KR101299391B1 - Scheduling using geneticalgorithm for maintenance in wind turbine equipment - Google Patents

Scheduling using geneticalgorithm for maintenance in wind turbine equipment Download PDF

Info

Publication number
KR101299391B1
KR101299391B1 KR1020120062992A KR20120062992A KR101299391B1 KR 101299391 B1 KR101299391 B1 KR 101299391B1 KR 1020120062992 A KR1020120062992 A KR 1020120062992A KR 20120062992 A KR20120062992 A KR 20120062992A KR 101299391 B1 KR101299391 B1 KR 101299391B1
Authority
KR
South Korea
Prior art keywords
chromosome
maintenance
parent
wind turbine
children
Prior art date
Application number
KR1020120062992A
Other languages
Korean (ko)
Inventor
손범수
Original Assignee
손범수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손범수 filed Critical 손범수
Priority to KR1020120062992A priority Critical patent/KR101299391B1/en
Application granted granted Critical
Publication of KR101299391B1 publication Critical patent/KR101299391B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/50Maintenance or repair
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Data Mining & Analysis (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Genetics & Genomics (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Sustainable Development (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE: A wind turbine maintenance scheduling method establishes an optimal scheduling for securing sufficient reserve power, reduces human errors, and decreases maintenance time and cost. CONSTITUTION: In terms of a gene's maintenance time, the genetic shape of initial parent groups is created within a normal distribution not to concentrate on a certain period of time. A share of the demand for reserve power for a wind turbine is calculated. A parent gene is selected according to the demand share. A breeding process or a mutation process is implemented regarding the parent gene. A maintenance schedule is developed as a result of the breeding process or the mutation process. [Reference numerals] (AA) Start; (BB) Define a period that requires maintenance for a whole wind turbine using a gene; (CC) Calculate the share (Y) of the annual maintenance period in a certain period of time (k); (DD) Is k/Y within a normal distribution ?; (EE) Add the result to a value group (initial parent group N); (FF) Define a reserve power value and a reserve power rate; (GG) Select a pair of chromosomes for the reserve power rate; (HH) Generate a first children chromosome by mating the parent chromosomes; (II) Is the reserve power of the first children larger than that of the parent ?; (JJ) Generate a second children chromosome by mutating the parent chromosomes; (KK) Is the first children or the second children fit for the maintenance period requirement ?; (LL) Add the first children or the second children to a children group; (MM) Is the number of the children group identical to the number (N) of the value group ?; (NN) Change the generation; (OO) Is a repetition number ending condition (M) satisfied ?; (PP) Evaluate an optimization rate; (QQ) End

Description

풍력터빈 설비에 있어서 유지보수를 위한 유전 알고리즘을 이용한 스케줄링 {Scheduling using GeneticAlgorithm for maintenance in Wind Turbine Equipment}Scheduling using Genetic Algorithm for maintenance in Wind Turbine Equipment}

풍력터빈 유지보수 스케줄링Wind Turbine Maintenance Scheduling

유전자 염색체를 요소로 하여 보다 나은 성분의 염색체를 골라내는 것에 목적인 유전 알고림즘이 기반이 되는 이론이다. 현대 과학, 산업에 많이 이용되지만 풍력터빈이 가지는 고유 특성을 고려한 유지보수를 위한 알고리즘은 보이지 않는다.The theory is based on the genetic algorithm whose purpose is to select better chromosomes using gene chromosomes. Although it is widely used in modern science and industry, no maintenance algorithms are considered considering the unique characteristics of wind turbines.

풍력터빈이라는 발전 설비는 상시 전력을 생산하여 수익을 낳는 신재생에너지 산업이다. 설비가 도입된 이후 시간이 경과하면서 발생되는 고장 및 노후화에 따른 효율감소 등을 해결하기 위한 유지보수를 실시해야 한다. Power generation facilities, known as wind turbines, are a renewable energy industry that generates revenue by always producing electricity. After the facility is introduced, maintenance should be carried out to resolve the failures caused by the passage of time and the reduction in efficiency due to aging.

문제는 유지보수를 위한 설비의 스케줄링에서 설비상태, 기후, 요구 예비전력 등의 환경에 따라 어떤 순서로 유지보수를 시행해야 하는가는 항상 고민의 문제이다. 한 두기의 설비라면 인간의 두뇌로 해결할 수 있겠지만 적어도 열기 이상의 설비 단지에서라면 인간의 능력에 문제가 발생할 수 있다. 설사 인간의 능력으로 무리없이 스케줄링이 가능하다 하더라도 수많은 시행착오와 시간의 낭비를 가져올 수 있다.The problem is always a matter of order in which the maintenance should be performed according to the environment such as the condition of the equipment, the climate, and the required reserve power in the scheduling of the equipment for maintenance. One or two installations can be solved by the human brain, but at least the facility complexes above the heat can cause problems in human capacity. Even if scheduling is possible without human ability, it can bring a lot of trial and error and waste of time.

이에 본 알고리즘은 인간의 시행착오와 시간의 낭비를 줄이고, 설비 단지의 스케줄링 작업의 최적화를 이룰 수 있는 알고리즘이다.Therefore, this algorithm is an algorithm that can reduce the trial and error of human and waste of time and optimize the scheduling work of facility complex.

한기의 터빈에 대하여 분기별 혹은 월별 유지보수가 요구되는 시기를 염색체로 표현한다. 이 염색체를 발전단지의 전체 설비수 만큼 확장하여 하나의 염색체인 S-표현식으로 나타낸다.Chromosomes indicate when quarterly or monthly maintenance is required for a single turbine. This chromosome is extended by the total number of facilities in the power plant and is represented by one chromosome, S-expression.

이 염색체를 구성하는 초기 부모군에는 각각의 설비에 대하여 각 기간별 염색체 분포가 고르게 하여 출발하여야 한다.The initial parent group constituting this chromosome should start with an even distribution of chromosomes for each period.

유지보수시에 예비전력 확보는 중요한 요소이므로 각 염색체의 선출 요인으로는 한 염색체가 가지는 예비전력 확보율에 따른 비중을 적합도 조건으로 사용하여야 한다.Securing reserve power is an important factor in maintenance, and as a factor for selecting each chromosome, the specific gravity according to the reserve power reserve of one chromosome should be used as a condition of fitness.

염색체의 선택은 예비전력 비율이 높은 비중으로 선택하게 되며 이를 부모 염색체라 하고, 교배와 돌연변이를 수행한 후 예비전력 확보율과 유지보수 요구 조건에 부합하는 정도에 맞추어 자녀 염색체군에 적용한다.The chromosome selection is based on a high proportion of reserve power, which is called the parent chromosome. After mating and mutation, the chromosome is applied to the child chromosome group according to the degree of reserve power reserve and maintenance requirements.

자녀 염색체군이 부모 염색체군과 세대교체를 반복하면서 보다 양질의 염색체군이 탄생하게 된다.The child's chromosome group repeats generational replacement with the parent's chromosome group, resulting in a better chromosome group.

예비전력 확보율이 가장 최적화된 스케줄링 작업이 된다.Reserved power reserve rate is the most optimized scheduling task.

인간의 시행착오와 시간의 낭비 손실을 줄인다.Reduce human trial and error and waste of time.

최적화된 유지보수 계획으로 비용낭비를 줄인다.Reduce costs with optimized maintenance plans.

유전 알고리즘을 이용한 풍력터빈 설비의 유지보수를 위한 스케줄링 알고리즘의 흐름도로서,
풍력터빈 설비에 요구되어지는 유지보수 기간을 염색체로 정의하고 최초 부모군이 다양한 염색체군이 존재할 수 있도록 표준편차 범위를 지정하여 염색체군을 생성한다.
적합도 조건을 만족하기 위하여 예비전력 확보 비율을 정의한 다음, 예비전력 확보 비율의 비중에 따라 부모 염색체를 선택한다.
선택된 염색체는 교배와 돌연변이를 수행하여 자녀군을 생성하며 세대교체의 반복으로 양질의 염색체를 찾아내는 과정이다.
As a flowchart of a scheduling algorithm for maintenance of a wind turbine facility using a genetic algorithm,
The maintenance period required for wind turbine installations is defined as chromosomes and chromosome groups are created by specifying the standard deviation range so that the initial parent group can have various chromosomal groups.
In order to satisfy the goodness-of-fit conditions, the reserve reserve ratio is defined, and then the parent chromosome is selected according to the weight ratio of reserve reserve ratio.
The selected chromosome is a process of finding a good chromosome by performing crossbreeding and mutation to generate a group of children and repeating generations.

풍력발전단지에 10기의 설비가 존재하고 월별로 각 설비의 생산전력, 부하전력, 예비전력이 다음과 같다고 가정한다. 여기에서 부하전력은 10기 전체에 동일값을 적용하여도 된다.It is assumed that there are 10 facilities in the wind farm and the production power, load power and reserve power of each facility are as follows. Here, the load power may apply the same value to all 10 units.

1. 34, 29, 534, 29, 5

2. 32, 28, 42. 32, 28, 4

3. 29, 27, 23. 29, 27, 2

4. 35, 28, 74. 35, 28, 7

5. 33, 30, 35. 33, 30, 3

6. 31, 28, 36. 31, 28, 3

7. 29, 25, 47. 29, 25, 4

8. 31, 26, 58. 31, 26, 5

9. 32, 29, 39. 32, 29, 3

10. 33, 31, 210. 33, 31, 2

설비 하나의 기에 유지보수를 위한 기간을 염색체로 표현한다. 연중 12개월 중에 2번 혹은 3번의 유지보수가 필요하다고 가정하면The period for maintenance in one phase of the installation is expressed in chromosomes. Suppose you need 2 or 3 maintenance during 12 months of the year

010001000000 혹은 000010100000 등이 된다. 이를 10기의 염색체로 표현하면010001000000 or 000010100000. If you express it as 10 chromosomes

010001000000/000010100000/000010100100/000010001000/010000100000/100010100000/000010100001/000000010100/010100000000/000011100000 이 된다. 이런 하나의 염색체를 필요로 하는 해집합군 N개 만큼 확보하는데 특정 기간에 모여 있지 않도록 각 기간별 유지보수 시기 분포가 표준편자 범위 안에 존재 하도록 한다.010001000000/000010100000/000010100100/000010001000/010000100000/100010100000/000010100001/000000010100/010100000000/000011100000. As many as N solution sets that require one such chromosome, the distribution of maintenance periods for each period should be within the standard deviation range so that they do not gather in a specific period.

상기 10기의 설비에 대한 전력총생산량은 319KW이며, 예비전력은 38KW이다 각 기별로 예비전력과 확보율을 계산하면 다음과 같다.The total power output of the 10 units is 319KW, the reserve power is 38KW.

1. 5, 13%1.5, 13%

2. 4, 11%2. 4, 11%

3. 2, 5%3. 2, 5%

4. 7, 18%4. 7, 18%

5. 3, 8%5. 3, 8%

6. 3, 8%6. 3, 8%

7. 4, 11%7. 4, 11%

8. 5, 13%8. 5, 13%

9. 3, 8%9. 3, 8%

10. 2, 5%10. 2, 5%

준비되어진 초기 부모군에서 염색체를 선택할 때, 예비전력 확보율의 비중에 맞추어 선출하여야 한다.When selecting a chromosome from the initial parent population, it should be selected according to the proportion of reserve power reserves.

선출된 부모 염색체를 교배(crossover)하여 생성된 자녀1 염색체는 부모염색체와의 예비전력 확보에 대한 비교를 실시하여 자녀1염색체가 높으면 유지보수 요구조건을 비교하고 자녀군에 넣는다. 만약 부모 염색체의 예비전력 확보량이 높으면 다시 부모 염색체를 돌연변이 시켜 자녀2 염색체로 만든 다음 유지보수 조건을 비교하여 자녀군에 넣는다. 유지보수 조건에 만족하지 못하거나 자녀군으로 자녀 염색체가 들어가면 그 자녀군의 해집합 수 N 만큼 도달할 때까지 부모군에서 염색체를 선택하는 반복을 시행한다.The child 1 chromosome generated by crossing over the selected parent chromosome is compared with the parent chromosome to secure reserve power. If the child 1 chromosome is high, the maintenance requirements are compared and placed in the child group. If the reserve power of the parent chromosome is high, the parent chromosome is mutated to make the child 2 chromosome, and then the maintenance conditions are compared and placed in the child group. If maintenance conditions are not satisfied or a child's chromosome enters a child group, the parent group will repeat the chromosome selection until the child set number N is reached.

자녀군이 해집합 수 N개에 도달하면 세대교체를 하게되고 세대교체의 횟수 M회 만큼 반복한다음 종료조건으로 최적화 효율 평가와 함께 종료하게 된다.When the number of child groups reaches N sets, the household is replaced, and the number of household replacements is repeated M times, and then ends with the optimization efficiency evaluation as the termination condition.

N : 해집합의 수
M : 세대교체의 횟수
K : 분기 혹은 월별 기간
Y : 연간 유지보수 분호 비율
N: number of solution sets
M: Number of household changes
K: quarterly or monthly period
Y: Annual maintenance fraction ratio

Claims (6)

수십기로 설치된 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법에 있어서,
유지보수를 필요로하는 기간에 있어서, 최초 부모군이 가지는 염색체의 모양이 특정 시기에 치우치지 않도록 표준 분포의 범위 안에서 염색체를 생성되도록 하는 제1단계;
하나의 풍력터빈 설비에 대하여 요구 예비전력 비중을 계산하는 제2단계;
요구 예비전력 비중에 따라 부모 염색체를 선택하는 제3단계;
선택된 부모염색체에 대하여 교배 혹은 돌연변이를 수행하는 제4단계;
상기 수행에 대한 염색체의 결과로 스케줄링을 결정하는 제5단계를 포함하는 것을 특징으로 하는 풍력터빈 설비에 대한 유전 알고리즘을 이용한 유지보수 시기 선택방법.
In the maintenance period selection method using genetic algorithm (GA) in the year-round maintenance schedule of the wind turbine installed in dozens,
In a period requiring maintenance, the first step of generating chromosomes within a range of a standard distribution so that the shape of the chromosomes of the first parent group is not biased at a specific time;
A second step of calculating a required reserve power ratio for one wind turbine facility;
Selecting a parent chromosome according to the required reserve power ratio;
A fourth step of performing crossing or mutation on the selected parent chromosome;
And a fifth step of determining a scheduling as a result of chromosomes for the performance.
제1항에 있어서, 상기 제1단계는,
터빈의 설비별 유지보수를 필요로 하는 기간을 염색체로 정의 하는 단계; 및
상기 염색체가 각 기간별 표준편자 범위안에 포함되는지를 판단하여 초기 부모염색체로 결정하는 단계;를 포함하는 것을 특징으로 하는 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법.
The method of claim 1, wherein the first step,
Defining a time period in which the maintenance of each facility of the turbine is required as a chromosome; And
And determining the initial parent chromosome by determining whether the chromosome is included in the standard horseshoe range of each period.
제1항에 있어서, 상기 제2단계는,
풍력터빈 설비의 요구 예비전력은 전력생산능력에서 전력부하를 차감한 수치의 비중을 계산하는 것을 특징으로하는 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법.
The method of claim 1, wherein the second step,
A method of selecting a maintenance time using a genetic algorithm (GA) in a yearly maintenance schedule of a wind turbine, characterized in that the required reserve power of the wind turbine facility is calculated as the ratio of the value obtained by subtracting the power load from the power production capacity.
제1항에 있어서, 상기 제3단계는,
각 염색체에서 요구되는 예비전력 비중에 따라 부모 염색체를 선택하는 것을 특징으로 하는 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법.
The method of claim 1, wherein the third step,
A method of selecting a maintenance time using a genetic algorithm (GA) in a yearly maintenance schedule of a wind turbine, characterized in that the parent chromosome is selected according to the proportion of reserve power required by each chromosome.
제1항에 있어서, 상기 제4단계는,
부모 염색체를 교배하여 자녀1 염색체를 생성하는 단계; 및
부모 염색체와 자녀1염색체의 예비전력량 크기를 비교하여 자녀1염색체가 크면 선택 염색체로 결정하는 단계; 및
상기 선택에서 부모 염색체가 자녀1 염색체보다 예비 전력량이 크면 돌연변이를 수행하여 자녀2 염색체를 생성하고 선택 염색체로 결정하는 단계; 및
상기 자녀1 염색체와 자녀2 염색체인 선택 염색체가 유지보수 요구기간에 부합하는지 판단하는 단계; 및
상기 염색체가 유지보수 요구기간에 부합하면 자녀군으로 결정하는 단계; 를 포함하는 것을 특징으로 하는 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법.
The method of claim 1, wherein the fourth step,
Crossing the parent chromosomes to generate a child 1 chromosome; And
Comparing the preliminary amount of power between the parent chromosome and the child 1 chromosome to determine the selection chromosome if the child 1 chromosome is large; And
If the parent chromosome is greater than the child chromosome in the selection, performing mutation to generate the child 2 chromosome and determining the selection chromosome; And
Determining whether the child chromosome and the child chromosome selected chromosome meet the maintenance requirement period; And
Determining the child group if the chromosome meets the maintenance requirement period; Method of selecting a maintenance time using a genetic algorithm (GA) in the yearly maintenance schedule of the wind turbine, characterized in that it comprises a.
제1항에 있어서, 상기 제5단계는,
자녀군의 해집합 수의 판단과 세대교체가 완료되면 염색체의 결과로 스케줄에 적용하는 단계;를 포함하는 것을 특징으로 하는 풍력터빈의 연중 유지보수 스케줄에서 유전 알고리즘(GA)을 이용한 유지보수 시기 선택방법.
The method of claim 1, wherein the fifth step,
Selecting the maintenance time using the genetic algorithm (GA) in the annual maintenance schedule of the wind turbine, characterized in that the step of applying to the schedule as a result of the chromosome when the determination of the number of sets of children and generation replacement is completed. Way.
KR1020120062992A 2012-06-13 2012-06-13 Scheduling using geneticalgorithm for maintenance in wind turbine equipment KR101299391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120062992A KR101299391B1 (en) 2012-06-13 2012-06-13 Scheduling using geneticalgorithm for maintenance in wind turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120062992A KR101299391B1 (en) 2012-06-13 2012-06-13 Scheduling using geneticalgorithm for maintenance in wind turbine equipment

Publications (1)

Publication Number Publication Date
KR101299391B1 true KR101299391B1 (en) 2013-08-22

Family

ID=49221104

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120062992A KR101299391B1 (en) 2012-06-13 2012-06-13 Scheduling using geneticalgorithm for maintenance in wind turbine equipment

Country Status (1)

Country Link
KR (1) KR101299391B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734349A (en) * 2018-05-15 2018-11-02 国网山东省电力公司菏泽供电公司 Distributed generation resource addressing constant volume optimization method based on improved adaptive GA-IAGA and system
CN108760813A (en) * 2018-06-05 2018-11-06 哈尔滨工程大学 A kind of turbine blade of gas turbine health monitoring systems and method based on temperature signal
KR102655555B1 (en) 2023-11-20 2024-04-11 한국전력기술 주식회사 System and method for maintenance planning in offshore wind farm using deep reinforcement learning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529780B1 (en) * 1997-04-14 2003-03-04 Siemens Aktiengesellschaft Method for automatic operation of industrial plants
US20060089730A1 (en) * 2004-10-25 2006-04-27 Neuco, Inc. Method and system for calculating marginal cost curves using plant control models
US20090295165A1 (en) * 2008-05-30 2009-12-03 Ge Wind Energy Gmbh Method for wind turbine placement in a wind power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6529780B1 (en) * 1997-04-14 2003-03-04 Siemens Aktiengesellschaft Method for automatic operation of industrial plants
US20060089730A1 (en) * 2004-10-25 2006-04-27 Neuco, Inc. Method and system for calculating marginal cost curves using plant control models
US20090295165A1 (en) * 2008-05-30 2009-12-03 Ge Wind Energy Gmbh Method for wind turbine placement in a wind power plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108734349A (en) * 2018-05-15 2018-11-02 国网山东省电力公司菏泽供电公司 Distributed generation resource addressing constant volume optimization method based on improved adaptive GA-IAGA and system
CN108734349B (en) * 2018-05-15 2020-11-17 国网山东省电力公司菏泽供电公司 Improved genetic algorithm-based distributed power supply location and volume optimization method and system
CN108760813A (en) * 2018-06-05 2018-11-06 哈尔滨工程大学 A kind of turbine blade of gas turbine health monitoring systems and method based on temperature signal
CN108760813B (en) * 2018-06-05 2020-09-25 哈尔滨工程大学 Gas turbine blade health monitoring system and method based on temperature signals
KR102655555B1 (en) 2023-11-20 2024-04-11 한국전력기술 주식회사 System and method for maintenance planning in offshore wind farm using deep reinforcement learning

Similar Documents

Publication Publication Date Title
Sulaiman et al. An intelligent method for sizing optimization in grid-connected photovoltaic system
Hemmati et al. Market based transmission expansion and reactive power planning with consideration of wind and load uncertainties
CN102545258B (en) Power grid optimal planning method of large-scale grid-connected wind farm
Wu et al. A multi-agent-based energy-coordination control system for grid-connected large-scale wind–photovoltaic energy storage power-generation units
CN105373967A (en) Game theory combined weighting-based photovoltaic power plant performance evaluation method
Xiaotong et al. Generation and transmission expansion planning based on game theory in power engineering
Neetzow et al. Electricity storage and transmission: Complements or substitutes?
Ali et al. Economic planning and comparative analysis of market-driven multi-microgrid system for peer-to-peer energy trading
KR101299391B1 (en) Scheduling using geneticalgorithm for maintenance in wind turbine equipment
Gunkel et al. The German transmission grid expansion in long-term perspective—What is the impact of renewable integration?
Delgado et al. Optimal design of a hybrid renewable energy system
Eltohamy et al. Technical investigation for power system flexibility
Prakash et al. Design of a Hybrid Microgrid for a Rural Community in Pacific Island Countries_
CN103700034A (en) Marginal cost theory-based power distribution network structure planning method
CN112671045A (en) Distributed power supply optimal configuration method based on improved genetic algorithm
Jasemi et al. Optimal operation of micro-grids considering the uncertainties of demand and renewable energy resources generation
Kang et al. Multi-objective sizing and real-time scheduling of battery energy storage in energy-sharing community based on reinforcement learning
Talwariya et al. Non-cooperative game theory based stepwise power tariff model using Monte-Carle simulation for agricultural consumers
Koutroulis et al. Optimal design and economic evaluation of a battery energy storage system for the maximization of the energy generated by wind farms in isolated electric grids
Jian et al. Robust Bi-Level Planning Method for Multi-Source Systems Integrated With Offshore Wind Farms Considering Prediction Errors
Zhang et al. Global energy interconnection based optimal power systems planning—A global perspective 2016–2050
Langella et al. Analysis of the cost of electric energy discharged to the grid by some energy storage systems
Debarberis et al. Technical and economical evaluation of a PV plant with energy storage
Maloney et al. Long term planning model value of stochastic solution and expected value of perfect information calculations with uncertain wind parameters
Durairasan et al. Hybrid technique for locating and sizing of renewable energy resources in power system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee