KR101154297B1 - Method for controlling 12v battery charging voltage of hybrid vehicle - Google Patents

Method for controlling 12v battery charging voltage of hybrid vehicle Download PDF

Info

Publication number
KR101154297B1
KR101154297B1 KR1020100072886A KR20100072886A KR101154297B1 KR 101154297 B1 KR101154297 B1 KR 101154297B1 KR 1020100072886 A KR1020100072886 A KR 1020100072886A KR 20100072886 A KR20100072886 A KR 20100072886A KR 101154297 B1 KR101154297 B1 KR 101154297B1
Authority
KR
South Korea
Prior art keywords
converter
voltage
battery
auxiliary battery
capacitor
Prior art date
Application number
KR1020100072886A
Other languages
Korean (ko)
Other versions
KR20110063273A (en
Inventor
송홍석
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020100072886A priority Critical patent/KR101154297B1/en
Priority to US12/941,465 priority patent/US8928272B2/en
Priority to DE102010043551A priority patent/DE102010043551A1/en
Priority to CN201010546546.9A priority patent/CN102088197B/en
Priority to CN201410591944.0A priority patent/CN104467073B/en
Publication of KR20110063273A publication Critical patent/KR20110063273A/en
Application granted granted Critical
Publication of KR101154297B1 publication Critical patent/KR101154297B1/en
Priority to US14/558,499 priority patent/US10611256B2/en
Priority to US16/686,717 priority patent/US10906408B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법에 관한 것으로서, 고전압배터리와 DC-DC 컨버터간에 설치되는 메인스위치를 보조배터리가 9V 이하로 떨어진 경우에도 DC-DC 컨버터의 역방향 전력변환 동작에 의거 온시켜서, DC-DC 컨버터에서 보조배터리에 충전을 위한 지속적인 전원이 공급되도록 한 점 등을 특징으로 한다.The present invention relates to a charging voltage control method of a 12V auxiliary battery for a hybrid vehicle, and the main switch installed between the high voltage battery and the DC-DC converter is based on the reverse power conversion operation of the DC-DC converter even when the auxiliary battery is dropped below 9V. On, so that the DC-DC converter is supplied with continuous power for charging the secondary battery.

Description

하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법{Method for controlling 12V battery charging voltage of hybrid vehicle}Method for controlling the charging voltage of a 12 V secondary battery for a hybrid vehicle {Method for controlling 12V battery charging voltage of hybrid vehicle}

본 발명은 하이브리드 차량용 12V 배터리의 충전 전압 제어 방법에 관한 것으로서, 더욱 상세하게는 외기온도, 보조배터리 충전상태, 전장부하 소모량을 고려함과 함께 DC-DC 컨버터의 전력변환 제어에 따라 12V 보조배터리의 충전이 용이하게 이루어질 수 있도록 한 하이브리드 차량용 12V 배터리의 충전 전압 제어 방법에 관한 것이다.
The present invention relates to a charging voltage control method of a 12V battery for a hybrid vehicle, and more particularly, charging of a 12V auxiliary battery according to the power conversion control of the DC-DC converter while considering the outside temperature, the auxiliary battery charging state, the electric load consumption. It relates to a charging voltage control method of a hybrid vehicle 12V battery to facilitate this.

하이브리드 차량은 가솔린 엔진 뿐만 아니라 모터 구동원을 보조 동력원으로 채택하여, 배기가스 저감 및 연비 향상을 도모할 수 있는 미래형 차량을 말한다.A hybrid vehicle refers to a future vehicle that can reduce exhaust gas and improve fuel efficiency by adopting a motor driving source as an auxiliary power source as well as a gasoline engine.

엔진이 비효율적인 주행환경일 때, 배터리 충방전에 의한 모터의 구동을 통해 시스템의 효율성을 높일 수 있고(load leveling), 또한 감속시에는 브레이크에서 마찰열로 방출되는 운동에너지를 모터의 발전으로 전기로 전환하는 회생제동을 통해 배터리 충전이 이루어져 연비를 향상시킬 수 있다.When the engine is in an inefficient driving environment, the efficiency of the system can be increased by driving the motor by battery charging and discharging (load leveling), and at the time of deceleration, the kinetic energy emitted by the heat of friction from the brake is converted into electricity by the generation of the motor. Regenerative braking allows the battery to be charged to improve fuel economy.

이러한 하이브리드 차량은 동력 전달 계통상 모터의 연결 및 구동 여부에 따라 소프트 타입(Soft type)과 하드 타입(Hard tpye)으로 나누어진다.Such a hybrid vehicle is divided into a soft type and a hard tpye depending on whether a motor is connected and driven on a power transmission system.

기존의 하드 타입 하이브리드 차량용 모터 구동 시스템의 구성을 도 3을 참조로 보면, 차량 주행을 위한 모터(M1,M2)와, 모터를 구동 제어하는 인버터(10,12)와, 모터 구동을 위한 직류 전압을 인버터에 인가하는 직류전원용 고전압 배터리(2)와, 배터리(2)로부터 직류 전압을 인버터(10,12)로 승압시켜 공급하는 동시에 인버터(10,12)로부터의 직류 전압을 배터리(2)측으로 감압하여 공급하는 전압 컨버터(14)와, 상기 배터리(2)와 연결되어 직류 전원의 전압을 변환하는 직류변환장치인 DC-DC 컨버터(1) 등을 포함하여 구성되어 있다.Referring to FIG. 3, a configuration of a conventional hard type hybrid vehicle motor driving system includes motors M1 and M2 for driving a vehicle, inverters 10 and 12 for driving a motor, and a DC voltage for driving a motor. The high voltage battery (2) for the DC power supply to the inverter, and boosts and supplies the DC voltage from the battery (2) to the inverters (10, 12) and simultaneously supplies the DC voltage from the inverters (10, 12) to the battery (2) side. And a DC-DC converter 1, which is a DC converter that is connected to the battery 2 and converts the voltage of the DC power supply, is supplied.

또한, 하이브리드 차량의 12V보조배터리 충전 및 전장부하에 대한 전원공급시스템의 구성을 도 1을 참조로 살펴보면, 고전압 배터리(2)와 DC-DC 컨버터(1)가 메인스위치(3)를 통해 연결되어 있고, DC-DC 컨버터(1)의 출력단에 12V 보조배터리(8) 및 12V 전장부하(4, 각종 제어기, 헤드램프, 워터펌프, 라디에이터 냉각팬 등)가 연결되어 있으며, 이때 전장부하(4)들은 12V 보조배터리(8)의 전원을 사용하도록 연결되어 있다.In addition, referring to FIG. 1, the high voltage battery 2 and the DC-DC converter 1 are connected to each other through a main switch 3. In addition, a 12V auxiliary battery 8 and a 12V electric field load (4, various controllers, headlamps, water pumps, radiator cooling fans, etc.) are connected to the output terminal of the DC-DC converter 1, in which case the electric field load 4 is connected. Are connected to use the power of a 12V auxiliary battery (8).

이때, 상기 DC-DC 컨버터(1)와 전장부하(4) 사이이면서 12V 보조배터리(8)와 전장부하(4) 사이에에는 정션박스(6)가 연결되어 있고, 상기 DC-DC 컨버터(1)와 12V 보조배터리(8) 사이 및 12V 보조배터리와 정션박스(6) 사이에는 보조배터리측 배선(기생)저항(7)이 배열되고, 전장부하(4)와 정션박스(4) 사이에도 배선(기생)저항(5)이 배열되어 있다.At this time, the junction box 6 is connected between the DC-DC converter 1 and the electric field load 4 and between the 12V auxiliary battery 8 and the electric field load 4, and the DC-DC converter 1 ) And the secondary battery side wiring (parasitic) resistor (7) is arranged between the 12V auxiliary battery (8) and between the 12V auxiliary battery and the junction box (6), and also between the electric load (4) and the junction box (4). (Parasitic) resistors 5 are arranged.

도 1에서 VDC는 DC-DC 컨버터(1)의 출력전압, VJ는 정션박스(6) 전압으로서 전장부하 전류가 적은 경우 전장부하에 인가되는 전압, VB는 12V 보조배터리(8)의 충전전압을 각각 나타내며, 일반적으로 전압 크기는 VDC > VJ ? VB 순으로 나타난다.1, V DC is the output voltage of the DC-DC converter 1, V J is the voltage of the junction box 6, the voltage applied to the full load when the electric load current is low, and V B is the voltage of the 12V auxiliary battery 8. Represents the charging voltage respectively, and typically the voltage magnitude is V DC > V J ? Appears in the order of V B.

이러한 하이브리드 차량의 시동 시퀀스를 보면, 운전자 IG 온 단계와, 상기 보조배터리(8) 전원을 이용하여 각종 제어기 및 메인스위치(3)가 온되는 단계(메인스위치 온 이전까지 DC-DC 컨버터 미작동)와, 시동 완료후 DC-DC 컨버터(1)가 동작하여 보조배터리(8)에 대한 충전 및 전장부하(4)에 대한 전원을 공급하는 단계로 이루어진다.In the starting sequence of the hybrid vehicle, the driver IG is turned on and the controllers and the main switch 3 are turned on using the auxiliary battery 8 (the DC-DC converter is not operated until the main switch is turned on). Then, the DC-DC converter 1 is operated after the start-up is completed, and the charging of the auxiliary battery 8 and supplying power to the electric load 4 are performed.

상기와 같은 구성 및 동작을 하는 하이브리드(연료전지, 플러그 인 하이브리드, 전기자동차 포함) 차량에 있어서, 상기 DC-DC 컨버터의 전압을 낮게 유지하면 전장부하가 소모하는 전력이 적어져서 연비가 증가하나, 보조배터리 충전에너지량이 적어져서 충전성능이 저하되면서 냉시동시 차량 시동 불량을 초래할 수 있다.In a hybrid (including fuel cell, plug-in hybrid, and electric vehicle) vehicle having the configuration and operation as described above, when the voltage of the DC-DC converter is kept low, the electric power consumed by the electric load decreases, thereby increasing fuel economy. As the secondary battery charge energy is reduced, the charging performance may be reduced, resulting in vehicle starting failure during cold start.

보다 상세하게는, 하이브리드 차량의 구성중 상기 DC-DC 컨버터는 12V 또는 24V용 보조배터리 충전 기능과 차량의 전장부하의 전원공급기능을 수행하는 바, 연비 향상을 위하여 전장부하 공급 전압을 가급적 낮게 유지해야 하고, 보조배터리의 충전 성능면에서는 어느 정도 범위내에서는 충전 전압이 높을수록 유리하지만, 보조배터리에 대한 충전 상태가 나쁠 경우에는 냉시동시 보조배터리 전압 저하로 인하여 시동이 걸리지 않는 상황이 발생할 수 있어 차량의 상품성을 떨어뜨리는 원인이 되며, 특히 도 1에 나타낸 바와 같이 DC-DC 컨버터(1)와 전장부하(4)간 연결 거리가 짧고, DC-DC 컨버터(1)와 보조배터리(8)간 연결 거리가 긴 경우에 DC-DC 컨버터(1)의 출력전압 범위가 넓어지면서 전력변환효율이 감소하는 문제가 더 발생하게 된다.More specifically, the DC-DC converter in the configuration of the hybrid vehicle performs the charging function of the auxiliary battery for 12V or 24V and the electric load of the vehicle, and keep the electric load supply voltage as low as possible to improve fuel efficiency In terms of the charging performance of the secondary battery, the higher the charging voltage within a certain range is advantageous, but if the state of charge for the secondary battery is bad, the start-up may not occur due to the secondary battery voltage drop during cold start. In particular, as a cause of deterioration of the merchandise of the vehicle, as shown in FIG. 1, the connection distance between the DC-DC converter 1 and the electric load 4 is short and the DC-DC converter 1 and the auxiliary battery 8 are short. When the connection distance is long, as the output voltage range of the DC-DC converter 1 becomes wider, the problem of reducing power conversion efficiency further occurs.

이에, DC-DC 컨버터와 보조배터리간의 파워케이블 직경을 증대시켜 케이블 저항을 최소화시키는 방법이 있지만, 이는 차량 무게 상승, 원가 상승, 케이블 라이팅 자유도 저하 등의 문제점을 초래하고, 또한 부품의 설치 위치를 조절하는 방식으로서 DC-DC 컨버터와 보조배터리를 가깝게 배치하는 동시에 DC-DC 컨버터와 전장부하를 멀리 배치하는 방법이 있지만, 이는 차량의 패키지와 DC-DC 컨버터 냉각 방식 등 여러가지 제약사항들로 인하여 차량 설계 및 상품성 저하를 초래한다.Therefore, there is a method of minimizing the cable resistance by increasing the power cable diameter between the DC-DC converter and the auxiliary battery, but this causes problems such as increase in weight of the vehicle, increase in cost, and decrease in the freedom of cable writing, and also the installation position of the parts. The DC-DC converter and the auxiliary battery are located close to each other and the DC-DC converter and the electric load are far away from each other. However, due to various limitations such as the vehicle package and the DC-DC converter cooling method, It results in a decrease in vehicle design and merchandise.

한편, 상술한 바와 같이 시동 완료후 DC-DC 컨버터(1)가 동작하여 보조배터리(8)에 대한 충전 및 전장부하(4)에 대한 전원을 공급하는 바, 이때 보조배터리 전원이 9V 이하인 경우 메인스위치(3)가 온되지 않는(반면, 각종 제어기는 6V이상에서 기본동작 유지) 현상이 발생하고, 이에 DC-DC 컨버터와 고전압배터리가 연결되지 않아 보조배터리에 대한 충전이 이루어지지 않는 문제점이 있으며, 특히 냉시동시 보조배터리의 전압이 더 낮아지는 경향이 있다.
Meanwhile, as described above, the DC-DC converter 1 operates after supplying power to the secondary battery 8 and supplies power to the electric load 4. When the secondary battery power is 9 V or less, the main There is a problem that the switch 3 is not turned on (while various controllers maintain the basic operation at 6V or more), and the DC-DC converter and the high-voltage battery are not connected to each other so that the secondary battery cannot be charged. In particular, the secondary battery tends to have a lower voltage during cold start-up.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 고전압배터리와 DC-DC 컨버터간에 설치되는 메인스위치를 12V 보조배터리가 하한치 전압 이하로 떨어진 경우에도 DC-DC 컨버터의 역방향 전력변환 동작에 의거 온시켜서, DC-DC 컨버터에서 12V 보조배터리에 충전을 위한 지속적인 전원이 공급되도록 한 하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법을 제공하는데 그 목적이 있다.
The present invention has been made in view of the above, and the main switch installed between the high voltage battery and the DC-DC converter turns on based on the reverse power conversion operation of the DC-DC converter even when the 12V auxiliary battery falls below the lower limit voltage. The purpose of the present invention is to provide a charging voltage control method for a 12V auxiliary battery for a hybrid vehicle in which a continuous power for charging a 12V auxiliary battery is supplied from a DC-DC converter.

상기한 목적을 달성하기 위한 본 발명은: 시동 온이 이루어진 후, 12V 보조배터리의 전압을 고전압 배터리와 DC-DC 컨버터간을 연결하는 메인스위치 및 각종 제어기의 동작을 위한 하한 전압과 비교하는 단계와; 12V 보조배터리의 전압이 하한 전압 이하로 떨어진 경우, DC-DC 컨버터의 역방향 전력변환이 이루어지는 단계와; 12V 보조배터리에서 고전압측 커패시터쪽으로 에너지가 전달되어, 고전압측 커패시터에 에너지가 충전되는 단계와; DC-DC 컨버터의 정방향 전력변환이 소정의 짧은 시간동안 이루어지는 단계와; 고전압측 커패시터의 고전압 에너지가 DC-DC 컨버터를 통해 12V 보조배터리로 공급되는 단계; 를 통하여, 12V 보조배터리에 대한 충전이 이루어지도록 한 것을 특징으로 하는 하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법을 제공한다.
The present invention for achieving the above object is: after the start-up, comparing the voltage of the 12V secondary battery with the lower limit voltage for the operation of the main switch and various controllers connecting the high voltage battery and the DC-DC converter and ; Performing reverse power conversion of the DC-DC converter when the voltage of the 12V auxiliary battery falls below the lower limit voltage; Energy is transferred from the 12V auxiliary battery toward the high voltage side capacitor, and the energy is charged to the high voltage side capacitor; Forward power conversion of the DC-DC converter is performed for a predetermined short time; Supplying high voltage energy of the high voltage side capacitor to the 12V auxiliary battery through the DC-DC converter; By providing a charging voltage control method for a 12V auxiliary battery for a hybrid vehicle, characterized in that the charging for the 12V auxiliary battery is made.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공한다.Through the above problem solving means, the present invention provides the following effects.

본 발명에 따르면, 12V 보조배터리가 하한 전압인 9V 이하로 떨어진 경우에도 DC-DC 컨버터의 역방향 전력변환 동작에 의거 고전압배터리와 DC-DC 컨버터간에 설치되는 메인스위치를 온시켜서, DC-DC 컨버터가 정상 작동되도록 하여, 12V 보조배터리의 충전이 지속적으로 이루어질 수 있다.
According to the present invention, the DC-DC converter is turned on by turning on the main switch installed between the high voltage battery and the DC-DC converter based on the reverse power conversion operation of the DC-DC converter even when the 12V auxiliary battery falls below 9V, the lower limit voltage. By allowing normal operation, charging of the 12V secondary battery can be continued.

도 1은 하이브리드 차량의 12V보조배터리 충전 및 전장부하에 대한 전원공급시스템 구성을 설명하는 구조도,
도 2는 본 발명에 따른 하이브리드 차량용 12V 배터리의 충전 전압 제어 방법을 설명하는 순서도,
도 3은 하이브리드 차량용 모터 구동 시스템의 구성을 설명하는 구조도.
1 is a structural diagram illustrating a configuration of a power supply system for charging a 12V secondary battery and electric load of a hybrid vehicle;
2 is a flowchart illustrating a charging voltage control method of a 12V battery for a hybrid vehicle according to the present invention;
3 is a structural diagram illustrating a configuration of a motor drive system for a hybrid vehicle.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

첨부한 도 1을 참조하여 하이브리드 차량의 12V 보조배터리 충전 및 전장부하에 대한 전원공급 시스템의 구성을 살펴보면, 고전압 배터리(2)와 DC-DC 컨버터(1)가 메인스위치(3)를 통해 연결되어 있고, DC-DC 컨버터(1)의 출력단에 12V 보조배터리(8) 및 12V 전장부하(4)가 연결되어 있으며, 도 3에서 보는 바와 같이 DC-DC 컨버터(1)의 입력단측에는 전압컨버터(14) 및 DC링크 커패시터(16)를 매개로 모터(M1,M2)를 구동 제어하는 인버터(10,12)가 연결되어 있다.Referring to the configuration of the power supply system for the 12V secondary battery charging and electric load of the hybrid vehicle with reference to the accompanying Figure 1, the high voltage battery (2) and the DC-DC converter (1) is connected through the main switch (3) The 12V auxiliary battery 8 and the 12V electric load 4 are connected to the output terminal of the DC-DC converter 1, and as shown in FIG. 3, the voltage converter 14 is connected to the input terminal side of the DC-DC converter 1. And inverters 10 and 12 for driving control of the motors M1 and M2 through the DC link capacitor 16 are connected.

본 발명은 위와 같은 하이브리드용 12V 보조배터리 충전 및 전장부하에 대한 전원공급 시스템 구성을 기반으로 하여, 외기온도, 보조배터리 충전상태, 전장부하 소모량을 고려함과 함께 DC-DC 컨버터의 전력변환 방향 제어에 따라 12V 보조배터리에 대한 충전 전압 제어가 용이하게 이루어지도록 한 점에 주안점이 있다.The present invention is based on the configuration of the power supply system for the hybrid 12V secondary battery charging and electric load as described above, in consideration of the outside temperature, secondary battery charging state, electrical load consumption and to control the power conversion direction of the DC-DC converter Therefore, the main point is to make it easy to control the charging voltage for the 12V secondary battery.

여기서, 본 발명의 하이브리드 차량용 12V 배터리의 충전 전압 제어 방법을 첨부한 도 2를 참조로 설명하면 다음과 같다.Here, it will be described with reference to Figure 2 attached to the charging voltage control method of the hybrid vehicle 12V battery of the present invention.

12V 보조배터리가 하한치 전압인 9V 이하로 떨어진 경우, 도 1에서 보듯이 메인스위치(3)가 온되지 않아 DC-DC 컨버터(1)가 고전압배터리(2) 전원을 사용하지 못하는 상태가 초래되는 바, 이러한 점을 감안하여 본 발명은 12V 보조배터리(8)에서 메인스위치(3)에 동작 가능한 9V 이상의 전압을 인가할 수 있도록 12V 보조배터리(8)에 순간적인 높은 전압을 제공하여 충전이 이루어지도록 한 점에 특징이 있다.When the 12V auxiliary battery falls below the lower limit of 9V, as shown in FIG. 1, the main switch 3 is not turned on, resulting in a state in which the DC-DC converter 1 cannot use the high voltage battery 2 power supply. In view of this, the present invention provides instantaneous high voltage to the 12V auxiliary battery 8 so that charging can be performed by applying a voltage of 9V or more operable from the 12V auxiliary battery 8 to the main switch 3. It is characteristic of one point.

즉, DC-DC 컨버터가 12V 보조배터리측에서 고전압측 커패시터(고전압배터리(2)와 연결된 전압 컨버터(14)와 인버터(10,12) 간에 연결된 DC링크 커패시터(16))로 역방향 전력변환을 실시하여, 12V 보조배터리(8)측의 에너지가 고전압측 커패시터에 충전되도록 하되, 고전압측 커패시터에는 이미 축적된 에너지에 더 많은 에너지가 충전된 상태가 되도록 한 후, 반대로 DC-DC 컨버터(1)가 고전압측 커패시터에서 12V 보조배터리(8)측으로 전력변환을 짧은 시간 동안 실시하여 고전압측 커패시터에서 12V 보조배터리(8)쪽으로 높은 전압(약 14V)의 에너지가 공급되도록 함으로써, 12V 보조배터리(8)는 메인스위치(3)에 동작 가능한 9V 이상의 전압을 인가하게 된다.That is, the DC-DC converter performs reverse power conversion from the 12V auxiliary battery side to the high voltage side capacitor (the DC link capacitor 16 connected between the voltage converter 14 connected to the high voltage battery 2 and the inverters 10 and 12). Thus, the energy of the 12V auxiliary battery 8 side is charged to the high voltage side capacitor, but the energy of the high voltage side capacitor is in a state where more energy is charged to the already accumulated energy, and then, on the contrary, the DC-DC converter 1 The power conversion is performed for a short time from the high voltage side capacitor to the 12V auxiliary battery 8 so that a high voltage (about 14V) of energy is supplied from the high voltage side capacitor to the 12V auxiliary battery 8 so that the 12V auxiliary battery 8 A voltage of 9 V or more operable to the main switch 3 is applied.

먼저, 시동 온이 이루어진 후, 12V 보조배터리의 전압(Vb)을 고전압 배터리와 DC-DC 컨버터간을 연결하는 메인스위치(=릴레이) 및 각종 제어기의 동작을 위한 하한 전압(V1)과 비교하여, 12V 보조배터리의 전압(Vb)이 하한 전압(V1) 이하로 떨어진 경우(예를 들어 12V 보조배터리가 9V 이하로 떨어진 경우), DC-DC 컨버터의 역방향 전력변환이 이루어진다.First, after the start-up is performed, the voltage Vb of the 12V auxiliary battery is compared with the main switch (= relay) connecting the high voltage battery and the DC-DC converter and the lower limit voltage V1 for the operation of various controllers. When the voltage Vb of the 12V auxiliary battery falls below the lower limit voltage V1 (for example, when the 12V auxiliary battery falls below 9V), the reverse power conversion of the DC-DC converter is performed.

즉, DC-DC 컨버터가 12V 보조배터리측에서 고전압측 커패시터(고전압배터리와 연결된 전압 컨버터와 인버터간에 연결된 DC링크 커패시터)로 역방향 전력변환을 실시하게 된다.That is, the DC-DC converter performs reverse power conversion from the 12V auxiliary battery side to the high voltage capacitor (a DC link capacitor connected between the inverter and the voltage converter connected to the high voltage battery).

이러한 DC-DC 컨버터의 역방향 전력변환에 의거, 12V 보조배터리에서 고전압측 커패시터(예를 들어, DC링크 커패시터 또는 DC-DC 컨버터의 입력단 커패시터)쪽으로 에너지가 전달되어, 고전압측 커패시터에는 이미 축적된 에너지에 더 많은 에너지가 충전된 상태가 된다.Based on the reverse power conversion of the DC-DC converter, energy is transferred from the 12V auxiliary battery to the high voltage capacitor (for example, a DC link capacitor or an input terminal capacitor of the DC-DC converter), and the accumulated energy is stored in the high voltage capacitor. More energy is charged.

이어서, DC-DC 컨버터의 정방향 전력변환이 소정의 짧은 시간동안 이루어지도록 함으로써, 고전압측 커패시터의 고전압 에너지(약 14V)가 DC-DC 컨버터를 통해 12V 보조배터리로 공급되어 충전된다.Subsequently, the forward power conversion of the DC-DC converter is performed for a predetermined short time, so that the high voltage energy (about 14V) of the high voltage side capacitor is supplied to the 12V auxiliary battery through the DC-DC converter and charged.

즉, DC-DC 컨버터가 고전압측 커패시터에서 12V 보조배터리측으로 전력변환을 짧은 시간 동안 실시함으로써, 고전압측 커패시터에서 12V 보조배터리쪽으로 높은 전압(약 14V)의 에너지가 공급되어 12V 보조배터리는 메인스위치에 동작 가능한 9V 이상의 전압을 인가하게 된다.That is, the DC-DC converter converts power from the high voltage capacitor to the 12 V auxiliary battery for a short time, so that a high voltage (about 14 V) is supplied from the high voltage capacitor to the 12 V auxiliary battery so that the 12 V auxiliary battery is connected to the main switch. Apply a voltage of more than 9V.

이렇게, 에너지를 상대적으로 긴시간 동안 역방향으로 충전하였다가, 짧은 시간 동안 정방향으로 전달하면 전압이 상승하게 되는 원리에 따라, 12V 보조배터리에 대한 순간적인 정상 충전이 이루어져, 결국 12V 보조배터리에 의한 9V 이상의 전압이 각종 제어기 및 메인스위치로 인가되어 메인스위치가 온(ON)된다.In this way, the energy is charged in the reverse direction for a relatively long time, and then forwarded in the forward direction for a short time, the voltage rises, and thus instantaneous normal charging of the 12 V secondary battery is achieved, resulting in 9 V by the 12 V secondary battery. The above voltages are applied to various controllers and main switches to turn on the main switches.

따라서, DC-DC 컨버터는 메인스위치 온으로 인하여 고전압배터리를 전원으로 하여 정상 작동하게 되어, 12V 보조배터리에 충전을 위한 안정적인 전압을 제공하게 된다.
Therefore, the DC-DC converter operates normally by using a high voltage battery as a power source due to the main switch-on, thereby providing a stable voltage for charging the 12V auxiliary battery.

1 : DC-DC 컨버터 2 : 고전압 배터리
3 ; 메인스위치 4 : 12V 전장부하
6 : 정션박스 5, 7 : 배선(기생)저항
8 : 12V 보조배터리 10,12 : 인버터
14 : 전압 컨버터 16 : DC 링크 커패시터
1: DC-DC converter 2: high voltage battery
3; Main switch 4: 12V total load
6: junction box 5, 7: wiring (parasitic) resistance
8: 12V auxiliary battery 10,12: Inverter
14 voltage converter 16 DC link capacitor

Claims (2)

고전압 배터리와 DC-DC 컨버터가 메인스위치를 통해 연결되어 있고, 상기 DC-DC 컨버터의 출력단에 12V 보조배터리 및 12V 전장부하가 연결되어 있으며, 상기 DC-DC 컨버터의 입력단측에는 전압컨버터 및 DC링크 커패시터를 매개로 모터를 구동 제어하는 인버터가 연결되어 있는 시스템에서,
시동 온이 이루어진 후, 12V 보조배터리의 전압(Vb)을 고전압 배터리와 DC-DC 컨버터간을 연결하는 메인스위치 및 제어기의 동작시킬 수 있는 하한치 전압인 하한 전압(V1)과 비교하는 단계와;
12V 보조배터리의 전압(Vb)이 하한 전압(V1) 이하로 떨어진 경우, DC-DC 컨버터가 12V 보조배터리측에서 DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터로 전력변환을 실시하는 단계와;
12V 보조배터리에서 DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터쪽으로 에너지가 전달되어, DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터에 에너지가 충전되는 단계와;
DC-DC 컨버터가 DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터에서 12V 보조배터리측으로 전력변환을 실시하되, 설정 시간동안 전력변환을 실시하는 단계와;
DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터의 고전압 에너지가 DC-DC 컨버터를 통해 12V 보조배터리로 공급되는 단계;
를 통하여, 12V 보조배터리에 대한 충전이 이루어지도록 한 것을 특징으로 하는 하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법.
A high voltage battery and a DC-DC converter are connected through a main switch, and a 12V auxiliary battery and a 12V electric load are connected to an output terminal of the DC-DC converter, and a voltage converter and a DC link capacitor are connected to the input terminal of the DC-DC converter. In a system that is connected to an inverter that drives and controls the motor through
After the start-up is performed, comparing the voltage Vb of the 12V auxiliary battery with a lower limit voltage V1 which is an operable lower limit voltage of a main switch and a controller connecting the high voltage battery and the DC-DC converter;
When the voltage Vb of the 12V auxiliary battery falls below the lower limit voltage V1, the DC-DC converter converts power from the 12V auxiliary battery to a DC link capacitor or a DC-DC converter input terminal capacitor;
Energy is transferred from the 12V auxiliary battery to the DC link capacitor or the DC-DC converter input terminal capacitor, and the energy is charged to the DC link capacitor or the DC-DC converter input terminal capacitor;
Performing, by the DC-DC converter, power conversion from the DC link capacitor or the DC-DC converter input terminal capacitor to the 12V auxiliary battery, and performing power conversion for a set time;
Supplying high voltage energy of a DC link capacitor or a DC-DC converter input capacitor to a 12V auxiliary battery through a DC-DC converter;
Through, the charging voltage control method of the 12V secondary battery for a hybrid vehicle, characterized in that the charging for the 12V secondary battery.
청구항 1에 있어서,
DC링크 커패시터 또는 DC-DC 컨버터 입력단 커패시터의 고전압 에너지를 공급받은 12V 보조배터리로부터 하한 전압 이상의 전압이 제어기 및 메인스위치로 인가되어, 메인스위치가 온(ON)되는 단계와;
DC-DC 컨버터는 메인스위치 온으로 인하여 고전압배터리를 전원으로 하여 DC-DC 컨버터가 정상 작동하는 단계;
를 더 포함하는 것을 특징으로 하는 하이브리드 차량용 12V 보조배터리의 충전 전압 제어 방법.
The method according to claim 1,
Applying a voltage greater than or equal to the lower limit voltage from the 12V auxiliary battery supplied with the high voltage energy of the DC link capacitor or the DC-DC converter input terminal capacitor to the controller and the main switch to turn the main switch ON;
In the DC-DC converter, the DC-DC converter operates normally by using a high voltage battery as a power source due to the main switch on;
Charging voltage control method of a 12V secondary battery for a hybrid vehicle further comprising a.
KR1020100072886A 2009-12-04 2010-07-28 Method for controlling 12v battery charging voltage of hybrid vehicle KR101154297B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020100072886A KR101154297B1 (en) 2010-07-28 2010-07-28 Method for controlling 12v battery charging voltage of hybrid vehicle
US12/941,465 US8928272B2 (en) 2009-12-04 2010-11-08 Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
DE102010043551A DE102010043551A1 (en) 2009-12-04 2010-11-08 A method of controlling a charging voltage of a 12V auxiliary battery for a hybrid vehicle
CN201010546546.9A CN102088197B (en) 2009-12-04 2010-11-11 Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
CN201410591944.0A CN104467073B (en) 2009-12-04 2010-11-11 For the method for the charging voltage for controlling hybrid vehicle 12V boosting batteries
US14/558,499 US10611256B2 (en) 2009-12-04 2014-12-02 Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
US16/686,717 US10906408B2 (en) 2009-12-04 2019-11-18 Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100072886A KR101154297B1 (en) 2010-07-28 2010-07-28 Method for controlling 12v battery charging voltage of hybrid vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090119494A Division KR101028020B1 (en) 2009-12-04 2009-12-04 Method for controlling 12v battery charging voltage of hybrid vehicle

Publications (2)

Publication Number Publication Date
KR20110063273A KR20110063273A (en) 2011-06-10
KR101154297B1 true KR101154297B1 (en) 2012-06-14

Family

ID=44397282

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100072886A KR101154297B1 (en) 2009-12-04 2010-07-28 Method for controlling 12v battery charging voltage of hybrid vehicle

Country Status (1)

Country Link
KR (1) KR101154297B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150093379A (en) * 2014-02-07 2015-08-18 주식회사 만도 Battery Discharge Preventing System and Method Using the Same for Hybrid Vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500119B1 (en) 2013-08-09 2015-03-06 현대자동차주식회사 System and method for controlling LDC of hybrid vehicld
CN106143170B (en) * 2015-03-31 2020-11-17 通用电气公司 Energy storage system with range extender and energy management control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616482B1 (en) * 2001-09-21 2006-08-28 혼다 기켄 고교 가부시키가이샤 Controller for hybrid car

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100616482B1 (en) * 2001-09-21 2006-08-28 혼다 기켄 고교 가부시키가이샤 Controller for hybrid car

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150093379A (en) * 2014-02-07 2015-08-18 주식회사 만도 Battery Discharge Preventing System and Method Using the Same for Hybrid Vehicle
KR101947609B1 (en) 2014-02-07 2019-02-14 주식회사 만도 Battery Discharge Preventing System and Method Using the Same for Hybrid Vehicle

Also Published As

Publication number Publication date
KR20110063273A (en) 2011-06-10

Similar Documents

Publication Publication Date Title
KR101028020B1 (en) Method for controlling 12v battery charging voltage of hybrid vehicle
US11075394B2 (en) Apparatus and method for high efficiency operation of fuel cell systems
US10906408B2 (en) Method for controlling charging voltage of 12V auxiliary battery for hybrid vehicle
EP2193954B1 (en) Auxiliary drive apparatus and method of manufacturing same
KR101124973B1 (en) Motor control system for hybrid vehicle and method for controlling the same
US9371005B2 (en) Battery management apparatus for an electric vehicle, and method for managing same
JP6659203B2 (en) System for transferring energy from an energy source and method of manufacturing the same
US9162671B2 (en) Hybrid vehicle control unit
US20140001843A1 (en) Mild hybrid system and method for controlling the same
US20160023559A1 (en) Vehicle driving system and method
JP6056486B2 (en) Vehicle power supply device
CN102386666A (en) System for recharging plug-in hybrid vehicle and control method for the same
CN102085813A (en) Motor drive system for hybrid vehicle and method for controlling the same
CN110557017B (en) DC/DC conversion unit
JP2019213269A (en) Dc/dc conversion unit
US9533582B2 (en) Vehicle and power unit for it
KR101154297B1 (en) Method for controlling 12v battery charging voltage of hybrid vehicle
CN114389323A (en) Method for reducing the total power consumption of a parked vehicle
KR20150008378A (en) Isolation contactor transition polarity control
KR101370739B1 (en) Convertor for electric vehicle, electric vehicle including the same, and method for controlling the same
JP4329454B2 (en) Electric vehicle system
JP5726046B2 (en) Vehicle power supply system
US20230020971A1 (en) Method for controlling power transfer from a grid to a vehicle

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180530

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190528

Year of fee payment: 8