 이차대사산물의 생성 변화를 유발하며 이러한 이차대사산물에는 항균 활성을 가지거나 또는 원예산물의 품질에 영향을 미칠 수 있는 물질이 포함된다(Jansen 등, 2008). 앞서 언급한 stilbene 화합물이 대표적인 경우인데, 포도에 포함되어 있는 폴리페놀계의 stilbene은 강력한 항균 물질(phytoalexin)일 뿐만 아니라 중요한 건강 기능성 성분으로서 포도 또는 포도 가공품(포도주)의 기능적 품질에 영향을 미친다(Morales 등, 2000).Ultraviolet rays can cause disturbances such as necrosis and browning of plant tissues. UV C, particularly at wavelengths shorter than 280 nm, directly damages DNA molecules, causing cell death (Danon and Gallois, 1998). However, in general, hazards at low levels, which are not fatal, may act as stimuli that do not cause damage to plants but rather activate the response to stress, a phenomenon known as hormesis (Shama). And Alderson, 2005). For example, irradiation of low-dose ultraviolet rays to grapes during growth increases the synthesis of stilbene compounds, represented by resveratrol, which has strong antioxidant activity in response to photo-oxidative stress triggered by ultraviolet rays on leaves and fruits (Lancake and Pryce). , 1977). This UV hormesis can be used to reduce pests or improve quality after harvesting of horticultural products. Low dose UV radiation on plants can lead to changes in the production of various types of secondary metabolites, such as phenolic compounds, polyamines, and isoprenoids, which may have antimicrobial activity or affect the quality of horticultural products. Substances present (Jansen et al., 2008). The above-mentioned stilbene compound is a typical case, and the polyphenol-based stilbene contained in grapes is not only a powerful antiphylactic substance (phytoalexin) but also an important health functional ingredient that affects the functional quality of grapes or grape processed products (wine). Morales et al., 2000).

그런데, 단감 과실에 포함되어 있는 색소는 이소프레노이드 계열의 carotenoid로서 carotene, lycopene, cryptoxanthin, lutein, zeaxanthin 등이 이에 속한다(Wright와 Kader, 1997). 이러한 carotenoid 색소는 단감 과실에 특유의 과피색을 부여하여 외관적 품질에 영향을 미칠 뿐만 아니라 (Kays. 1999) 항산화 활성을 가지는 기능성 성분이며 특히 β-carotene은 인체에서는 비타민 A로 작용하는 중요한 성분이기도 하다(Burri, 1997).However, the pigment included in the persimmon fruit is an isoprenoid-based carotenoid, which includes carotene, lycopene, cryptoxanthin, lutein, and zeaxanthin (Wright and Kader, 1997). These carotenoid pigments not only affect the appearance quality by giving a specific fruit skin color to sweet persimmon fruit (Kays. 1999), but also have an antioxidant activity, and β-carotene is an important component of vitamin A in the human body. (Burri, 1997).

그러나 폴리페놀계 화합물과 달리, 자외선을 강하게 흡수하지 않는 carotenoid 색소의 합성에 대한 자외선 조사의 효과는 작물이나 조직의 종류 또는 발육 상태에 따라 상이한 것으로 보고되어 있다(Jansen 등, 2008). 과실에서 carotenoid 생성에 대한 자외선 조사의 효과에 대한 보고는 많지 않은 편이며, 특히 단감의 경우에는 이에 대한 조사 보고가 아직 없는 것으로 보인다. 한편, 단감 과실은 climacteric 형에 속하는 과실로서 비록 생성량이 다른 종류의 과실에 비해 미미하기는 하나 에틸렌의 생성 및 작용은 과육의 연화 유발과 밀접하게 연관되어있고 과육의 연화는 단감 과실에서 수확 후 품질 열화의 주요 요인 중 하나이다(Choi, 2010). 에틸렌은 과실의 성숙과 더불어 생성될 뿐만 아니라 과실에 스트레스가 가해 졌을 경우 그 생성이 증가하는 것으로 잘 알려져 있다(Abeles 등, 1992).
However, unlike polyphenolic compounds, the effect of UV irradiation on the synthesis of carotenoid pigments that do not strongly absorb UV light is reported to be different depending on the type of crop or tissue or the state of development (Jansen et al., 2008). There have been few reports of the effects of UV irradiation on carotenoid production in fruit, especially in the case of sweet persimmons. On the other hand, persimmon fruit belongs to climacteric type, although its production is insignificant compared to other kinds of fruit, the production and action of ethylene are closely related to the softening of the flesh and the softening of the fruit is the quality after harvesting from the persimmon fruit. One of the main causes of deterioration (Choi, 2010). Ethylene is not only produced with the maturation of fruit, but is well known to increase its production when the fruit is stressed (Abeles et al., 1992).

본 발명의 목적은 상기한 점들을 감안하여 안출한 것으로 단감 과실의 품질 및 기능에 관여하는 과피 착색 증진 및 과육연화 방지 방법을 제공하는 데 있다.
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a method for enhancing skin pigmentation and preventing flesh softening, which is devised in view of the above points, and which is involved in the quality and function of sweet persimmon fruit.

본 발명의 상기 목적은 수확 후 단감 과실에 자외선을 조사하여 과실의 외관과 기능적 품질에 영향을 미치는 요인으로서 carotenoid 색소 생성의 변화를 조사하고 또한 자외선 조사에 따른 스트레스 에틸렌의 생성 증가에 대처하는 수단으로 에틸렌 작용 억제제인 1-methylcyclopropene(1-MCP)을 처리한 후 자외선을 조사 하여 그 효과를 조사하고 평가함으로써 달성하였다. The above object of the present invention is to irradiate the persimmon fruit after harvest with ultraviolet rays to investigate the change in the production of carotenoid pigment as a factor affecting the appearance and functional quality of the fruit and also to cope with the increase in the production of stress ethylene due to the ultraviolet irradiation. After treatment with 1-methylcyclopropene (1-MCP), which is an ethylene inhibitor, it was achieved by investigating and evaluating the effects of UV irradiation.

이하, 본 발명의 구체적인 내용을 실시 및 실험 예를 통하여 상세히 설명한다.
Hereinafter, the specific contents of the present invention will be described in detail through examples and experiments.

본 발명에서, 수확 후 단감에 대하여 1-MCP 처리와 병행하여 자외선을 조사함으로써 과피착색 증진과 과육연화 방지에 뛰어난 효과를 얻을 수 있다.
In the present invention, by irradiating ultraviolet rays in parallel with the 1-MCP treatment for the sweet persimmon after harvesting, it is possible to obtain an excellent effect on the enhancement of hyperpigmentation and prevention of flesh softening.

도 1은 본 발명과실의 자외선 처리구(아래)와 처리하지 않은 대조구(위)의 과피착색 비교사진이다. 사진은 수확 후 2분간 자외선 조사하고 실온보관 10일째 촬영한 것이다.
도 2는 HPLC-ESI-mass spectrophotometer를 이용하여 ESI positive ionization mode에서 과피의 carotenoid 색소를 분석한 크로마토그램이다. [M+H]+ = 536.5 과 552.5에서 Lycopene/β-carotene 및 β-cryptoxanthin을 검출하였다.
도 3은 수확 후 단감 과실에 1-MCP와 자외선 단독 또는 병행처리한 후 카로티노이드계 색소 함량의 변화를 보인 그래프이다.
도 4는 본 발명에 따른, 1-MCP 또는 자외선 단독처리 또는 병행처리가 단감 과실의 에틸렌생성 및 호흡에 미치는 영향을 나타낸 그래프이다.
도 5는 본 발명에 따른, 1-MCP 또는 UV 단독처리 또는 병행처리가 단감 과실의 경도에 미치는 영향을 나타낸 그래프이다.
1 is a hyperpigmentation comparison photograph of the ultraviolet treatment (bottom) and the untreated control (top) of the fruit of the present invention. Photographs were taken on day 10 after UV irradiation for 2 minutes after harvest.
Figure 2 is a chromatogram analysis of the carotenoid pigment of the skin in ESI positive ionization mode using HPLC-ESI-mass spectrophotometer. Lycopene / β-carotene and β-cryptoxanthin were detected at [M + H] + = 536.5 and 552.5.
Figure 3 is a graph showing the change in carotenoid pigment content after 1-MCP and UV treatment alone or in parallel to persimmon fruit after harvesting.
4 is a graph showing the effect of 1-MCP or ultraviolet treatment alone or in parallel treatment on the ethylene production and respiration of persimmon fruit according to the present invention.
5 is a graph showing the effect of 1-MCP or UV alone or in parallel treatment on the hardness of sweet persimmon fruit according to the present invention.

실험 재료 및 처리Experimental Materials and Processing

경남 창원의 농가에서 관행적인 방법으로 재배하여 11월 초에 수확한 단감 과실(Diospyros kaki, var. Fuyu) 중에서 중량(180-200g)과 과피색이 비교적 균일한 과실을 선별한 후 수확 당일 실험실로 운반하여 실험 처리에 이용하였다. 1-MCP의 처리는 실험실 운반 직후 행하였으며 자외선 처리는 1-CMP 처리가 완료된 그 이튿날 행하였다. 과실은 15kg 씩 77L 용량의 아크릴 용기에 담아 6.2mL의 1% (v/v) 1-MCP gas를 주입한 후 실온에서 16시간 밀폐 방치하여 과실에 1-MCP를 처리하였다(처리농도 약 1ppm). Sweet persimmon fruit harvested in early November at a farmhouse in Changwon, Gyeongnam ( Diospyros) kaki , var. Fuyu) was selected for fruit of uniform weight (180-200g) and fruit color and then transported to the laboratory on harvest day for experimental treatment. Treatment of 1-MCP was done immediately after laboratory transport and UV treatment was performed the next day after 1-CMP treatment was completed. The fruit was put into a 77L acrylic container of 15 kg each, and 6.2 mL of 1% (v / v) 1-MCP gas was injected, and the mixture was left to stand at room temperature for 16 hours to treat 1-MCP (processing concentration of about 1 ppm). .

자외선 처리시에는 자외선 램프(germicidal UV lamp, G30T08 30 W, Sankyo Denki, 일본)가 장착된 터널의 중앙으로 과실이 컨베이어 벨트에 의해 이송되도록 고안한 자외선 조사기를 이용하였다. 자외선 램프는 과실로부터 15cm 띄워 방사상의 여섯 방향으로 배열하였고 자외선 조사 시간은 컨베이어 벨트의 이송 속도를 조절함으로써 2분 간 과실이 자외선에 노출되도록 설정하였다. 처리 또는 무처리한 과실은 건조하지 않도록 0.04mm 두께의 대형 비닐 봉투에 10kg 씩 담아 과실 상자에 포장한 후 실온(18-20℃)에서 3주간 저장하였다. 저장 중 3-4일 간격으로 각 처리 당 5개의 과실을 취하여 분석에 이용하였으며, 과실 하나를 한 반복으로 하여 처리 당 5반복으로 시료를 분석하였다.
In the ultraviolet treatment, an ultraviolet irradiator designed to transfer fruit by a conveyor belt to the center of a tunnel equipped with a germicidal UV lamp (G30T08 30 W, Sankyo Denki, Japan) was used. The UV lamp was spaced 15 cm from the fruit and arranged in six radial directions. The UV irradiation time was set so that the fruit was exposed to ultraviolet light for 2 minutes by adjusting the conveying speed of the conveyor belt. Treated or untreated fruits were packed in a large plastic bag of 0.04mm thickness and packed in a fruit box so as not to dry, and then stored at room temperature (18-20 ° C.) for 3 weeks. Five fruits were taken for each treatment at intervals of 3-4 days during storage, and the samples were analyzed at five repetitions per treatment with one fruit.

과육 경도의 측정Measurement of pulp hardness

과육의 경도 측정에는 rheometer(EZ test, Shimadzu, 일본)를 이용하였다. 2mm 두께로 박피한 적도면 부위의 과육에 5mm 직경의 탐침을 7mm 깊이까지 침투시킬 때 탐침에 가해지는 최대 항력(N)을 과육의 경도로 하였고 적도면의 과실마다 두 곳에 대하여 경도를 측정하였다.
Rheometer (EZ test, Shimadzu, Japan) was used to measure the hardness of the pulp. When the 5mm diameter probe penetrated to the depth of 7mm into the flesh of the equator plane peeled to 2mm thickness, the maximum drag (N) applied to the probe was taken as the hardness of the flesh and the hardness was measured for each of two fruits of the equator plane.

에틸렌 생성량 및 호흡량의 측정Determination of Ethylene Production and Respiration

과실을 500mL의 용기에 1시간 동안 밀폐한 후 1mL의 용기 내 공기 시료를 취해 GC(GC-2010, Schmadzu, 일본)에 주입하여 에틸렌 및 CO2 농도를 분석하였다. 에틸렌 분석은 activated alumina column(80mesh, 3.2mm x 1m SUS, 110℃, carrier gas = 30mL min-1 N2)과 FID(150℃)를 이용하였으며, CO2 분석은 active carbon column(80mesh, 3.2mm x 1m 년, 110℃, carrier gas = He 30mL min-1)과 TCD(150℃)를 이용하였다.
The fruit was sealed in a 500 mL container for 1 hour, and then an air sample in a 1 mL container was taken and injected into GC (GC-2010, Schmadzu, Japan) to analyze ethylene and CO 2 concentrations. Ethylene analysis activated alumina column (80mesh, 3.2mm x 1m SUS, 110 ℃, carrier gas = 30mL min -1 N 2) was used and the FID (150 ℃), CO 2 analysis active carbon column (80mesh, 3.2mm x 1m year, 110 ℃, carrier gas = He 30mL min -1 ) and TCD (150 ℃) was used.

CarotenoidCarotenoid 색소 분석 시료의 조제 및 추출  Preparation and Extraction of Pigment Assay Samples

과실 박피기(Apple peeler, Kali, 프랑스)를 이용하여 2mm 두께로 박피한 과피를 액체 질소에 동결한 후 coffee grinder를 이용하여 분쇄하였다. 동결 분쇄한 시료는 동결 건조기(Vision, 한국)를 이용하여 건조한 후 색소 추출제 이용할 때 까지 -70℃ 에 보관하였다. Carotenoid 색소의 추출을 위하여, 10mL 용량의 원심 분리관에 건조 분말시료 50mg을 담고 5mL의 hexane/ethanol/acetone(50:25:25, v/v/v)을 가한 후 orbital shaker에서 200rpm으로 5분간 교반하였다. 이어서 1mL의 증류수를 가하고 혼합한 후 원심분리하여 색소가 포함된 상층액을 회수하였다. 하층의 수용액에는 2mL의 hexane/ethanol/acetone을 추가로 가하고 혼합한 후 원심분리하여 재차 색소를 추출하였다. 회수한 상층액은 Speed Vac(Vision, 한국)을 이용하여 진공 건조하였다. 건조한 시료는 1mL dichloromethane에 용해하여 -70℃에 보관하면서 carotenoid 색소의 분석에 이용하였다.
The peeled peel was peeled to 2 mm thickness using an fruit peeler (Apple peeler, Kali, France) and then ground using a coffee grinder. The freeze-pulverized sample was dried using a freeze dryer (Vision, Korea) and stored at -70 ° C until the dye extractant was used. To extract the carotenoid pigment, add 50 mg of dry powder sample to a 10 mL centrifuge tube and add 5 mL of hexane / ethanol / acetone (50:25:25, v / v / v) for 5 minutes at 200 rpm in an orbital shaker. Stirred. Subsequently, 1 mL of distilled water was added thereto, mixed, and centrifuged to recover a supernatant containing a pigment. 2 mL of hexane / ethanol / acetone was further added to the lower aqueous solution, mixed, and centrifuged to extract the dye. The recovered supernatant was vacuum dried using Speed Vac (Vision, Korea). The dried samples were dissolved in 1 mL dichloromethane and stored at -70 ° C to be used for the analysis of carotenoid pigments.

CarotenoidCarotenoid 색소의 분석 Analysis of the Pigment

Dichloromethane에 용해한 carotenoid 분석 시료를 acetonotrile에 10배 희석한 후 2μL의 희석 시료를 HPLC(Waters Model 2696, 미국)에 주입하였다. HPLC에서 분리에 이용한 column은 XTerra MS C18 (3.5μ, 150 x 2.1mm, Waters, 미국)이었으며, 0.25mL min-1 유속의 acetonitrile/methanol(95:5, v/v)을 이동상으로 하여 isocratic 조건에서 시료 성분을 분리하였다. 분리된 lycopene, β-carotene, β-cryptoxanthin 등은 mass spectrometer(Waters Model 3100, 미국)를 이용하여 single ion reaction (SIR) mode로 검출하였다. Mass sperctrometer는 다음의 조건으로 설정하였다; desolvation gas (N2) flow = 500L h-1 , cone gas (N2) flow = 50L h-1 , desolvation temp. = 400℃, source temp. =120℃, capillary voltage = 4KV, ionization mode = electrospray (ES) positive, cone voltage = 30V.
After diluting the carotenoid assay sample dissolved in dichloromethane 10-fold in acetonotrile, 2 μL of the diluted sample was injected into HPLC (Waters Model 2696, USA). The column used for separation in HPLC was XTerra MS C18 (3.5μ, 150 x 2.1mm, Waters, USA), and isocratic conditions using acetonitrile / methanol (95: 5, v / v) at 0.25 mL min -1 flow rate. Sample components were separated at. Isolated lycopene, β-carotene, and β-cryptoxanthin were detected by single ion reaction (SIR) mode using a mass spectrometer (Waters Model 3100, USA). Mass sperctrometer was set under the following conditions; desolvation gas (N 2 ) flow = 500L h -1 , cone gas (N 2 ) flow = 50L h -1 , desolvation temp. = 400 ° C., source temp. = 120 ° C, capillary voltage = 4KV, ionization mode = electrospray (ES) positive, cone voltage = 30V.

본 발명에 따른, 상기 실험재료와 실험방법에 의한 실험결과는 하기와 같다.
According to the present invention, the experimental results by the experimental material and the test method are as follows.

<자외선 조사에 따른 <Ultraviolet rays investigation 과피색의Cortical 변화> Change>

부유 단감 과실에 자외선을 조사하였을 때 조사 수일 이후 과피색은 무처리 과실에 비하여 짙은 적색으로 착색되었으며(도 1), 2분간 조사시에는 자외선 조사에 따른 장해 증상이 관찰되지 않았다. 그러나 5분 이상 장시간 자외선에 노출된 과실에서는 3-4일 경과 후 과피에 흑색 반점이 생기기 시작하여 시간이 경과함에 따라 반점 형성 부위가 확대되는 증상을 보였다. 본 실험에 이용한 자외선 램프는 254nm의 UV C를 방출하는 램프로서, UV C는 식물에 과도하게 조사할 경우 복구가 불가능한 수준으로 DNA 분자에 손상을 입혀 세포의 사멸을 유도하는 것으로 알려져 있다(Danon과 Gallois, 1998). 그러나 Lucky(1980)가 제안한 hormesis의 원리에 따르면, 저선량의 자외선 노출은 복구가 가능한 수준의 DNA 손상을 유발하여 DNA는 다시 복구될 수 있는데, 자외선에 의해 가해진 가벼운 외부 충격(trauma)은 세포의 DNA 복구 메커니즘을 활성화하는 자극으로 작용하며, 이에 따라 항상성(homeostasis)의 일환으로 세포 내 생명활동(vital process)이 증강된다. 따라서 단감의 경우, 2분 이내의 UV C 조사는 세포에 치명적이지 않으며 오히려 UV hormesis를 유발하여 carotenoid 색소 합성을 촉진하여 방향으로 세포 내 물질 축적의 재편성이 일어나는 것으로 생각되었다.
When irradiated with ultraviolet persimmon fruit floating, the fruit skin color was darker red than the untreated fruit after several days (Fig. 1), and no disturbance symptoms due to ultraviolet irradiation were observed for 2 minutes. However, in the fruit exposed to ultraviolet rays for a long time over 5 minutes, black spots began to develop on the skin after 3-4 days, and the spot formation site enlarged with time. The UV lamp used in this experiment is a lamp that emits UV rays at 254 nm. UV C is known to induce cell death by damaging DNA molecules to an unrecoverable level when over-exposed to plants (Danon and Gallois, 1998). However, according to the principle of hormesis proposed by Lucky (1980), exposure to low doses of UV light causes repairable levels of DNA damage that can be repaired again. It acts as a stimulus to activate repair mechanisms, thereby enhancing the intracellular vital processes as part of homeostasis. In the case of persimmons, UV C irradiation within 2 minutes was not lethal to cells, but rather induced UV hormesis to promote carotenoid pigment synthesis, resulting in reorganization of intracellular accumulation.

<< LCLC -- MSMS 를 이용한 Using carotenoidcarotenoid 색소의 분석> Analysis of Pigments>

HPLC-ESI-mass spectrometer를 이용하여 carotenoid를 분석하였을때, 분자량의 동일한 lycopene과 carotene은 m/z 536.5의 SIR channel에서 그리고 cryptoxanthin은 m/z 552.5의 SIR channel에 검출되었다(도 2). 단감에는 β-carotene, β-cryptoxanthin (Wright와 Kader, 1997). lycopene(Barba 등, 2006) 등이 포함되어 있는 것으로 보고되어 있으나, LC-MS를 이용하여 분석하였을 때 부유 단감 과실에서 이들 이외에도 a-carotene(m/z 552.5), lutein(m/z 568.5), zeaxanthin (m/z 568.5) 등을 추가로 발견할 수 있었다.
When carotenoids were analyzed using an HPLC-ESI-mass spectrometer, the same molecular weights of lycopene and carotene were detected in the SIR channel of m / z 536.5 and cryptoxanthin in the SIR channel of m / z 552.5 (Fig. 2). Persimmon contains β-carotene and β-cryptoxanthin (Wright and Kader, 1997). lycopene (Barba et al., 2006) has been reported, but when analyzed by LC-MS, in addition to those in floating persimmon fruit, a-carotene (m / z 552.5), lutein (m / z 568.5), zeaxanthin (m / z 568.5) and the like could be found further.

<자외선 조사에 따른 색소 함량의 변화><Changes in Pigment Content According to Ultraviolet Irradiation>

부유 단감 과실에서 carotenoid 색소는 주로 β-carotene, lycopene, β-cryptoxanthin으로 구성되어 있는 것으로 조사되었다(도 3). 이들 색소의 조성 비율은 과실의 수확 후 경과 일수에 따라 차이가 있었는데, 수확 당시에는 β-carotene과 β-cryptoxanthin이 주된 색소 성분을 구성하였고 lycopene 함량은 β-carotene의 1/10 수준으로 낮았다. Lycopene은 다른 carotenoid 색소와 달리 광합성 조직에서는 발견되지 않으며 주로 과실에서 발견되는 것으로 알려져 있는데(Bramley, 2000), 단감에서 lycopene은 수확 이후에 비로소 축적되는 것으로 생각된다. 즉, 수확 후 착색의 진전과 더불어 lycopene 함량은 빠르게 증가하기 시작하여 수확 2주와 3주 후에는 수확 당시의 6.1배와 14.1배까지 증가하는 것으로 나타났다. 이에 비해 β-carotene 함량은 수확 2주와 3주 후 각각 1.5배와 1.6배 증가하였다. 한편 β-cryptoxanthin은 수확 1주후 수확 당시에 비해 약 2.3배까지 증가한 후 그 이후에는 큰 변화를 보이지 않았다. 따라서 부유 단감의 과피색은 수확 당시 또는 그 이전에는 약간의 β-cryptoxanthin을 포함하여 주로 β-carotene에 의해 발현되나, 수확 후에는 이들 색소 뿐만 아니라 특히 lycopene 색소의 축적이 과피색의 발현에 크게 영향을 미치는 것으로 생각할 수 있었다. 한편, 자외선 조사는 β-carotene 및 lycopene 함량의 증가를 가져 왔으며 특히 lycopene 함량의 증가가 두드러졌다. 즉, 자외선 조사 2주후 β-carotene 함량은 무처리에 비해 약 1.2배 증가한 반면 lycopene은 약 1.8배의 증가를 보였다. 그러나 β-cryptoxanthin의 함량 변화는 자외선 조사의 영향을 거의 받지 않았다.In the floating persimmon fruit, the carotenoid pigment was mainly composed of β-carotene, lycopene, and β-cryptoxanthin (FIG. 3). The composition ratio of these pigments was different depending on the days after harvesting. At the time of harvest, β-carotene and β-cryptoxanthin were the major pigment components, and the lycopene content was as low as 1/10 of β-carotene. Lycopene, unlike other carotenoid pigments, is not found in photosynthetic tissue and is known to be found primarily in fruit (Bramley, 2000). In persimmon, lycopene is thought to accumulate only after harvest. In other words, the lycopene content began to increase rapidly with the progress of coloring after harvesting, and increased to 6.1 and 14.1 times after harvesting at 2 and 3 weeks after harvesting. In contrast, β-carotene contents increased 1.5 and 1.6 times after 2 and 3 weeks of harvest, respectively. On the other hand, β-cryptoxanthin increased by 2.3 times compared to the harvest time after one week after harvest, and did not show any significant change thereafter. Therefore, the skin color of suspended persimmons is mainly expressed by β-carotene, including some β-cryptoxanthin at or before harvest, but after harvesting, the accumulation of these pigments as well as the lycopene pigments significantly affects the expression of the skin color. I could think of it as On the other hand, UV irradiation resulted in an increase in β-carotene and lycopene content, especially in the increase of lycopene content. That is, after 2 weeks of UV irradiation, β-carotene content was increased by 1.2 times compared with no treatment, while lycopene increased by 1.8 times. However, the β-cryptoxanthin content was hardly affected by UV irradiation.

식물 조직에서 carotenoid 색소는 항산화 기능을 수행하는 것으로 잘 알려져 있다. 예를 들어 광합성 조직에서 carotenoid 색소의 주된 기능은 엽록소에 흡수된 빛 에너지에 의해 라디칼이 생성되는 것을 방지하거나 생성된 라디칼을 소거하는 것이다(McKersie와 Lesham, 1994). 이러한 carotenoid 색소 중 특히 lycopene은 가장 강한 라디칼 소거능을 가지는 것으로 보고되어 있다(Rice-Evans 등, 1997). 식물 세포에서 DNA 분자는 자외선에 가장 취약하여 자외선 노출시 티민 염기의 손상(thymine dimer의 형성)이 일어나는데(Landry 등 1997), 이러한 DNA 손상 이외에도 세포막 지질 또는 오옥신을 비롯한 저분자 화합물의 광산화 현상이 동반되며(Britt, 1996), 광산화 과정에서 생성되는 활성산소종은 자외선 노출에 따른 세포 손상의 주요 요인으로 작용한다(Jansen 등, 1998). 그러나 자외선에 의한 세포 손상이 치명적이지 않다면, 세포는 DNA 복구 (DNA repair) 메커니즘을 활성화 할 뿐만 아니라 활성산소종이나 그 밖의 라디칼을 소거하기 위하여 효소적 또는 비효소적 항산화 시스템을 활성화하는 것으로 알려져 있다(Jansen 등, 1998). 따라서 자외선을 조사한 단감 과실에서 carotenoid 함량이 증가하고 이에 따라 착색이 증진되는 현상 UV hormesis에 의한 세포의 항산화 메커니즘의 활성화와 관련이 있는 것으로 해석할 수 있었다.In plant tissues, carotenoid pigments are well known for their antioxidant function. For example, the main function of carotenoid pigments in photosynthetic tissue is to prevent the generation of radicals by the light energy absorbed by chlorophyll or to eliminate the generated radicals (McKersie and Lesham, 1994). Among these carotenoid pigments, especially lycopene has been reported to have the strongest radical scavenging activity (Rice-Evans et al., 1997). In plant cells, DNA molecules are most susceptible to ultraviolet radiation, resulting in damage to thymine bases (formation of thymine dimers) upon exposure to ultraviolet light (Landry et al. 1997). (Britt, 1996), reactive oxygen species produced during photooxidation act as a major factor in cell damage following UV exposure (Jansen et al., 1998). However, if UV damage is not fatal, cells are known to activate DNA repair mechanisms, as well as to activate enzymatic or non-enzymatic antioxidant systems to eliminate free radicals and other radicals. (Jansen et al., 1998). Therefore, the increase in the carotenoid content in the persimmon fruit irradiated with ultraviolet rays and thus the pigmentation could be interpreted to be related to the activation of the antioxidant mechanism of cells by UV hormesis.

<자외선 조사 및 1-<Ultraviolet irradiation and 1- MCPMCP 처리에 따른 색소 함량 및 과육 경도의 변화> Changes in Pigment Content and Pulp Hardness with Treatment>

부유 단감 과실에 자외선을 조사하였을 때, 에틸렌의 생성이 즉시 증가하지는 않았으나 실온 저장 2주 이후에는 무처리에 비해 크게 증가하였으며, 과실의 호흡량은 자외선 조사에 의해 즉시 증가한 후 저장 기간 중 지속적으로 높은 수준을 유지하였다(도 4). 이는 자외선 조사가 단감 과실에 스트레스 요인으로 작용하였으며 이에 따라 세포 내 물질대사에 변화가 있음을 보여준다. 한편 무처리 과실에서 과육의 경도는 실온 저장 기간 중 서서히 감소하다가 에틸렌 생성 증가 시점에 이르러 빠르게 감소하였으며 특히 자외선 스트레스가 가해졌을 때 더욱 가속되었다(도 5). 단감 과실에서 과육의 연화는 에틸렌의 작용에 의해 일어나는 일반적인 현상으로, 자외선 처리에 따른 과피 착색의 증진이 과육의 연화 촉진과 마찬가지로 스트레스 에틸렌의 작용에 따른 것인지 확인할 필요가 있다. 따라서 1-MCP를 처리한 과실에 자외선을 조사한 결과, 과육의 연화가 크게 지연되었으나(도 5) carotenoid 함량 변화는 1-MCP 처리의 영향을 거의 받지 않았다(도 3). 이는 단감 과실에서 수확 후 과육의 연화가 에틸렌의 작용과 밀접하게 연관(Nakano 등, 2001; Choi, 2010)되어 있는 반면 carotenoid 합성 증가 및 과피 착색의 증진은 에틸렌의 영향을 받지 않음을 의미하였다.When UV rays were irradiated on floating persimmon fruit, the production of ethylene did not increase immediately, but significantly increased after 2 weeks of storage at room temperature compared to no treatment, and the respiratory volume of fruit was increased immediately by UV irradiation and continuously high during storage. Was maintained (FIG. 4). This suggests that UV irradiation acted as a stressor for persimmon fruit, resulting in changes in intracellular metabolism. On the other hand, in the untreated fruit, the hardness of the flesh gradually decreased during storage at room temperature, and then rapidly decreased until the increase of ethylene production was increased, especially when ultraviolet stress was applied (FIG. 5). The softening of the flesh in the persimmon fruit is a common phenomenon caused by the action of ethylene, and it is necessary to confirm whether the enhancement of skin pigmentation by ultraviolet treatment is caused by the action of stress ethylene as well as the promotion of softening of the flesh. Therefore, as a result of irradiating ultraviolet rays to the fruit treated with 1-MCP, the softening of the flesh was significantly delayed (FIG. 5), but the carotenoid content change was hardly affected by the 1-MCP treatment (FIG. 3). This implies that the softening of the post-harvest flesh in persimmon fruit is closely associated with the action of ethylene (Nakano et al., 2001; Choi, 2010), whereas the increase in carotenoid synthesis and the enhancement of skin pigmentation were not affected by ethylene.

본 발명을 본 발명의 실용적인 관점에서 볼 때, 수확 후 단감 과실에 1-MCP와 자외선 조사를 병행 처리하면 자외선 스트레스에 따른 과육의 연화는 억제하면서 carotenoid 함량 증가를 통한 착색의 증진을 도모하여 과실의 품질을 효과적으로 향상시키는 것이 가능함을 보여준다.
From the practical point of view of the present invention, when 1-MCP and ultraviolet irradiation are treated in parallel with persimmon fruit after harvesting, the softening of the flesh caused by UV stress is suppressed, and the coloring is enhanced by increasing the carotenoid content. It shows that it is possible to effectively improve quality.

본 발명에 따르면, 에틸렌 작용억제제인 1-MCP의 처리와 함께 수확 후 부유 단감 과실에 호르메시스 유발원으로 자외선을 조사하였을 때 carotenoid 색소 함량 변화와 함께 에틸렌 생성, 호흡 및 과육 경도의 변화를 조사한 결과, 수확 당시 부유 단감 과실의 주요 carotenoid 색소는 β-carotene, lycopene, β-cryptoxanthin이었으나, 이 중 lycopene 색소 함량은 수확 후 실온 저장 기간 중에 크게 증가하는 양상을 보였고, 자외선 조사는 단감에서 β-carotene과 lycopene 색소의 함량을 증가시켜 과피의 착색을 증진하였으나 동시에 자외선 스트레스에 따른 과육의 경도 저하를 촉진하였음이 확인되었고, 따라서 자외선 조사에 따른 carotenoid 색소 함량의 증가는 1-MCP 처리에 영향을 받지 않은 반면 과육의 연화는 1-MCP처리에 의해 크게 지연되었음을 확인할 수 있는 효과가 있으므로 수확 후 부유 단감 과실에 1-MCP 처리와 자외선 조사를 병행할 경우 연화 억제와 과피의 착색 증진을 통한 품질의 향상이 가능할 것으로 판단되므로 본 발명은 과수원예산업상 매우 유용한 발명인 것이다.According to the present invention, after irradiation with 1-MCP, an ethylene agonist, when the ultraviolet persimmon was irradiated to the floating persimmon fruit, the change of ethylene production, respiration, and pulp hardness with changes in carotenoid pigment content were investigated. As a result, the major carotenoid pigments of floating persimmon fruit were β-carotene, lycopene and β-cryptoxanthin at the time of harvest, but the lycopene pigment content increased significantly during storage at room temperature after harvesting. It was confirmed that the pigmentation of the skin was increased by increasing the content of the and lycopene pigments, but at the same time, the hardness of the flesh was reduced due to UV stress. Therefore, the increase of the carotenoid pigment content by UV irradiation was not affected by 1-MCP treatment. On the other hand, the softening of the pulp has the effect of confirming that it is significantly delayed by 1-MCP treatment. When the 1-MCP treatment and UV irradiation are combined with the floating persimmon fruit after harvesting, it is determined that the quality can be improved by suppressing softening and improving the coloration of the pericarp.

Claims (3)

삭제delete 수확 후의 단감 과실에 1ppm농도의 1-methylcyclopropene(1-MCP)을 처리하고 16시간 밀폐한 후 상기 과실로부터 15cm 거리에서 자외선(UV)램프를 이용하여 2분간 자외선을 조사함을 특징으로 하는 단감 과실의 과피착색의 증진 및 연화방지 방법.
Persimmon fruit, which is treated with 1 ppm methyl 1-methylcyclopropene (1-MCP) at a concentration of 1 ppm after harvesting and sealed for 16 hours, is irradiated with ultraviolet rays for 2 minutes using an ultraviolet (UV) lamp at a distance of 15 cm from the fruit. To increase skin pigmentation and prevent softening.
제2항의 1-MCP와 자외선을 병행처리하는 방법으로 가공되어 베타카로틴 및 라이코펜 함량이 증가된 것이 특징인 단감 과실.Persimmon fruit, characterized in that the beta-carotene and lycopene content is increased by the process of parallel treatment of 1-MCP and ultraviolet rays of claim 2.
KR1020110068805A 2011-07-12 2011-07-12 A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits KR101373181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110068805A KR101373181B1 (en) 2011-07-12 2011-07-12 A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110068805A KR101373181B1 (en) 2011-07-12 2011-07-12 A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits

Publications (2)

Publication Number Publication Date
KR20130008206A KR20130008206A (en) 2013-01-22
KR101373181B1 true KR101373181B1 (en) 2014-03-12

Family

ID=47838355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110068805A KR101373181B1 (en) 2011-07-12 2011-07-12 A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits

Country Status (1)

Country Link
KR (1) KR101373181B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106035619A (en) * 2016-06-17 2016-10-26 陈丽华 Puckery-taste-removing and fresh-keeping method for persimmons
CN106721952A (en) * 2016-12-15 2017-05-31 浙江大学 1 methyl cyclopropene colours the purposes of accelerator as red pears

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500072A (en) 2001-08-30 2005-01-06 ザ ホーティカルチャー アンド フード リサーチ インスティテュート オブ ニュージーランド リミテッド Preservation of fruits and vegetables
KR20100129409A (en) * 2009-06-01 2010-12-09 경상남도 Fruit softening inhibitor, and inhibition method of fruit softening using the same
KR20110046820A (en) * 2009-10-29 2011-05-06 재단법인나주시천연염색문화재단 preventing browning of pear minimally processed and Zhejiang province improvement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005500072A (en) 2001-08-30 2005-01-06 ザ ホーティカルチャー アンド フード リサーチ インスティテュート オブ ニュージーランド リミテッド Preservation of fruits and vegetables
KR20100129409A (en) * 2009-06-01 2010-12-09 경상남도 Fruit softening inhibitor, and inhibition method of fruit softening using the same
KR20110046820A (en) * 2009-10-29 2011-05-06 재단법인나주시천연염색문화재단 preventing browning of pear minimally processed and Zhejiang province improvement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Trends in Food Science and Technology 16 (2005) 128-136. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106035619A (en) * 2016-06-17 2016-10-26 陈丽华 Puckery-taste-removing and fresh-keeping method for persimmons
CN106721952A (en) * 2016-12-15 2017-05-31 浙江大学 1 methyl cyclopropene colours the purposes of accelerator as red pears
CN106721952B (en) * 2016-12-15 2020-03-31 浙江大学 Use of 1-methylcyclopropene as coloring promoter for red pears

Also Published As

Publication number Publication date
KR20130008206A (en) 2013-01-22

Similar Documents

Publication Publication Date Title
Kyriacou et al. Genotype-specific modulatory effects of select spectral bandwidths on the nutritive and phytochemical composition of microgreens
Etzbach et al. Characterization of carotenoid profiles in goldenberry (Physalis peruviana L.) fruits at various ripening stages and in different plant tissues by HPLC-DAD-APCI-MSn
Topcu et al. The effects of UV radiation during the vegetative period on antioxidant compounds and postharvest quality of broccoli (Brassica oleracea L.)
Martínez-Esplá et al. Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 1. Improvement of fruit growth and quality attributes at harvest
Kopsell et al. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes
Schweiggert et al. Effects of processing and storage on the stability of free and esterified carotenoids of red peppers (Capsicum annuum L.) and hot chilli peppers (Capsicum frutescens L.)
Heinze et al. Effects of developmental stages and reduced UVB and low UV conditions on plant secondary metabolite profiles in pak choi (Brassica rapa subsp. chinensis)
Huang et al. Effect of LED irradiation on the ripening and nutritional quality of postharvest banana fruit
Castagna et al. Effect of post-harvest UV-B irradiation on polyphenol profile and antioxidant activity in flesh and peel of tomato fruits
Panjai et al. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes
Rudell et al. Synergism exists between ethylene and methyl jasmonate in artificial light-induced pigment enhancement of ‘Fuji’apple fruit peel
Panjai et al. Optimal red light irradiation time to increase health-promoting compounds in tomato fruit postharvest
Kusmita et al. Identification, isolation and antioxidant activity of pheophytin from green tea (Camellia sinensis (L.) Kuntze)
Brown Functional organization of chlorophyll a and carotenoids in the alga, Nannochloropsis salina
Kokalj et al. Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit
Pace et al. Evaluation of quality, phenolic and carotenoid composition of fresh-cut purple Polignano carrots stored in modified atmosphere
Pola et al. Color development and phytochemical changes in mature green chili (Capsicum annuum L.) exposed to red and blue light-emitting diodes
Gogo et al. Postharvest UV-C application to improve health promoting secondary plant compound pattern in vegetable amaranth
Pataro et al. Post-harvest UV-C and PL irradiation of fruits and vegetables
Vega-Vega et al. Antioxidant enrichment and antimicrobial protection of fresh-cut mango applying bioactive extracts from their seeds by-products
KR101373181B1 (en) A method of enhancing skin color and repressing flesh softening for postharvest persimmon fruits
Kumar et al. Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene
Perucka et al. Effect of foliar calcium chloride treatment on the level of chlorogenic acid, beta-carotene, lutein and tocopherols in lettuce (Lactuca sativa L.)
Sgherri et al. Antioxidant properties of food products containing lycopene are increased by the presence of chlorophyll
Zhang et al. High-voltage electrostatic field combined with light-emitting diode irradiation: A new method for optimizing the quality of modified atmosphere packaged pakchoi

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190226

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 7