KR101349479B1 - Photovoltaic power generation system and control method thereof - Google Patents

Photovoltaic power generation system and control method thereof Download PDF

Info

Publication number
KR101349479B1
KR101349479B1 KR1020120064745A KR20120064745A KR101349479B1 KR 101349479 B1 KR101349479 B1 KR 101349479B1 KR 1020120064745 A KR1020120064745 A KR 1020120064745A KR 20120064745 A KR20120064745 A KR 20120064745A KR 101349479 B1 KR101349479 B1 KR 101349479B1
Authority
KR
South Korea
Prior art keywords
voltage
inverter
output
capacitor
subtractor
Prior art date
Application number
KR1020120064745A
Other languages
Korean (ko)
Other versions
KR20130141782A (en
Inventor
타케시 우에마츠
?스케 이나바
김춘봉
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020120064745A priority Critical patent/KR101349479B1/en
Publication of KR20130141782A publication Critical patent/KR20130141782A/en
Application granted granted Critical
Publication of KR101349479B1 publication Critical patent/KR101349479B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Abstract

발명의 실시예에 따른 태양광 발전 장치는 태양전지; 상기 태양전지의 출력단에 접속된 컨버터; 상기 컨버터의 출력단에 접속된 카패시터; 상기 카패시터와 접속되고, 직류전압을 교류전압으로 변환하는 인버터; 및, 상기 카패시터의 전압(Vd)을 검출하고 일정 범위 이내로 전압을 조절하여 상기 인버터를 제어하는 제어부;를 포함한다.Photovoltaic device according to an embodiment of the present invention is a solar cell; A converter connected to the output terminal of the solar cell; A capacitor connected to the output of the converter; An inverter connected to the capacitor and converting a DC voltage into an AC voltage; And a controller configured to detect the voltage Vd of the capacitor and control the inverter by adjusting the voltage within a predetermined range.

Description

태양광 발전 장치 및 그 제어방법{Photovoltaic power generation system and control method thereof}Photovoltaic power generation system and control method

본 발명은 태양광 발전 장치 및 그 제어방법에 관한 것으로 보다 상세하게는 태양광 발전시의 출력 전압을 제어하여 인버터를 보호하는 태양광 발전 장치 및 그 제어방법에 관한 것이다.The present invention relates to a photovoltaic device and a control method thereof, and more particularly, to a photovoltaic device and a control method for protecting an inverter by controlling an output voltage during photovoltaic power generation.

최근 천연자원의 고갈과 화력 및 원자력 발전에 대한 환경 및 안정성 등의 문제가 대두되면서 대표적인 환경친화적 그린에너지인 태양광 및 풍력에 대한 연구가 활발히 진행중이다. 특히 태양광 발전은 무한하고 청정에너지라는 관점에서 상당히 각광을 받으며 차량, 장난감, 주거용 발전 및 가로등뿐만 아니라 계통선과 원거리에 떨어져 있는 무인 등대, 시계탑, 통신 장치 등 매우 다양하게 활용되고 있다.Recently, as the problem of depletion of natural resources and the environment and stability of nuclear power generation and nuclear power generation have been raised, studies on solar energy and wind power, which are representative green green energy, are actively underway. In particular, photovoltaic power generation is widely used in the fields of automobiles, toys, residential power generation and street lamps, as well as unmanned lighthouses, clock towers, and communication devices, which are separated from system lines and distant places.

이러한 태양전지는 태양의 빛에너지를 전기 에너지로 변환시키는 것으로서, 일반적인 태양전지는 전기에너지원과는 상당히 다른 전기적인 특성을 가지고 있다. 기존의 전기에너지는 선형 전압원(Linear Voltage Source)의 특성을 가지고 있기 때문에, 부하단에 선형이나 비선형의 부하가 걸릴지라도 항상 일정한 전압을 유지하고, 안정하게 동작한다. 또한 하나의 동작점만을 갖기 때문에 어떤 입력/출력 조건에서도 항상 안정한 장치으로 동작한다. 즉 선형 전압원을 가지는 전기에너지원을 사용할 때에는 부하조건에 관계없이 원하는 동작조건을 얻어낼 수 있다.Such a solar cell transforms the light energy of the sun into electric energy, and a typical solar cell has electric characteristics which are considerably different from those of an electric energy source. Since the conventional electric energy has the characteristics of a linear voltage source, it maintains a constant voltage and operates stably at all times even if a linear or nonlinear load is applied to the load end. Also, since it has only one operating point, it always operates as a stable device under any input / output conditions. That is, when using an electric energy source having a linear voltage source, desired operating conditions can be obtained regardless of the load conditions.

그러나 태양전지는 비선형소스로 구분되어, 태양전지로부터 생성되는 전력은 부하조건, 입사되는 태양광에 따라서 크기가 변화하는 특징을 지니고 있다. 도 1에 도시된 바와 같이, 기후변화에 의해 태양전지(10)의 발전전압(Vs)이 증가하여, 인버터(30)에 입력되는 전압(Vd)도 증가하게 된다. 이에 따라 상기 인버터(30)를 구성하는 반도체 소자 또는 콘덴서의 내압을 초과하는 경우가 발생한다.However, the solar cells are classified into nonlinear sources, and the power generated from the solar cells changes in size depending on load conditions and incident sunlight. As shown in FIG. 1, the power generation voltage Vs of the solar cell 10 increases due to climate change, thereby increasing the voltage Vd input to the inverter 30. As a result, a case in which the withstand voltage of the semiconductor element or capacitor constituting the inverter 30 is exceeded occurs.

본 발명은 태양전지로부터 생성되는 전압이 증가하여 인버터를 구성하는 반도체 소자 및 콘덴서가 손상되는 것을 방지하는 것을 목적으로 한다.An object of the present invention is to prevent damage to the semiconductor elements and capacitors constituting the inverter by increasing the voltage generated from the solar cell.

발명의 실시예에 따른 태양광 발전 장치는 태양전지; 상기 태양전지의 출력단에 접속된 컨버터; 상기 컨버터의 출력단에 접속된 카패시터; 상기 카패시터와 접속되고, 직류전압을 교류전압으로 변환하는 인버터; 및, 상기 카패시터의 전압(Vd)을 검출하고 일정 범위 이내로 전압을 조절하여 상기 인버터를 제어하는 제어부;를 포함한다.Photovoltaic device according to an embodiment of the present invention is a solar cell; A converter connected to the output terminal of the solar cell; A capacitor connected to the output of the converter; An inverter connected to the capacitor and converting a DC voltage into an AC voltage; And a controller configured to detect the voltage Vd of the capacitor and control the inverter by adjusting the voltage within a predetermined range.

발명의 실시예에 따르면 태양전지로부터 생성되는 전압이 인버터를 구성하는 반도체 소자 또는 콘덴서의 내압을 증가하는 것을 신속하게 억제할 수 있어, 소자의 신뢰성이 개선된다.According to the embodiment of the invention, it is possible to quickly suppress the voltage generated from the solar cell from increasing the breakdown voltage of the semiconductor element or the capacitor constituting the inverter, thereby improving the reliability of the element.

또한, 일사량이 증가함에 따라 최대전력점이 보다 대전력 점으로 이동한 경우에는 신속하게 이를 추종할 수 있게 된다.In addition, as the amount of insolation increases, when the maximum power point moves to a larger power point, it can be quickly followed.

도 1은 종래 기술에 따른 태양광 발전 장치의 구성도이다.
도 1은 발명의 실시예에 따른 태양광 발전 장치의 구성도이다.
도 3은 발명의 실시예에 따른 전압 특성 그래프이다.
도 4는 태양 전지의 전류-전압 특성 그래프와 전력-전압 특성 그래프이다.
1 is a block diagram of a solar cell apparatus according to the prior art.
1 is a block diagram of a photovoltaic device according to an embodiment of the present invention.
3 is a graph of voltage characteristics according to an embodiment of the present invention.
4 is a graph of current-voltage characteristics and power-voltage characteristics of a solar cell.

이하, 본 발명의 바람직한 실시 예에 대하여 첨부도면을 참조하여 상세히 설명하기로 한다. 기타 실시 예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The details of other embodiments are included in the detailed description and drawings. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and how to accomplish them, will become apparent by reference to the embodiments described in detail below with reference to the accompanying drawings. Like reference numerals refer to like elements throughout the specification.

도 2는 발명의 실시예에 따른 태양광 발전 장치의 구성도이다. 도 2에 도시된 바와 같이, 태양광 발전 장치는, 광기전력 효과(Photovoltaic Effect)를 이용하여 빛 에너지를 전기 에너지로 변환시키는 태양전지(100), 상기 태양전지(100)의 출력단에 접속된 컨버터(200), 상기 컨버터(200)의 출력단에 접속된 카패시터(Cd), 상기 카패시터(Cd)와 접속되고, 직류전압을 교류전압으로 변환하는 인버터(300), 상기 인버터(300)의 출력단에 접속되고, 계통전압(Vgrid)을 검출할 수 있는 상용전원(400), 상기 카패시터(Cd)의 전압(Vd)을 검출하고 일정 범위 이내로 전압을 조절하여 상기 인버터(300)를 제어하는 제어부(500)를 포함할 수 있다.2 is a configuration diagram of a photovoltaic device according to an embodiment of the present invention. As shown in FIG. 2, the photovoltaic device includes a solar cell 100 that converts light energy into electrical energy using a photovoltaic effect, and a converter connected to an output terminal of the solar cell 100. A capacitor Cd connected to an output terminal of the converter 200, an inverter 300 connected to the capacitor Cd and converting a DC voltage into an AC voltage, and an output terminal of the inverter 300. A control unit connected to the commercial power source 400 capable of detecting a grid voltage Vgrid, a voltage Vd of the capacitor Cd, and controlling the inverter 300 by adjusting a voltage within a predetermined range. 500 may be included.

상기에서 컨버터(200)는 인덕터, 반도체 스위치 및 다이오드로 구성될 수 있으며, 인덕터는 태양전지(100)로부터의 전원의 전압 레벨을 승압하고, 스위치는 인버터로부터의 승압된 전원을 스위칭 제어 신호에 따라 스위칭한다. 스위치에 의해 스위칭된 전원은 다이오드를 통해 정류된다.The converter 200 may include an inductor, a semiconductor switch, and a diode. The inductor boosts the voltage level of the power supply from the solar cell 100, and the switch boosts the boosted power supply from the inverter according to the switching control signal. Switch. The power source switched by the switch is rectified through the diode.

상기 인버터(300)로부터의 교류 전원은 가전 제품과 같은 전자 제품을 구동할 수 있는 상용 교류 전원일 수 있다.The AC power source from the inverter 300 may be a commercial AC power source capable of driving electronic products such as home appliances.

상기 제어부(500)는 감산기(510), 비례기(520), 합산기(530), 제어기(540) 및 MPPT(최대 전력 추종부, Maximum Power Point Tracking:550)를 포함할 수 있다.The controller 500 may include a subtractor 510, a proportioner 520, a summer 530, a controller 540, and an MPPT (Maximum Power Point Tracking, 550).

상기 감산기(510)는 상기 카패시터(Cd)의 전압(Vd)과 레퍼런스 전압(Vdref) 간의 오차를 계산한다.The subtractor 510 calculates an error between the voltage Vd of the capacitor Cd and the reference voltage Vdref.

상기 전압(Vd)을 특정값으로 지정하고 싶을 때, 그 목표전압값(레퍼런스 전압)이 VDref이다. 예를 들어, 회로로부터 출력되는 전압을 380V로 지정하고 싶을 때, VDref는 380V가 된다. 그리고 카패시터(Cd)의 전압(Vd)을 VDref인 380V으로 하기 위해 스위치의 듀티(Duty)를 제어한 결과, 378V가 측정되었을 때, 카패시터(Cd)의 전압(Vd)은 378V이 된다.When it is desired to specify the voltage Vd as a specific value, the target voltage value (reference voltage) is VDref. For example, when it is desired to designate a voltage output from the circuit as 380V, VDref becomes 380V. As a result of controlling the duty of the switch to set the voltage Vd of the capacitor Cd to 380V, which is VDref, when the 378V is measured, the voltage Vd of the capacitor Cd becomes 378V.

이에 따라 전압의 변화량(△Vd)는 카패시터(Cd)의 전압(Vd)에서 레퍼런스 전압인 VDref의 차이로 얻어질 수 있다. 즉, 상기 감산기(510)에서 출력되는 신호(△Vd)는 Vd-VDref로 얻어질 수 있다.Accordingly, the change amount ΔVd of the voltage may be obtained by a difference between the voltage Vd of the capacitor Cd and the reference voltage VDref. That is, the signal ΔVd output from the subtractor 510 may be obtained as Vd-VDref.

상기 감산기(510)와 비례기(520)의 사이에 형성된 다이오드는 정류작용을 통해 한 방향으로만 전압이 흐르도록 조절한다.The diode formed between the subtractor 510 and the proportioner 520 adjusts the voltage to flow in only one direction through rectification.

상기 비례기(520)는 상기 감산기(510)로부터 전압 오차 신호를 입력받아 소정의 알고리즘에 의해 전압 오차를 보상하고, 피드포워드(feed forward) 전력 신호를 출력한다. 상기 소정의 알고리즘은 피드 포워드 게인(Kfvd)을 곱하여 계산될 수 있다. 즉, △Vd와 Kfvd를 곱한 값이 상기 비례기(520)의 출력값일 수 있다. 여기서 상기 비례기(520)의 출력값은 전력단위일 수 있다.The proportioner 520 receives the voltage error signal from the subtractor 510, compensates for the voltage error by a predetermined algorithm, and outputs a feed forward power signal. The predetermined algorithm may be calculated by multiplying the feed forward gain Kfvd. That is, a value obtained by multiplying ΔVd and Kfvd may be an output value of the proportioner 520. Here, the output value of the proportioner 520 may be a power unit.

상기 비례기(520)의 출력단에 형성된 합산기(530)는 상기 비례기(520)의 출력값인 Kfvd×△Vd와 MPPT(550)의 출력값인 Poref를 합산할 수 있다. The summer 530 formed at the output terminal of the proportioner 520 may add Kfvd × ΔVd, which is an output value of the proportioner 520, and Poref, which is an output value of the MPPT 550.

즉, 상기 합산기(530)의 출력값(Poref new)은 Poref+Kfvd×△Vd일 수 있다. 여기서 상기 합산기(530)의 출력값(Poref new)은 피드포워드 제어후의 새로운 목표값이다. 상기 피드 포워드 제어는 출력전력 목표값에 한정하지 않고 전력제어에 영향을 미치는 값이면 어떤 신호도 이용될 수 있다.That is, the output value Pore new of the summer 530 may be Poref + Kfvd × ΔVd. Here, the output value (Poref new) of the summer 530 is a new target value after the feedforward control. The feed forward control is not limited to the output power target value, and any signal may be used as long as it affects the power control.

도 4는 태양 전지판으로부터의 전류-전압 특성 그래프와 전력-전압 특성 그래프를 나타내며, 도 4를 참조하면, 태양 전지로부터의 전류-전압 특성은 전압이 증가되어도 전류가 일정하게 유지되다가, 특정 전압 이상이면 전류를 급격히 감소하게 된다. 이를 태양 전지판으로부터의 전력-전압 특성 그래프와 비교해보면, 전압의 증가에 따라 전력이 증가되고, 최대 전력점(Pmax) 이상에서는 전력이 급격히 감소하게 되는 특성이 발생한다. 상기 MPPT(550)는 최대 전력이 되는 전력 목표값을 생성하는 것으로, 태양 전지의 전류-전압 특성을 고려하여 최대전력을 출력할 수 있도록 전력값을 조절한다.FIG. 4 shows a current-voltage characteristic graph and a power-voltage characteristic graph from a solar panel. Referring to FIG. 4, the current-voltage characteristic from a solar cell is maintained at a constant voltage even when the voltage is increased. In this case, the current is drastically reduced. Comparing this with the power-voltage characteristic graph from the solar panel, the power increases as the voltage increases, and the characteristic that the power decreases sharply above the maximum power point Pmax occurs. The MPPT 550 generates a target power value of maximum power, and adjusts the power value to output the maximum power in consideration of the current-voltage characteristic of the solar cell.

상기 제어기(540)는 인버터(300)에 포함되는 스위치의 스위칭을 제어할 수 있다. 상기 인버터(300)는 단상 풀브릿지 인버터 또는 3상 인버터로 구성될 수 있는데, 이를 제어하기 위한 스위칭 신호를 발생하는 PWM(Pulse Width Modulation) 발생부(미도시) 및 상기 PWM 발생부에서 출력되는 스위칭 신호를 이용하여 상기 인버터(300)를 구성하는 반도체 소자를 구동하는 게이트 드라이버(미도시)를 포함하여 구성될 수 있다.The controller 540 may control switching of a switch included in the inverter 300. The inverter 300 may be configured as a single-phase full bridge inverter or a three-phase inverter. A PWM (Pulse Width Modulation) generator (not shown) for generating a switching signal for controlling the switching and the output from the PWM generator It may include a gate driver (not shown) for driving a semiconductor device constituting the inverter 300 by using a signal.

도 3은 발명의 실시예에 따른 전압 특성 그래프이다. 상부의 그래프는 종래 기술에 따른 전압 특성 그래프이고, 하부의 그래프는 발명의 실시예에 따른 전압 특성 그래프이다. 도시된 바와 같이, 카패시터(Cd)의 전압(Vd)이 종래기술에서는 410V에 인접한 전압값이 출력되나, 발명의 실시예에 따르면 390V에 인접한 전압값이 출력되므로, 고전압으로부터 인버터(300)를 보호할 수 있어, 소자의 신뢰성이 개선될 수 있다.3 is a graph of voltage characteristics according to an embodiment of the present invention. The upper graph is a voltage characteristic graph according to the prior art, the lower graph is a voltage characteristic graph according to an embodiment of the invention. As shown, the voltage Vd of the capacitor Cd is output in a conventional voltage value of 410V, but according to the embodiment of the present invention, the voltage value of 390V is output. Protection, the reliability of the device can be improved.

이상에서 실시예들에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects and the like described in the embodiments are included in at least one embodiment of the present invention and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects and the like illustrated in the embodiments can be combined and modified by other persons skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.

Claims (7)

태양전지;
상기 태양전지의 출력단에 접속된 컨버터;
상기 컨버터의 출력단에 접속된 카패시터;
상기 카패시터와 접속되고, 직류전압을 교류전압으로 변환하는 인버터; 및,
상기 인버터를 제어하는 제어부;를 포함하며,
상기 제어부는,
레퍼런스 전압과 상기 카패시터(Cd)의 전압(Vd)의 오차를 계산하는 감산기와,
상기 감산기로부터 전압 오차 신호를 입력받아 소정의 알고리즘에 의해 전압 오차를 보상하고, 피드포워드(feed forward) 전력 신호를 출력하는 비례기와,
상기 비례기의 출력값과 MPPT의 출력값을 합산하는 합산기와,
상기 합산기의 출력값을 입력받아 상기 인버터를 제어하는 제어기를 포함하는 태양광 발전 장치.
Solar cell;
A converter connected to the output terminal of the solar cell;
A capacitor connected to the output of the converter;
An inverter connected to the capacitor and converting a DC voltage into an AC voltage; And
And a controller for controlling the inverter.
The control unit,
A subtractor for calculating an error between a reference voltage and the voltage Vd of the capacitor Cd;
A proportional unit that receives the voltage error signal from the subtractor, compensates the voltage error by a predetermined algorithm, and outputs a feed forward power signal;
A summer for summing the output of the proportioner and the output of MPPT;
And a controller configured to control the inverter by receiving the output value of the summer.
삭제delete 제1항에 있어서,
상기 인버터는 단상 풀브릿지 인버터 또는 3상 인버터로 구성되는 태양광 발전 장치.
The method of claim 1,
The inverter comprises a single-phase full bridge inverter or a three-phase inverter.
제3항에 있어서,
상기 제어기는 상기 단상 풀브릿지 인버터를 제어하기 위한 스위칭 신호를 발생하는 PWM(Pulse Width Modulation) 발생부 및 상기 PWM 발생부에서 출력되는 스위칭 신호를 이용하여 상기 인버터를 구성하는 반도체 소자를 구동하는 게이트 드라이버를 포함하는 태양광 발전 장치.
The method of claim 3,
The controller is a gate driver for driving a semiconductor device constituting the inverter by using a pulse width modulation (PWM) generator for generating a switching signal for controlling the single-phase full bridge inverter and a switching signal output from the PWM generator. Photovoltaic device comprising a.
제1항에 있어서,
상기 감산기와 비례기 사이에 다이오드;를 더 포함하는 태양광 발전 장치.
The method of claim 1,
And a diode between the subtractor and the proportionr.
태양전지;
상기 태양전지의 출력단에 접속된 컨버터;
상기 컨버터의 출력단에 접속된 카패시터;
상기 카패시터와 접속되고, 직류전압을 교류전압으로 변환하는 인버터; 및,
상기 인버터를 제어하는 제어부;를 포함하고,
상기 제어부는,
레퍼런스 전압과 상기 카패시터(Cd)의 전압(Vd)의 오차를 계산하는 감산기와,
상기 감산기로부터 전압 오차 신호를 입력받아 소정의 알고리즘에 의해 전압 오차를 보상하고, 피드포워드(feed forward) 전력 신호를 출력하는 비례기와,
상기 비례기의 출력값과 MPPT의 출력값을 합산하는 합산기와,
상기 합산기의 출력값을 입력받아 상기 인버터를 제어하는 제어기;를 포함하며,
상기 카패시터의 전압을 Vd, 레퍼런스 전압을 VDref로 하였을 때, 상기 감산기에서 출력되는 신호(△Vd)는 Vd-VDref이고, 상기 비례기의 출력값은 피드 포워드 게인(Kfvd)을 곱한 Kfvd×△Vd인 태양광 발전 장치.
Solar cell;
A converter connected to the output terminal of the solar cell;
A capacitor connected to the output of the converter;
An inverter connected to the capacitor and converting a DC voltage into an AC voltage; And
A control unit for controlling the inverter;
The control unit,
A subtractor for calculating an error between a reference voltage and the voltage Vd of the capacitor Cd;
A proportional unit that receives the voltage error signal from the subtractor, compensates the voltage error by a predetermined algorithm, and outputs a feed forward power signal;
A summer for summing the output of the proportioner and the output of MPPT;
And a controller for receiving the output value of the summer and controlling the inverter.
When the capacitor voltage is Vd and the reference voltage is VDref, the signal? Vd output from the subtractor is Vd-VDref, and the output value of the proportionr is Kfvd × ΔVd multiplied by the feed forward gain Kfvd. Solar power device.
제6항에 있어서,
상기 MPPT의 출력값이 Poref이고, 합산기의 출력값은 Poref+Kfvd×△Vd인 태양광 발전 장치.
The method according to claim 6,
The output value of the said MPPT is Poref, and the output value of a summer is Poref + Kfvdx (DELTA) Vd.
KR1020120064745A 2012-06-18 2012-06-18 Photovoltaic power generation system and control method thereof KR101349479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120064745A KR101349479B1 (en) 2012-06-18 2012-06-18 Photovoltaic power generation system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120064745A KR101349479B1 (en) 2012-06-18 2012-06-18 Photovoltaic power generation system and control method thereof

Publications (2)

Publication Number Publication Date
KR20130141782A KR20130141782A (en) 2013-12-27
KR101349479B1 true KR101349479B1 (en) 2014-01-08

Family

ID=49985591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120064745A KR101349479B1 (en) 2012-06-18 2012-06-18 Photovoltaic power generation system and control method thereof

Country Status (1)

Country Link
KR (1) KR101349479B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101595060B1 (en) * 2014-10-01 2016-02-17 한국에너지기술연구원 Invert apparatus having a function of dynamic mppt and the dynamic mppt method thereof for solar generating system
KR102073121B1 (en) * 2015-11-12 2020-02-05 현대일렉트릭앤에너지시스템(주) Solar photovoltaic apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070078524A (en) * 2006-01-27 2007-08-01 엘에스산전 주식회사 Photovoltaic power generation system and control method thereof
KR20110138992A (en) * 2010-06-22 2011-12-28 삼성전기주식회사 Apparatus and method for anti-islanding of power conditioning system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070078524A (en) * 2006-01-27 2007-08-01 엘에스산전 주식회사 Photovoltaic power generation system and control method thereof
KR20110138992A (en) * 2010-06-22 2011-12-28 삼성전기주식회사 Apparatus and method for anti-islanding of power conditioning system

Also Published As

Publication number Publication date
KR20130141782A (en) 2013-12-27

Similar Documents

Publication Publication Date Title
US10050446B2 (en) Device and method for global maximum power point tracking
JP6105843B2 (en) Power conversion system and conversion method
US9729083B2 (en) Power supply system and power source apparatus
US20120155126A1 (en) Power converting apparatus, grid interconnection apparatus and grid interconnection system
KR101214676B1 (en) Electric generating system using solar cell
US8810213B2 (en) Power control method and apparatus for tracking maximum power point in a photovoltaic system
JP5349688B2 (en) Grid-connected inverter
US11532985B2 (en) Switching circuits having multiple operating modes and associated methods
JP6280976B2 (en) Inverter
KR101749270B1 (en) Photovoltaic system for grid connected with power-factor improvement
KR101555274B1 (en) A maximum power point tracking method based on current increment for improving efficiency of the solar inverter
KR101349479B1 (en) Photovoltaic power generation system and control method thereof
JP2005312158A (en) Power converter and its control method, and solarlight power generator
KR101382946B1 (en) Photovoltaic power generation system and control method thereof
KR20190036914A (en) High Efficiency Photovoltaic System Using DC-DC Voltage Regulator
KR101099919B1 (en) Power conversion control device using solar cell
JP2015099447A (en) Photovoltaic power generation system, operation point correction device using the same, and operation point correction method
KR101305634B1 (en) Photovoltaic power generation system and control method thereof
KR101484064B1 (en) Power management device for new Renewable Energy
KR20100098870A (en) Photovoltaic power generation system, apparatus and method for tracking maximum power point
JP2017108553A (en) Power converter
KR101360539B1 (en) Photovoltaic power generation system and control method thereof
KR101079971B1 (en) Control apparatus for solar thermal electric power generation system
JP7281384B2 (en) junction box
KR101382800B1 (en) Photovoltaic power generation system and control method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161207

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 7