KR101178235B1 - Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test - Google Patents

Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test Download PDF

Info

Publication number
KR101178235B1
KR101178235B1 KR1020100100697A KR20100100697A KR101178235B1 KR 101178235 B1 KR101178235 B1 KR 101178235B1 KR 1020100100697 A KR1020100100697 A KR 1020100100697A KR 20100100697 A KR20100100697 A KR 20100100697A KR 101178235 B1 KR101178235 B1 KR 101178235B1
Authority
KR
South Korea
Prior art keywords
data
fsvr
glrt
cluster
power plant
Prior art date
Application number
KR1020100100697A
Other languages
Korean (ko)
Other versions
KR20120039160A (en
Inventor
서인용
하복남
이성우
신창훈
박민호
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020100100697A priority Critical patent/KR101178235B1/en
Priority to PCT/KR2010/008308 priority patent/WO2012050262A1/en
Publication of KR20120039160A publication Critical patent/KR20120039160A/en
Application granted granted Critical
Publication of KR101178235B1 publication Critical patent/KR101178235B1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0221Preprocessing measurements, e.g. data collection rate adjustment; Standardization of measurements; Time series or signal analysis, e.g. frequency analysis or wavelets; Trustworthiness of measurements; Indexes therefor; Measurements using easily measured parameters to estimate parameters difficult to measure; Virtual sensor creation; De-noising; Sensor fusion; Unconventional preprocessing inherently present in specific fault detection methods like PCA-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2413Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
    • G06F18/24133Distances to prototypes
    • G06F18/24137Distances to cluster centroïds
    • G06F18/2414Smoothing the distance, e.g. radial basis function networks [RBFN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/243Classification techniques relating to the number of classes
    • G06F18/2433Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

본 발명의 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법은, 전체의 데이터 셋(X)을 행렬의 형태로 표시하고, 훈련용(Xtr), 최적화용(Xopt), 시험용(Xts)으로 삼분하는 제1단계와; 상기 제1단계에서 행렬 형태로 표시된 전체의 데이터를 정규화하는 제2단계; 상기 제2단계에서 정규화된 데이터 셋(Z)을 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)으로 삼분하는 제3단계; 상기 제3단계에서 정규화되어 삼분된 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋(Z)의 주성분을 추출하는 제4단계; FCM(Fuzzy C-Means) 클러스터링을 이용하여, 데이터 셋과 주성분을 원하는 개수 만큼의 데이터 군집으로 나누는 제5단계; 반응표면분석법으로 최적화용 데이터(Zopt)의 각 클러스터 데이터(Zopt1, Zopt2)를 사용하여 최적화용 데이터(Zopt)의 예측치 오차를 최소화시키는 각 FSVR 모델의 최적 상수

Figure 112012012605337-pat00439
Figure 112012012605337-pat00440
를 구하는 제6단계; 훈련용 데이터 Ztr의 각 클러스터에 대해 상기 제6단계에 따라 퍼지 멤버쉽 그레이드
Figure 112012012605337-pat00441
를 계산하는 제7단계; 각 클러스터에 대한 훈련용 데이터와, 훈련용 데이터의 주성분벡터, 상기 제6단계에서 구한 최적 파라미터 및, 상기 제7단계에서 구한 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 이용하여 FSVR 모델을 훈련시킨 후, 시험용 데이터(Zts)의 각 클러스터 주성분벡터(Pts1, Pts2)를 입력시켜 출력 예측치(Zts1_hat과 Zts2_hat)를 구하는 제8단계; 각 클러스터에 대한 예측치(Zts1_hat과 Zts2_hat)를 연결시켜 전체의 데이터에 대한 예측치(Zts_hat)를 구하는 제9단계; 시험용 데이터에 대한 예측치
Figure 112012012605337-pat00442
를 원래의 시간 인덱스를 이용하여 시간순으로 분류하는 제10단계; 상기 제10단계에서 얻어진 정규화된 시험데이터의 예측치를 원래의 범위로 역정규화하여 원래 스케일의 각 센서에 대한 예측치
Figure 112012012605337-pat00443
를 식 45에 따라 구하는 제11단계 및; 예측치에 대한 잔차를 계산하고 GLRT를 이용하여 센서의 드리프트를 판별하는 제12단계를 갖추어 이루어진 것을 특징으로 한다.The power plant instrument performance monitoring method using the FSVR and GLRT of the present invention is to display the entire data set (X) in the form of a matrix, which is divided into three for training (Xtr), optimization (Xopt), test (Xts) Step 1; A second step of normalizing the entire data displayed in matrix form in the first step; A third step of dividing the data set Z normalized in the second step into training (Ztr), optimization (Zopt), and test (Zts); A fourth step of extracting a principal component of each data set (Ztr) for training (Ztr), optimization (Zopt), and test (Zts) normalized and divided in the third step; A fifth step of dividing the data set and the principal components into as many data clusters as desired using Fuzzy C-Means (FCM) clustering; Each FSVR model of reacting with a surface analysis method, the optimization of each data cluster of data (Zopt) for (Z opt1, Z opt2) minimizes the prediction error of the optimization data (Zopt) for optimal constant
Figure 112012012605337-pat00439
And
Figure 112012012605337-pat00440
Obtaining a sixth step; Fuzzy membership grade according to the sixth step for each cluster of training data Ztr
Figure 112012012605337-pat00441
Calculating a seventh step; After training the FSVR model using the training data for each cluster, the principal component vector of the training data, the optimal parameters obtained in the sixth step, and the fuzzy membership grade obtained in the seventh step, An eighth step of obtaining output prediction values Zts1_hat and Zts2_hat by inputting each cluster principal component vector Pts1 and Pts2 of the test data Zts; A ninth step of connecting prediction values Zts1_hat and Zts2_hat for each cluster to obtain prediction values Zts_hat for the entire data; Estimates for Experimental Data
Figure 112012012605337-pat00442
Classifying the data in chronological order using the original time index; The normalized test data obtained in step 10 is normalized to the original range by denormalizing the predicted value of each sensor of the original scale.
Figure 112012012605337-pat00443
Eleventh step of obtaining according to equation 45 and; And a twelfth step of calculating a residual for the predicted value and determining a drift of the sensor using the GLRT.

Description

에프에스브이알과 지엘알티를 이용한 발전소 계측기 성능감시 방법 및 시스템{Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test}Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test}

본 발명은 원자력발전소의 안전감시용 계측기의 성능을 발전소가 운전 중인 상태에서 상시 감시하는데 필요한 기술에 관한 것으로, 특히 데이터의 FCM(Fuzzy C-Means) 클러스터링, 주성분 추출 및 FSVR(Fuzzy Support Vector Regression)방법을 이용하여 시스템을 여러 가지 케이스에 대해 모델링한 다음, 회귀식의 3가지 파라미터를 반응표면분석법을 이용하여 최적화하고, 이를 이용하여 발전소 시스템을 모델링한 후 계측기 신호를 감시함으로써, 기존에 널리 사용되는 커널회귀법에 비해 예측치 계산의 정확도를 향상시킬 수 있을 뿐만 아니라 GLRT(Generalized Likelihood Ratio Test)를 이용하여 계측기의 드리프트를 포함한 이상 발생유무를 감시할 수 있도록 된 FSVR(Fuzzy Support Vector Regression)과 GLRT(Generalized Likelihood Ratio Test)를 이용한 발전소 계측기 성능감시 방법에 관한 것이다.
The present invention relates to a technology required to monitor the performance of the safety monitoring instrument of a nuclear power plant at all times while the power plant is operating. In particular, the clustering of data, FCM clustering, principal component extraction and FSVR (Fuzzy Support Vector Regression) The method is used to model a system for various cases, and then the three regression parameters are optimized using response surface analysis, modeling a power plant system using them, and then monitoring instrument signals. In addition to improving the accuracy of predictive calculations compared to kernel regression, FFSy (Fuzzy Support Vector Regression) and GLRT (GLVR) are used to monitor the occurrence of abnormalities including instrument drift using the Generalized Likelihood Ratio Test (GLRT). To monitor the performance of power plant instrumentation using Generalized Likelihood Ratio Test .

일반적으로 모든 발전설비는 운전성 향상과 안전성 확보를 목적으로 다수의 계측기를 설치하여 실시간으로 신호를 취득하여 발전소 감시계통과 보호계통에 이용하고 있다. 특히, 원자력발전소의 안전계통 관련 계측채널들은 계측신호의 정확도와 신뢰도를 보장하기 위하여 다중 계측기 개념을 채택하고 운영기술지침서 상에서 매 핵주기(약 18개월)마다 점검과 교정을 수행하고 있다. 전 세계적으로 원자력발전소들은 불필요하게 수행되는 계측기 교정업무를 조건기반 감시(CBM, Condition Based Monitoring) 방법론을 개발하여 점검과 교정주기를 연장하는 기술을 개발하고 있다. In general, all power generation facilities are installed in a number of measuring instruments for the purpose of improving operability and securing safety, and acquire signals in real time and use them in power plant monitoring and protection systems. In particular, the safety channel-related measurement channels of nuclear power plants adopt the concept of multiple instruments in order to ensure the accuracy and reliability of the measurement signals and check and calibrate every nuclear cycle (about 18 months) in the operating technical manual. Nuclear power plants around the world are developing technology to extend inspection and calibration cycles by developing condition-based monitoring (CBM) methodologies for instrument calibration that is performed unnecessarily.

도 1은 계측기 성능 상시 감시 시스템의 블록구성도이다. 도 1에 도시된 바와 같이 계측신호를 예측모델(1)에 입력하면, 상기 예측모델(1)은 입력 측정치에 대한 모델의 예측치를 출력하게 되는데, 이를 오토-어소시에이션(Auto-Associative) 모델이라 부른다. 이어, 비교 모듈(2)에서 측정치와 예측치를 비교하여 그 차이를 판단로직(3)에 입력하고 연속적으로 감시하면 계측기의 드리프트와 고장을 감지할 수 있게 된다.1 is a block diagram of a measuring instrument performance monitoring system. As shown in FIG. 1, when the measurement signal is input to the predictive model 1, the predictive model 1 outputs a predicted value of the model with respect to the input measurement value, which is called an auto-associative model. . Subsequently, the comparison module 2 compares the measured value with the predicted value and inputs the difference into the judgment logic 3 and continuously monitors the drift and the failure of the measuring instrument.

아르곤 내쇼날 래보래토리(Argonne National Laboratory)에서는 MSET(Multivariate State Estimation Technique)를 개발하여 미국 특허를 획득하였고, 스마트시그널 코포레이션(SmartSignal Corporation)사 및 익스퍼트 마이크로시스템스(Expert Microsystems)사가 이 특허를 상업적으로 사용할 수 있도록 제품화하였다. 익스퍼트 마이크로시스템스사는 미국내 Palo Verde, Limerick 1&2, TMI, V.C. Summer, Sequoyah 1, Salem 1 호기에서 MSET을 이용한 제품을 현장에 설치하여 계측채널 온라인 감시를 수행하고 있다. 스마트시그널 코포레이션(SmartSignal Corporation)사는 그 후 MSET에 대한 특허를 사용할 수 없게 되어 커널회귀법 기반의 계측기 성능감시기술을 개발하였다.Argonne National Laboratory developed the Multivariate State Estimation Technique (MSET) and obtained US patents. It was commercialized to be. Expert Microsystems Inc., Palo Verde, Limerick 1 & 2, TMI, V.C. In the Summer, Sequoyah 1 and Salem 1 units, products using MSET are installed on-site to monitor the measuring channel online. SmartSignal Corporation has since been unable to use patents on MSET and has developed instrument performance monitoring technology based on kernel regression.

계측기의 예측치를 계산하기 위해 선형 회귀분석법(Kernel Regression)을 가장 일반적으로 사용한다. 이 방법은 식 1과 같이 예측하고자 하는 계측기 신호와 선형적인 상관관계가 높은 다른 계측기 신호들을 선택하고, 예측치와 측정치의 오차 제곱합이 최소가 되도록 회귀계수를 구하는 방법이다.
The most commonly used is Knelnel Regression to calculate the instrument's predictions. This method selects other instrument signals that have a high linear correlation with the instrument signal to be predicted as shown in Equation 1, and calculates the regression coefficient so that the sum of the error squares of the predicted value and the measured value is minimized.

식 1Equation 1

Figure 112010066642414-pat00001

Figure 112010066642414-pat00001

선형 회귀분석법은 이미 알고 있는 종속변수와 독립변수로 회귀계수가 결정되면 미지의 종속변수에 대한 독립변수를 예측 할 수 있다. 기존 선형 회귀방법론은 종속변수들이 서로 선형적 연관성이 큰 경우, 다중 공선성의 문제가 발생하여 종속변수에 포함된 작은 노이즈에 대해서 독립변수는 커다란 오차가 발생한다. Linear regression analysis can predict independent variables for unknown dependent variables when the regression coefficients are determined by known and independent variables. In the conventional linear regression method, when the dependent variables are linearly related to each other, a problem of multiple collinearity occurs, and a large error occurs in the independent variable for the small noise included in the dependent variable.

커널 회귀법은 기존의 선형 회귀방법론이나 신경회로망과 같이 입력과 출력의 상관관계를 최적화하는 회귀계수나 가중치 같은 매개변수(Parameter)를 사용하지 않고, 선별된 측정 데이터를 메모리 벡터로 저장하고, 측정 신호세트에 대한 메모리벡터 내의 훈련데이터 세트의 유크리디안 거리로부터 커널의 가중치를 구하고, 이를 메모리벡터에 적용하여 계측기의 예측치를 구하는 비매개변수 회귀법(Non-parametric regression method) 이다. 커널 회귀법과 같은 비매개변수 회귀법은 입출력 관계가 비선형 상태인 모델과 신호잡음에 강인한 장점을 가진다. 다음은 기존 커널 회귀법의 계산절차이다.
Kernel regression does not use parameters such as regression coefficients or weights to optimize the correlation between inputs and outputs, like conventional linear regression or neural networks. It is a non-parametric regression method that calculates the weight of the kernel from the Euclidean distance of the training data set in the memory vector and applies it to the memory vector. Nonparametric regression methods, such as kernel regression, have robust advantages over models and signal noise where input / output relationships are nonlinear. The following is the calculation procedure of the existing kernel regression method.

단계 1 : 훈련 데이터를 행렬의 형태로 표시함.
Step 1: Display training data in the form of a matrix.

식 2Equation 2

Figure 112010066642414-pat00002

Figure 112010066642414-pat00002

여기서, X는 메모리 벡터에 저장되는 훈련데이터 행렬, n은 훈련데이터 개수, m은 계측기의 번호이다.
Here, X is the training data matrix stored in the memory vector, n is the number of training data, m is the number of the measuring instrument.

단계 2 : 첫 번째 계측기 신호세트에 대한 훈련데이터의 유크리디안 거리의 합을 구함.
Step 2: Sum the Euclidean distance of the training data for the first instrument signal set.

식 3Equation 3

Figure 112010066642414-pat00003
Figure 112010066642414-pat00003

여기서,

Figure 112010066642414-pat00004
는 훈련데이터,
Figure 112010066642414-pat00005
는 테스트데이터(or Query data), trn은 훈련데이터의 번호,
Figure 112010066642414-pat00006
는 계측기의 번호이다.
here,
Figure 112010066642414-pat00004
The training data,
Figure 112010066642414-pat00005
Is the test data, or trn is the number of training data,
Figure 112010066642414-pat00006
Is the number of the instrument.

단계 3 : 커널함수를 이용하여 각각의 훈련 데이터세트와 주어진 테스트 데이터 셋에 대한 가중치를 구함.
Step 3: Using the kernel function, find the weights for each training dataset and a given test dataset.

식 4Equation 4

Figure 112010066642414-pat00007

Figure 112010066642414-pat00007

여기서, 가중함수로 가우시언 커널을 이용하고 다음과 같이 정의된다.Here, the Gaussian kernel is used as the weighting function and is defined as follows.

Figure 112010066642414-pat00008

Figure 112010066642414-pat00008

단계 4 : 테스트 데이터의 예측치는 각각의 훈련데이터에 가중치를 곱한 후 가중치의 합을 나누어 구함.
Step 4: The test data estimate is obtained by multiplying each training data by the weight and dividing the sum of the weights.

식 5Equation 5

Figure 112010066642414-pat00009

Figure 112010066642414-pat00009

단계 5 : 전체 테스트 데이터에 대한 예측치를 구하기 위하여 단계 2부터 단계 4의 과정을 반복함.
Step 5: Repeat the process from Step 2 to Step 4 to get predictions for the entire test data.

상기의 AAKR(Auto-Associative Kernel Regression) 방법은 비선형 상태인 모델과 신호잡음에 강인한 장점을 가지고 있으나, 선별된 측정 데이터를 메모리 벡터로 저장하고 측정 신호세트에 대한 메모리벡터 내의 훈련데이터 세트의 유크리디안 거리로부터 커널의 가중치를 구하며 이를 메모리벡터에 적용하여 계측기의 예측치를 구하는 것으로 인해 출력 예측치의 분산이 커짐으로 인해 선형 회귀분석법에 비하여 정확도가 떨어진다.
The above-mentioned auto-associative kernel regression (AAKR) method has the advantages of being nonlinear and robust to signal noise.However, the selected measurement data is stored as a memory vector and the training of the training data set in the memory vector for the measurement signal set Since the kernel weight is calculated from the dian distance and applied to the memory vector to obtain the prediction value of the instrument, the variance of the output prediction value increases, which is less accurate than the linear regression method.

본 발명은 상기한 점을 감안하여 발명된 것으로, 발전소 데이터의 정규화, 퍼지 클러스터링, 주성분을 추출, 반응표면분석법을 이용한 FSVR모델 회귀식의 파라미터(커널대역폭 σ, 손실함수 ε, 페널티 C) 최적화와, 이를 이용한 FSVR 모델 구현 및 출력값 예측, 예측치의 역정규화 방법 및 GLRT에 의한 고장판별 등을 이용하여 발전소 시스템을 모델링한 후 계측기 신호예측 및 이상여부를 감시함으로써, 기존의 널리 사용되는 커널회귀법에 비해 예측치 계산의 정확도 향상 및 조기 고장검출 할 수 있도록 된 FSVR(Fuzzy Support Vector Regression)과 GLRT(Generalized Likelihood Ratio Test)를 이용한 발전소 계측기 성능감시 방법을 제공함에 그 목적이 있다
The present invention has been invented in view of the above, and the optimization of parameters (kernel bandwidth σ, loss function ε, penalty C) of FSVR model regression using normalization, fuzzy clustering, extraction of principal components, response surface analysis, and In addition, the FSVR model implementation and output value prediction, the denormalization method of the prediction value, and the failure determination by GLRT are used to model the power plant system and then monitor the signal signal prediction and abnormality of the instrument. The purpose of this paper is to provide the performance monitoring method of power plant instrumentation using Fuzzy Support Vector Regression (FSVR) and Generalized Likelihood Ratio Test (GLRT), which can improve the accuracy of prediction calculation and detect early failure.

상기 목적을 달성하기 위한 본 발명에 따른 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 시스템은, Power plant instrument performance monitoring system using the FSVR and GLRT according to the present invention for achieving the above object,

m개의 현장센서에 대해 시계열 현장신호를 인가받아 클러스터링부(12)로 보내는 입력부(11)와;an input unit 11 receiving time-series field signals for the m field sensors and sending them to the clustering unit 12;

상기 입력부(11)로부터 입력받은 시계열 현장신호에 대한 입력신호를 퍼지 클러스터링 방법을 이용하여 원하는 N개의 데이터 군집으로 나누는 클러스터링부(12);A clustering unit 12 dividing an input signal for the time series field signal received from the input unit 11 into N desired data clusters using a fuzzy clustering method;

상기 클러스터링부(12)로부터 인가받은 N개의 데이터 군집으로 나누어진 각 데이터 클러스터에 대해 주성분을 추출하는 PCA부(13);A PCA unit 13 for extracting a main component for each data cluster divided into N data clusters received from the clustering unit 12;

각 데이터 클러스터에 대해 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 계산하고, 모델을 훈련시키며, 반응표면 분석법을 이용해서 모델의 최적 파라미터를 구하고, 시험데이터에 대해 신호예측을 수행하는 FSVR부(14);An FSVR unit 14 for calculating fuzzy membership grade for each data cluster, training the model, obtaining optimal parameters of the model using response surface analysis, and performing signal prediction on the test data;

상기 FSVR부(14)에서 예측한 신호와 입력신호를 비교하여 차이를 구하는 비교연산부(15) 및;A comparison operation unit 15 for comparing a signal predicted by the FSVR unit 14 with an input signal to obtain a difference;

윈도우 사이즈의 최적화 및 관리한계선을 설정한 후, 비교연산부의 출력을 이용하여 GLRT의 검정통계량을 계산하여 센서의 드리프트 유무를 판별하는 GLRT부(16)를 구비하여 구성된 것을 특징으로 한다.After the optimization of the window size and the setting of the management limit line, the GLRT unit 16 for calculating the statistic of the GLRT using the output of the comparison operation unit to determine the drift of the sensor is characterized in that it is configured.

본 발명에 따른 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법은,Power plant instrument performance monitoring method using the FSVR and GLRT according to the present invention,

전체의 데이터 셋(X)을 행렬의 형태로 표시하고, 훈련용(Xtr), 최적화용(Xopt), 시험용(Xts)으로 삼분하는 제1단계와;A first step of displaying the entire data set (X) in the form of a matrix and subdividing it into training (Xtr), optimization (Xopt), and test (Xts);

상기 제1단계에서 행렬 형태로 표시된 전체의 데이터를 정규화하는 제2단계;A second step of normalizing the entire data displayed in matrix form in the first step;

상기 제2단계에서 정규화된 데이터 셋(Z)을 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)으로 삼분하는 제3단계;A third step of dividing the data set Z normalized in the second step into training (Ztr), optimization (Zopt), and test (Zts);

상기 제3단계에서 정규화되어 삼분된 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋(Z)의 주성분을 추출하는 제4단계;A fourth step of extracting a principal component of each data set (Ztr) for training (Ztr), optimization (Zopt), and test (Zts) normalized and divided in the third step;

FCM(Fuzzy C-Means) 클러스터링을 이용하여, 데이터 셋과 주성분을 원하는 개수 만큼의 데이터 군집으로 나누는 제5단계;A fifth step of dividing the data set and the principal components into as many data clusters as desired using Fuzzy C-Means (FCM) clustering;

반응표면분석법으로 최적화용 데이터(Zopt)의 각 클러스터 데이터(Zopt1, Zopt2)를 사용하여 최적화용 데이터(Zopt)의 예측치 오차를 최소화시키는 각 FSVR 모델의 최적 상수

Figure 112010066642414-pat00010
Figure 112010066642414-pat00011
를 구하는 제6단계;Each FSVR model of reacting with a surface analysis method, the optimization of each data cluster of data (Zopt) for (Z opt1, Z opt2) minimizes the prediction error of the optimization data (Zopt) for optimal constant
Figure 112010066642414-pat00010
And
Figure 112010066642414-pat00011
Obtaining a sixth step;

훈련용 데이터 Ztr의 각 클러스터에 대해 상기 제6단계에 따라 퍼지 멤버쉽 그레이드

Figure 112012012605337-pat00012
를 계산하는 제7단계;Fuzzy membership grade according to the sixth step for each cluster of training data Ztr
Figure 112012012605337-pat00012
Calculating a seventh step;

각 클러스터에 대한 훈련용 데이터와, 훈련용 데이터의 주성분벡터, 상기 제6단계에서 구한 최적 파라미터 및, 상기 제7단계에서 구한 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 이용하여 FSVR 모델을 훈련시킨 후, 시험용 데이터(Zts)의 각 클러스터 주성분벡터(Pts1, Pts2)를 입력시켜 출력 예측치(Zts1_hat과 Zts2_hat)를 구하는 제8단계; After training the FSVR model using the training data for each cluster, the principal component vector of the training data, the optimal parameters obtained in the sixth step, and the fuzzy membership grade obtained in the seventh step, An eighth step of obtaining output prediction values Zts1_hat and Zts2_hat by inputting each cluster principal component vector Pts1 and Pts2 of the test data Zts;

각 클러스터에 대한 예측치(Zts1_hat과 Zts2_hat)를 연결시켜 전체의 데이터에 대한 예측치(Zts_hat)를 구하는 제9단계;A ninth step of connecting prediction values Zts1_hat and Zts2_hat for each cluster to obtain prediction values Zts_hat for the entire data;

시험용 데이터에 대한 예측치

Figure 112010066642414-pat00013
를 원래의 시간 인덱스를 이용하여 시간순으로 분류하는 제10단계;Estimates for Experimental Data
Figure 112010066642414-pat00013
Classifying the data in chronological order using the original time index;

상기 제10단계에서 얻어진 정규화된 시험데이터의 예측치를 원래의 범위로 역정규화하여 원래 스케일의 각 센서에 대한 예측치

Figure 112010066642414-pat00014
를 식 45에 따라 구하는 제11단계 및;The normalized test data obtained in step 10 is normalized to the original range by denormalizing the predicted value of each sensor of the original scale.
Figure 112010066642414-pat00014
Eleventh step of obtaining according to equation 45 and;

예측치에 대한 잔차를 계산하고 GLRT를 이용하여 센서의 드리프트를 판별하는 제12단계를 갖추어 이루어진 것을 특징으로 한다.And a twelfth step of calculating a residual for the predicted value and determining a drift of the sensor using the GLRT.

또한 본 발명은, 상기 제1단계에서의 행렬이, 식Further, in the present invention, the matrix in the first step is

Figure 112010066642414-pat00015
Figure 112010066642414-pat00015

에 의해 표시되는 것을 특징으로 한다.It is characterized by being represented by.

또한 본 발명은, 상기 제2단계에서 정규화가, 식In addition, the present invention, in the second step the normalization,

Figure 112010066642414-pat00016
Figure 112010066642414-pat00016

(여기서, i = 1,2 … 3n)Where i = 1,2 ... 3n

에 의해 이루어지는 것을 특징으로 한다.It is characterized by consisting of.

또한 본 발명은, 정규화된 전체의 데이터 셋(Z)이, 식In the present invention, the normalized entire data set (Z) is

Figure 112010066642414-pat00017
Figure 112010066642414-pat00017

에 의해 표시되는 것을 특징으로 한다.It is characterized by being represented by.

또한 본 발명은, 정규화된 상기 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts) 데이터 셋이, 식In addition, the present invention, the normalized training (Ztr), optimization (Zopt), experimental (Zts) data set is a formula,

Figure 112010066642414-pat00018
Figure 112010066642414-pat00018

(단, 여기서 i = 0,1,2 … n-1)Where i = 0,1,2… n-1

에 의해 나누어지는 것을 특징으로 한다.It is characterized by being divided by.

또한 본 발명은, 상기 제4단계에서 주성분의 분산을 크기 순으로 나열하고, 백분율 분산 값이 가장 큰 주성분부터 시작하여 그 누적 합이 99.5% 이상 될 때까지의 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋의 주성분(Ptr, Pop, Pts)을 선택하여 주성분을 추출하는 것을 특징으로 한다.In addition, the present invention, in the fourth step, the variance of the main components in order of magnitude, starting from the main component having the largest percentage variance value until the cumulative sum is 99.5% or more (Ztr), for optimization ( Zopt), the main component (Ptr, Pop, Pts) of each data set of the test (Zts) is selected to extract the main component.

또한 본 발명은, 상기 주성분 추출이,In addition, the present invention, the main component extraction,

훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋에서 각 변수의 평균값을 빼고, 이를 A 매트릭스

Figure 112010066642414-pat00019
로 나타내는 제4-1단계와;In each data set of training (Ztr), optimization (Zopt), and testing (Zts), the mean value of each variable is subtracted.
Figure 112010066642414-pat00019
Step 4-1 represented by;

Figure 112010066642414-pat00020
에 따라
Figure 112010066642414-pat00021
의 고유치(eigenvalue)
Figure 112010066642414-pat00022
를 구하고, 식
Figure 112010066642414-pat00023
에 따라 내림차순으로 정리하며, 식
Figure 112010066642414-pat00024
에 따라 A의 특이치(singular value) s를 구하는 제4-2단계;expression
Figure 112010066642414-pat00020
Depending on the
Figure 112010066642414-pat00021
Eigenvalue of
Figure 112010066642414-pat00022
Finding the equation
Figure 112010066642414-pat00023
Sort in descending order according to the formula
Figure 112010066642414-pat00024
Step 4-2 to obtain a singular value s of A according to;

Figure 112010066642414-pat00025
로부터 고유치(eigenvalue)
Figure 112010066642414-pat00026
를 구하고, 구해진 고유치(eigenvalue)
Figure 112010066642414-pat00027
를 식
Figure 112010066642414-pat00028
에 대입하여 각 고유치(eigenvalue)
Figure 112010066642414-pat00029
에 대한 n×1인 고유벡터(eigenvector)
Figure 112010066642414-pat00030
를 구하는 것에 의해, n×n매트릭스인
Figure 112010066642414-pat00031
의 고유벡터(eigenvector)를 구하는 제4-3단계;
Figure 112010066642414-pat00025
Eigenvalue from
Figure 112010066642414-pat00026
And obtain the eigenvalue
Figure 112010066642414-pat00027
Expression
Figure 112010066642414-pat00028
Assigning to each eigenvalue
Figure 112010066642414-pat00029
Eigenvector of n × 1 for
Figure 112010066642414-pat00030
By finding n × n matrix
Figure 112010066642414-pat00031
A fourth to third step of obtaining an eigenvector;

Figure 112010066642414-pat00032
에 따라 각 주성분의 분산을 구하는 제4-4단계;expression
Figure 112010066642414-pat00032
4-4 to obtain the dispersion of each main component according to;

Figure 112010066642414-pat00033
및 식
Figure 112010066642414-pat00034
에 따라 각 주성분의 분산을 전체 주성분의 분산을 합한 값으로 나누어 백분율을 구하는 제4-5단계;expression
Figure 112010066642414-pat00033
And expression
Figure 112010066642414-pat00034
4-5 to obtain a percentage by dividing the variance of each main component by the sum of the variances of all the main components according to step 4-5;

백분율 분산

Figure 112010066642414-pat00035
이 가장 큰 것부터 누적 계산을 하여 원하는 백분율 분산(예컨대, 99.98%)까지의 주성분 p개를 선택하는 제4-6단계;Percent variance
Figure 112010066642414-pat00035
Steps 4-6 of performing the cumulative calculation from this largest one to selecting p principal components up to a desired percentage variance (eg, 99.98%);

주성분을 식

Figure 112010066642414-pat00036
에 따라 계산하여 추출하는 제4-7단계 및;Formulated the main ingredient
Figure 112010066642414-pat00036
4-7 to calculate and extract according to;

최적화용(Zopt), 시험용(Zts) 데이터 셋에 대해 상기 제4-1단계 내지 제4- 7단계에 의해 주성분을 추출하는 제4-8단계;를 갖추어 이루어진 것을 특징으로 한다.And a fourth to eighth step of extracting the main components by the fourth to the fourth to the seventh to the Zopt and Zts data sets.

또한 본 발명은, 상기 제4-6단계에서의 원하는 백분율 분산이 99.98%인 것을 특징으로 한다.In addition, the present invention is characterized in that the desired percentage dispersion in the above 4-6 step is 99.98%.

또한 본 발명은, 상기 제5단계가, 훈련데이터(Ztr)를 FCM(Fuzzy C-Means) 클러스터링 방법을 이용하여 두 그룹 Ztr1과 Ztr2으로 나누되, 생성된 각 데이터 그룹의 같은 인덱스를 이용하여 주성분(Ptr)도 같은 수의 클러스터(Ptr1, Ptr2)로 나누는 제5-1단계와;In addition, in the fifth step, the training data (Ztr) is divided into two groups Ztr1 and Ztr2 by using a Fuzzy C-Means (FCM) clustering method. Step 5-1 of dividing Ptr into the same number of clusters Ptr1 and Ptr2;

최적화용 데이터(Zopt)와 시험용 데이터(Zts)에 대해 상기 제5-1단계를 반복하여 정규화 데이터 클러스터(Zopt1, Zopt2, Zts1, Zts2)와 주성분 클러스터(Popt1, Popt2, Pts1, Pts2)로 각각 나누는 제5-2단계를 갖추어 이루어진 것을 특징으로 한다.Repeating step 5-1 for the optimization data (Zopt) and the test data (Zts), and dividing them into normalized data clusters (Zopt1, Zopt2, Zts1, Zts2) and principal component clusters (Popt1, Popt2, Pts1, Pts2), respectively. It is characterized by consisting of the 5-2 step.

또한 본 발명은, 상기 FCM(Fuzzy C-Means) 클러스터링 방법이,In addition, the present invention, the FCM (Fuzzy C-Means) clustering method,

입력신호 집합

Figure 112010066642414-pat00037
에 대한 클러스터 개수
Figure 112010066642414-pat00038
퍼지 계수 m(=2)를 결정하고, 소속행렬
Figure 112010066642414-pat00039
을 초기화하는 단계 1과;Set of input signals
Figure 112010066642414-pat00037
Cluster Count for
Figure 112010066642414-pat00038
Determine fuzzy coefficient m (= 2), and belong to
Figure 112010066642414-pat00039
Initiating step 1;

각각의 클러스터에 대한 중심 벡터 vi(r)과 멤버쉽 uik를 구하는 단계 2;Obtaining a center vector vi (r) and membership u ik for each cluster;

각각의 클러스터 중심과 데이터와의 거리를 계산하여 목적함수(Q)를 최소로 하는 새로운 소속행렬 U(r+1) 생성하는 단계 3 및;Calculating a distance between each cluster center and data to generate a new belonging matrix U (r + 1) which minimizes the objective function Q;

종료조건을 만족하면 종료하고, 종료조건을 만족하지 않으면 r=r+1로 정한 다음 상기 단계 2로 진행해서 상기 단계 2 내지 상기 단계 3을 반복하는 단계 4;를 갖추어 이루어진 것을 특징으로 한다.If the end condition is satisfied, the process ends. If the end condition is not satisfied, r = r + 1 is set. Then, the process proceeds to the step 2, and the steps 2 to 3 are repeated.

또한 본 발명은, 상기 단계 1이,In addition, the present invention, the step 1,

Figure 112010066642414-pat00040
expression
Figure 112010066642414-pat00040

(여기서, i는 클러스터의 번호, k는 패턴의 번호, r은 반복 횟수, N은 각 센서의 샘플된 데이터 개수, uik는 데이터 포인터 Xk가 그룹 i에 속하는 멤버쉽 크기임)(Where, i is the cluster number, k is the number of the pattern, r is the number of iterations, N is the number of sample data of each sensor, u ik is pointer data X k being the membership size belonging to the group i)

에 의해 수행되는 것을 특징으로 한다.Characterized in that performed by.

또한 본 발명은, 상기 단계 2가,In addition, the present invention, the above step 2,

Figure 112010066642414-pat00041
expression
Figure 112010066642414-pat00041

에 의해 수행되는 것을 특징으로 한다.Characterized in that performed by.

또한 본 발명은, 상기 단계 3에서의 목적함수(Q)가, In addition, the present invention, the objective function (Q) in the step 3,

Figure 112010066642414-pat00042
expression
Figure 112010066642414-pat00042

에 의해 나타내어지는 것을 특징으로 한다.It is characterized by represented by.

또한 본 발명은, 상기 단계 4에서의 종료조건이 식

Figure 112010066642414-pat00043
에 의해 나타내어지는 것을 특징으로 한다.In addition, the present invention, the termination condition in the step 4 is
Figure 112010066642414-pat00043
It is characterized by represented by.

또한 본 발명은, 각 FSVR 모델의 최적 상수

Figure 112010066642414-pat00044
Figure 112010066642414-pat00045
를 구하는 상기 제6단계가,In addition, the present invention, the optimum constant of each FSVR model
Figure 112010066642414-pat00044
And
Figure 112010066642414-pat00045
The sixth step of obtaining

훈련용 데이터의 첫 번째 클러스터(Ztr1)의 각 데이터 포인터와 다른 모든 입력데이터간의 유클리디언 거리를 이용하여 각 데이터 포인터의 포텐셜(P1)을 계산하고, 이를 이용하여 퍼지 멤버쉽 그레이드(fuzzy membership grade)

Figure 112010066642414-pat00046
을 계산하는 제6-1단계와;The potential (P 1 ) of each data pointer is calculated using the Euclidean distance between each data pointer of the first cluster of training data (Ztr1) and all other input data, and the fuzzy membership grade is used. )
Figure 112010066642414-pat00046
6-1 step of calculating the;

클러스트 1에 대한 시험점 중 첫 번째 시험점(v 1 , v 2 , v 3 )을 선택하는 제6-2단계;Step 6-2 selecting the first test point ( v 1 , v 2 , v 3 ) of the test point for the cluster 1;

선택된 시험점에 대해 Ztr1의 첫 번째 신호(Ztr1-1),

Figure 112010066642414-pat00047
및 Ptr1을 입력한 후, FSVR 모델을 훈련시켜 svi(support vector index), w 1 (SV(Support Vector)의 가중치(weight)) 및 b 1 (bias)를 구하는 제6-3단계;The first signal of Ztr1 (Ztr1-1) for the selected test point,
Figure 112010066642414-pat00047
And step 6-3, after inputting Ptr1, training the FSVR model to obtain svi (support vector index), w 1 (weight of SV) and b 1 (bias);

Popt 1과 svi를 이용하여 방사형 기저 함수(radial basis function)(Kopt1)를 구하는 제6-4단계;Step 6-4 by using a Popt svi 1 and to obtain a radial basis function (radial basis function) (Kopt1) ;

최적화용 데이터 Zopt1의 첫 번째 계측기 신호에 대한 예측치를 구하는 제6-5단계;6-5 to obtain a prediction value for the first instrument signal of the optimization data Zopt1;

Ztr1의 나머지 다른 계측기 신호에 대해 상기 제6-3단계~상기 제6-5단계를 반복 수행한 후, 예측 매트릭스 출력

Figure 112010066642414-pat00048
을 얻는 제6-6단계;After repeating steps 6-3 to 6-5 with respect to the other instrument signals of Ztr1, a predictive matrix output is performed.
Figure 112010066642414-pat00048
Step 6-6 to obtain;

최적화용 데이터(Zopt1)의 측정치와 예측치의 잔차

Figure 112010066642414-pat00049
에 대한 RMS(Root mean square)을 구하고, 이를 저장하는 제6-7단계;Residual of measured and predicted values of optimization data (Zopt1)
Figure 112010066642414-pat00049
Calculating a root mean square (RMS) for each of the sixth and sixth steps of storing the root mean square (RMS);

다른 시험점에 대해 상기 제6-2단계~제6-7단계를 반복 수행하고, 잔차에 대한 RMS 값을 저장하는 제6-8단계;Steps 6-8 for repeating steps 6-2 to 6-7 for other test points and storing RMS values for the residuals;

최적화용 데이터 Zopt1를 이용해서 구한 잔차의 RMS값을 전체 입력신호 개수에 대해 평균값(MSE)(수학식 38)을 계산하고, 평균값에 대한 자연 로그(natural log) 값을 구하는 제6-9단계;Steps 6-9 of calculating an average value (MSE) (Equation 38) of the RMS values of the residuals obtained using the optimization data Zopt1 with respect to the total number of input signals, and calculating a natural log value with respect to the average values;

반응표면분석법을 이용해서 클러스터 1에 대한 ln{MSE}를 최소화시키는 FSVR 모델의 최적상수

Figure 112010066642414-pat00050
를 구하는 제6-10단계 및; Optimal Constants of FSVR Model Using Minimized ln {MSE} for Cluster 1 Using Response Surface Methodology
Figure 112010066642414-pat00050
Step 6-10 to obtain and;

클러스터 2에 대해 제6-1단계~제6-10단계를 반복 수행하여 식 35에 따라 클러스터 2에 대한 FSVR 모델의 최적상수

Figure 112010066642414-pat00051
를 구하는 제6-11단계;를 갖추어 이루어진 것을 특징으로 한다.Repeat steps 6-1 to 6-10 for cluster 2 and use the FSVR model constant for cluster 2 according to equation 35.
Figure 112010066642414-pat00051
Step 6-11 to obtain; characterized in that made up.

또한 본 발명은, 각 데이터 포인터의 포텐셜(P1)이, 식In the present invention, the potential P 1 of each data pointer is represented by an equation:

Figure 112010066642414-pat00052
Figure 112010066642414-pat00052

(여기서,

Figure 112010066642414-pat00053
: 한 클러스터 내의 데이터 개수,
Figure 112010066642414-pat00054
: 첫 번째 클러스터(Ztr1)의 반경)(here,
Figure 112010066642414-pat00053
= Number of data in a cluster,
Figure 112010066642414-pat00054
: Radius of first cluster (Ztr1)

Figure 112010066642414-pat00055
Figure 112010066642414-pat00055

에 의해 계산되는 것을 특징으로 한다.It is characterized by.

또한 본 발명은, 방사형 기저 함수(radial basis function)(Kopt1)를 구하는 제6-4단계가, 식In addition, in the present invention, steps 6-4 of obtaining a radial basis function Kopt1 are given by

Figure 112010066642414-pat00056
Figure 112010066642414-pat00056

(여기서,

Figure 112010066642414-pat00057
: Zopt1의 주성분벡터, : Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터)(here,
Figure 112010066642414-pat00057
: Principal component vector of Zopt1, : Principal component vector with index of svi in Ptr1)

에 의해 구해지는 것을 특징으로 한다. It is characterized by obtaining by.

또한 본 발명은, 최적화용 데이터 Zopt1의 첫 번째 계측기 신호에 대한 예측치를 구하는 상기 제6-5단계가, 식In addition, the present invention, the above 6-5 step to obtain the prediction value for the first instrument signal of the optimization data Zopt1,

Figure 112010066642414-pat00059
Figure 112010066642414-pat00059

(여기서,

Figure 112010066642414-pat00060
: 베타(beta) 벡터 중에서 svi의 인덱스를 갖는 베타(beta) 벡터)(here,
Figure 112010066642414-pat00060
: Beta vector with index of svi among beta vector)

에 의해 구하는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 상기 예측 매트릭스 출력

Figure 112010066642414-pat00061
을 얻는 제6-6단계가, 식In addition, the present invention, the prediction matrix output
Figure 112010066642414-pat00061
The sixth to sixth steps of

Figure 112010066642414-pat00062
Figure 112010066642414-pat00062

에 의해 얻어지는 것을 특징으로 한다.It is characterized by obtained by.

또한 본 발명은, 상기 제6-8단계에서 중심합성계획(CCD)의 원점에 대해서는 시험을 세 번(시험점 15, 16,17) 수행하되, 15번째 시험에는 Zopt 전체를 사용하고, 16번째 시험에는 Zopt의 1/2, 17번째 시험에는 Zopt의 나머지 1/2에 대해 시험을 수행하는 것을 특징으로 한다.In addition, the present invention, in the sixth to eighth step of the central synthesis plan (CCD) to the test three times (test points 15, 16, 17), but the 15th test using the entire Zopt, 16th The test is characterized in that the test is carried out on one half of Zopt and the other half of Zopt on the seventeenth test.

또한 본 발명은, 상기 단계6-9에서의 평균값(MSE)을, 식In addition, the present invention, the average value (MSE) in the above step 6-9,

Figure 112010066642414-pat00063
Figure 112010066642414-pat00063

에 의해 계산하는 것을 특징으로 한다.It is characterized by calculating by.

또한 본 발명은, 클러스터 2에 대한 FSVR 모델의 최적상수

Figure 112010066642414-pat00064
를 구하는 상기 제6-11단계가, 식The present invention also provides an optimal constant for the FSVR model for cluster 2.
Figure 112010066642414-pat00064
The sixth to sixth steps to find the equation,

Figure 112010066642414-pat00065
Figure 112010066642414-pat00065

에 의해 구해지는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 상기 FSVR 모델의 최적상수가,

Figure 112010066642414-pat00066
=(2.0, 0.0005, 10)이고,
Figure 112010066642414-pat00067
=(1.1404, 0.0005, 5.247)인 것을 특징으로 한다.In addition, the present invention, the optimum constant of the FSVR model,
Figure 112010066642414-pat00066
= (2.0, 0.0005, 10)
Figure 112010066642414-pat00067
= (1.1404, 0.0005, 5.247).

또한 본 발명은, 상기 제6-10단계에서의 반응표면 분석법을 이용하여 FSVR 모델의 최적 상수를 구하는 방법이,In another aspect, the present invention, the method for obtaining the optimum constant of the FSVR model using the response surface analysis method in step 6-10,

FSVR 모델파라미터인 시그마(sigma)(σ), 입실론(epsilon)(ε), C를 각각

Figure 112010066642414-pat00068
로 두는 제6-10-1단계와;Sigma (σ), epsilon (ε), and C, respectively, are the FSVR model parameters.
Figure 112010066642414-pat00068
Step 6-10-1;

Figure 112010066642414-pat00069
에 대한 탐색범위를 각각 정하는 제6-10-2단계;
Figure 112010066642414-pat00069
6-10-2 to determine a search range for each;

탐색범위의 상한과 하한을 각각

Figure 112010066642414-pat00070
Figure 112010066642414-pat00071
로 두고, 모델 파라미터를 표준화하는 제6-10-3단계;The upper and lower bounds of the search range
Figure 112010066642414-pat00070
Wow
Figure 112010066642414-pat00071
6-10-3, which standardizes the model parameters.

중심합성계획을 이용해서 표준화된 모델파라미터

Figure 112010066642414-pat00072
의 탐색범위에 대응하여 모델성능의 평가지점을 설정하는 제6-10-4단계;Standardized Model Parameters Using Central Synthesis Plan
Figure 112010066642414-pat00072
A step 6-10-4 of setting an evaluation point of the model performance in response to the search range of;

실험오차의 크기를 추정하고, 축점의 좌표 α를 식 α = [요인실험점의 수]1/4에 의해 정의하는 제6-10-5단계;6-10-5 steps of estimating the magnitude of the experimental error and defining the coordinate α of the axial point by the equation α = [number of factor test points] 1/4 ;

중심합성계획에 의한(

Figure 112010066642414-pat00073
)의 실험점에 따라 모델파라미터
Figure 112010066642414-pat00074
의 값을 정하고, 이어 중심합성계획에 의한 (
Figure 112010066642414-pat00075
)의 실험점을 얻으며, 중심합성계획에 의한 (
Figure 112010066642414-pat00076
)의 실험점 값을 모델파라미터로 이용하여 FSVR 모델링 실험을 수행하는 제6-10-6단계;By central composition plan
Figure 112010066642414-pat00073
Model parameters according to the experimental point of
Figure 112010066642414-pat00074
After determining the value of, follow the central synthesis plan (
Figure 112010066642414-pat00075
Test points of) and by the central synthesis plan
Figure 112010066642414-pat00076
Step 6-10-6 of performing an FSVR modeling experiment using the experimental point value of n) as a model parameter;

중심합성계획에 의한(

Figure 112010066642414-pat00077
)의 실험점에서 Ztr과 Ptr, 퍼지 멤버쉽 μ을 이용하여 FSVR모델의 베타(beta) 벡터와 바이어스(bias) 상수를 각각 얻는 제6-10-7단계;By central composition plan
Figure 112010066642414-pat00077
6-10-7 obtaining the beta vector and the bias constant of the FSVR model using Ztr, Ptr and fuzzy membership μ at the experimental points of

각 모델의 정확도를 평가하기 위해 데이터 셋 Pop를 m개의 AAFSVR에 입력하여 최적화 데이터의 정규화된 예측치

Figure 112010066642414-pat00078
을 구하고, 이로부터 출력 모델의 정확도인 MSE를 식 38에 따라 계산하는 제6-10-8단계;To estimate the accuracy of each model, the data set Pop is input into m AAFSVRs to normalize the predictions of the optimization data.
Figure 112010066642414-pat00078
6-10-8 calculating the MSE, which is the accuracy of the output model, from Equation 38;

모델파라미터

Figure 112010066642414-pat00079
와 log(MSE) 간의 반응표면식을 추정하는 제6-10-9단계;Model Parameter
Figure 112010066642414-pat00079
Steps 6-10-9 of estimating a response surface equation between the log and the log (MSE);

추정된 반응표면식을 이용하여 log(MSE)를 최소화하는

Figure 112010066642414-pat00080
의 최적조건
Figure 112010066642414-pat00081
을 구하는 제6-10-10단계 및;Minimize log (MSE) using estimated response surface
Figure 112010066642414-pat00080
Optimum condition of
Figure 112010066642414-pat00081
6-10-10 to obtain;

최적조건

Figure 112010066642414-pat00082
을 원래의 단위로 환산하는 제6-10-11단계;를 갖추어 이루어진 것을 특징으로 한다.Optimal condition
Figure 112010066642414-pat00082
It is characterized by consisting of; 6-10-11 step to convert to the original unit.

또한 본 발명은, 상기 제6-10-2단계에서의 클러스터 1에 대한 탐색범위를

Figure 112010066642414-pat00083
: 0.2~2.0,
Figure 112010066642414-pat00084
: 0.0005~0.05,
Figure 112010066642414-pat00085
: 0.1~10.0이고, 클러스터 2에 대한 탐색범위가
Figure 112010066642414-pat00086
: 0.3~1.9,
Figure 112010066642414-pat00087
: 0.0001~0.0009,
Figure 112010066642414-pat00088
: 0.1~10로 설정하는 것을 특징으로 한다.In addition, the present invention, the search range for the cluster 1 in the step 6-10-2
Figure 112010066642414-pat00083
: 0.2∼2.0,
Figure 112010066642414-pat00084
: 0.0005 ~ 0.05,
Figure 112010066642414-pat00085
: 0.1 to 10.0, and the search range for cluster 2 is
Figure 112010066642414-pat00086
0.3 ~ 1.9,
Figure 112010066642414-pat00087
: 0.0001 ~ 0.0009,
Figure 112010066642414-pat00088
: It is characterized by setting from 0.1 to 10.

또한 본 발명은, 상기 제6-10-3단계에서의 모델 파라미터의 표준화가, 식In addition, the present invention, the normalization of the model parameters in the above 6-10-3 step,

Figure 112010066642414-pat00089
Figure 112010066642414-pat00089

에 의해 이루어지는 것을 특징으로 한다.It is characterized by consisting of.

또한 본 발명은, 상기 제6-10-8단계에서 출력 모델의 정확도인 MSE를, 식In addition, the present invention, the MSE which is the accuracy of the output model in step 6-10-8,

Figure 112010066642414-pat00090
Figure 112010066642414-pat00090

(여기서,

Figure 112010066642414-pat00091
는 Pop 중에 센서
Figure 112010066642414-pat00092
Figure 112010066642414-pat00093
번째 입력데이터를 의미하며,
Figure 112010066642414-pat00094
는 모델에 의한 추정치임)(here,
Figure 112010066642414-pat00091
Pop out of the sensor
Figure 112010066642414-pat00092
of
Figure 112010066642414-pat00093
The second input data,
Figure 112010066642414-pat00094
Is an estimate by model)

에 의해 계산하는 것을 특징으로 한다.It is characterized by calculating by.

또한 본 발명은, 반응표면이, 식In the present invention, the reaction surface is a formula

Figure 112010066642414-pat00095
Figure 112010066642414-pat00095

(e는 랜덤오차를 의미함)( e means random error)

에 의해 2차 모형을 갖고,By taking a quadratic model,

추정된 반응표면이, 식The estimated response surface is

Figure 112010066642414-pat00096
Figure 112010066642414-pat00096

에 의해 표현되는 것을 특징으로 한다.It is characterized by represented by.

또한 본 발명은, 상기 단계 제6-10-10단계에서의

Figure 112010066642414-pat00097
의 최적조건이, 식In addition, the present invention, in the step 6-10-10
Figure 112010066642414-pat00097
The optimal condition of

Figure 112010066642414-pat00098
Figure 112010066642414-pat00098

에 의한 편미분을 통해 구해지는 것을 특징으로 한다.It is characterized in that obtained through the partial differential.

또한 본 발명은, 클러스터 #1에 대해 얻어진 반응표면의 경우 최적조건이

Figure 112010066642414-pat00099
= (0,0.04525,0)이고, 클러스터 #2에 대해 얻어진 반응표면의 경우 최적조건이
Figure 112010066642414-pat00100
= (1.1364,-0.0005,5.2487)인 것을 특징으로 한다.In addition, in the present invention, the optimum conditions for the reaction surface obtained for cluster # 1
Figure 112010066642414-pat00099
= (0,0.04525,0) and the optimal conditions for the response surface obtained for cluster # 2
Figure 112010066642414-pat00100
= (1.1364, -0.0005,5.2487).

또한 본 발명은, 상기 제6-10-11단계에서 최적조건

Figure 112010066642414-pat00101
을 원래의 단위로 환산하는 것이, 식In addition, the present invention, the optimum conditions in the above step 6-10-11
Figure 112010066642414-pat00101
Is converted into the original unit,

Figure 112010066642414-pat00102
Figure 112010066642414-pat00102

에 의해 이루어지는 것을 특징으로 한다.It is characterized by consisting of.

또한 본 발명은, 클러스터 #1에 대한 최적 파라미터가 각각

Figure 112010066642414-pat00103
,
Figure 112010066642414-pat00104
,
Figure 112010066642414-pat00105
로 되고, 이 조건에서 예측된 log(MSE)가 -5.3249이며,In addition, the present invention, the optimal parameters for cluster # 1
Figure 112010066642414-pat00103
,
Figure 112010066642414-pat00104
,
Figure 112010066642414-pat00105
The estimated log (MSE) under this condition is -5.3249,

클러스터 #2에 대한 최적 파라미터가 각각

Figure 112010066642414-pat00106
,
Figure 112010066642414-pat00107
,
Figure 112010066642414-pat00108
로 되고며, 이 조건에서 예측된 log(MSE)가 -5.4170인 것을 특징으로 한다.Each of the best parameters for cluster # 2
Figure 112010066642414-pat00106
,
Figure 112010066642414-pat00107
,
Figure 112010066642414-pat00108
In this condition, the predicted log (MSE) is characterized in that -5.4170.

또한 본 발명은, 출력 예측치(Zts1_hat과 Zts2_hat)를 구하는 상기 제8단계가,In addition, the eighth step of obtaining the output prediction values (Zts1_hat and Zts2_hat),

상기 제6단계에서 구한 FSVR 모델의 3개의 최적상수

Figure 112010066642414-pat00109
와, 훈련데이터의 주성분(Ptr1) 및, 훈련데이터의 첫 번째 신호(Ztr1의 제1열)를 입력으로 하여 2차 계획(quadratic programming) 기법을 이용하여 최적화 문제를 풀고, 라그랑지 승수의 차이인 w 1 (n×1)와 바이어스 상수 b 1 을 구하여 FSVR1의 모델을 생성하는 제8-1단계와;Three optimal constants of the FSVR model obtained in the sixth step
Figure 112010066642414-pat00109
Then, using the quadratic programming technique with the main component Ptr1 of training data and the first signal of training data (first column of Ztr1), the optimization problem is solved. step 8-1 of generating a model of FSVR 1 by obtaining w 1 (n × 1) and a bias constant b 1 ;

2번부터 m번째의 계측기 신호에 대해 상기 제8-1단계를 반복 수행하여

Figure 112010066642414-pat00110
Figure 112010066642414-pat00111
을 구하는 것에 의해 FSVR2~FSVRm의 모델을 생성하는 제8-2단계;Repeat step 8-1 for the second to m th measurement signals
Figure 112010066642414-pat00110
and
Figure 112010066642414-pat00111
Step 8-2 to generate a model of FSVR 2 ~ FSVR m by finding the;

훈련데이터의 주성분(Ptr1), 시험데이터의 주성분(Pts1)을 이용하여 가우시언 방사형 기저 함수(Gaussian Radial Basis Function)의 커널함수(Kts1 (n×n))를 구하고, 상기 제8-1단계 및 상기 제8-2단계에서 구한 FSVR 모델의 Support vector weight w1 , 바이어스 상수 b1 을 이용하여 FSVR1의 출력을 구하는 제8-3단계 및;The kernel function K ts1 (n × n) of the Gaussian Radial Basis Function is obtained using the principal component Ptr1 of the training data and the principal component Pts1 of the test data, and step 8-1. And 8-8-3 obtaining an output of the FSVR 1 using the support vector weight w 1 and the bias constant b 1 of the FSVR model obtained in the 8-8 step;

2번부터 m번째의 센서에 대해 상기 제8-3단계를 반복 수행하여 FSVR2~FSVRm의 출력인 모델 예측치를 구하는 제8-4단계;를 갖추어 이루어진 것을 특징으로 한다.And performing steps 8-4 for the second to m th sensors to obtain model prediction values output from FSVR 2 to FSVR m .

또한 본 발명은, 시험용 데이터 Zts1에 대한 예측치가, 식In the present invention, the prediction value for the test data Zts1 is expressed by

Figure 112010066642414-pat00112
Figure 112010066642414-pat00112

(

Figure 112010066642414-pat00113
: Zts1의 주성분벡터,(
Figure 112010066642414-pat00113
: Principal component vector of Zts1,

Figure 112010066642414-pat00114
: Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터)
Figure 112010066642414-pat00114
: Principal component vector with index of svi in Ptr1)

Figure 112010066642414-pat00115
Figure 112010066642414-pat00115

(

Figure 112010066642414-pat00116
: 클러스터1의 i번째 센서에 대한 SV(Support vector)의 (
Figure 112010066642414-pat00116
: The support vector (SV) of the i th sensor of cluster 1

가중치(weight)              Weight

Figure 112010066642414-pat00117
: 클러스터1의 i번째 센서에 대한 바이어스(bias))
Figure 112010066642414-pat00117
: Bias for the i th sensor of cluster 1)

Figure 112010066642414-pat00118
Figure 112010066642414-pat00118

에 의해 구해지는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 시험용 데이터 Zts2에 대한 예측치가, 식In the present invention, the prediction value for the test data Zts2 is

Figure 112010066642414-pat00119
Figure 112010066642414-pat00119

(

Figure 112010066642414-pat00120
: 클러스터2의 i번째 센서에 대한 SV(Support vector)의(
Figure 112010066642414-pat00120
: The support vector (SV) of the i th sensor of cluster 2

가중치(weight)          Weight

Figure 112010066642414-pat00121
: 클러스터2의 i번째 센서에 대한 바이어스(bias))
Figure 112010066642414-pat00121
: Bias for the i-th sensor of cluster 2)

Figure 112010066642414-pat00122
Figure 112010066642414-pat00122

에 의해 구해지는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 상기 제9단계에서 전체의 데이터에 대한 예측치(Zts_hat)가, 식In the present invention, the predicted value (Zts_hat) for the entire data in the ninth step is:

Figure 112010066642414-pat00123
Figure 112010066642414-pat00123

에 의해 구해지는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 상기 제11단계에서 원래 스케일의 각 센서에 대한 예측치

Figure 112010066642414-pat00124
를, 식 In another aspect, the present invention, the prediction value for each sensor of the original scale in the eleventh step
Figure 112010066642414-pat00124
Expression

Figure 112010066642414-pat00125
Figure 112010066642414-pat00125

에 의해 구하는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 센서의 드리프트를 판별하는 제12단계가,In addition, the present invention, the twelfth step of determining the drift of the sensor,

센서의 정기교정 후 정상적으로 동작할 때, 예측 프로그램을 수행하여 각 센서에 대한 예측치와 실측치와의 잔차를 계산하고, 잔차에 대한 평균값과 표준편차(σ)를 계산하는 제12-1단계와;A 12-1 step of performing a prediction program to calculate a residual between the predicted value and the measured value for each sensor, and calculating an average value and a standard deviation (σ) of the residual when the sensor operates normally after regular calibration of the sensor;

계측기가 정상적일 경우의 잔차를 이용하여 윈도우의 크기(w)를 최소부터 최대까지 5씩 증가시키면서 각 윈도우 크기에 대한 GT 통계량을 계산하는 제12-2단계;Calculating a GT statistic for each window size by increasing the window size w by 5 from minimum to maximum using the residual when the meter is normal;

GT 통계량 계산을 위해 최적 윈도우 크기 w를 이용하여 검사하고자 하는 잔차에 대해 상기 식

Figure 112010066642414-pat00126
과, 식
Figure 112010066642414-pat00127
및, 식
Figure 112010066642414-pat00128
를 이용하여, 윈도우를 1time step씩 이동하여 가면서 GLR t (k)(단, k=1, 2, ..., w)GT를 계산하는 제12-3단계; GT The equation for the residual to be examined using the optimal window size w to calculate the statistics
Figure 112010066642414-pat00126
And expression
Figure 112010066642414-pat00127
And, expression
Figure 112010066642414-pat00128
Using step 12-3 to calculate the GLR t (k) (where k = 1, 2, ..., w) and GT while moving the window by 1 time step;

상기 제12-1단계에서 계산한 정상적인 경우의 잔차의 평균 및 표준편차 값과 동일한 평균 및 표준편차 갖는 정규분포의 동일 개수 무작위 숫자를 생성하여 GT를 구하고, 이를 1000회 반복하여 GT의 최대값을 취하여 관리한계선(UCL : Upper Control Limit)으로 설정하는 제12-4단계 및; GT is obtained by generating the same number random numbers of normal distributions having the same mean and standard deviation as the mean and standard deviation of the residuals in the normal case calculated in step 12-1, and repeating 1000 times to obtain the maximum GT . Step 12-4, taking the upper control limit (UCL) taken;

GT가 관리한계선(UCL)을 이탈하면 센서에 드리프트가 발생한 것으로 판정하고, 이탈하지 않으면 센서가 정상적인 것으로 판정하여 드리프트 유무 판정하는 제12-5단계;를 갖추어 이루어진 것을 특징으로 한다. It is determined that the drift has occurred in the sensor when the GT deviates from the control limit line (UCL), and if the deviation does not deviate, steps 12-5 of determining whether the sensor is normal and determining whether there is a drift;

또한 본 발명은, 상기 제12-1단계에서의 입력값과 예측치의 차이인 모델 잔차(R)가, 식In the present invention, the model residual (R), which is the difference between the input value and the predicted value in the step 12-1, is expressed by the equation:

Figure 112010066642414-pat00129
Figure 112010066642414-pat00129

에 의해 구해지는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 상기 제12-2단계에서 정상일 경우에 대한 잔차의 평균값이 -0.00096347이고, 표준편차(σ)가 0.0069인 것을 특징으로 한다.In addition, the present invention is characterized in that the average value of the residual for the normal case in step 12-2 is -0.00096347, and the standard deviation (σ) is 0.0069.

또한 본 발명은, 상기 제12-2단계에서 시점 t에서의 GLR(Generalized Likelihood Ratio)이, 식In addition, the present invention, Generalized Likelihood Ratio (GLR) at the time point t in step 12-2,

Figure 112010066642414-pat00130
Figure 112010066642414-pat00130

(

Figure 112010066642414-pat00131
는 최근 윈도우 크기
Figure 112010066642414-pat00132
개의 데이터로 구한 평균을 의미함)(
Figure 112010066642414-pat00131
Recent window size
Figure 112010066642414-pat00132
Means of data)

에 의해 구해지고,Saved by

Figure 112010066642414-pat00133
가, 식
Figure 112010066642414-pat00133
Autumn

Figure 112010066642414-pat00134
Figure 112010066642414-pat00134

에 의해 표현되는 것을 특징으로 한다.It is characterized by represented by.

또한 본 발명은, 제12-2단계에서 GLRT의 검정통계량 GT가 시점 t에서 얻어지는 GLR 중의 윈도우 크기 내에서 가장 큰 것으로 정의하고, 식In addition, the present invention, in step 12-2, the GLRT test statistic GT is defined as the largest within the window size in the GLR obtained at the time point t ,

Figure 112010066642414-pat00135
Figure 112010066642414-pat00135

(단,

Figure 112010066642414-pat00136
는 최근 k개의 데이터로 시점 t에서 구한 평균을 나타냄)(only,
Figure 112010066642414-pat00136
Denotes the mean of the most recent k data at time t )

에 의해 구하는 것을 특징으로 한다.It is characterized by obtaining by.

또한 본 발명은, 각 윈도우 크기에서의 GT 통계량과 최대 윈도우에서의 GT 통계량과의 MSE 차이를, 식In another aspect, the present invention, the MSE differences between the GT statistic in each window size GT statistic and the maximum window of the formula

Figure 112010066642414-pat00137
Figure 112010066642414-pat00137

에 의해 구하고,Saved by

MSE ( GT i )의 감소가 둔화되는 점에서 최적 윈도우크기를 설정하는 것을 특징으로 한다. It is characterized by setting the optimum window size in that the decrease of MSE ( GT i ) is slowed down.

상기 제12-4단계에서의 관리한계선(UCL)을 UCL=28.25로 설정하는 것을 특징으로 한다.The control limit line UCL in step 12-4 is set to UCL = 28.25.

또한 본 발명은, 상기 제12-5단계에서 분석에 사용되는 센서 데이터가,In addition, the present invention, the sensor data used in the analysis in step 12-5,

원자로 출력(%)과, 가압기 수위(%), 증기발생기 증기 유량(Mkg/hr), 증기발생기 협역 수위 데이터(%), 증기발생기 압력 데이터(Kg/cm2), 증기발생기 광역 수위 데이터(%), 증기발생기 주급수 유량 데이터(Mkg/hr), 터빈 출력 데이터(MWe), 원자로 냉각재 충전 유량 데이터(m3/hr), 잔열제거 유량 데이터(m3/hr), 원자로 상부 냉각재 온도 데이터(℃)인 것을 특징으로 한다.Reactor output (%), pressurizer level (%), steam generator steam flow rate (Mkg / hr), steam generator narrow water level data (%), steam generator pressure data (Kg / cm 2 ), steam generator wide water level data (% ), Steam generator main feed water flow data (Mkg / hr), turbine output data (MWe), reactor coolant fill flow data (m 3 / hr), residual heat removal flow rate data (m 3 / hr), reactor top coolant temperature data ( It is characterized by the above).

또한 본 발명은, 상기 제12-5단계에서 계측기에 대한 정확도가, 식In addition, the present invention, the accuracy of the instrument in step 12-5,

Figure 112010066642414-pat00138
Figure 112010066642414-pat00138

(여기서, N : 시험데이터의 수,

Figure 112010066642414-pat00139
: i번째 시험데이터에 대한 모델의 추정치,
Figure 112010066642414-pat00140
: i번째 시험데이터의 측정치)Where N is the number of test data,
Figure 112010066642414-pat00139
: estimate of the model for the i test data,
Figure 112010066642414-pat00140
: measured value of the i-th test data)

에 의해 나타내어지는 것을 특징으로 한다.
It is characterized by represented by.

본 발명에 의하면, 원자력발전소 안전감시채널에 이용되는 계측기의 성능을 운전 중인 상태에서 온라인으로 감시하는 것에 의해, 계측기의 오작동을 실시간으로 감시하여 계측기 신뢰도를 향상시키고, 원자력발전소의 계측기 교정주기를 현재 연료교체 주기 18개월에서 최대 8년으로 늘림으로써 교정비용과 방사선 구역에서의 교정 작업종사자의 방사선 피폭을 저감하며, 불필요한 교정횟수를 줄임으로써 오교정에 의한 발전소 불시정지를 예방하고, 발전소 예방 정지기간을 단축하여 발전소 이용률을 증진할 수 있게 된다.According to the present invention, by monitoring the performance of the measuring instrument used in the nuclear power plant safety monitoring channel online while operating, the malfunction of the measuring instrument can be monitored in real time to improve the reliability of the measuring instrument, and the instrument calibration cycle of the nuclear power plant is Increase the fuel replacement cycle from 18 months to a maximum of 8 years to reduce calibration costs and radiation exposure of calibration workers in the radiation zone, and to prevent unnecessary downtime by reducing the number of unnecessary calibrations, and to prevent plant outages. By shortening the power consumption, it is possible to increase the utilization rate of the power plant.

또한, 퍼지 클러스터링, 주성분 분석법, 반응표면분석법을 이용한 최적화, FSVR 회귀 모델링 기법을 이용하여 기존 커널회귀법에 비해 예측치 계산의 정확도를 향상시키고, GLRT를 이용하여 계측기의 고장발생 여부를 조기에 감지할 수 있게 된다.Also, fuzzy clustering, principal component analysis, response surface analysis, and FSVR regression modeling can be used to improve the accuracy of prediction calculations compared to conventional kernel regression, and GLRT can be used to detect an early failure of the instrument. Will be.

즉, 본 발명에 따른 주성분분석(Principal Component Analysis), FSVR(Fuzzy Support Vector Regression) 및 GLRT 방법을 이용한 발전소 계측기 성능감시용 예측방법은, 발전소 데이터의 정규화, 주성분 추출, 데이터 클러스터링, 반응표면분석법을 이용한 FSVR모델 회귀식의 파라미터(커널대역폭 σ, 손실함수 ε, 페널티 C) 최적화, FSVR을 이용한 발전소 시스템 모델 구현, 출력 예측치의 역정규화 방법을 이용하여 계측기 신호를 감시함으로써 기존의 많이 사용되는 커널회귀법에 비해 예측치 계산의 정확도를 향상시킬 수 있게 된다. 또한, 보통의 경보시스템으로는 감지할 수 없는 아주 미세한 시프트 드리프트(shift drift)가 발생하는 경우라도 본 발명에서 제안한 GLRT 기법을 이용하여 계측기의 고장을 판별하여 조기에 정확히 고장을 식별할 수 있게 된다.
That is, the prediction method for power plant instrument performance monitoring using principal component analysis (FVR) (Fuzzy Support Vector Regression) and GLRT method includes normalization of plant data, extraction of principal components, data clustering, and response surface analysis. The conventional kernel regression method used by optimizing the parameters of the FSVR model regression equation (kernel bandwidth σ, loss function ε, penalty C), implementing the power plant system model using the FSVR, and de-normalizing the output predictions Compared with this, the accuracy of the prediction calculation can be improved. In addition, even in the case of a very small shift drift that cannot be detected by an ordinary alarm system, it is possible to accurately identify a failure early by using the GLRT technique proposed by the present invention to determine the failure of the instrument. .

도 1은 일반적인 발전소 계측기의 성능 상시 감시 시스템의 블록구성도이다
도 2는 본 발명의 실시예에 따른 발전소 계측기의 성능 감시 시스템의 개략 구성도이다.
도 3은 본 발명에 따른 주성분분석, FSVR(Fuzzy Support Vector Regression) 및 GLRT 방법을 이용한 발전소 계측기 성능감시 방법의 흐름도이다.
도 4는 SVR에 의한 최적회귀선의 일반적인 개념도이다.
도 5는 각 클러스터에 대한 퍼지 멤버쉽 크기에 대한 측정 예를 나타낸 도면이다.
도 6은 클러스터 1,2에 대한 반응표면의 예를 설명하기 위한 도면이다.
도 7은 모델파라미터가 3개인 경우, 중심합성계획에서의 실험점을 나타낸 도면이다.
도 8은 클러스터 2에 대해 반응표면으로부터 최적점을 추출하는 방법을 나타낸 도면이다.
도 9는 정상상태 잔차와 δ = 0.01의 시프트가 발생했을 경우의 잔차에 대한 예를 나타낸 도면이다.
도 10은 윈도우 크기에 따른 MSE(GTi)의 값을 계산한 예를 나타낸 도면이다.
도 11은 계측기가 정상상태의 경우 및 이상상태의 경우에 대한 고장판별의 예를 나타낸 도면이다.
도 12는 정확도 테스트를 위한 원자력발전소 원자로 노심출력 데이터를 나타낸 그래프이다.
도 13은 정확도 테스트를 위한 원자력발전소 가압기 수위 데이터를 나타낸 그래프이다.
도 14는 정확도 테스트를 위한 원자력발전소 증기발생기 증기유량 데이터를 나타낸 그래프이다.
도 15는 정확도 테스트를 위한 원자력발전소 증기발생기 협역 수위 데이터를 나타낸 그래프이다.
도 16은 정확도 테스트를 위한 원자력발전소 증기발생기 압력 데이터를 나타낸 그래프이다.
도 17은 정확도 테스트를 위한 원자력발전소 증기발생기 광역 수위 데이터를 나타낸 그래프이다.
도 18은 정확도 테스트를 위한 원자력발전소 증기발생기 주급수 유량 데이터를 나타낸 그래프이다.
도 19는 정확도 테스트를 위한 원자력발전소 터빈 출력 데이터를 나타낸 그래프이다.
도 20은 정확도 테스트를 위한 원자력발전소 1차측 충전 유량 데이터를 나타낸 그래프이다.
도 21은 정확도 테스트를 위한 원자력발전소 잔열제거 유량 데이터를 나타낸 그래프이다.
도 22는 정확도 테스트를 위한 원자력발전소 원자로 상부 냉각재 온도데이터를 나타낸 그래프이다.
1 is a block diagram of a performance monitoring system of a general power plant instrument
2 is a schematic configuration diagram of a performance monitoring system of a power plant instrument according to an embodiment of the present invention.
3 is a flowchart of a power plant instrument performance monitoring method using principal component analysis, fuzzy support vector regression (FSVR) and GLRT method according to the present invention.
4 is a general conceptual diagram of an optimal regression line by an SVR.
5 is a diagram illustrating a measurement example of the fuzzy membership size for each cluster.
6 is a diagram for explaining an example of a reaction surface for clusters 1 and 2;
7 is a diagram showing an experimental point in the central composition plan when there are three model parameters.
FIG. 8 is a diagram illustrating a method of extracting an optimal point from a response surface for cluster 2. FIG.
9 is a diagram illustrating an example of a residual when a steady state residual and a shift of δ = 0.01 occur.
10 is a diagram illustrating an example of calculating a value of MSE (GT i ) according to a window size.
Fig. 11 is a diagram showing an example of failure determination for the case of a normal state and an abnormal state of a measuring instrument.
12 is a graph showing nuclear reactor core output data for accuracy testing.
13 is a graph showing the nuclear power plant pressurizer water level data for accuracy test.
14 is a graph illustrating steam flow rate data of a steam generator for a nuclear power plant for accuracy test.
15 is a graph showing the nuclear power plant steam generator narrow level data for accuracy test.
16 is a graph showing nuclear power plant steam generator pressure data for accuracy test.
FIG. 17 is a graph showing wide-range water level data for a nuclear power plant steam generator for accuracy test.
18 is a graph showing the main water supply flow rate of the nuclear power plant steam generator for the accuracy test.
19 is a graph showing nuclear power plant turbine output data for accuracy test.
20 is a graph illustrating primary flow rate flow rate data for a nuclear power plant for accuracy test.
21 is a graph showing the residual heat removal flow rate data of nuclear power plants for accuracy test.
22 is a graph showing the temperature of the reactor coolant temperature of the nuclear power plant for the accuracy test.

이하, 예시도면을 참조하면서 본 발명에 따른 실시예를 상세히 설명한다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 실시예에 따른 발전소 계측기의 성능 감시 시스템의 개략 구성도이다.2 is a schematic configuration diagram of a performance monitoring system of a power plant instrument according to an embodiment of the present invention.

도 2로부터 알 수 있는 바와 같이, 본 발명에 따른 발전소 계측기의 성능 감시 시스템은, 입력부(11)와, 클러스터링부(12), PCA부(13), FSVR부(14), 비교연산부(15) 및, GLRT부(16)로 구성된다.As can be seen from FIG. 2, the performance monitoring system of the power plant meter according to the present invention includes an input unit 11, a clustering unit 12, a PCA unit 13, an FSVR unit 14, and a comparison operation unit 15. And a GLRT unit 16.

상기 입력부(11)는 m개의 현장센서에 대해 시계열 현장신호를 인가받아 클러스터링부(12)로 보낸다.The input unit 11 receives time-series field signals from m field sensors and sends them to the clustering unit 12.

상기 클러스터링부(12)는 상기 입력부(11)로부터 입력받은 시계열 현장신호에 대한 입력신호를 퍼지 클러스터링 방법을 이용하여 원하는 N개의 데이터 군집으로 나눈다.The clustering unit 12 divides the input signal for the time series field signal received from the input unit 11 into desired N data clusters using a fuzzy clustering method.

상기 PCA부(13)는 상기 클러스터링부(12)로부터 인가받은 N개의 데이터 군집으로 나누어진 각 데이터 클러스터에 대해 주성분을 추출한다.The PCA unit 13 extracts a principal component for each data cluster divided into N data clusters received from the clustering unit 12.

상기 FSVR부(14)는 각 데이터 클러스터에 대해 퍼지 멤버쉽 그레이드( fuzzy membership grade)를 계산하고, 모델을 훈련시키며, 반응표면 분석법을 이용해서 모델의 최적 파라미터를 구하고, 시험데이터에 대해 신호예측을 수행한다.The FSVR unit 14 calculates a fuzzy membership grade for each data cluster, trains the model, obtains optimal parameters of the model using response surface analysis, and performs signal prediction on test data. do.

상기 비교연산부(15)는 상기 FSVR부(14)에서 예측한 신호와 입력신호를 비교하여 차이를 구한다.The comparison operation unit 15 compares the signal predicted by the FSVR unit 14 with the input signal to obtain a difference.

상기 GLRT부(16)는 윈도우 사이즈의 최적화 및 관리한계선을 설정한 후, 비교연산부의 출력을 이용하여 GLRT의 검정통계량을 계산하여 센서의 드리프트 유무를 판별한다.
The GLRT unit 16 sets the window size optimization and management limit line, and then calculates a GLRT test statistic using the output of the comparison operation unit to determine whether there is a drift of the sensor.

도 3은 본 발명에 따른 주성분분석, FSVR(Fuzzy Support Vector Regression) 및 GLRT(Generalized Likelihood Ratio Test) 방법을 이용한 발전소 계측기 성능감시 방법의 흐름도이다.3 is a flowchart of a power plant instrument performance monitoring method using principal component analysis, fuzzy support vector regression (FSVR) and generalized likelihood ratio test (GLRT) methods according to the present invention.

도 3으로부터 알 수 있는 바와 같이, 본 발명에 따른 발전소 계측기 성능감시 방법은, 전체 데이터 셋(X)을 행렬의 형태로 표시하는 제1단계(ST1)와; 전체 데이터 셋을 정규화하는 제2단계(ST2)와; 데이터 셋을 훈련용(Train; Ztr), 최적화용(Optimization; Zopt), 시험용(Test; Zts)으로 삼분하는 제3단계(ST3)와; 정규화된 각 데이터 셋의 주성분(Ptr,Popt,Pts)을 추출하는 제4단계(ST4)와; 퍼지 클러스터링을 이용하여 데이터 셋과 주성분을 원하는 개수 만큼의 데이터 군집으로 나누는 제5단계(ST5)와; 반응표면분석법을 이용하여 최적화용 데이터의 예측치 오차를 최소화시키는 FSVR 모델의 최적 상수(epsilon, C, sigma)를 구하는 제6단계(ST6)와; 훈련용 데이터의 각 클러스터에 대해 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 계산하는 제7단계(ST7)와; 각 클러스터에 대한 데이터 및 최적 파라미터를 이용하여 FSVR 모델을 훈련시킨 후, 각 클러스터의 출력 예측치를 구하는 제8단계(ST8); 각 클러스터에 대한 예측치를 연결시켜 전체 예측치(Zts_hat)를 구하는 제9단계(ST9)와; 시험용 데이터에 대한 예측치(Zts_hat)를 원래의 시간 순으로 분류하는 제10단계(ST10)와; 상기 제10단계에서 얻어진 정규화된 시험데이터의 예측치를 원래의 범위로 역정규화하여 원래 스케일의 각 센서에 대한 예측치(Xts_hat)를 구하는 제11단계(ST11)와; 상기 제11단계에서 구한 예측치와 입력값인 실측치에 대한 잔차를 구하고 GLRT 기법을 이용하여 센서의 드리프트를 판별하는 제12단계(ST12);를 포함하여 이루어진다.
As can be seen from Figure 3, the power plant instrument performance monitoring method according to the present invention comprises a first step (ST1) for displaying the entire data set (X) in the form of a matrix; A second step ST2 of normalizing the entire data set; A third step (ST3) of dividing the data set into training (Ztr), optimization (Zopt), and test (Zts); A fourth step ST4 of extracting main components Ptr, Popt, and Pts of each normalized data set; A fifth step ST5 of dividing the data set and the main component into as many data clusters as desired using fuzzy clustering; A sixth step (ST6) of obtaining an optimum constant (epsilon, C, sigma) of the FSVR model which minimizes the prediction error of the optimization data using the response surface method; A seventh step ST7 of calculating a fuzzy membership grade for each cluster of training data; An eighth step (ST8) of training the FSVR model using the data and the optimal parameters for each cluster, and then calculating the output prediction value of each cluster; A ninth step ST9 of concatenating prediction values for each cluster to obtain a total prediction value Zts_hat; A tenth step ST10 of classifying the prediction value Zts_hat for the test data in the original chronological order; An eleventh step (ST11) of denormalizing the prediction value of the normalized test data obtained in the tenth step to the original range to obtain an estimate value (Xts_hat) for each sensor of the original scale; And a twelfth step (ST12) of obtaining a residual of the predicted value and the measured value, which are obtained in the eleventh step, and determining the drift of the sensor by using the GLRT technique.

이하, 각 상기 단계에 대해 상세히 설명한다.Hereinafter, each of the above steps will be described in detail.

기존의 커널 회귀법은 훈련데이터와 시험데이터의 유크리디안 거리만을 이용하여 가중치를 계산하고, 이를 훈련데이터에 가중하여 시험데이터의 예측치를 계산하게 된다. 이에 반해, 본 발명은 주성분 분석법, 데이터 클러스터링, 반응표면분석법을 이용한 최적화, FSVR 회귀 모델링 기법을 이용하여 기존 커널회귀법에 비해 예측치 계산의 정확도를 향상시키고, 계측기 이상발생에 대한 새로운 판별 기법을 제안한다.
The conventional kernel regression method calculates weights using only the Euclidean distances of training data and test data, and weights them on the training data to calculate predictions of the test data. On the contrary, the present invention improves the accuracy of prediction calculation and proposes a new discrimination method for measuring instrument anomalies by using principal component analysis, data clustering, optimization using response surface analysis, and FSVR regression modeling. .

[단계 1][Step 1]

전체의 데이터 셋(X)을 식 6과 같이 행렬의 형태로 표시하고, 훈련용(Training), 최적화용(Optimization), 시험용(Test)으로 삼분하며, 각각 Xtr, Xopt, Xts라 한다.
The entire data set (X) is expressed in the form of a matrix as shown in Equation 6, and divided into training, optimization, and test, respectively, and is called Xtr, Xopt, and Xts, respectively.

식 6Equation 6

Figure 112010066642414-pat00141

Figure 112010066642414-pat00141

[단계 2][Step 2]

전체의 데이터를 식 7에 따라 정규화한다.
The entire data is normalized according to equation (7).

식 7Equation 7

Figure 112010066642414-pat00142
Figure 112010066642414-pat00142

여기서, i = 1,2 … 3n
Where i = 1,2... 3n

정규화된 전체의 데이터 Z는 다음의 식 8과 같이 표시된다.
The normalized entire data Z is expressed as in Equation 8 below.

식 8Equation 8

Figure 112010066642414-pat00143

Figure 112010066642414-pat00143

[단계 3][Step 3]

정규화된 데이터 셋(Z)을 훈련용(Training), 최적화용(Optimization), 시험용(Test)으로 삼분하고, 각각 Ztr, Zopt, Zts로 둔다. 본 예에서는 다음의 식 9와 같이 n 크기의 데이터 셋으로 나눈다.
The normalized data set (Z) is divided into training, optimization, and test, and divided into Ztr, Zopt, and Zts, respectively. In this example, the data is divided into n data sets as shown in Equation 9 below.

식 9Equation 9

Figure 112010066642414-pat00144
Figure 112010066642414-pat00144

단, 여기서 i = 0,1,2 … n-1
Where i = 0,1,2... n-1

[단계 4][Step 4]

정규화된 각 데이터 셋 Ztr, Zop, Zts의 주성분을 추출한다. 주성분의 분산(즉, 공분산 매트릭스의 고유치(Eigenvalue))을 크기 순으로 나열하고, 백분율 분산 값이 가장 큰 주성분부터 시작하여 그 누적 합이 99.5% 이상 될 때까지의 Ztr, Zop, Zts에 대한 주성분(Ptr, Pop, Pts)을 선택한다.The principal component of each normalized data set Ztr, Zop, Zts is extracted. List the variances of the principal components (ie, the eigenvalues of the covariance matrix) in order of magnitude, with the principal components for Ztr, Zop, and Zts starting with the principal component with the largest percentage variance and reaching a cumulative sum of at least 99.5%. Select (Ptr, Pop, Pts).

여기서, 주성분을 구하는 방법에 대해 설명한다.Here, the method of obtaining a main component is demonstrated.

주성분분석(PCA; Principal Component Analysis)은 많은 입력변수를 선형변환을 통해 소수의 변수로 압축하는데 유용한 방법이다. 이때 압축된 변수를 주성분(Principal Component)이라고 부르고 추출방법은 다음과 같다.
Principal Component Analysis (PCA) is a useful method for compressing many input variables into a few variables through linear transformation. The compressed variable is called the principal component and the extraction method is as follows.

1) 각 데이터 셋 Ztr, Zopt, Zts에서 각 변수의 평균값을 빼고, 이를 A 매트릭스라 하고, 식 10과 같이 나타낸다. 여기서는 Ztr에 대해서만 설명한다.
1) Subtract the mean value of each variable from each data set Ztr, Zopt, and Zts, and call it A matrix, as shown in Eq. Only Ztr is described here.

식 10Equation 10

Figure 112010066642414-pat00145

Figure 112010066642414-pat00145

2) 식 11에 따라

Figure 112010066642414-pat00146
의 고유치(eigenvalue)
Figure 112010066642414-pat00147
를 구하고, 식 12에 따라 내림차순으로 정리하며, 식 13에 따라 A의 특이치(singular value) s를 구한다.
2) according to equation 11
Figure 112010066642414-pat00146
Eigenvalue of
Figure 112010066642414-pat00147
Calculate and arrange in descending order according to Eq. 12, and find the singular value s of A according to Eq.

식 11Equation 11

Figure 112010066642414-pat00148

Figure 112010066642414-pat00148

식 11의 특성방정식으로부터 구한 0을 제외한 고유치(근; eigenvalue)

Figure 112010066642414-pat00149
를 식 12에 따라 내림차순으로 정리하고, 이를
Figure 112010066642414-pat00150
이라 한다
Eigenvalues except zero obtained from the characteristic equation of Equation 11 (root; eigenvalue)
Figure 112010066642414-pat00149
Are arranged in descending order according to Eq. 12, and
Figure 112010066642414-pat00150
It is called

식 12Equation 12

Figure 112010066642414-pat00151

Figure 112010066642414-pat00151

식 13Equation 13

Figure 112010066642414-pat00152
Figure 112010066642414-pat00152

3) n×n매트릭스인

Figure 112010066642414-pat00153
의 고유벡터(eigenvector)를 구한다.
3) n × n matrix
Figure 112010066642414-pat00153
Find the eigenvector of.

식 14Equation 14

Figure 112010066642414-pat00154

Figure 112010066642414-pat00154

상기 식 14로부터 고유치(eigenvalue)

Figure 112010066642414-pat00155
를 구하고, 이를 다음의 식 15에 대입하여 각 고유치(eigenvalue)
Figure 112010066642414-pat00156
에 대한 n×1인 고유벡터(eigenvector)
Figure 112010066642414-pat00157
를 구한다.
Eigenvalue from Equation 14
Figure 112010066642414-pat00155
And obtain each eigenvalue by substituting it into
Figure 112010066642414-pat00156
Eigenvector of n × 1 for
Figure 112010066642414-pat00157
.

식 15Equation 15

Figure 112010066642414-pat00158

Figure 112010066642414-pat00158

4) 다음의 식 16에 따라 각 주성분의 분산을 구한다.
4) Find the dispersion of each main component according to the following equation.

식 16Equation 16

Figure 112010066642414-pat00159

Figure 112010066642414-pat00159

5) 다음의 식 17 및 식 18에 따라 각 주성분의 분산을 전체 주성분의 분산을 합한 값으로 나누어 백분율을 구한다.
5) Calculate the percentage by dividing the variance of each main component by the sum of the variances of all the main components according to the following equations (17) and (18).

식 17Equation 17

Figure 112010066642414-pat00160

Figure 112010066642414-pat00160

식 18Equation 18

Figure 112010066642414-pat00161

Figure 112010066642414-pat00161

6) 백분율 분산

Figure 112010066642414-pat00162
이 가장 큰 것부터 누적 계산을 하여 원하는 백분율 분산(예컨데, 99.98%)까지의 주성분 p개를 선택한다.
6) percentage variance
Figure 112010066642414-pat00162
From this largest one, cumulative calculations are made to select p principal components up to the desired percentage variance (eg 99.98%).

7) 주성분을 다음의 식 19와 같이 계산하여 추출한다.  7) Calculate and extract the main component as in Equation 19 below.

식 19Equation 19

Figure 112010066642414-pat00163

Figure 112010066642414-pat00163

8) Zopt, Zts에 대해서도 1) 내지 7)과 같은 절차에 의해 주성분을 추출한다.
8) Extract the main components by the same procedure as in 1) to 7) for Zopt and Zts.

본 예에서는 7개의 주성분을 사용하였다. 7개의 주성분을 다룰 경우 전체 분산의 99.98%를 설명할 수 있으며 나머지 주성분을 포기함으로써 발생하는 정보의 손실은 0.02%에 불과하다.
In this example, seven main components were used. The seven principal components account for 99.98% of the total variance, with only 0.02% loss of information from abandoning the remaining principal components.

다음의 표 1은 주성분의 분산을 나타낸 것이다Table 1 below shows the dispersion of the main components.

표 1Table 1

Figure 112010066642414-pat00164

Figure 112010066642414-pat00164

여기서, FSVR 모델링에 대해 설명한다.
Here, FSVR modeling will be described.

도 2에 도시된 바와 같이, m차원의 입력변수

Figure 112010066642414-pat00165
에 대한 번째 출력의 예측치를 FSVR로 이용하여 구하면, 다음의 식 20과 같은 최적회귀식(ORL: Optimum Regression Line)으로 나타낼 수 있다.
As shown in Figure 2, m- dimensional input variable
Figure 112010066642414-pat00165
For When the predicted value of the first output is obtained using the FSVR, it can be expressed as an optimal regression line (ORL) as shown in Equation 20 below.

식 20Equation 20

Figure 112010066642414-pat00167
Figure 112010066642414-pat00167

단,

Figure 112010066642414-pat00168

only,
Figure 112010066642414-pat00168

식 20에서 SV(support vector)의 가중치(weight)인

Figure 112010066642414-pat00169
및 바이어스
Figure 112010066642414-pat00170
파라미터를 구하기 위해서는 퍼지 개념을 이용한 정규화된 위험함수(regularized risk function)를 다음의 식 21과 같이 정의하고, 이를 최소화시키는 w k b k 를 구한다.
In equation 20, the weight of the support vector (SV)
Figure 112010066642414-pat00169
And bias
Figure 112010066642414-pat00170
To obtain the parameters, the normalized risk function using the fuzzy concept is defined as in Equation 21 below, and w k and b k are minimized.

식 21Equation 21

Figure 112010066642414-pat00171
Figure 112010066642414-pat00171

여기서,

Figure 112010066642414-pat00172
Figure 112010066642414-pat00173
번째 신호의 I번째 데이터에 대한 퍼지 멤버쉽의 크기이다. 또한,
Figure 112010066642414-pat00174
번째 출력변수
Figure 112010066642414-pat00175
에 대해ε-인센시티브 손실함수(insensitive Loss Function)는 다음의 식 22와 같이 정의한다.
here,
Figure 112010066642414-pat00172
The
Figure 112010066642414-pat00173
The magnitude of the fuzzy membership for the I data of the first signal. Also,
Figure 112010066642414-pat00174
Output variable
Figure 112010066642414-pat00175
The insensitive loss function is defined as in Equation 22 below.

식 22Equation 22

Figure 112010066642414-pat00176

Figure 112010066642414-pat00176

k번째 출력

Figure 112010066642414-pat00177
에 대한 ORL을 구하기 위해 상기 최적화 문제를 다음의 식 23과 같이 제한조건을 가진 위험함수(constrained risk function)로 변환한다.
k th output
Figure 112010066642414-pat00177
In order to find the ORL of the equation, the optimization problem is converted into a constrained risk function as shown in Equation 23.

식 23Equation 23

Figure 112010066642414-pat00178
Figure 112010066642414-pat00178

여기서,

Figure 112010066642414-pat00179
이고,
Figure 112010066642414-pat00180
Figure 112010066642414-pat00181
는 도 4에 나타낸 여유변수(Slack Variable)를 의미한다. 단, 여기서
Figure 112010066642414-pat00182
라 하면 벡터 θ의
Figure 112010066642414-pat00183
번째 요소가 아니라
Figure 112010066642414-pat00184
에 대한
Figure 112010066642414-pat00185
번째 관측치 벡터에 대응되는 주성분벡터를 의미한다.
here,
Figure 112010066642414-pat00179
ego,
Figure 112010066642414-pat00180
Wow
Figure 112010066642414-pat00181
Denotes a slack variable shown in FIG. 4. Where
Figure 112010066642414-pat00182
Is the vector of θ
Figure 112010066642414-pat00183
Not the first element
Figure 112010066642414-pat00184
For
Figure 112010066642414-pat00185
The principal component vector corresponding to the first observation vector.

상기 식 23을 라그랑지 함수로 변환한 후, 2차 계획(quadratic programming) 기법으로 풀어서

Figure 112010066642414-pat00186
Figure 112010066642414-pat00187
를 구한 후, 다음의 식 24와 같이 AAFSVR의
Figure 112010066642414-pat00188
번째 출력변수에 대한 비선형 회귀식을 결정한다.
After converting Equation 23 into Lagrangian function, it is solved by quadratic programming.
Figure 112010066642414-pat00186
Wow
Figure 112010066642414-pat00187
After obtaining the value of AAFSVR,
Figure 112010066642414-pat00188
Determine the nonlinear regression equation for the first output variable.

식 24Formula 24

Figure 112010066642414-pat00189

Figure 112010066642414-pat00189

본 실시예에서는 다음의 식 25와 같은 가우시안 RBF(Gaussian Radial Basis Function)을 사용하였다.
In this embodiment, a Gaussian Radial Basis Function (RBF) is used, as shown in Equation 25 below.

식 25Equation 25

Figure 112010066642414-pat00190

Figure 112010066642414-pat00190

단, 바이어스항은 다음의 식 26과 같이 임의의 SV(Support Vector)인

Figure 112010066642414-pat00191
Figure 112010066642414-pat00192
를 이용하여 계산한다.
However, the bias term is any SV (Support Vector) as shown in Equation 26 below.
Figure 112010066642414-pat00191
and
Figure 112010066642414-pat00192
Calculate using

식 26Equation 26

Figure 112010066642414-pat00193

Figure 112010066642414-pat00193

비선형회귀식의 손실함수(loss function)의 상수 ε(epsilon), 쌍대목적함수

Figure 112010066642414-pat00194
에 페널티 C, RBF(Radial Basis Function)를 커널로 이용하는 경우, 커널대역폭 σ는 단계 6을 수행하는 것에 의해 얻는다. 이 과정을 반복하여 각각의 출력에 대한 총 m개의 SVR을 얻고, 도 2에 도시된 바와 같이 AAFSVR을 구축한다.
Constant epsilon of the loss function of the nonlinear regression equation, the dual objective function
Figure 112010066642414-pat00194
If penalty C, RBF (Radial Basis Function) is used as the kernel, the kernel bandwidth σ is obtained by performing step 6. This process is repeated to obtain a total of m SVRs for each output and build an AAFSVR as shown in FIG.

[단계 5][Step 5]

퍼지 클러스터링을 이용하여, 데이터 셋과 주성분을 원하는 개수 만큼의 데이터 군집으로 나눈다. 본 실시예에서는 데이터를 2그룹으로 나누었으며 이를 기본으로 본 발명에 대한 절차를 설명한다.
Using fuzzy clustering, the data set and principal components are divided into as many data clusters as desired. In this embodiment, data is divided into two groups, and the procedure for the present invention will be described based on this.

5.1) 훈련데이터(Ztr)를 FCM(Fuzzy C-Means) 클러스터링 방법을 이용하여 두 그룹 Ztr1과 Ztr2으로 나눈다. 이때 생성된 각 데이터 그룹의 같은 인덱스를 이용하여 주성분(Ptr)도 같은 수의 클러스터(Ptr1, Ptr2)로 나눈다.
5.1) The training data (Ztr) is divided into two groups Ztr1 and Ztr2 using the FCM (Fuzzy C-Means) clustering method. At this time, the main component Ptr is also divided into the same number of clusters Ptr1 and Ptr2 by using the same index of each generated data group.

5.2) 최적화용 데이터(Zopt)와 시험용 데이터(Zts)에 대해서도 같은 방법으로 정규화 데이터 클러스터(Zopt1, Zopt2, Zts1, Zts2)와 주성분 클러스터(Popt1, Popt2, Pts1, Pts2)로 각각 나눈다.
5.2) For optimization data (Zopt) and test data (Zts), divide the normalized data clusters (Zopt1, Zopt2, Zts1, Zts2) and the principal component clusters (Popt1, Popt2, Pts1, Pts2) in the same way.

여기서, FCM(Fuzzy C-Means) 클러스터링 방법에 대해 설명한다.Here, a description will be given of the FCM (Fuzzy C-Means) clustering method.

(단계 1)(Step 1)

입력신호 집합

Figure 112010066642414-pat00195
에 대한 클러스터 개수
Figure 112010066642414-pat00196
퍼지 계수 m(=2)를 결정하고, 소속행렬
Figure 112010066642414-pat00197
을 초기화한다.
Set of input signals
Figure 112010066642414-pat00195
Cluster Count for
Figure 112010066642414-pat00196
Determine fuzzy coefficient m (= 2), and belong to
Figure 112010066642414-pat00197
Initialize

식 27Equation 27

Figure 112010066642414-pat00198
Figure 112010066642414-pat00198

여기서, i는 클러스터의 번호, k는 패턴의 번호, r은 반복횟수, N은 각 센서의 샘플된 데이터 개수, uik는 데이터 포인터 Xk가 그룹 i에 속하는 멤버쉽 크기임.
Where i is the number of clusters, k is the number of patterns, r is the number of repetitions, N is the number of sampled data for each sensor, and u ik is the membership size of data group X k belonging to group i.

(단계 2)(Step 2)

각각의 클러스터에 대한 중심 벡터 vi(r)과 멤버쉽 uik를 다음의 식 28과 같이 구한다.
The center vector vi (r) and membership u ik for each cluster are calculated as in Equation 28 below.

식 28Equation 28

Figure 112010066642414-pat00199

Figure 112010066642414-pat00199

(단계 3)(Step 3)

각각의 클러스터 중심과 데이터와의 거리를 계산하여 식 29로 나타내어지는 목적함수(Q)를 최소로 하는 새로운 소속행렬 U(r+1) 생성한다.
The distance between each cluster center and the data is calculated to generate a new membership matrix U (r + 1) that minimizes the objective function (Q) represented by Eq.

식 29Equation 29

Figure 112010066642414-pat00200

Figure 112010066642414-pat00200

(단계 4)(Step 4)

다음의 식 30을 나타내어지는 종료조건을 만족하면 종료하고, 그렇지 않으면 r=r+1로 정하고 (단계 2)로 진행해서 알고리즘을 반복한다.
If the end condition represented by the following expression 30 is satisfied, the process is terminated. Otherwise, r = r + 1 is set, and the process proceeds to step 2 to repeat the algorithm.

식 30Equation 30

Figure 112010066642414-pat00201

Figure 112010066642414-pat00201

[단계 6][Step 6]

반응표면분석법으로 최적화용 데이터(Zopt)의 각 클러스터 데이터(Zopt1, Zopt2)를 사용하여 최적화용 데이터(Zopt)의 예측치 오차를 최소화시키는 각 FSVR 모델의 최적 상수

Figure 112010066642414-pat00202
Figure 112010066642414-pat00203
를 구한다.
Each FSVR model of reacting with a surface analysis method, the optimization of each data cluster of data (Zopt) for (Z opt1, Z opt2) minimizes the prediction error of the optimization data (Zopt) for optimal constant
Figure 112010066642414-pat00202
And
Figure 112010066642414-pat00203
.

6.1) 훈련용 데이터의 첫 번째 클러스터(Ztr1)에 대해 퍼지 멤버쉽 그레이드(fuzzy membership grade)

Figure 112010066642414-pat00204
을 계산한다. Ztr1의 각 데이터 포인터와 다른 모든 입력데이터간의 유클리디언 거리를 이용하여 각 데이터 포인터의 포텐셜(P1)을 식 31에 따라 계산하고, 이를 이용하여 퍼지 멤버쉽 그레이드(fuzzy membership grade)
Figure 112010066642414-pat00205
을 계산한다.
6.1) fuzzy membership grade for the first cluster of training data (Ztr1)
Figure 112010066642414-pat00204
. Using the Euclidean distance between each data pointer of Ztr1 and all other input data, the potential (P 1 ) of each data pointer is calculated according to Equation 31, and using this, fuzzy membership grade
Figure 112010066642414-pat00205
.

식 31Equation 31

Figure 112010066642414-pat00206
Figure 112010066642414-pat00206

Figure 112010066642414-pat00207
: 한 클러스터 내의 데이터 개수,
Figure 112010066642414-pat00207
= Number of data in a cluster,

Figure 112010066642414-pat00208
: 첫 번째 클러스터(Ztr1)의 반경
Figure 112010066642414-pat00208
: Radius of the first cluster (Ztr1)

Figure 112010066642414-pat00209

Figure 112010066642414-pat00209

도 5는 각 클러스터에 대한 퍼지 멤버쉽 크기에 대한 측정 예를 나타낸 도면이다.
5 is a diagram illustrating a measurement example of the fuzzy membership size for each cluster.

6.2) 클러스트 1에 대한 시험점(FSVR parameter 세트, 표3-1 참조) 중 첫 번째 시험점(v 1 , v 2 , v 3 )을 선택한다.
6.2) Select the first test point ( v 1 , v 2 , v 3 ) of the test points for cluster 1 (FSVR parameter set, see Table 3-1).

6.3) 선택된 시험점에 대해 Ztr1의 첫 번째 신호(Ztr1-1),

Figure 112010066642414-pat00210
및 Ptr1을 입력한 후, FSVR 모델을 훈련시켜 svi(support vector index), w 1 (Support Vector weight) 및 b 1 (bias)를 구한다.
6.3) the first signal of Ztr1 (Ztr1-1) for the selected test point,
Figure 112010066642414-pat00210
After inputting and Ptr1, the FSVR model is trained to obtain svi (support vector index), w 1 (Support Vector weight), and b 1 (bias).

6.4) Popt 1과 svi를 이용하여 식 32에 따라 방사형 기저 함수(radial basis function)(Kopt1)을 구한다.
6.4) Using Popt 1 and svi, find the radial basis function ( Kopt1 ) according to Eq .

식 32Equation 32

Figure 112010066642414-pat00211
Figure 112010066642414-pat00211

여기서,

Figure 112010066642414-pat00212
: Zopt1의 주성분벡터here,
Figure 112010066642414-pat00212
: Principal component vector of Zopt1

Figure 112010066642414-pat00213
: Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터
Figure 112010066642414-pat00213
: Principal component vector with index of svi in Ptr1

6.5) 최적화용 데이터 Zopt1의 첫 번째 계측기 신호에 대한 예측치를 식 33에 따라 구한다.
6.5) The prediction for the first instrument signal of the optimization data Zopt1 is obtained according to Eq.

식 33Equation 33

Figure 112010066642414-pat00214
Figure 112010066642414-pat00214

여기서,

Figure 112010066642414-pat00215
: 베타(beta) 벡터 중에서 svi의 인덱스를 갖는 베타(beta) 벡터
here,
Figure 112010066642414-pat00215
: Beta vector with index of svi among beta vector

6.6) Ztr1의 나머지 다른 계측기 신호에 대해서도 상기 6.3)~6.5)를 동일한 방법으로 수행한 후, 식 34에 따라 예측 매트릭스 출력

Figure 112010066642414-pat00216
을 얻는다.
6.6) 6.3) to 6.5) are performed in the same manner for the other instrument signals of Ztr1, and then the predictive matrix is output according to Equation 34.
Figure 112010066642414-pat00216
Get

식 34Equation 34

Figure 112010066642414-pat00217

Figure 112010066642414-pat00217

6.7) 최적화용 데이터(Zopt1)의 측정치와 예측치의 잔차

Figure 112010066642414-pat00218
에 대한 RMS(Root mean square)을 구하고, 이를 저장한다.
6.7) Residuals of the measured and predicted values of the optimization data (Zopt1)
Figure 112010066642414-pat00218
Find the root mean square (RMS) for and store it.

6.8) 다른 시험점에 대해서도 상기 6.2)~6.7)을 동일한 방법으로 수행하고, 잔차에 대한 RMS 값을 저장한다. 단, 중심합성계획(CCD)의 원점에 대해서는 시험을 세 번(시험점 15, 16,17) 수행한다. 15번째 시험에는 Zopt 전체를 사용하고, 16번째 시험에는 Zopt의 1/2, 그리고 17번째 시험에는 Zopt의 나머지 1/2에 대해 시험을 수행한다.
6.8) Repeat 6.2) to 6.7) above for the other test points and store the RMS values for the residuals. However, three tests (test points 15, 16, 17) are performed for the origin of the central synthesis plan (CCD). The whole test is used for the 15th test, half of Zopt for the 16th test, and the other half of Zopt for the 17th test.

6.9) 최적화용 데이터 Zopt1를 이용해서 구한 잔차의 RMS값을 전체 입력신호 개수에 대해 평균값(MSE)(수학식 38)을 계산하고, 평균값에 대한 자연 로그(natural log) 값을 구한다.
6.9) The RMS value of the residual obtained using the optimization data Zopt1 is calculated for the total number of input signals (MSE) (Equation 38), and a natural log value of the average value is obtained.

6.10) MinitapTR의 반응표면분석법을 이용해서 클러스터 1에 대한 ln{MSE}를 최소화시키는 최적의 FSVR 초모수(hyperparameter)

Figure 112010066642414-pat00219
를 구한다.6.10) Optimal FSVR hyperparameter for minimizing ln {MSE} for Cluster 1 using Response Surface Methodology of Minitap TR
Figure 112010066642414-pat00219
.

6.11) 클러스터 2에 대해서도 6.1)~6.10)을 동일한 방법으로 수행하여 식 35에 따라 클러스터 2에 대한 최적의 FSVR 초모수(hyperparameter)

Figure 112010066642414-pat00220
를 구한다.
6.11) For cluster 2, perform 6.1) to 6.10) in the same way, and obtain the optimal FSVR hyperparameter for cluster 2 according to equation 35.
Figure 112010066642414-pat00220
.

식 35Equation 35

Figure 112010066642414-pat00221
Figure 112010066642414-pat00221

본 예에서 구한 FSVR 초모수(hyperparameter)는

Figure 112010066642414-pat00222
=(2.0, 0.0005, 10)와
Figure 112010066642414-pat00223
=(1.1404, 0.0005, 5.247)이다.
The FSVR hyperparameter obtained in this example is
Figure 112010066642414-pat00222
= (2.0, 0.0005, 10)
Figure 112010066642414-pat00223
= (1.1404, 0.0005, 5.247).

도 6a는 클러스터 1에 대한 반응표면의 예를 보여주고 있고, 6b는 클러스터 2에 대한 반응표면을 보여주고 있다.
6a shows an example of the response surface for cluster 1, and 6b shows the response surface for cluster 2.

여기서, 반응표면 분석법을 이용하여 FSVR 모델의 최적 상수를 구하는 방법에 대해 설명한다.
Here, the method for obtaining the optimum constant of the FSVR model using the response surface method will be described.

1. FSVR 모델파라미터인 시그마(sigma)(σ), 입실론(epsilon)(ε), C를 각각

Figure 112010066642414-pat00224
로 둔다.
1.Sigma (σ), epsilon (ε), and C, which are FSVR model parameters,
Figure 112010066642414-pat00224
Leave it as.

2.

Figure 112010066642414-pat00225
에 대한 탐색범위를 각각 정한다. 적절한 탐색범위는 사전경험이나 소규모의 예비실험을 통해 파악한다. 본 예에서 클러스터 1에 대한 탐색범위는 각각
Figure 112010066642414-pat00226
: 0.2~2.0,
Figure 112010066642414-pat00227
: 0.0005~0.05,
Figure 112010066642414-pat00228
: 0.1~10.0이고, 클러스터 2에 대한 탐색범위는
Figure 112010066642414-pat00229
: 0.3~1.9,
Figure 112010066642414-pat00230
: 0.0001~0.0009,
Figure 112010066642414-pat00231
: 0.1~10 을 설정하였다.
2.
Figure 112010066642414-pat00225
Determine the search range for. Appropriate search ranges are identified through prior experience or small preliminary experiments. In this example, the search range for Cluster 1 is
Figure 112010066642414-pat00226
: 0.2∼2.0,
Figure 112010066642414-pat00227
: 0.0005 ~ 0.05,
Figure 112010066642414-pat00228
: 0.1 to 10.0, and the search range for cluster 2 is
Figure 112010066642414-pat00229
0.3 ~ 1.9,
Figure 112010066642414-pat00230
: 0.0001 ~ 0.0009,
Figure 112010066642414-pat00231
: 0.1 to 10 was set.

3. 탐색범위의 상한과 하한을 각각

Figure 112010066642414-pat00232
Figure 112010066642414-pat00233
로 두고 다음의 식 36과 같이 모델 파라미터를 표준화한다.
3. Set the upper and lower limits of the search range respectively.
Figure 112010066642414-pat00232
Wow
Figure 112010066642414-pat00233
Leave on and normalize the model parameters as shown in Equation 36 below.

식 36Equation 36

Figure 112010066642414-pat00234

Figure 112010066642414-pat00234

4. 표준화된 모델파라미터

Figure 112010066642414-pat00235
의 탐색범위를 고려하여 실험점, 즉 모델성능의 평가지점을 정한다. 이를 위해, 통계적인 실험계획의 하나인 중심합성계획을 이용한다. 도 7은 모델파라미터가 3개인 경우, 중심합성계획에서의 실험점을 나타낸 도면으로, 중심합성계획에 의해 정해지는 실험점을 3차원 공간으로 표현하면 도 7과 같이 표현된다.
4. Standardized Model Parameters
Figure 112010066642414-pat00235
The experimental point, that is, the evaluation point of model performance, is determined by considering the search range of. To do this, we use the central synthesis plan, which is one of the statistical experimental plans. FIG. 7 is a diagram illustrating an experimental point in the central synthesis plan when three model parameters are shown. When the experimental point determined by the central synthesis plan is expressed in three-dimensional space, FIG.

5. 중심합성계획에 의한 실험점은 8개의 꼭지점, 1개의 중심점, 그리고 6개의 축점으로 구성된다. 실험오차의 크기를 추정하기 위해 중심점에서는 3회 내외의 반복실험을 수행한다. 축점의 좌표는 예측분산에 관한 통계적인 성질을 감안하여 α = 23/4 = 1.68179로 정한다. 여기서, α는 식 37에 의해 정의된다.
5. The experimental point of the central composition plan consists of eight vertices, one center point, and six axis points. To estimate the magnitude of the experimental error, three or more replicate experiments are performed at the center point. The coordinates of the axes are determined by α = 2 3/4 = 1.68179, taking into account the statistical properties of the prediction variances. Is defined by equation 37.

식 37Equation 37

α = [요인실험점의 수]1/4
α = [number of factor test points] 1/4

중심점에서 3회의 반복을 한 경우 중심합성계획에 의한 실험점은 다음 표 2와 같다.
In the case of three repetitions at the center point, the experimental point according to the central synthesis plan is shown in Table 2 below.

표 2 : 중심합성계획에 의한(

Figure 112010066642414-pat00236
)의 실험점Table 2: According to the central synthesis plan
Figure 112010066642414-pat00236
) Experimental point

Figure 112010066642414-pat00237

Figure 112010066642414-pat00237

6. 표 2에서 지시하는 대로 모델파라미터

Figure 112010066642414-pat00238
의 값을 정하여 다음 표 3-1 및 표 3-2를 얻고 이 값을 모델파라미터로 이용하여 FSVR 모델링 실험을 수행한다.6. Model parameters as instructed in Table 2
Figure 112010066642414-pat00238
To determine the value of, obtain the following Table 3-1 and Table 3-2, and use this value as the model parameter to perform the FSVR modeling experiment.

표 3-1 및 3-2는 중심합성계획에 의한 (

Figure 112010066642414-pat00239
)의 실험점을 나타낸 것으로, 표 3-1은 클러스터 1의 실험점을 나타내고, 표 3-2는 클러스터 2의 실험점을 나타낸다.
Tables 3-1 and 3-2 show the
Figure 112010066642414-pat00239
Experimental point of), Table 3-1 shows the experimental point of Cluster 1, Table 3-2 shows the experimental point of Cluster 2.

표 3-1                 Table 3-1

Figure 112010066642414-pat00240

Figure 112010066642414-pat00240

표 3-2               Table 3-2

Figure 112010066642414-pat00241

Figure 112010066642414-pat00241

7. 표 2의 각 실험점에서 Ztr과 Ptr, 퍼지 멤버쉽 μ을 이용하여 FSVR모델의 베타(beta) 벡터와 바이어스(bias) 상수를 각각 얻는다. 실제로, 중심점에 해당되는 No. 15부터 No. 17까지는 동일한 모델이 얻어지게 된다.
7. Obtain the beta vector and bias constant of the FSVR model using Ztr, Ptr, and fuzzy membership μ at each experimental point in Table 2. In fact, the No. corresponding to the center point. No. from 15 Up to 17, the same model is obtained.

8. 각 모델의 정확도를 평가하기 위해 데이터 셋 Pop를 m개의 AAFSVR에 입력하여 최적화 데이터의 정규화된 예측치

Figure 112010066642414-pat00242
을 구한다. 이로부터 출력 모델의 정확도 즉, MSE를 식 38에 따라 계산한다.
8. To estimate the accuracy of each model, the data set Pop is input to m AAFSVRs to normalize the predictions of the optimization data.
Figure 112010066642414-pat00242
. From this, the accuracy of the output model, ie MSE, is calculated according to equation 38.

식 38Equation 38

Figure 112010066642414-pat00243

Figure 112010066642414-pat00243

여기서,

Figure 112010066642414-pat00244
는 Pop 중에 센서
Figure 112010066642414-pat00245
Figure 112010066642414-pat00246
번째 입력데이터를 의미하며,
Figure 112010066642414-pat00247
는 모델에 의한 추정치이다. 본 예의 실험결과는 다음 표4와 같다. here,
Figure 112010066642414-pat00244
Pop out of the sensor
Figure 112010066642414-pat00245
of
Figure 112010066642414-pat00246
The second input data,
Figure 112010066642414-pat00247
Is an estimate by the model. The experimental results of this example are shown in Table 4 below.

표 4는 실험에 의한 MSE 계산결과를 나타낸 것으로, 표 4-1은 클러스터 #1의 MSE를 나타내고, 표 4-2는 클러스터 #2의 MSE를 나타낸다.
Table 4 shows the experimental MSE calculation results. Table 4-1 shows the MSE of cluster # 1, and Table 4-2 shows the MSE of cluster # 2.

표 4-1          Table 4-1

Figure 112010066642414-pat00248

Figure 112010066642414-pat00248

표 4-2           Table 4-2

Figure 112010066642414-pat00249

Figure 112010066642414-pat00249

9. 반응표면을 구할 때에는 MSE 대신 로그를 취한 log(MSE)를 사용한다. 이 점을 고려하여, 모델파라미터

Figure 112010066642414-pat00250
와 log(MSE) 간의 반응표면을 추정한다. 반응표면은 다음의 식 39와 같은 2차 모형을 가정한다.
9. Use log (MSE), which takes the log instead of the MSE, to determine the response surface. In view of this, the model parameters
Figure 112010066642414-pat00250
Estimate the response surface between and log (MSE). The response surface assumes a quadratic model such as

식 39Equation 39

Figure 112010066642414-pat00251
Figure 112010066642414-pat00251

단, e는 랜덤오차를 의미한다. 본 예에서 추정된 반응표면은 다음과 같다.However, e means random error. The estimated response surface in this example is as follows.

Figure 112010066642414-pat00252

Figure 112010066642414-pat00252

10. 추정된 반응표면식을 이용하여 log(MSE)를 최소화하는

Figure 112010066642414-pat00253
의 최적조건을 구한다. 2차 반응표면을 가정하였으므로 최적조건은 편미분을 통해 확인한다. 즉, 다음의 40을 동시에 만족하는
Figure 112010066642414-pat00254
를 구한다.
10. Minimize log (MSE) using estimated response surface
Figure 112010066642414-pat00253
Find the optimal condition of. Since the second response surface is assumed, the optimal condition is confirmed by partial differential. That is, satisfying the following 40 at the same time
Figure 112010066642414-pat00254
.

식 40Expression 40

Figure 112010066642414-pat00255

Figure 112010066642414-pat00255

본 예에서 클러스터 #1에 대해 얻어진 반응표면의 경우, 최적조건은

Figure 112010066642414-pat00256
= (0,0.04525,0)이다. For the response surface obtained for cluster # 1 in this example, the optimal condition is
Figure 112010066642414-pat00256
= (0,0.04525,0).

또한, 클러스터 #2에 대한 최적조건은

Figure 112010066642414-pat00257
= (1.1364,-0.0005,5.2487)이다.
Also, the optimal condition for cluster # 2 is
Figure 112010066642414-pat00257
= (1.1364, -0.0005,5.2487).

11. 최적조건

Figure 112010066642414-pat00258
를 다음의 식 41을 이용하여 원래의 단위로 환산한다.
11. Optimum conditions
Figure 112010066642414-pat00258
Is converted to the original unit using the following Equation 41.

식 41Equation 41

Figure 112010066642414-pat00259

Figure 112010066642414-pat00259

본 예에서 클러스터 #1에 대한 최적 파라미터는 각각

Figure 112010066642414-pat00260
,
Figure 112010066642414-pat00261
,
Figure 112010066642414-pat00262
가 되며, 이 조건에서 예측된 log(MSE)는 -5.3249이다. In this example, the optimal parameters for cluster # 1 are
Figure 112010066642414-pat00260
,
Figure 112010066642414-pat00261
,
Figure 112010066642414-pat00262
The estimated log (MSE) under this condition is -5.3249.

또한, 클러스터 #2에 대한 최적 파라미터는 각각

Figure 112010066642414-pat00263
,
Figure 112010066642414-pat00264
,
Figure 112010066642414-pat00265
가 되며, 이 조건에서 예측된 log(MSE)는 -5.4170이다. Also, the optimal parameters for cluster # 2 are
Figure 112010066642414-pat00263
,
Figure 112010066642414-pat00264
,
Figure 112010066642414-pat00265
The estimated log (MSE) under this condition is -5.4170.

도 8은 클러스터 2에 대해 반응표면으로부터 최적점을 추출하는 방법을 나타낸 도면이다.
FIG. 8 is a diagram illustrating a method of extracting an optimal point from a response surface for cluster 2. FIG.

[단계 7][Step 7]

훈련용 데이터 Ztr의 각 클러스터에 대해 단계 6.1)에 따라 퍼지 멤버쉽 그레이드(fuzzy membership grade)

Figure 112010066642414-pat00266
를 계산한다.
Fuzzy membership grade according to step 6.1) for each cluster of training data Ztr.
Figure 112010066642414-pat00266
.

[단계 8][Step 8]

각 클러스터에 대한 훈련용 데이터, 훈련용 데이터의 주성분벡터, 상기 단계 6에서 구한 최적 파라미터 및, 상기 단계 7에서 구한 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 이용하여 FSVR 모델을 훈련시킨 후, 시험용 데이터(Zts)의 각 클러스터 주성분벡터(Pts1, Pts2)를 입력시켜 출력 예측치(Zts1_hat과 Zts2_hat)를 다음과 같이 구한다.
After training the FSVR model using the training data for each cluster, the principal component vector of the training data, the optimal parameters obtained in step 6, and the fuzzy membership grade obtained in step 7, the test data ( The output predicted values Zts1_hat and Zts2_hat are obtained by inputting the cluster principal component vectors Pts1 and Pts2 of Zts) as follows.

8.1) 상기 단계 6에서 구한 FSVR 모델의 3개의 최적상수

Figure 112010066642414-pat00267
와 훈련데이터의 주성분(Ptr1), 훈련데이터의 첫 번째 신호(Ztr1의 제1열)을 입력으로 하여 2차 계획(quadratic programming) 기법을 이용하여 최적화 문제를 풀고, 라그랑지 승수의 차이인 w 1 (n×1)와 바이어스 상수 b 1 을 구하여 도 2의 FSVR1의 모델을 생성한다.
8.1) Three optimal constants of the FSVR model obtained in step 6 above
Figure 112010066642414-pat00267
And the principal component of training data (Ptr1) and the first signal of training data (column 1 of Ztr1) as inputs to solve the optimization problem using quadratic programming, and the difference between the Lagrangian multipliers w 1 (n × 1) and the bias constant b 1 are obtained to generate a model of FSVR 1 in FIG. 2.

8.2) 상기 8.1)같은 방법으로 2번부터 m번째의 계측기 신호에 대해 이를 반복 수행하여

Figure 112010066642414-pat00268
Figure 112010066642414-pat00269
을 구하여 FSVR2에서 FSVRm의 모델을 생성한다. 도 2와 같은 전 센서에 대한 FSVR 모델을 구축한다.
8.2) In the same manner as in 8.1), repeat this with respect to the second to m- th instrument signal
Figure 112010066642414-pat00268
and
Figure 112010066642414-pat00269
The model of FSVR m is generated in FSVR 2 . FSVR model for all sensors as shown in FIG.

8.3) 훈련데이터의 주성분(Ptr1), 시험데이터의 주성분(Pts1)을 이용하여 가우시언 방사형 기저 함수(Gaussian Radial Basis Function)의 커널함수(K ts1 (n×n))를 구하고, 위에서 구한 FSVR 모델의 SV(Support vector)의 가중치(weight)인 w 1 , 바이어스 상수 b 1 을 이용하여 FSVR1의 출력을 구한다.
8.3) Using the principal component (Ptr1) of the training data and the principal component (Pts1) of the training data, the kernel function ( K ts1 (n × n)) of the Gaussian Radial Basis Function is obtained and the FSVR model obtained above. The output of FSVR 1 is obtained using w 1 , the bias constant b 1 , which is the weight of SV (Support vector) of.

8.4) 상기 8.3)과 같은 방법으로 2번부터 m번째의 센서에 대해 이를 반복 수행하여 FSVR2에서 FSVRm의 출력인 모델 예측치를 구한다.
8.4) In the same manner as in 8.3), it is repeated for the second to m th sensors to obtain a model prediction value that is the output of FSVR m at FSVR 2 .

시험용 데이터 Zts1에 대한 예측치는 다음의 식 42와 같이 구한다.
The predicted value for the test data Zts1 is obtained as shown in Equation 42 below.

식 42Expression 42

Figure 112010066642414-pat00270
Figure 112010066642414-pat00270

Figure 112010066642414-pat00271
: Zts1의 주성분벡터,
Figure 112010066642414-pat00271
: Principal component vector of Zts1,

Figure 112010066642414-pat00272
: Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터,
Figure 112010066642414-pat00272
: Principal component vector with index of svi in Ptr1,

Figure 112010066642414-pat00273
Figure 112010066642414-pat00273

Figure 112010066642414-pat00274
: 클러스터1의 i번째 센서에 대한 SV(Support vector)의 가
Figure 112010066642414-pat00274
: Addition of the support vector (SV) to the i th sensor of cluster 1.

중치(weight)              Weight

Figure 112010066642414-pat00275
: 클러스터1의 i번째 센서에 대한 바이어스(bias)
Figure 112010066642414-pat00275
: Bias for the i th sensor of cluster 1

Figure 112010066642414-pat00276

Figure 112010066642414-pat00276

시험용 데이터 Zts2에 대한 예측치는 다음의 식 43과 같이 구한다.
The prediction value for the test data Zts2 is obtained as shown in Equation 43 below.

식 43Equation 43

Figure 112010066642414-pat00277
Figure 112010066642414-pat00277

Figure 112010066642414-pat00278
: 클러스터2의 i번째 센서에 대한 SV(Support vector)의 가
Figure 112010066642414-pat00278
: Addition of the support vector (SV) to the i th sensor of cluster 2.

중치(weight)     Weight

Figure 112010066642414-pat00279
: 클러스터2의 i번째 센서에 대한 바이어스(bias)
Figure 112010066642414-pat00279
: Bias for the i th sensor of cluster 2

Figure 112010066642414-pat00280

Figure 112010066642414-pat00280

[단계 9][Step 9]

각 클러스터에 대한 예측치(Zts1_hat과 Zts2_hat)를 연결시켜 전체의 데이터에 대한 예측치(Zts_hat)를 식 44에 따라 구한다.
The prediction values (Zts_hat) for the entire data are obtained by connecting the prediction values (Zts1_hat and Zts2_hat) for each cluster according to Equation 44.

식 44Equation 44

Figure 112010066642414-pat00281

Figure 112010066642414-pat00281

[단계 10][Step 10]

시험용 데이터에 대한 예측치

Figure 112010066642414-pat00282
를 원래의 시간 인덱스를 이용하여 시간순으로 분류한다.
Estimates for Experimental Data
Figure 112010066642414-pat00282
Is sorted in chronological order using the original time index.

[단계 11][Step 11]

상기 단계 10에서 얻어진 정규화된 시험데이터의 예측치를 원래의 범위로 역정규화하여 원래 스케일의 각 센서에 대한 예측치

Figure 112010066642414-pat00283
를 식 45에 따라 구한다.
The normalized test data obtained in step 10 is denormalized to the original range to estimate the estimated value for each sensor of the original scale.
Figure 112010066642414-pat00283
Is obtained according to equation 45.

식 45Expression 45

Figure 112010066642414-pat00284
Figure 112010066642414-pat00284

[단계 12][Step 12]

이하의 단계에 따라 예측치에 대한 잔차를 계산하고 GLRT를 이용하여 센서의 드리프트를 판별한다.
Follow the steps below to calculate the residuals for the predicted values and to determine the drift of the sensor using GLRT.

12.1) 잔차의 계산12.1) Calculation of residuals

센서를 정기교정 후 정상적으로 동작할 때(정기점검 후), 예측 프로그램을 수행하여 각 센서에 대한 예측치와 실측치와의 차이(잔차)를 계산한다. 또한, 잔차에 대한 평균값과 표준편차(σ)를 계산한다.When the sensor operates normally after regular calibration (after regular inspection), the prediction program is executed to calculate the difference (residual) between the predicted value and the measured value for each sensor. In addition, the mean value and standard deviation (σ) for the residuals are calculated.

모델 잔차(R)는 입력값과 예측치의 차이로서 다음 식 46과 같다.
The model residual (R) is a difference between an input value and a predicted value, as shown in Equation 46 below.

식 46Formula 46

Figure 112010066642414-pat00285

Figure 112010066642414-pat00285

도 9는 정상상태 잔차와 δ = 0.01의 시프트가 발생했을 경우의 잔차에 대한 예를 나타낸 도면으로, 센서 7번(증기발생기 주급수 유량)에 대한 잔차의 일부인 151개의 데이터를 이용하여 실시 예를 보였다. 본 사례에서는 time step 50~150 구간 중에 표준편차(σ)가 +0.01 증가된 경우를 가정하였으며, 계측기에 시프트가 발생한 신호에 대한 모델의 출력신호의 잔차를 같이 나타내었다.FIG. 9 is a diagram showing an example of a steady state residual and a residual when a shift of δ = 0.01 occurs, using an example of 151 data which is part of the residual for sensor # 7 (steam generator main water flow rate). Seemed. In this example, it is assumed that the standard deviation (σ) is increased by +0.01 during the time step 50 to 150, and the residual of the output signal of the model with respect to the shifted signal is also shown.

본 예에 있어서 정상일 경우에 대한 잔차의 평균값은 -0.00096347, 표준편차는 0.0069 이다.
In this example, the mean value of the residuals for the normal case is -0.00096347 and the standard deviation is 0.0069.

12.2) 윈도우 크기 설정12.2) Setting Window Size

계측기가 정상적일 경우의 잔차를 이용하여 윈도우의 크기(w)를 최소(예컨대, 5)부터 최대(예컨대, 150)까지 5씩 증가시키면서 각 윈도우 크기에 대한 GT 통계량을 계산한다.The GT statistic for each window size is calculated using the residual when the meter is normal, increasing the window size w by 5 from minimum (eg, 5) to maximum (eg, 150).

어느 시점 t에서의 GLR(Generalized Likelihood Ratio)은 다음의 식 47과 같다.
The generalized likelihood ratio (GLR) at time t is given by

식 47Equation 47

Figure 112010066642414-pat00286

Figure 112010066642414-pat00286

Figure 112010066642414-pat00287
는 최근 윈도우 크기
Figure 112010066642414-pat00288
개의 데이터로 구한 평균을 의미하고, 식 48가 같이 표현된다.
Figure 112010066642414-pat00287
Recent window size
Figure 112010066642414-pat00288
Means the average of the data, and 48 is expressed as follows.

식 48Formula 48

Figure 112010066642414-pat00289

Figure 112010066642414-pat00289

GLRT의 검정통계량 GT는 시점 t에서 얻어지는 GLR 중의 윈도우 크기(window size) 내에서 가장 큰 것으로 정의하며, 다음의 식 49와 같이 구한다.
The test statistic GT of GLRT is defined as the largest within the window size among the GLRs obtained at time t , and is obtained as in Equation 49 below.

식 49Formula 49

Figure 112010066642414-pat00290
Figure 112010066642414-pat00290

단,

Figure 112010066642414-pat00291
는 최근 k개의 데이터로 시점 t에서 구한 평균을 나타낸다.
only,
Figure 112010066642414-pat00291
Denotes the average obtained from time t with k recent data.

각 윈도우 크기에서의 GT 통계량과 최대 윈도우에서의 GT 통계량과의 MSE 차이를 식 50에 따라 구한다.MSE calculated by the difference between the GT statistic in each window size GT statistic and the maximum window in the formula 50.

식 50Formula 50

Figure 112010066642414-pat00292

Figure 112010066642414-pat00292

MSE ( GT i )의 감소가 둔화되는 점에서 최적 윈도우크기를 설정한다.Set the optimal window size in that the decrease in MSE ( GT i ) is slowed down.

도 10은 윈도우 크기에 따른 MSE(GTi)의 값을 계산한 예를 나타낸 도면으로, 가로축은 윈도우 크기, 세로축은 MSE ( GT i )를 나타내며, 최적윈도우의 크기는 w=50을 선택하였다.
FIG. 10 is a diagram illustrating an example of calculating a value of MSE (GT i ) according to a window size. The horizontal axis represents window size, the vertical axis represents MSE ( GT i ) , and the optimal window size is w = 50.

12.3) GT 통계량 계산12.3) GT Statistics calculation

최적 윈도우 크기 w를 이용하여 검사하고자 하는 잔차에 대해 상기 식 47, 식 48 및 식 49를 이용하여, 윈도우를 1time step씩 이동하여 가면서 GLR t (k)와 GT를 계산한다. 단, k=1, 2, ..., w
For the residual to be examined using the optimum window size w , GLR t (k) and GT are calculated by moving the window by 1 time step using Equations 47, 48 and 49 above. Where k = 1, 2, ..., w

12.4) 관리한계선(UCL) 설정12.4) UC

상기 12.1)에서 계산한 정상적인 경우의 잔차의 평균 및 표준편차 값과 동일한 평균 및 표준편차 갖는 정규분포의 동일 개수 무작위 숫자를 생성하여 GT를 구하고, 이를 1000회 반복하여 GT의 최대값을 취하여 관리한계선(UCL : Upper Control Limit)으로 설정한다.The 12.1) to generate the same number of random numbers has mean and standard deviation values and the same mean and standard deviation of the residuals for, if the normal calculated normal distribution obtain and GT in, by repeating 1000 times this takes the maximum value of GT management limit Set to (UCL: Upper Control Limit).

본 예에서는 UCL=28.25로 설정하였다.
In this example, UCL is set to 28.25.

12.5) 드리프트 유무 판정12.5) Determination of Drift

GT와 UCL을 그래프에 그린다. GT가 관리한계선(UCL)을 이탈하면 센서에 드리프트가 발생한 것으로 판정하고, 그 이하에 있으면 센서가 정상적인 것으로 판정한다.Draw GT and UCL on the graph. When the GT deviates from the control limit line UCL, it is determined that a drift has occurred in the sensor, and when it is below, the sensor is determined to be normal.

도 11은 계측기가 정상상태의 경우 및 이상상태의 경우에 대한 고장판별의 예를 나타낸 도면으로, 도 11a는 계측기가 정상 상태일 경우, 도 11b는 계측기에 시프트 드리프트가 발생된 경우의 예를 나타낸 것이다. 도 11b에서는 58번째 step에서 센서의 드리프트의 발생을 탐지함을 나타낸다.
FIG. 11 is a diagram illustrating an example of failure determination for a case where the meter is in a normal state and an abnormal state. FIG. 11A is a case where a shift drift occurs in the meter when the meter is in a normal state. will be. In FIG. 11B, the occurrence of the drift of the sensor is detected at the 58th step.

본 발명의 효과와 새로운 방법론의 우수성을 확인하기 위하여 실제 원자력발전소의 출력을 0%에서 100%로 상승 중에 1,2차 계통에서 측정한 계측기 신호데이터를 이용하여 기존 방법론과 비교하여 확인하였다. 분석에 사용된 데이터는 총 11개의 센서에서 측정된 값이다.
In order to confirm the effectiveness of the present invention and the superiority of the new methodology, the output of the actual nuclear power plant was increased from 0% to 100%. The data used in the analysis was measured on a total of 11 sensors.

표 5는 종래의 커널회귀법과 본 발명에 따른 계측기 예측치의 정확도를 비교한 표이다.Table 5 is a table comparing the accuracy of the instrument prediction according to the conventional kernel regression method and the present invention.

표 5에서와 같이, 분석에 사용된 데이터는 다음과 같은 총 11개의 센서에서 측정된 값이다.As shown in Table 5, the data used in the analysis were measured from a total of 11 sensors as follows.

- 1 : 원자로 출력(%) -1: reactor output (%)

- 2 : 가압기 수위(%) -2: Pressurizer water level (%)

- 3 : 증기발생기 증기 유량(Mkg/hr) -3: Steam generator steam flow rate (Mkg / hr)

- 4 : 증기발생기 협역 수위 데이터(%) -4: Steam generator narrow level data (%)

- 5 : 증기발생기 압력 데이터(Kg/cm2)-5: Steam generator pressure data (Kg / cm 2 )

- 6 : 증기발생기 광역 수위 데이터(%) 6: Steam generator wide area water level data (%)

- 7 : 증기발생기 주급수 유량 데이터(Mkg/hr) -7: Steam generator main water supply flow rate data (Mkg / hr)

- 8 : 터빈 출력 데이터(MWe) -8: turbine output data (MWe)

- 9 : 원자로 냉각재 충전 유량 데이터(m3/hr)9: reactor coolant charge flow rate data (m 3 / hr)

- 10 : 잔열제거 유량 데이터(m3/hr)10: residual heat removal flow rate data (m 3 / hr)

- 11 : 원자로 상부 냉각재 온도 데이터(℃)
11: Upper reactor coolant temperature data (° C.)

정확도는 예측 모델을 운전감시에 적용하는데 있어 가장 기본적인 척도가 된다. 대부분 정확도는 모델 예측치와 실제 측정치의 평균 자승오차로 나타낸다. 다음의 51은 한 개의 계측기에 대한 정확도를 나타내는 수식이다.
Accuracy is the most basic measure for applying predictive models to driving surveillance. In most cases, accuracy is expressed as the mean square error between model predictions and actual measurements. The following 51 is a formula for the accuracy of one instrument.

식 51Equation 51

Figure 112010066642414-pat00293
Figure 112010066642414-pat00293

여기서, N : 시험데이터의 수Where N is the number of test data

Figure 112010066642414-pat00294
: i번째 시험데이터에 대한 모델의 추정치
Figure 112010066642414-pat00294
: Estimate of model for the i test data

Figure 112010066642414-pat00295
: i번째 시험데이터의 측정치
Figure 112010066642414-pat00295
: Measurement value of the i test data

표 5 : 기존 커널 회귀법과 본 발명에 따른 계측기 예측치의 정확도 비교Table 5: Accuracy Comparison between Instrument Kernel Regression and Instrument Prediction According to the Present Invention

Figure 112010066642414-pat00296

Figure 112010066642414-pat00296

본 발명은 계측기 신호의 주성분을 추출하고, 최적화용 데이터를 이용하여 FSVR모델의 최적 상수를 반응분석표면법에 의해 구하며, 다시 모델을 훈련데이터를 이용하여 훈련시켜 시험용 데이터를 이용하여 시험해 본 결과 기존 커널 회귀법에 비해 예측치 계산의 정확도를 향상시킨다. 또한, 보통의 경보시스템으로는 감지할 수 없는 아주 미세한 시프트 드리프트(shift drift)가 발생하였을 경우라도 본 발명에 따른 GLRT 방법을 이용하여 고장을 판별하면 조기에 고장식별을 할 수 있게 된다.
The present invention extracts the principal component of the measuring instrument signal, obtains the optimal constant of the FSVR model using the response data, using the response analysis surface method, and trained the model using the training data and tested the test data using the existing data. Improve the accuracy of prediction calculations compared to kernel regression. In addition, even when a very fine shift drift occurs that cannot be detected by an ordinary alarm system, failure can be identified early by using the GLRT method according to the present invention.

상기 데이터를 시간의 함수로 그래프를 그리면 다음과 같다.
A graph of the data as a function of time is as follows.

도 12는 정확도 테스트를 위한 원자력발전소 원자로 노심출력 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts_1 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 상기 식 45의 시험용 입력 X ts _1 에 대한 추정 데이터

Figure 112010066642414-pat00297
를 나타낸다.
12 is a graph showing nuclear reactor reactor core output data for accuracy test, the black "Measured" line corresponds to the test input data X ts_1 of Equation 6, and the red "Predicted" line uses the algorithm of the present invention. Estimated data for the test input X ts _1 of Equation 45 predicted by
Figure 112010066642414-pat00297
Indicates.

도 13은 정확도 테스트를 위한 원자력발전소 가압기 수위 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts _2 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 상기 식 45의 시험용 입력 X ts _2 에 대한 추정 데이터

Figure 112010066642414-pat00298
를 나타낸다.
13 is a graph showing the nuclear power plant pressurizer water level data for accuracy test, the black "Measured" line corresponds to the test input data X ts _2 of Equation 6, and the red "Predicted" line uses the algorithm of the present invention. Estimated data for the test input X ts _2 of Equation 45 predicted by
Figure 112010066642414-pat00298
Indicates.

도 14는 정확도 테스트를 위한 원자력발전소 증기발생기 증기유량 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts _3 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 상기 식 45의 시험용 입력 X ts _3 에 대한 추정 데이터

Figure 112010066642414-pat00299
를 나타낸다.
14 is a graph illustrating steam flow rate data of a nuclear power plant steam generator for accuracy test, in which a black “Measured” line corresponds to the test input data X ts _3 of Equation 6, and a red “Predicted” line represents an algorithm of the present invention. Estimated data for the test input X ts _3 of Equation 45 predicted using
Figure 112010066642414-pat00299
Indicates.

도 15는 정확도 테스트를 위한 원자력발전소 증기발생기 협역 수위 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts_4 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _4 에 대한 추정 데이터

Figure 112010066642414-pat00300
를 나타낸다.
FIG. 15 is a graph showing the narrow-range water level data of a nuclear power plant steam generator for accuracy test, wherein a black "Measured" line corresponds to the test input data X ts_4 of Equation 6, and a red "Predicted" line indicates the algorithm of the present invention. Estimated data for the experimental input X ts _4 of equation 45 predicted using
Figure 112010066642414-pat00300
Indicates.

도 16은 정확도 테스트를 위한 원자력발전소 증기발생기 압력 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts_5 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _5 에 대한 추정 데이터

Figure 112010066642414-pat00301
를 나타낸다.
16 is a graph showing the steam power pressure data of the nuclear power plant for the accuracy test, the black "Measured" line corresponds to the test input data X ts_5 of Equation 6, and the red "Predicted" line uses the algorithm of the present invention. Estimated data for test input X ts _5 in Equation 45 predicted by
Figure 112010066642414-pat00301
Indicates.

도 17은 정확도 테스트를 위한 원자력발전소 증기발생기 광역 수위 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts _6 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _6 에 대한 추정 데이터

Figure 112010066642414-pat00302
를 나타낸다.
FIG. 17 is a graph showing wide-range water level data of a nuclear power plant steam generator for accuracy test, in which a black "Measured" line corresponds to the test input data X ts _6 of Equation 6, and a red "Predicted" line represents the algorithm of the present invention. Data for the experimental input X ts _6 in equation 45 predicted using
Figure 112010066642414-pat00302
Indicates.

도 18은 정확도 테스트를 위한 원자력발전소 증기발생기 주급수 유량 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts _7 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _7 에 대한 추정 데이터

Figure 112010066642414-pat00303
를 나타낸다.
18 is a graph showing the main water supply flow rate data of the nuclear power plant steam generator for accuracy test, the black "Measured" line corresponds to the test input data X ts _7 of Equation 6, the red "Predicted" line is Estimated Data for Experimental Input X ts _7 in Equation 45 Predicted Using Algorithm
Figure 112010066642414-pat00303
Indicates.

도 19는 정확도 테스트를 위한 원자력발전소 터빈 출력 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts _8 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _8 에 대한 추정 데이터

Figure 112010066642414-pat00304
를 나타낸다.
19 is a graph showing nuclear power plant turbine output data for accuracy test, the black "Measured" line corresponds to the test input data X ts _8 of Equation 6, and the red "Predicted" line uses the algorithm of the present invention. Estimated data for test input X ts _8 in Equation 45 predicted by
Figure 112010066642414-pat00304
Indicates.

도 20은 정확도 테스트를 위한 원자력발전소 1차측 충전 유량 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts_9 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _9 에 대한 추정 데이터

Figure 112010066642414-pat00305
를 나타낸다.
20 is a graph showing the primary side charge flow rate data for the nuclear power plant for accuracy test, the black "Measured" line corresponds to the test input data X ts_9 of Equation 6, and the red "Predicted" line represents the algorithm of the present invention. Estimated data for the test input X ts _9 in Equation 45 predicted using
Figure 112010066642414-pat00305
Indicates.

도 21은 정확도 테스트를 위한 원자력발전소 잔열제거 유량 데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의 시험용 입력데이터 X ts_10 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _10 에 대한 추정 데이터

Figure 112010066642414-pat00306
를 나타낸다.
21 is a graph showing the residual heat removal flow rate data of a nuclear power plant for accuracy test, wherein a black "Measured" line corresponds to the test input data X ts_10 of Equation 6, and a red "Predicted" line uses the algorithm of the present invention. Estimated data for the experimental input X ts _10 in Eq 45
Figure 112010066642414-pat00306
Indicates.

도 22는 정확도 테스트를 위한 원자력발전소 원자로 상부 냉각재 온도데이터를 나타낸 그래프로서, 검정색 "Measured" 선은 상기 식 6의의 시험용 입력데이터 X ts _11 에 해당하고, 붉은색 "Predicted" 선은 본 발명의 알고리즘을 이용하여 예측한 식 45의 시험용 입력 X ts _11 에 대한 추정 데이터

Figure 112010066642414-pat00307
를 나타낸다. FIG. 22 is a graph showing temperature data of coolant top of a nuclear power plant for accuracy test, in which a black "Measured" line corresponds to test input data X ts _11 of Equation 6, and a red "Predicted" line represents an algorithm of the present invention. Estimated Data for the Test Input X ts _11 in Equation 45 Predicted Using
Figure 112010066642414-pat00307
Indicates.

Claims (47)

m개의 현장센서에 대해 시계열 현장신호를 인가받아 클러스터링부(12)로 보내는 입력부(11)와;
상기 입력부(11)로부터 입력받은 시계열 현장신호에 대한 입력신호를 퍼지 클러스터링 방법을 이용하여 원하는 N개의 데이터 군집으로 나누는 클러스터링부(12);
상기 클러스터링부(12)로부터 인가받은 N개의 데이터 군집으로 나누어진 각 데이터 클러스터에 대해 주성분을 추출하는 PCA부(13);
각 데이터 클러스터에 대해 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 계산하고, 모델을 훈련시키며, 반응표면 분석법을 이용해서 모델의 최적 파라미터를 구하고, 시험데이터에 대해 신호예측을 수행하는 FSVR부(14);
상기 FSVR부(14)에서 예측한 신호와 입력신호를 비교하여 차이를 구하는 비교연산부(15) 및;
윈도우 사이즈의 최적화 및 관리한계선을 설정한 후, 비교연산부의 출력을 이용하여 GLRT의 검정통계량을 계산하여 센서의 드리프트 유무를 판별하는 GLRT부(16)를 구비하여 구성된 것을 특징으로 하는 FSVR(Fuzzy Support Vector Regression)과 GLRT(Generalized Likelihood Ratio Test)를 이용한 발전소 계측기 성능감시 시스템.
an input unit 11 receiving time-series field signals for the m field sensors and sending them to the clustering unit 12;
A clustering unit 12 dividing an input signal for the time series field signal received from the input unit 11 into N desired data clusters using a fuzzy clustering method;
A PCA unit 13 for extracting a main component for each data cluster divided into N data clusters received from the clustering unit 12;
An FSVR unit 14 for calculating fuzzy membership grade for each data cluster, training the model, obtaining optimal parameters of the model using response surface analysis, and performing signal prediction on the test data;
A comparison operation unit 15 for comparing a signal predicted by the FSVR unit 14 with an input signal to obtain a difference;
FSVR (Fuzzy Support), characterized in that it comprises a GLRT unit 16 for determining the drift of the sensor by calculating the GLRT test statistic using the output of the comparison operation unit after setting the window size optimization and management limit line. Power plant instrument performance monitoring system using Vector Regression and Generalized Likelihood Ratio Test (GLRT).
전체의 데이터 셋(X)을 행렬의 형태로 표시하고, 훈련용(Xtr), 최적화용(Xopt), 시험용(Xts)으로 삼분하는 제1단계와;
상기 제1단계에서 행렬 형태로 표시된 전체의 데이터를 정규화하는 제2단계;
상기 제2단계에서 정규화된 데이터 셋(Z)을 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)으로 삼분하는 제3단계;
상기 제3단계에서 정규화되어 삼분된 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋(Z)의 주성분을 추출하는 제4단계;
FCM(Fuzzy C-Means) 클러스터링을 이용하여, 데이터 셋과 주성분을 원하는 개수 만큼의 데이터 군집으로 나누는 제5단계;
반응표면분석법으로 최적화용 데이터(Zopt)의 각 클러스터 데이터(Zopt1, Zopt2)를 사용하여 최적화용 데이터(Zopt)의 예측치 오차를 최소화시키는 각 FSVR 모델의 최적 상수
Figure 112012012605337-pat00308
Figure 112012012605337-pat00309
를 구하는 제6단계;
훈련용 데이터 Ztr의 각 클러스터에 대해 상기 제6단계에 따라 퍼지 멤버쉽 그레이드
Figure 112012012605337-pat00310
를 계산하는 제7단계;
각 클러스터에 대한 훈련용 데이터와, 훈련용 데이터의 주성분벡터, 상기 제6단계에서 구한 최적 파라미터 및, 상기 제7단계에서 구한 퍼지 멤버쉽 그레이드(fuzzy membership grade)를 이용하여 FSVR 모델을 훈련시킨 후, 시험용 데이터(Zts)의 각 클러스터 주성분벡터(Pts1, Pts2)를 입력시켜 출력 예측치(Zts1_hat과 Zts2_hat)를 구하는 제8단계;
각 클러스터에 대한 예측치(Zts1_hat과 Zts2_hat)를 연결시켜 전체의 데이터에 대한 예측치(Zts_hat)를 구하는 제9단계;
시험용 데이터에 대한 예측치
Figure 112012012605337-pat00311
를 원래의 시간 인덱스를 이용하여 시간순으로 분류하는 제10단계;
상기 제10단계에서 얻어진 정규화된 시험데이터의 예측치를 원래의 범위로 역정규화하여 원래 스케일의 각 센서에 대한 예측치
Figure 112012012605337-pat00312
를 식 45에 따라 구하는 제11단계 및;
예측치에 대한 잔차를 계산하고 GLRT를 이용하여 센서의 드리프트를 판별하는 제12단계를 갖추어 이루어진 것을 특징으로 하는 FSVR(Fuzzy Support Vector Regression)과 GLRT(Generalized Likelihood Ratio Test)를 이용한 발전소 계측기 성능감시 방법.
A first step of displaying the entire data set (X) in the form of a matrix and subdividing it into training (Xtr), optimization (Xopt), and test (Xts);
A second step of normalizing the entire data displayed in matrix form in the first step;
A third step of dividing the data set Z normalized in the second step into training (Ztr), optimization (Zopt), and test (Zts);
A fourth step of extracting a principal component of each data set (Ztr) for training (Ztr), optimization (Zopt), and test (Zts) normalized and divided in the third step;
A fifth step of dividing the data set and the principal components into as many data clusters as desired using Fuzzy C-Means (FCM) clustering;
Each FSVR model of reacting with a surface analysis method, the optimization of each data cluster of data (Zopt) for (Z opt1, Z opt2) minimizes the prediction error of the optimization data (Zopt) for optimal constant
Figure 112012012605337-pat00308
And
Figure 112012012605337-pat00309
Obtaining a sixth step;
Fuzzy membership grade according to the sixth step for each cluster of training data Ztr
Figure 112012012605337-pat00310
Calculating a seventh step;
After training the FSVR model using the training data for each cluster, the principal component vector of the training data, the optimal parameters obtained in the sixth step, and the fuzzy membership grade obtained in the seventh step, An eighth step of obtaining output prediction values Zts1_hat and Zts2_hat by inputting each cluster principal component vector Pts1 and Pts2 of the test data Zts;
A ninth step of connecting prediction values Zts1_hat and Zts2_hat for each cluster to obtain prediction values Zts_hat for the entire data;
Estimates for Experimental Data
Figure 112012012605337-pat00311
Classifying the data in chronological order using the original time index;
The normalized test data obtained in step 10 is normalized to the original range by denormalizing the predicted value of each sensor of the original scale.
Figure 112012012605337-pat00312
Eleventh step of obtaining according to equation 45 and;
12. A method for monitoring plant performance using a FSVR (Generalized Likelihood Ratio Test) and a GFVR (Generalized Likelihood Ratio Test), comprising a twelfth step of calculating a residual for a predicted value and determining a drift of a sensor using a GLRT.
제2항에 있어서,
상기 제1단계에서의 행렬이, 식
Figure 112010066642414-pat00313

에 의해 표시되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
The matrix in the first step is
Figure 112010066642414-pat00313

Power station instrument performance monitoring method using FSVR and GLRT, characterized in that displayed by.
제2항에 있어서,
상기 제2단계에서 정규화가, 식
Figure 112010066642414-pat00314

(여기서, i = 1,2 … 3n)
에 의해 이루어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
In the second step, the normalization is
Figure 112010066642414-pat00314

Where i = 1,2 ... 3n
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that made by.
제4항에 있어서,
정규화된 전체의 데이터 셋(Z)이, 식
Figure 112010066642414-pat00315

에 의해 표시되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 4, wherein
The normalized entire data set (Z) is
Figure 112010066642414-pat00315

Power station instrument performance monitoring method using FSVR and GLRT, characterized in that displayed by.
제2항에 있어서,
정규화된 상기 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts) 데이터 셋이, 식
Figure 112010066642414-pat00316

(단, 여기서 i = 0,1,2 … n-1)
에 의해 나누어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
The normalized training (Ztr), optimization (Zopt), and trial (Zts) data sets are
Figure 112010066642414-pat00316

Where i = 0,1,2… n-1
Performance monitoring method for power plant instrumentation using FSVR and GLRT, characterized in that divided by.
제2항에 있어서,
상기 제4단계에서 주성분의 분산을 크기 순으로 나열하고, 백분율 분산 값이 가장 큰 주성분부터 시작하여 그 누적 합이 99.5% 이상 될 때까지의 훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋의 주성분(Ptr, Pop, Pts)을 선택하여 주성분을 추출하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
In the fourth step, the variances of the principal components are listed in order of magnitude, and the training (Ztr), optimization (Zopt), and test (starting from the principal component having the largest percentage variance value until the cumulative sum is 99.5% or more) A method for monitoring the performance of a power plant instrument using FSVR and GLRT, characterized by extracting the principal components by selecting the principal components (Ptr, Pop, Pts) of each data set of Zts).
제7항에 있어서,
상기 주성분 추출이,
훈련용(Ztr), 최적화용(Zopt), 시험용(Zts)의 각 데이터 셋에서 각 변수의 평균값을 빼고, 이를 A 매트릭스
Figure 112010066642414-pat00317
로 나타내는 제4-1단계와;
Figure 112010066642414-pat00318
에 따라
Figure 112010066642414-pat00319
의 고유치(eigenvalue)
Figure 112010066642414-pat00320
를 구하고, 식
Figure 112010066642414-pat00321
에 따라 내림차순으로 정리하며, 식
Figure 112010066642414-pat00322
에 따라 A의 특이치(singular value) s를 구하는 제4-2단계;
Figure 112010066642414-pat00323
로부터 고유치(eigenvalue)
Figure 112010066642414-pat00324
를 구하고, 구해진 고유치(eigenvalue)
Figure 112010066642414-pat00325
를 식
Figure 112010066642414-pat00326
에 대입하여 각 고유치(eigenvalue)
Figure 112010066642414-pat00327
에 대한 n×1인 고유벡터(eigenvector)
Figure 112010066642414-pat00328
를 구하는 것에 의해, n×n매트릭스인
Figure 112010066642414-pat00329
의 고유벡터(eigenvector)를 구하는 제4-3단계;
Figure 112010066642414-pat00330
에 따라 각 주성분의 분산을 구하는 제4-4단계;
Figure 112010066642414-pat00331
및 식
Figure 112010066642414-pat00332
에 따라 각 주성분의 분산을 전체 주성분의 분산을 합한 값으로 나누어 백분율을 구하는 제4-5단계;
백분율 분산
Figure 112010066642414-pat00333
이 가장 큰 것부터 누적 계산을 하여 원하는 백분율 분산(예컨대, 99.98%)까지의 주성분 p개를 선택하는 제4-6단계;
주성분을 식
Figure 112010066642414-pat00334
에 따라 계산하여 추출하는 제4-7단계 및;
최적화용(Zopt), 시험용(Zts) 데이터 셋에 대해 상기 제4-1단계 내지 제4- 7단계에 의해 주성분을 추출하는 제4-8단계;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 7, wherein
The main component extraction,
In each data set of training (Ztr), optimization (Zopt), and testing (Zts), the mean value of each variable is subtracted.
Figure 112010066642414-pat00317
Step 4-1 represented by;
expression
Figure 112010066642414-pat00318
Depending on the
Figure 112010066642414-pat00319
Eigenvalue of
Figure 112010066642414-pat00320
Finding the equation
Figure 112010066642414-pat00321
Sort in descending order according to the formula
Figure 112010066642414-pat00322
Step 4-2 to obtain a singular value s of A according to;
Figure 112010066642414-pat00323
Eigenvalue from
Figure 112010066642414-pat00324
And obtain the eigenvalue
Figure 112010066642414-pat00325
Expression
Figure 112010066642414-pat00326
Assigning to each eigenvalue
Figure 112010066642414-pat00327
Eigenvector of n × 1 for
Figure 112010066642414-pat00328
By finding n × n matrix
Figure 112010066642414-pat00329
A fourth to third step of obtaining an eigenvector;
expression
Figure 112010066642414-pat00330
4-4 to obtain the dispersion of each main component according to;
expression
Figure 112010066642414-pat00331
And expression
Figure 112010066642414-pat00332
4-5 to obtain a percentage by dividing the variance of each main component by the sum of the variances of all the main components according to step 4-5;
Percent variance
Figure 112010066642414-pat00333
Steps 4-6 of performing the cumulative calculation from this largest one to selecting p principal components up to a desired percentage variance (eg, 99.98%);
Formulated the main ingredient
Figure 112010066642414-pat00334
4-7 to calculate and extract according to;
Using the FSVR and GLRT, characterized in that it comprises a; 4-8 step for extracting the main components in the Zopt, Zts data set in the above steps 4-1 to 4-7 How to monitor power plant instrument performance.
제8항에 있어서,
상기 제4-6단계에서의 원하는 백분율 분산이 99.98%인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
9. The method of claim 8,
A method for monitoring the performance of a power plant instrument using FSVR and GLRT, characterized in that the desired percentage dispersion in steps 4-6 is 99.98%.
제2항에 있어서,
상기 제5단계가, 훈련데이터(Ztr)를 FCM(Fuzzy C-Means) 클러스터링 방법을 이용하여 두 그룹 Ztr1과 Ztr2으로 나누되, 생성된 각 데이터 그룹의 같은 인덱스를 이용하여 주성분(Ptr)도 같은 수의 클러스터(Ptr1, Ptr2)로 나누는 제5-1단계와;
최적화용 데이터(Zopt)와 시험용 데이터(Zts)에 대해 상기 제5-1단계를 반복하여 정규화 데이터 클러스터(Zopt1, Zopt2, Zts1, Zts2)와 주성분 클러스터(Popt1, Popt2, Pts1, Pts2)로 각각 나누는 제5-2단계를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
In the fifth step, the training data Ztr is divided into two groups Ztr1 and Ztr2 by using a Fuzzy C-Means (FCM) clustering method, and the same principal component is also used by using the same index of each generated data group. A fifth step of dividing into a number of clusters Ptr1 and Ptr2;
Repeating step 5-1 for the optimization data (Zopt) and the test data (Zts), and dividing them into normalized data clusters (Zopt1, Zopt2, Zts1, Zts2) and principal component clusters (Popt1, Popt2, Pts1, Pts2), respectively. A method for monitoring power plant instrument performance using FSVR and GLRT, comprising steps 5-2.
제10항에 있어서,
상기 FCM(Fuzzy C-Means) 클러스터링 방법이,
입력신호 집합
Figure 112010066642414-pat00335
에 대한 클러스터 개수
Figure 112010066642414-pat00336
퍼지 계수 m(=2)를 결정하고, 소속행렬
Figure 112010066642414-pat00337
을 초기화하는 단계 1과;
각각의 클러스터에 대한 중심 벡터 vi(r)과 멤버쉽 uik를 구하는 단계 2;
각각의 클러스터 중심과 데이터와의 거리를 계산하여 목적함수(Q)를 최소로 하는 새로운 소속행렬 U(r+1) 생성하는 단계 3 및;
종료조건을 만족하면 종료하고, 종료조건을 만족하지 않으면 r=r+1로 정한 다음 상기 단계 2로 진행해서 상기 단계 2 내지 상기 단계 3을 반복하는 단계 4;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 10,
Fuzzy C-Means (FCM) clustering method,
Set of input signals
Figure 112010066642414-pat00335
Cluster Count for
Figure 112010066642414-pat00336
Determine fuzzy coefficient m (= 2), and belong to
Figure 112010066642414-pat00337
Initiating step 1;
Obtaining a center vector vi (r) and membership u ik for each cluster;
Calculating a distance between each cluster center and data to generate a new belonging matrix U (r + 1) which minimizes the objective function Q;
FSVR, characterized in that: if the end condition is satisfied, if the end condition is not met, set r = r + 1, and then proceed to step 2 and repeat step 2 to step 3; Monitoring Method for Power Plant Instrument Performance Using GLRT.
제11항에 있어서,
상기 단계 1이,
Figure 112010066642414-pat00338

(여기서, i는 클러스터의 번호, k는 패턴의 번호, r은 반복 횟수, N은 각 센서의 샘플된 데이터 개수, uik는 데이터 포인터 Xk가 그룹 i에 속하는 멤버쉽 크기임)
에 의해 수행되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 11,
Step 1 above,
expression
Figure 112010066642414-pat00338

(Where, i is the cluster number, k is the number of the pattern, r is the number of iterations, N is the number of sample data of each sensor, u ik is pointer data X k being the membership size belonging to the group i)
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that performed by.
제11항에 있어서,
상기 단계 2가,
Figure 112010066642414-pat00339

에 의해 수행되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 11,
Step 2 above,
expression
Figure 112010066642414-pat00339

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that performed by.
제11항에 있어서,
상기 단계 3에서의 목적함수(Q)가,
Figure 112010066642414-pat00340

에 의해 나타내어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 11,
The objective function (Q) in the step 3,
expression
Figure 112010066642414-pat00340

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that represented by.
제11항에 있어서,
상기 단계 4에서의 종료조건이 식
Figure 112010066642414-pat00341
에 의해 나타내어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 11,
The termination condition in step 4 is expressed by
Figure 112010066642414-pat00341
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that represented by.
제2항에 있어서,
각 FSVR 모델의 최적 상수
Figure 112012012605337-pat00342
Figure 112012012605337-pat00343
를 구하는 상기 제6단계가,
훈련용 데이터의 첫 번째 클러스터(Ztr1)의 각 데이터 포인터와 다른 모든 입력데이터간의 유클리디언 거리를 이용하여 각 데이터 포인터의 포텐셜(P1)을 계산하고, 이를 이용하여 퍼지 멤버쉽 그레이드(fuzzy membership grade)
Figure 112012012605337-pat00344
을 계산하는 제6-1단계와;
클러스트 1에 대한 시험점 중 첫 번째 시험점(v1, v2, v3 )을 선택하는 제6-2단계;
선택된 시험점에 대해 Ztr1의 첫 번째 신호(Ztr1-1),
Figure 112012012605337-pat00345
및 Ptr1을 입력한 후, FSVR 모델을 훈련시켜 svi(support vector index), w1 (SV(Support Vector)의 가중치(weight)) 및 b1 (bias)를 구하는 제6-3단계;
Popt 1과 svi를 이용하여 방사형 기저 함수(radial basis function)(Kopt1)를 구하는 제6-4단계;
최적화용 데이터 Zopt1의 첫 번째 계측기 신호에 대한 예측치를 구하는 제6-5단계;
Ztr1의 나머지 다른 계측기 신호에 대해 상기 제6-3단계~상기 제6-5단계를 반복 수행한 후, 예측 매트릭스 출력
Figure 112012012605337-pat00346
을 얻는 제6-6단계;
최적화용 데이터(Zopt1)의 측정치와 예측치의 잔차
Figure 112012012605337-pat00347
에 대한 RMS(Root mean square)을 구하고, 이를 저장하는 제6-7단계;
다른 시험점에 대해 상기 제6-2단계~제6-7단계를 반복 수행하고, 잔차에 대한 RMS 값을 저장하는 제6-8단계;
최적화용 데이터 Zopt1를 이용해서 구한 잔차의 RMS값을 전체 입력신호 개수에 대해 평균값(MSE)(수학식 38)을 계산하고, 평균값에 대한 자연 로그(natural log) 값을 구하는 제6-9단계;
반응표면분석법을 이용해서 클러스터 1에 대한 ln{MSE}를 최소화시키는 FSVR 모델의 최적상수
Figure 112012012605337-pat00348
를 구하는 제6-10단계 및;
클러스터 2에 대해 제6-1단계~제6-10단계를 반복 수행하여 식 35에 따라 클러스터 2에 대한 FSVR 모델의 최적상수
Figure 112012012605337-pat00349
를 구하는 제6-11단계;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
Optimal Constants for Each FSVR Model
Figure 112012012605337-pat00342
And
Figure 112012012605337-pat00343
The sixth step of obtaining
The potential (P 1 ) of each data pointer is calculated using the Euclidean distance between each data pointer of the first cluster of training data (Ztr1) and all other input data, and the fuzzy membership grade is used. )
Figure 112012012605337-pat00344
6-1 step of calculating the;
Step 6-2 selecting the first test point ( v 1 , v 2 , v 3 ) of the test point for the cluster 1;
The first signal of Ztr1 (Ztr1-1) for the selected test point,
Figure 112012012605337-pat00345
And step 6-3, after inputting Ptr1, training the FSVR model to obtain svi (support vector index), w 1 (weight of SV) and b 1 (bias);
Step 6-4 by using a Popt svi 1 and to obtain a radial basis function (radial basis function) (Kopt1) ;
6-5 to obtain a prediction value for the first instrument signal of the optimization data Zopt1;
After repeating steps 6-3 to 6-5 with respect to the other instrument signals of Ztr1, a predictive matrix output is performed.
Figure 112012012605337-pat00346
Step 6-6 to obtain;
Residual of measured and predicted values of optimization data (Zopt1)
Figure 112012012605337-pat00347
Calculating a root mean square (RMS) for each of the sixth and sixth steps of storing the root mean square (RMS);
Steps 6-8 for repeating steps 6-2 to 6-7 for other test points and storing RMS values for the residuals;
Steps 6-9 of calculating an average value (MSE) (Equation 38) of the RMS values of the residuals obtained using the optimization data Zopt1 with respect to the total number of input signals, and calculating a natural log value with respect to the average values;
Optimal Constants of FSVR Model Using Minimized ln {MSE} for Cluster 1 Using Response Surface Methodology
Figure 112012012605337-pat00348
Step 6-10 to obtain and;
Repeat steps 6-1 to 6-10 for cluster 2 and use the FSVR model constant for cluster 2 according to equation 35.
Figure 112012012605337-pat00349
6-11 step of obtaining a; power plant instrument performance monitoring method using FSVR and GLRT, characterized in that made.
제16항에 있어서,
각 데이터 포인터의 포텐셜(P1)이, 식
Figure 112010066642414-pat00350

(여기서,
Figure 112010066642414-pat00351
: 한 클러스터 내의 데이터 개수,
Figure 112010066642414-pat00352
: 첫 번째 클러스터(Ztr1)의 반경)
Figure 112010066642414-pat00353

에 의해 계산되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
The potential (P 1 ) of each data pointer is
Figure 112010066642414-pat00350

(here,
Figure 112010066642414-pat00351
= Number of data in a cluster,
Figure 112010066642414-pat00352
: Radius of first cluster (Ztr1)
Figure 112010066642414-pat00353

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that calculated by.
제16항에 있어서,
방사형 기저 함수(radial basis function)(Kopt1)를 구하는 제6-4단계가, 식
Figure 112010066642414-pat00354

(여기서,
Figure 112010066642414-pat00355
: Zopt1의 주성분벡터,
Figure 112010066642414-pat00356
: Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터)
에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
Steps 6-4 to obtain the radial basis function Kopt1 are given by
Figure 112010066642414-pat00354

(here,
Figure 112010066642414-pat00355
: Principal component vector of Zopt1,
Figure 112010066642414-pat00356
: Principal component vector with index of svi in Ptr1)
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제16항에 있어서,
최적화용 데이터 Zopt1의 첫 번째 계측기 신호에 대한 예측치를 구하는 상기 제6-5단계가, 식
Figure 112010066642414-pat00357

(여기서,
Figure 112010066642414-pat00358
: 베타(beta) 벡터 중에서 svi의 인덱스를 갖는 베타(beta) 벡터)
에 의해 구하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
Steps 6-5 above to obtain a prediction value for the first instrument signal of the optimization data Zopt1,
Figure 112010066642414-pat00357

(here,
Figure 112010066642414-pat00358
: Beta vector with index of svi among beta vector)
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제16항에 있어서,
상기 예측 매트릭스 출력
Figure 112010066642414-pat00359
을 얻는 제6-6단계가, 식
Figure 112010066642414-pat00360

에 의해 얻어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
The prediction matrix output
Figure 112010066642414-pat00359
The sixth to sixth steps of
Figure 112010066642414-pat00360

Performance monitoring method for power station instrumentation using FSVR and GLRT, characterized in that obtained by.
제16항에 있어서,
상기 제6-8단계에서 중심합성계획(CCD)의 원점에 대해서는 시험을 세 번(시험점 15, 16,17) 수행하되, 15번째 시험에는 Zopt 전체를 사용하고, 16번째 시험에는 Zopt의 1/2, 17번째 시험에는 Zopt의 나머지 1/2에 대해 시험을 수행하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
In Steps 6-8, three tests (test points 15, 16, and 17) are performed for the origin of the central synthesis plan (CCD). / 2, 17th test is a performance monitoring method for power plant instrumentation using FSVR and GLRT, characterized in that the test is performed on the other half of Zopt.
제16항에 있어서,
상기 단계6-9에서의 평균값(MSE)을, 식
Figure 112010066642414-pat00361

에 의해 계산하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
The average value (MSE) in step 6-9 is expressed by
Figure 112010066642414-pat00361

Power station instrument performance monitoring method using FSVR and GLRT, characterized in that calculated by.
제16항에 있어서,
클러스터 2에 대한 FSVR 모델의 최적상수
Figure 112010066642414-pat00362
를 구하는 상기 제6-11단계가, 식
Figure 112010066642414-pat00363

에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
Optimal Constant of FSVR Model for Cluster 2
Figure 112010066642414-pat00362
The sixth to sixth steps to find the equation,
Figure 112010066642414-pat00363

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제16항에 있어서,
상기 FSVR 모델의 최적상수가,
Figure 112010066642414-pat00364
=(2.0, 0.0005, 10)이고,
Figure 112010066642414-pat00365
=(1.1404, 0.0005, 5.247)인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
The optimal constant of the FSVR model,
Figure 112010066642414-pat00364
= (2.0, 0.0005, 10)
Figure 112010066642414-pat00365
= (1.1404, 0.0005, 5.247) power station instrument performance monitoring method using FSVR and GLRT.
제16항에 있어서,
상기 제6-10단계에서의 반응표면 분석법을 이용하여 FSVR 모델의 최적 상수를 구하는 방법이,
FSVR 모델파라미터인 시그마(sigma)(σ), 입실론(epsilon)(ε), C를 각각
Figure 112010066642414-pat00366
로 두는 제6-10-1단계와;
Figure 112010066642414-pat00367
에 대한 탐색범위를 각각 정하는 제6-10-2단계;
탐색범위의 상한과 하한을 각각
Figure 112010066642414-pat00368
Figure 112010066642414-pat00369
로 두고, 모델 파라미터를 표준화하는 제6-10-3단계;
중심합성계획을 이용해서 표준화된 모델파라미터
Figure 112010066642414-pat00370
의 탐색범위에 대응하여 모델성능의 평가지점을 설정하는 제6-10-4단계;
실험오차의 크기를 추정하고, 축점의 좌표 α를 식 α = [요인실험점의 수]1/4에 의해 정의하는 제6-10-5단계;
중심합성계획에 의한(
Figure 112010066642414-pat00371
)의 실험점에 따라 모델파라미터
Figure 112010066642414-pat00372
의 값을 정하고, 이어 중심합성계획에 의한 (
Figure 112010066642414-pat00373
)의 실험점을 얻으며, 중심합성계획에 의한 (
Figure 112010066642414-pat00374
)의 실험점 값을 모델파라미터로 이용하여 FSVR 모델링 실험을 수행하는 제6-10-6단계;
중심합성계획에 의한(
Figure 112010066642414-pat00375
)의 실험점에서 Ztr과 Ptr, 퍼지 멤버쉽 μ을 이용하여 FSVR모델의 베타(beta) 벡터와 바이어스(bias) 상수를 각각 얻는 제6-10-7단계;
각 모델의 정확도를 평가하기 위해 데이터 셋 Pop를 m개의 AAFSVR에 입력하여 최적화 데이터의 정규화된 예측치
Figure 112010066642414-pat00376
을 구하고, 이로부터 출력 모델의 정확도인 MSE를 식 38에 따라 계산하는 제6-10-8단계;
모델파라미터
Figure 112010066642414-pat00377
와 log(MSE) 간의 반응표면식을 추정하는 제6-10-9단계;
추정된 반응표면식을 이용하여 log(MSE)를 최소화하는
Figure 112010066642414-pat00378
의 최적조건
Figure 112010066642414-pat00379
을 구하는 제6-10-10단계 및;
최적조건
Figure 112010066642414-pat00380
을 원래의 단위로 환산하는 제6-10-11단계;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 16,
The method for obtaining the optimal constant of the FSVR model using the response surface analysis method in step 6-10,
Sigma (σ), epsilon (ε), and C, respectively, are the FSVR model parameters.
Figure 112010066642414-pat00366
Step 6-10-1;
Figure 112010066642414-pat00367
6-10-2 to determine a search range for each;
The upper and lower bounds of the search range
Figure 112010066642414-pat00368
Wow
Figure 112010066642414-pat00369
6-10-3, which standardizes the model parameters.
Standardized Model Parameters Using Central Synthesis Plan
Figure 112010066642414-pat00370
A step 6-10-4 of setting an evaluation point of the model performance in response to the search range of;
6-10-5 steps of estimating the magnitude of the experimental error and defining the coordinate α of the axial point by the equation α = [number of factor test points] 1/4 ;
By central composition plan
Figure 112010066642414-pat00371
Model parameters according to the experimental point of
Figure 112010066642414-pat00372
After determining the value of, follow the central synthesis plan (
Figure 112010066642414-pat00373
Test points of) and by the central synthesis plan
Figure 112010066642414-pat00374
Step 6-10-6 of performing an FSVR modeling experiment using the experimental point value of n) as a model parameter;
By central composition plan
Figure 112010066642414-pat00375
6-10-7 obtaining the beta vector and the bias constant of the FSVR model using Ztr, Ptr and fuzzy membership μ at the experimental points of
To estimate the accuracy of each model, the data set Pop is input into m AAFSVRs to normalize the predictions of the optimization data.
Figure 112010066642414-pat00376
6-10-8 calculating the MSE, which is the accuracy of the output model, from Equation 38;
Model Parameter
Figure 112010066642414-pat00377
Steps 6-10-9 of estimating a response surface equation between the log and the log (MSE);
Minimize log (MSE) using estimated response surface
Figure 112010066642414-pat00378
Optimum condition of
Figure 112010066642414-pat00379
6-10-10 to obtain;
Optimal condition
Figure 112010066642414-pat00380
Step 6-10-11 of converting to the original unit; Power plant instrument performance monitoring method using the FSVR and GLRT, characterized in that made.
제25항에 있어서,
상기 제6-10-2단계에서의 클러스터 1에 대한 탐색범위를
Figure 112010066642414-pat00381
: 0.2~2.0,
Figure 112010066642414-pat00382
: 0.0005~0.05,
Figure 112010066642414-pat00383
: 0.1~10.0이고, 클러스터 2에 대한 탐색범위가
Figure 112010066642414-pat00384
: 0.3~1.9,
Figure 112010066642414-pat00385
: 0.0001~0.0009,
Figure 112010066642414-pat00386
: 0.1~10로 설정하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
Search range for cluster 1 in step 6-10-2
Figure 112010066642414-pat00381
: 0.2∼2.0,
Figure 112010066642414-pat00382
: 0.0005 ~ 0.05,
Figure 112010066642414-pat00383
: 0.1 to 10.0, and the search range for cluster 2 is
Figure 112010066642414-pat00384
0.3 ~ 1.9,
Figure 112010066642414-pat00385
: 0.0001 ~ 0.0009,
Figure 112010066642414-pat00386
: Performance monitoring method for power plant instrumentation using FSVR and GLRT, characterized by setting from 0.1 to 10.
제25항에 있어서,
상기 제6-10-3단계에서의 모델 파라미터의 표준화가, 식
Figure 112010066642414-pat00387

에 의해 이루어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
The standardization of the model parameters in step 6-10-3 is
Figure 112010066642414-pat00387

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that made by.
제25항에 있어서,
상기 제6-10-8단계에서 출력 모델의 정확도인 MSE를, 식
Figure 112010066642414-pat00388

(여기서,
Figure 112010066642414-pat00389
는 Pop 중에 센서
Figure 112010066642414-pat00390
Figure 112010066642414-pat00391
번째 입력데이터를 의미하며,
Figure 112010066642414-pat00392
는 모델에 의한 추정치임)
에 의해 계산하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
MSE which is the accuracy of the output model in step 6-10-8,
Figure 112010066642414-pat00388

(here,
Figure 112010066642414-pat00389
Pop out of the sensor
Figure 112010066642414-pat00390
of
Figure 112010066642414-pat00391
The second input data,
Figure 112010066642414-pat00392
Is an estimate by model)
Power station instrument performance monitoring method using FSVR and GLRT, characterized in that calculated by.
제25항에 있어서,
반응표면이, 식
Figure 112010066642414-pat00393

(e는 랜덤오차를 의미함)
에 의해 2차 모형을 갖고,
추정된 반응표면이, 식
Figure 112010066642414-pat00394

에 의해 표현되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
The reaction surface is
Figure 112010066642414-pat00393

( e means random error)
By taking a quadratic model,
The estimated response surface is
Figure 112010066642414-pat00394

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that represented by.
제25항에 있어서,
상기 단계 제6-10-10단계에서의
Figure 112010066642414-pat00395
의 최적조건이, 식
Figure 112010066642414-pat00396

에 의한 편미분을 통해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
In the above steps 6-10-10
Figure 112010066642414-pat00395
The optimal condition of
Figure 112010066642414-pat00396

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained through partial differential.
제30항에 있어서,
클러스터 #1에 대해 얻어진 반응표면의 경우 최적조건이
Figure 112010066642414-pat00397
= (0,0.04525,0)이고, 클러스터 #2에 대해 얻어진 반응표면의 경우 최적조건이
Figure 112010066642414-pat00398
= (1.1364,-0.0005,5.2487)인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
31. The method of claim 30,
For the response surface obtained for cluster # 1, the optimal condition is
Figure 112010066642414-pat00397
= (0,0.04525,0) and the optimal conditions for the response surface obtained for cluster # 2
Figure 112010066642414-pat00398
= (1.1364, -0.0005,5.2487) Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that.
제25항에 있어서,
상기 제6-10-11단계에서 최적조건
Figure 112010066642414-pat00399
을 원래의 단위로 환산하는 것이, 식
Figure 112010066642414-pat00400

에 의해 이루어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
Optimal Conditions in Steps 6-10-11
Figure 112010066642414-pat00399
Is converted into the original unit,
Figure 112010066642414-pat00400

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that made by.
제25항에 있어서,
클러스터 #1에 대한 최적 파라미터가 각각
Figure 112012012605337-pat00401
,
Figure 112012012605337-pat00402
,
Figure 112012012605337-pat00403
로 되고, 이 조건에서 예측된 log(MSE)가 -5.3249이며,
클러스터 #2에 대한 최적 파라미터가 각각
Figure 112012012605337-pat00404
, ,
Figure 112012012605337-pat00406
로 되고, 이 조건에서 예측된 log(MSE)가 -5.4170인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
26. The method of claim 25,
Each of the best parameters for cluster # 1
Figure 112012012605337-pat00401
,
Figure 112012012605337-pat00402
,
Figure 112012012605337-pat00403
The estimated log (MSE) under this condition is -5.3249,
Each of the best parameters for cluster # 2
Figure 112012012605337-pat00404
, ,
Figure 112012012605337-pat00406
And the log (MSE) predicted under these conditions is -5.4170. A method for monitoring power plant instrument performance using FSVR and GLRT.
제2항에 있어서,
출력 예측치(Zts1_hat과 Zts2_hat)를 구하는 상기 제8단계가,
상기 제6단계에서 구한 FSVR 모델의 3개의 최적상수
Figure 112012012605337-pat00407
와, 훈련데이터의 주성분(Ptr1) 및, 훈련데이터의 첫 번째 신호(Ztr1의 제1열)를 입력으로 하여 2차 계획(quadratic programming) 기법을 이용하여 최적화 문제를 풀고, 라그랑지 승수의 차이인 w1 (n×1)와 바이어스 상수 b1 을 구하여 FSVR1의 모델을 생성하는 제8-1단계와;
2번부터 m번째의 계측기 신호에 대해 상기 제8-1단계를 반복 수행하여
Figure 112012012605337-pat00408
Figure 112012012605337-pat00409
을 구하는 것에 의해 FSVR2~FSVRm의 모델을 생성하는 제8-2단계;
훈련데이터의 주성분(Ptr1), 시험데이터의 주성분(Pts1)을 이용하여 가우시언 방사형 기저 함수(Gaussian Radial Basis Function)의 커널함수(Kts1 (n×n))를 구하고, 상기 제8-1단계 및 상기 제8-2단계에서 구한 FSVR 모델의 Support vector weight w1 , 바이어스 상수 b1 을 이용하여 FSVR1의 출력을 구하는 제8-3단계 및;
2번부터 m번째의 센서에 대해 상기 제8-3단계를 반복 수행하여 FSVR2~FSVRm의 출력인 모델 예측치를 구하는 제8-4단계;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
The eighth step of obtaining the output prediction values (Zts1_hat and Zts2_hat),
Three optimal constants of the FSVR model obtained in the sixth step
Figure 112012012605337-pat00407
Then, using the quadratic programming technique with the main component Ptr1 of training data and the first signal of training data (first column of Ztr1), the optimization problem is solved. step 8-1 of generating a model of FSVR 1 by obtaining w 1 (n × 1) and a bias constant b 1 ;
Repeat step 8-1 for the second to m th measurement signals
Figure 112012012605337-pat00408
and
Figure 112012012605337-pat00409
Step 8-2 to generate a model of FSVR 2 ~ FSVR m by finding the;
The kernel function K ts1 (n × n) of the Gaussian Radial Basis Function is obtained using the principal component Ptr1 of the training data and the principal component Pts1 of the test data, and step 8-1. And 8-8-3 obtaining an output of the FSVR 1 using the support vector weight w 1 and the bias constant b 1 of the FSVR model obtained in the 8-8 step;
Power plants using FSVR and GLRT, comprising steps 8 to 4 to obtain model prediction values of outputs of FSVR 2 to FSVR m by repeating steps 8-3 for the second to m th sensors. Instrument performance monitoring method.
제34항에 있어서,
시험용 데이터 Zts1에 대한 예측치가, 식
Figure 112010066642414-pat00410

(
Figure 112010066642414-pat00411
: Zts1의 주성분벡터,
Figure 112010066642414-pat00412
: Ptr1 중에서 svi의 인덱스를 갖는 주성분벡터)
Figure 112010066642414-pat00413

(
Figure 112010066642414-pat00414
: 클러스터1의 i번째 센서에 대한 SV(Support vector)의
가중치(weight)
Figure 112010066642414-pat00415
: 클러스터1의 i번째 센서에 대한 바이어스(bias))
Figure 112010066642414-pat00416

에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
35. The method of claim 34,
The estimate for the experimental data Zts1 is
Figure 112010066642414-pat00410

(
Figure 112010066642414-pat00411
: Principal component vector of Zts1,
Figure 112010066642414-pat00412
: Principal component vector with index of svi in Ptr1)
Figure 112010066642414-pat00413

(
Figure 112010066642414-pat00414
: The support vector (SV) of the i th sensor of cluster 1
Weight
Figure 112010066642414-pat00415
: Bias for the i th sensor of cluster 1)
Figure 112010066642414-pat00416

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제34항에 있어서,
시험용 데이터 Zts2에 대한 예측치가, 식
Figure 112010066642414-pat00417

(
Figure 112010066642414-pat00418
: 클러스터2의 i번째 센서에 대한 SV(Support vector)의
가중치(weight)
Figure 112010066642414-pat00419
: 클러스터2의 i번째 센서에 대한 바이어스(bias))
Figure 112010066642414-pat00420

에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
35. The method of claim 34,
The estimate for experimental data Zts2 is
Figure 112010066642414-pat00417

(
Figure 112010066642414-pat00418
: The support vector (SV) of the i th sensor of cluster 2
Weight
Figure 112010066642414-pat00419
: Bias for the i-th sensor of cluster 2)
Figure 112010066642414-pat00420

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제2항에 있어서,
상기 제9단계에서 전체의 데이터에 대한 예측치(Zts_hat)가, 식
Figure 112010066642414-pat00421

에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
In the ninth step, the prediction value Zts_hat for the entire data is
Figure 112010066642414-pat00421

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제2항에 있어서,
상기 제11단계에서 원래 스케일의 각 센서에 대한 예측치
Figure 112010066642414-pat00422
를, 식
Figure 112010066642414-pat00423

에 의해 구하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
Prediction value for each sensor of the original scale in the eleventh step
Figure 112010066642414-pat00422
Expression
Figure 112010066642414-pat00423

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제2항에 있어서,
센서의 드리프트를 판별하는 제12단계가,
센서의 정기교정 후 정상적으로 동작할 때, 예측 프로그램을 수행하여 각 센서에 대한 예측치와 실측치와의 잔차를 계산하고, 잔차에 대한 평균값과 표준편차(σ)를 계산하는 제12-1단계와;
계측기가 정상적일 경우의 잔차를 이용하여 윈도우의 크기(w)를 최소부터 최대까지 5씩 증가시키면서 각 윈도우 크기에 대한 GT 통계량을 계산하는 제12-2단계;
GT 통계량 계산을 위해 최적 윈도우 크기 w를 이용하여 검사하고자 하는 잔차에 대해 상기 식
Figure 112010066642414-pat00424
과, 식
Figure 112010066642414-pat00425
및, 식
Figure 112010066642414-pat00426
를 이용하여, 윈도우를 1time step씩 이동하여 가면서 GLR t (k)(단, k=1, 2, ..., w)GT를 계산하는 제12-3단계;
상기 제12-1단계에서 계산한 정상적인 경우의 잔차의 평균 및 표준편차 값과 동일한 평균 및 표준편차 갖는 정규분포의 동일 개수 무작위 숫자를 생성하여 GT를 구하고, 이를 1000회 반복하여 GT의 최대값을 취하여 관리한계선(UCL : Upper Control Limit)으로 설정하는 제12-4단계 및;
GT가 관리한계선(UCL)을 이탈하면 센서에 드리프트가 발생한 것으로 판정하고, 이탈하지 않으면 센서가 정상적인 것으로 판정하여 드리프트 유무 판정하는 제12-5단계;를 갖추어 이루어진 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
The method of claim 2,
The 12th step of determining the drift of the sensor,
A 12-1 step of performing a prediction program to calculate a residual between the predicted value and the measured value for each sensor, and calculating an average value and a standard deviation (σ) of the residual when the sensor operates normally after regular calibration of the sensor;
Calculating a GT statistic for each window size by increasing the window size w by 5 from minimum to maximum using the residual when the meter is normal;
GT The equation for the residual to be examined using the optimal window size w to calculate the statistics
Figure 112010066642414-pat00424
And expression
Figure 112010066642414-pat00425
And, expression
Figure 112010066642414-pat00426
Using step 12-3 to calculate the GLR t (k) (where k = 1, 2, ..., w) and GT while moving the window by 1 time step;
GT is obtained by generating the same number random numbers of normal distributions having the same mean and standard deviation as the mean and standard deviation of the residuals in the normal case calculated in step 12-1, and repeating 1000 times to obtain the maximum GT . Step 12-4, taking the upper control limit (UCL) taken;
If the GT deviates from the control limit line (UCL), it is determined that drift has occurred in the sensor, and if it does not deviate, steps 12-5 of determining that the sensor is normal and determine whether there is drift; How to monitor power plant instrument performance.
제39항에 있어서,
상기 제12-1단계에서의 입력값과 예측치의 차이인 모델 잔차(R)가, 식
Figure 112010066642414-pat00427

에 의해 구해지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
The model residual (R), which is the difference between the input value and the predicted value in step 12-1, is expressed by the equation
Figure 112010066642414-pat00427

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제39항에 있어서,
상기 제12-2단계에서 정상일 경우에 대한 잔차의 평균값이 -0.00096347이고, 표준편차(σ)가 0.0069인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
Method of monitoring power plant instrument performance using FSVR and GLRT, characterized in that the average value of the residual for the normal case in step 12-2 is -0.00096347, and the standard deviation (σ) is 0.0069.
제39항에 있어서,
상기 제12-2단계에서 시점 t에서의 GLR(Generalized Likelihood Ratio)이, 식
Figure 112010066642414-pat00428

(
Figure 112010066642414-pat00429
는 최근 윈도우 크기
Figure 112010066642414-pat00430
개의 데이터로 구한 평균을 의미함)
에 의해 구해지고,
Figure 112010066642414-pat00431
가, 식
Figure 112010066642414-pat00432

에 의해 표현되는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
In step 12-2, the generalized likelihood ratio (GLR) at time t is
Figure 112010066642414-pat00428

(
Figure 112010066642414-pat00429
Recent window size
Figure 112010066642414-pat00430
Means of data)
Saved by
Figure 112010066642414-pat00431
Autumn
Figure 112010066642414-pat00432

Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that represented by.
제39항에 있어서,
제12-2단계에서 GLRT의 검정통계량 GT가 시점 t에서 얻어지는 GLR 중의 윈도우 크기 내에서 가장 큰 것으로 정의하고, 식
Figure 112010066642414-pat00433

(단,
Figure 112010066642414-pat00434
는 최근 k개의 데이터로 시점 t에서 구한 평균을 나타냄)
에 의해 구하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
In step 12-2, the GLRT's test statistic GT is defined as the largest within the window size in the GLR obtained at time t .
Figure 112010066642414-pat00433

(only,
Figure 112010066642414-pat00434
Denotes the mean of the most recent k data at time t )
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that obtained by.
제43항에 있어서,
각 윈도우 크기에서의 GT 통계량과 최대 윈도우에서의 GT 통계량과의 MSE 차이를, 식
Figure 112010066642414-pat00435

에 의해 구하고,
MSE ( GT i )의 감소가 둔화되는 점에서 최적 윈도우크기를 설정하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
44. The method of claim 43,
Expression the MSE differences between the GT statistic in each window size GT statistic and the maximum window at,
Figure 112010066642414-pat00435

Lt; / RTI >
A method for monitoring the performance of power plant instrumentation using FSVR and GLRT, characterized in that the optimal window size is set in that MSE ( GT i ) decreases.
제39항에 있어서,
상기 제12-4단계에서의 관리한계선(UCL)을 UCL=28.25로 설정하는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
Power line instrument performance monitoring method using FSVR and GLRT, characterized in that the control limit line (UCL) in step 12-4 is set to UCL = 28.25.
제39항에 있어서,
상기 제12-5단계에서 분석에 사용되는 센서 데이터가,
원자로 출력(%)과, 가압기 수위(%), 증기발생기 증기 유량(Mkg/hr), 증기발생기 협역 수위 데이터(%), 증기발생기 압력 데이터(Kg/cm2), 증기발생기 광역 수위 데이터(%), 증기발생기 주급수 유량 데이터(Mkg/hr), 터빈 출력 데이터(MWe), 원자로 냉각재 충전 유량 데이터(m3/hr), 잔열제거 유량 데이터(m3/hr), 원자로 상부 냉각재 온도 데이터(℃)인 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
Sensor data used for the analysis in step 12-5,
Reactor output (%), pressurizer level (%), steam generator steam flow rate (Mkg / hr), steam generator narrow water level data (%), steam generator pressure data (Kg / cm 2 ), steam generator wide water level data (% ), Steam generator main feed water flow data (Mkg / hr), turbine output data (MWe), reactor coolant fill flow data (m 3 / hr), residual heat removal flow rate data (m 3 / hr), reactor top coolant temperature data ( Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that).
제39항에 있어서,
상기 제12-5단계에서 계측기에 대한 정확도가, 식
Figure 112010066642414-pat00436

(여기서, N : 시험데이터의 수,
Figure 112010066642414-pat00437
: i번째 시험데이터에 대한 모델의 추정치,
Figure 112010066642414-pat00438
: i번째 시험데이터의 측정치)
에 의해 나타내어지는 것을 특징으로 하는 FSVR과 GLRT를 이용한 발전소 계측기 성능감시 방법.
40. The method of claim 39,
In step 12-5, the accuracy of the instrument is
Figure 112010066642414-pat00436

Where N is the number of test data,
Figure 112010066642414-pat00437
: estimate of the model for the i test data,
Figure 112010066642414-pat00438
: measured value of the i-th test data)
Power plant instrument performance monitoring method using FSVR and GLRT, characterized in that represented by.
KR1020100100697A 2010-10-15 2010-10-15 Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test KR101178235B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100100697A KR101178235B1 (en) 2010-10-15 2010-10-15 Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test
PCT/KR2010/008308 WO2012050262A1 (en) 2010-10-15 2010-11-24 Method and system for monitoring the performance of plant instruments using ffvr and glrt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100100697A KR101178235B1 (en) 2010-10-15 2010-10-15 Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test

Publications (2)

Publication Number Publication Date
KR20120039160A KR20120039160A (en) 2012-04-25
KR101178235B1 true KR101178235B1 (en) 2012-08-30

Family

ID=45938460

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100100697A KR101178235B1 (en) 2010-10-15 2010-10-15 Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test

Country Status (2)

Country Link
KR (1) KR101178235B1 (en)
WO (1) WO2012050262A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998553B1 (en) * 2012-08-01 2019-07-10 한국전력공사 Prediction Method of Short-Term Wind Speed and Wind Power and Power Supply Line Voltage Prediction Method Therefore
CN107291991B (en) * 2017-05-25 2020-08-07 华侨大学 Early defect early warning method for wind turbine generator based on dynamic network sign
CN107678930A (en) * 2017-09-11 2018-02-09 华东理工大学 A kind of bank's automatic terminal abnormal alarm method based on Smooth Support Vector Machines
CN107606745B (en) * 2017-09-27 2019-09-27 南京中灿科技有限公司 Metro Air conditioner season by when ring control energy consumption prediction technique
CN108490923B (en) * 2018-04-28 2020-09-15 南京航空航天大学 System design method for detecting and positioning tiny faults of electric traction system
KR102130272B1 (en) * 2018-07-17 2020-07-08 한국전력공사 Method for optimizing predictive algorithm based empirical model
CN109270907B (en) * 2018-10-24 2020-07-28 中国计量大学 Process monitoring and fault diagnosis method based on hierarchical probability density decomposition
CN110472689B (en) * 2019-08-19 2022-11-15 东北大学 Sucker-rod pump pumping well moving liquid level soft measurement method based on integrated Gaussian process regression
CN110823474B (en) * 2019-09-27 2021-07-16 一汽解放汽车有限公司 Fuel system leakage degree evaluation method and storage medium
KR102470112B1 (en) * 2020-02-27 2022-11-23 한국수력원자력 주식회사 Intelligent condition monitoring method and system for nuclear power plants
CN112069457B (en) * 2020-08-13 2023-11-17 山东科技大学 Non-stationary dynamic process anomaly monitoring method based on dynamic stationary subspace analysis
CN113433913B (en) * 2021-07-06 2023-03-24 上海新氦类脑智能科技有限公司 System monitoring model generation and monitoring method, processor chip and industrial system
CN113640607B (en) * 2021-08-18 2023-02-28 江苏科技大学 Early fault diagnosis method for inverter circuit and motor of high-speed train
CN116215293B (en) * 2023-05-08 2023-07-04 广东电网有限责任公司佛山供电局 Electric automobile charging pile running state prediction method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340967B1 (en) 1999-10-08 2002-06-20 손재익 Method and apparatus for detecting fault using General Regression Neural Network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050261837A1 (en) * 2004-05-03 2005-11-24 Smartsignal Corporation Kernel-based system and method for estimation-based equipment condition monitoring
KR100867938B1 (en) * 2007-09-27 2008-11-10 한국전력공사 Prediction method for watching performance of power plant measuring instrument by dependent variable similarity and kernel feedback

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100340967B1 (en) 1999-10-08 2002-06-20 손재익 Method and apparatus for detecting fault using General Regression Neural Network

Also Published As

Publication number Publication date
WO2012050262A1 (en) 2012-04-19
KR20120039160A (en) 2012-04-25

Similar Documents

Publication Publication Date Title
KR101178235B1 (en) Prediction and fault detection method and system for performance monitoring of plant instruments using principal component analysis, response surface method, Fuzzy Support Vector Regression and Generalized Likelihood Ratio Test
KR101360790B1 (en) Pridiction method for monitoring performance of plant instruments
CN108681633B (en) Condensate pump fault early warning method based on state parameters
CN101169623B (en) Non-linear procedure fault identification method based on kernel principal component analysis contribution plot
KR100867938B1 (en) Prediction method for watching performance of power plant measuring instrument by dependent variable similarity and kernel feedback
CN109034191B (en) ELM-based one-dimensional telemetry data abnormal interpretation method
CN112036089A (en) Coal mill fault early warning method based on DPC-MND and multivariate state estimation
JP5510642B2 (en) Prediction / diagnosis model construction device
CN110262450B (en) Fault prediction method for cooperative analysis of multiple fault characteristics of steam turbine
CN108958226B (en) TE process fault detection method based on survival information potential-principal component analysis algorithm
CN113134956B (en) Injection molding machine abnormity detection method based on improved MLLE
CN108549908B (en) Chemical process fault detection method based on multi-sampling probability kernel principal component model
KR102005138B1 (en) Device abnormality presensing method and system using thereof
US20210397176A1 (en) Power plant early warning device and method employing multiple prediction model
CN115730191A (en) Attention mechanism-based coal mill fault early warning method
CN116383636A (en) Coal mill fault early warning method based on PCA and LSTM fusion algorithm
CN112132394A (en) Power plant circulating water pump prediction state assessment method and system
CN115047839A (en) Fault monitoring method and system for industrial process of preparing olefin from methanol
CN110751217A (en) Equipment energy consumption ratio early warning analysis method based on principal component analysis
CN114757269A (en) Complex process refined fault detection method based on local subspace-neighborhood preserving embedding
CN111913463B (en) State monitoring method for chemical volume control system of nuclear power plant
Seo et al. An on-line calibration monitoring technique using support vector regression and principal component analysis
Li et al. Combining canonical variate analysis, probability approach and support vector regression for failure time prediction
He et al. Fault detection and health assessment of equipment based on fuzzy DPCA spatial eigenvalue similarity
CN111780149B (en) Remote diagnosis method for equipment state of pulverizing system of thermal power plant

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150817

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 19