KR101101924B1 - Porous nanofiber webs and manufacturing method thereof - Google Patents

Porous nanofiber webs and manufacturing method thereof Download PDF

Info

Publication number
KR101101924B1
KR101101924B1 KR1020090028563A KR20090028563A KR101101924B1 KR 101101924 B1 KR101101924 B1 KR 101101924B1 KR 1020090028563 A KR1020090028563 A KR 1020090028563A KR 20090028563 A KR20090028563 A KR 20090028563A KR 101101924 B1 KR101101924 B1 KR 101101924B1
Authority
KR
South Korea
Prior art keywords
nonwoven fabric
nanofiber
pores
pmma
surface area
Prior art date
Application number
KR1020090028563A
Other languages
Korean (ko)
Other versions
KR20100110141A (en
Inventor
강인규
배현수
이봉대
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020090028563A priority Critical patent/KR101101924B1/en
Publication of KR20100110141A publication Critical patent/KR20100110141A/en
Application granted granted Critical
Publication of KR101101924B1 publication Critical patent/KR101101924B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/065Addition and mixing of substances to the spinning solution or to the melt; Homogenising
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명에 의한 다공성 나노섬유 부직포의 제조방법은, 아크릴수지계의 비결정성고분자 17 ~ 21Wt%를 디클로로메탄과 디메틸포르마미드 중량비율 8:2 ~ 7:3으로 혼합된 혼합용매에 용해하여서 휘발성과 방사성이 좋은 방사용액을 얻고, 상기 방사용액을 전기방사하여 나노섬유사에 다수 기공이 형성된 나노섬유 부직포를 제조하되, 상기 나노섬유사의 기공의 평균크기는 30 ~ 37Å이며, 상기 나노섬유 부직포의 비표면적은 125 ~ 150㎡/g이 되게 구성함으로서, 부직포의 비표면적을 극대화하여 흡착성능이 우수한 부직포를 구현할 수 있으며, 분리용 필터, 전자 디바이스, 고효율 센서, 복합재료용 보강재 등에 유용하게 사용할 수 있다.The method for producing a porous nanofiber nonwoven fabric according to the present invention is obtained by dissolving 17-21 Wt% of an amorphous resin of acrylic resin in a mixed solvent mixed with dichloromethane and dimethylformamide in a weight ratio of 8: 2-7: 3. Obtaining a good spinning solution, and electrospinning the spinning solution to produce a nanofiber nonwoven fabric having a number of pores formed in the nanofiber yarn, the average size of the pores of the nanofiber yarn is 30 ~ 37Å, the ratio of the non-woven fabric The surface area is configured to be 125 ~ 150㎡ / g, can maximize the specific surface area of the nonwoven fabric to implement a nonwoven fabric with excellent adsorption performance, it can be usefully used for separation filters, electronic devices, high efficiency sensors, composite materials reinforcement. .

나노섬유, 부직포, 기공, 전기방사, 비표면적 Nanofiber, non-woven fabric, pore, electrospinning, specific surface area

Description

다공성 나노섬유 부직포와 그 제조방법{POROUS NANOFIBER WEBS AND MANUFACTURING METHOD THEREOF}POROUS NANOFIBER WEBS AND MANUFACTURING METHOD THEREOF

본 발명은 나노섬유 부직포의 제조방법에 관한 것으로, 특히 표면적을 극대화시킬 수 있는 다공성 나노섬유 부직포과 그 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a nanofiber nonwoven fabric, and more particularly, to a porous nanofiber nonwoven fabric and a method of manufacturing the same that can maximize the surface area.

최근 여러 첨단 산업분야에서 나노기술의 급격한 발전과 더불어서 수 ~ 수백 나노미터 규모의 직경을 갖는 나노섬유의 제조기술이 발전함에 따라 이에 대하여 많은 관심과 연구가 진행되고 있다. In recent years, with the rapid development of nanotechnology in many high-tech industries, a lot of interest and research has been progressed as the manufacturing technology of nanofibers having a diameter of several hundreds of nanometers is developed.

이러한 나노섬유의 제조방법으로는 블록 공중합체 각성분의 상분리 현상을 이용하여 형성된 나노섬유, 고분자용액 또는 용융체의 전기방사에 의한 나노섬유, 나노크기의 직경을 지닌 나노반응기에서 고분자의 중합과 동시에 배향되어 얻어지는 나노섬유, 서로 상용성이 없고 탄화정도가 크게 다른 두 고분자의 복합섬유를 제조하고 이를 탄화시켜 얻는 탄소나노섬유 등의 방법들이 있다.Such nanofibers can be prepared by the phase separation of each component of the block copolymer, nanofibers formed by electrospinning of polymer solution or melt, nanofibers by nanospinning, and nano-reactors having a nano-sized diameter. Nanofibers, which are incompatible with each other and have a large degree of carbonization, are manufactured from composite fibers of two polymers, and carbon nanofibers are obtained by carbonizing them.

이 방법들 중에서 전기방사에 의한 나노섬유 제조방법은 용융 또는 용매에 용해된 고분자 용액에 전기적인 힘을 가하여 나노섬유를 제조하는 공정으로서, 매우 광범위한 고분자소재에 적용가능하고, 제조공정이 간단하며, 방사된 섬유가 기존섬유에 비해 직경이 작아서 부피 대비 표면적비가 극히 높으며, 제조된 부직포는 공극률이 매우 높고 호흡성, 방풍성을 지니게 되어 다양한 제품기술 응용성을 고려할 때 가장 우수한 기술로 평가받고 있다.Among these methods, the method of manufacturing nanofibers by electrospinning is a process for producing nanofibers by applying electrical force to a polymer solution dissolved or melted in a solvent, which is applicable to a wide range of polymer materials, and the manufacturing process is simple. Since the spun fiber has a smaller diameter than the existing fiber, the ratio of surface area to volume is extremely high, and the manufactured nonwoven fabric has high porosity, breathability, and wind resistance, and is considered as the best technology when considering various product technology applications.

전기방사법으로 제조된 나노섬유 부직포는 분리용 필터, 생화학 물질에 대한 방호용, 의료산업 적용 및 전자 디바이스, 전도성 나노섬유, 고효율 센서, 촉매, 탄소나노섬유, 복합재료용 보강재 등 다양한 분야에 응용되고 있다.Nanofiber nonwoven fabric produced by electrospinning method is applied to various fields such as separation filter, protection for biochemicals, medical industry application and electronic device, conductive nanofiber, high efficiency sensor, catalyst, carbon nanofiber, reinforcement for composite materials have.

이러한 나노섬유 부직포의 응용력은 나노섬유가 기존섬유에 비해 표면적이 큰 장점을 이용한 것으로, 최근에는 이러한 장점을 살려 나노 섬유의 직경을 최소화하여 표면적을 최대화 하려는 연구가 활발하게 진행되고 있다. 또한, 나노섬유의 표면적을 극대화 시킬 수 있는 구조로 이중구조, 중공구조, 다공성 구조, 벌집구조, 규칙적 구조 등 다양한 구조의 나노섬유가 연구되고 있다.The application strength of the nonwoven fabric of nanofibers is that nanofibers have a larger surface area than conventional fibers. Recently, researches to maximize the surface area by minimizing the diameter of nanofibers are being actively utilized. In addition, nanofibers of various structures, such as a double structure, a hollow structure, a porous structure, a honeycomb structure, and a regular structure, have been studied as a structure capable of maximizing the surface area of the nanofibers.

따라서 본 발명의 목적은 비표면적을 극대화하여 흡착성능이 우수한 나노섬유 부직포 및 그 제조방법을 제공하는데 있다.It is therefore an object of the present invention to provide a nanofiber nonwoven fabric having excellent adsorption performance by maximizing a specific surface area and a method of manufacturing the same.

상기한 목적을 달성하기 위한 본 발명의 다공성 나노섬유 부직포의 제조방법은, 나노섬유 부직포의 제조방법에 있어서, 아크릴수지계의 비결정성고분자 17 ~ 21Wt%를 디클로로메탄과 디메틸포르마미드 중량비율 8:2 ~ 7:3으로 혼합된 혼합용매에 용해하여서 휘발성과 방사성이 좋은 방사용액을 얻고, 상기 방사용액을 전기방사하여 나노섬유사에 다수 기공이 형성된 나노섬유 부직포를 제조하되, 상기 나노섬유사의 기공의 평균크기는 30 ~ 37Å이며, 상기 나노섬유 부직포의 비표면적은 125 ~ 150㎡/g이 되게 구성함을 특징으로 한다.In the method for producing the porous nanofiber nonwoven fabric of the present invention for achieving the above object, in the method for producing a nanofiber nonwoven fabric, 17 to 21 Wt% of an acrylic resin based on dichloromethane and dimethylformamide weight ratio 8: Dissolve in a mixed solvent of 2 to 7: 3 to obtain a spinning solution having good volatility and radioactivity, and electrospinning the spinning solution to prepare a nanofiber nonwoven fabric having a number of pores in the nanofiber yarn, the pores of the nanofiber yarn The average size of is 30 ~ 37Å, the specific surface area of the nanofiber nonwoven fabric is characterized in that it is configured to be 125 ~ 150㎡ / g.

본 발명은 비표면적을 극대화하여 흡착성능이 우수한 부직포를 구현할 수 있으며, 분리용 필터, 전자 디바이스, 고효율 센서, 복합재료용 보강재 등에 유용하게 사용할 수 있는 장점이 있다.The present invention can realize a nonwoven fabric having excellent adsorption performance by maximizing specific surface area, and has an advantage that it can be usefully used for separation filters, electronic devices, high efficiency sensors, and composite materials.

이하 본 발명의 바람직한 실시예들을 화학식 및 첨부 도면들을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the formula and accompanying drawings.

본 발명은 전기방사법으로 휘발성이 높은 용매를 이용하면 나노섬유사의 기공 형성이 용이하다는 점에 착안하고, 이를 이용하여 나노섬유사에 기공을 가지는 나노섬유 부직포를 제조하여 비표면적이 극대화되도록 구현한 것이다.The present invention focuses on the easy formation of pores of nanofiber yarns by using a solvent having high volatility by electrospinning method, and the nanofiber nonwoven fabric having pores on nanofiber yarns is prepared to realize a specific surface area. .

나노섬유 부직포의 소재로는 결정성이 높지 않아서 기공 형성이 용이한 아크릴수지계의 비결정성고분자를 채택한다. 본 발명에서는 아크릴수지계의 비결정성고분자로 폴리메틸메타크리레이트(polymethylmethacrylate:이하, PMMA라고 한다.)를 사용할 수 있다. PMMA는 실온에서 황산, 염산, 질산, 가성소다 등과 같은 약품에 강한 저항성을 가지고 있고, 광학적 성질, 투명성, 투과성, 내후성이 우수하여 주위환경의 영향을 많이 받는 실외에서 많이 이용된다. 특히, PMMA 나노섬유 부직포는 분리용 필터, 의료산업 적용 및 전자 디바이스, 고효율 센서, 복합재료용 보강재 같은 곳에 매우 유용하게 사용된다.As the material of nanofiber nonwoven fabric, acrylic resin-based amorphous polymer is adopted because the crystallinity is not high and easy to form pores. In the present invention, polymethyl methacrylate (hereinafter referred to as PMMA) may be used as the amorphous polymer of the acrylic resin system. PMMA has strong resistance to chemicals such as sulfuric acid, hydrochloric acid, nitric acid and caustic soda at room temperature, and is widely used outdoors because of its excellent optical properties, transparency, transparency and weather resistance. In particular, PMMA nanofiber nonwovens are very useful in applications such as separation filters, medical applications and electronic devices, high efficiency sensors, and reinforcements for composites.

그리고, 본원발명자들은 용매 테스트 결과 PMMA는 디클로로메탄(dichloromethane:이하, DCM이라 한다.)과 디메틸포르마미드(dimethylformamide:이하, DMF라 한다.)에 좋은 용해도를 보이는 것을 확인할 수 있었다. 기공이 형성된 나노섬유 부직포를 얻기 위해서는 끓는점이 낮은 용매, 즉 휘발성이 좋은 용매가 유리하기 때문에 본 발명에서는 DCM을 주용매로 사용하였다. 그러나, 하기의 표 1에서 볼 수 있듯이 DCM만을 용매로 사용했을 때는 휘발성이 좋아 기공을 형성하기 에는 유리하지만, 유전상수가 낮아 방사가 어렵고, 휘발도가 너무 높아 방사기 끝에서 고분자용액 표면이 빨리 굳어서 이 또한 방사를 어렵게 하는 문제점이 있었다.In addition, the inventors of the present invention showed that the PMMA showed good solubility in dichloromethane (hereinafter referred to as DCM) and dimethylformamide (hereinafter referred to as DMF). In order to obtain the nanofiber nonwoven fabric having pores, a solvent having a low boiling point, that is, a solvent having good volatility is advantageous, and thus, DCM was used as the main solvent in the present invention. However, as shown in Table 1 below, when only DCM is used as a solvent, it has good volatility and is advantageous to form pores. This also had a problem that makes radiation difficult.

용매menstruum
끓는점(℃)Boiling Point (℃) 유전상수Dielectric constant 밀도(g/㎖)Density (g / ml)
DMF
DMF
153153 38.338.3 0.940.94
DCM
DCM
4040 9.089.08 1.331.33

따라서, 본 발명에서는 전기방사에 많이 이용되고 끓는점과 유전상수가 DCM보다 높고 PMMA에 대한 용해성이 좋은 DMF를 상기 DCM에 혼합하여 혼합용매를 제조하였다.Therefore, in the present invention, a mixed solvent was prepared by mixing DMF, which is widely used for electrospinning, having a higher boiling point and dielectric constant than DCM and having good solubility in PMMA, in the DCM.

본 발명은 상기의 DMF와 DCM의 혼합용매를 PMMA에 혼합하여 휘발성과 방사성이 좋은 방사용액을 얻고, 상기 방사용액을 전기방사하여 나노섬유사에 다수 기공이 형성된 나노섬유 부직포를 제조한다.The present invention mixes the mixed solvent of the DMF and DCM in PMMA to obtain a good volatile and radioactive spinning solution, and by electrospinning the spinning solution to prepare a nanofiber nonwoven fabric with a number of pores formed in the nanofiber yarn.

여기서, 본원발명자들은 용액의 농도와 용매의 비율, 상대습도가 섬유의 구조와 형태에 미치는 영향을 실험하여 다공성 나노섬유 부직포가 형성되는 최적의 조건을 검토해보고자 하였다. PMMA 용액의 농도, 용매의 비율, 상대습도에 따른 실험예 별로 살펴보면 하기와 같다.Here, the present inventors examined the effects of solution concentration, solvent ratio, and relative humidity on the structure and morphology of the fiber to examine the optimum conditions under which the porous nanofiber nonwoven fabric is formed. Looking at the concentration of the PMMA solution, the ratio of the solvent, the experimental example according to the relative humidity as follows.

도 1은 PMMA 용액의 농도변화에 따른 점도곡선이고, 도 2는 PMMA 용액의 농도변화에 따른 나노섬유 FE-SEM 이미지도이며, 도 3은 DCM과 DMF의 혼합비에 따른 나노섬유 부직포의 FE-SEM 이미지도이다. 그리고, 도 4는 상대습도에 따른 PMMA 나노섬유 부직포의 FE-SEM 이미지도이며, 도 5는 기공형성유무에 따른 PMMA 나노섬유사의 단면을 나타낸 FE-SEM 이미지도이다.1 is a viscosity curve according to the concentration change of the PMMA solution, Figure 2 is a nanofiber FE-SEM image diagram according to the concentration change of the PMMA solution, Figure 3 is a FE-SEM of the nanofiber nonwoven fabric according to the mixing ratio of DCM and DMF It is an image diagram. 4 is an FE-SEM image diagram of PMMA nanofiber nonwoven fabric according to relative humidity, and FIG. 5 is a FE-SEM image diagram showing a cross section of PMMA nanofiber yarn with or without pore formation.

이 경우, 전기방사함에 고려해야할 중요한 파라미터로는 인가전압, 방사거리, 유체주입속도, 상대습도가 포함된다. 상기 인가전압은 17 ~ 23Kv, 방사거리는 12 ~ 18㎝, 유체주입속도는 1.5 ~ 2.3mL/hr, 상대습도는 20 ~ 50%로 할 수 있다.In this case, important parameters to be considered for electrospinning include applied voltage, spinning distance, fluid injection speed and relative humidity. The applied voltage is 17 ~ 23Kv, the radiation distance is 12 ~ 18㎝, the fluid injection speed is 1.5 ~ 2.3mL / hr, the relative humidity can be 20 to 50%.

(실험예 1)(Experimental Example 1)

먼저, 나노섬유의 방사에서 있어 선행되어야 할 것은 점도 측정이기 때문에 비스코미터를 이용하여 온도 25℃에서 DMF용매를 이용한 PMMA 용액의 점도를 측정하였다. 상기 점도는 전기방사에 의해 얻어지는 섬유화에 중요한 영향을 주는 인자로서, 점도가 높을 경우는 표면장력의 극소화에 의한 유체의 흐름성이 현저히 낮아져 분사가 어려워지고, 점도가 낮을 경우는 고분자 사슬의 얽힘에 의한 섬유형성이 어려워 섬유화가 이루어지지 않는다. 따라서, 본 발명에서는 PMMA의 농도를 9 ~ 25wt%까지 조정하여 점도를 측정하였다. 그 결과, 고분자가 용매에 녹았을 경우 점도의 그래프는 도 1에 도시된 바와 같이, 3개의 직선으로 표현된다. 상기의 그래프는 각 용액에서 PMMA사슬의 얽힘 (entanglement)에 의한 급격한 점도변화에 기인하여 표현한 것으로, ①번 직선은 사슬의 얽힘이 일어나지 않는 상태를 표현한 것이며, ②번 직선부터는 사슬의 얽힘이 일어나 점도가 증가하는 상태를 표현한 것이며, ③번 직선은 사슬의 얽힘 정도가 커서 사슬의 얽힘이 충분이 일어나 점도가 증가하는 상태를 표현한 것이다.First, the viscosity of the PMMA solution using a DMF solvent was measured at a temperature of 25 ° C. using a bismeter because the viscosity measurement should be preceded in the spinning of the nanofibers. The viscosity is an important factor in the fiberization obtained by electrospinning. When the viscosity is high, the flow of fluid due to the minimization of surface tension is significantly lowered, making injection difficult, and when the viscosity is low, the entanglement of the polymer chain is low. It is difficult to form the fiber by the fiber is not made. Therefore, in the present invention, the viscosity was measured by adjusting the concentration of PMMA to 9-25 wt%. As a result, when the polymer is dissolved in a solvent, the graph of the viscosity is represented by three straight lines, as shown in FIG. The above graph is expressed due to the rapid change of viscosity due to the entanglement of PMMA chain in each solution. The straight line ① represents a state where chain entanglement does not occur, and from the second straight line, chain entanglement occurs. Is an expression of increasing state, and the straight line ③ represents a state in which the viscosity is increased due to the entanglement of the chain being large enough to increase the chain entanglement.

실험예 1에서는 이 직선들을 이용하여 섬유화가 일어나는 최소의 농도를 구하였다. 그 결과 기울기가 1.7808인 ②번 직선과, 기울기가 4.6742인 ③번 직선이 만나는 17wt%가 섬유화가 일어나는 최소 농도라는 것을 확인할 수 있었다.In Experimental Example 1, the minimum concentration at which fibrosis occurred was determined using these straight lines. As a result, it can be seen that 17wt% of the straight line ② with the slope of 1.7808 and the straight line ③ with the slope of 4.6742 are the minimum concentrations at which fibrosis occurs.

이러한 점도 측정 자료를 바탕으로 다른 공정요소인 DCM과 DMF를 9:1 비율로 혼합하고, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0 ml/h, 상대습도 20%로 고정하여 전기방사를 하되, PMMA의 농도를 (a)12wt%, (b)15wt%, (c)18wt%, (d)21wt%로 하여 나노섬유 부직포를 제조하였다. 그 결과, 도 2의 (a),(b)에서는 방울(bead)과 나노섬유사가 연속상의 형태로 축적되고, 도 2의 (c),(d)에서는 방울이 존재하지 않는 나노 섬유사가 얻어지는 것을 확인하였다.Based on this viscosity measurement data, the other process elements, DCM and DMF, are mixed at a 9: 1 ratio, and electrospinning by applying an applied voltage of 20 kV, a spinning distance of 15 cm, a fluid injection rate of 2.0 ml / h, and a relative humidity of 20%. The nanofiber nonwoven fabric was prepared with the concentrations of (a) 12 wt%, (b) 15 wt%, (c) 18 wt%, and (d) 21 wt%. As a result, it is confirmed that the beads and the nanofiber yarns are accumulated in the form of a continuous phase in FIGS. 2A and 2B, and that the nanofiber yarns without the droplets are obtained in FIGS. 2C and 2D. It was.

따라서, 본 발명에서는 나노섬유 부직포를 전기방사로 얻기 위해서는 PMMA의 농도를 17 ~ 21Wt%로 하는 것이 바람직하다는 것을 알 수 있었다.Therefore, in the present invention, in order to obtain the nanofiber nonwoven fabric by electrospinning, it was found that the concentration of PMMA is preferably 17 to 21 Wt%.

(실험예 2)(Experimental Example 2)

다음으로, DCM과 DMF 용매의 적정한 혼합비를 알아보기 위하여 DCM과 DMF 를 (a) 10:0, (b) 9:1, (c) 8:2, (d) 7:3의 비율로 혼합하여 나노섬유 부직포를 제조하였다. 전기방사시, PMMA의 농도 18wt%, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0 ml/h, 상대습도 20%로 고정하였다. 도 3에 도시된 바와 같이 DCM의 비율이 증가할수록 기공이 형성된 나노섬유사 형태를 취하며 DMF의 비율이 증가할수록 원통형의 표면이 깨끗한 형태를 갖는 나노섬유사를 제조할 수 있었다. 이는 DCM의 낮은 끓는점에 의해 DCM의 비율이 증가함에 따라 용매의 휘발이 유리해 나노섬유사 표면에 기공을 형성하기가 쉽다는 것을 확인 할 수 있었다.Next, to determine the proper mixing ratio of DCM and DMF solvent, DCM and DMF were mixed in the ratio of (a) 10: 0, (b) 9: 1, (c) 8: 2, and (d) 7: 3. Nanofiber nonwoven fabrics were prepared. During electrospinning, the concentration of PMMA was fixed at 18wt%, applied voltage 20kV, spinning distance 15cm, fluid injection speed 2.0 ml / h, relative humidity 20%. As shown in FIG. 3, as the proportion of DCM increases, nanofiber yarns having pores are formed, and as the proportion of DMF increases, nanofiber yarns having a clean cylindrical surface can be prepared. This was confirmed that it is easy to form pores on the surface of the nanofiber yarn due to the volatilization of the solvent as the proportion of DCM increases due to the low boiling point of DCM.

그러나, 도 3의 (a) 10:0의 혼합비에서는 DCM의 낮은 끓는점 때문에 방사시에 방사기 끝에서 고분자 용액이 굳어 버리는 경향이 보여 전기방사가 용이하지 않으며, 낮은 유전상수도 전기방사를 용이하지 않게 하는 또 다른 요인으로 작용하였다. 도 3의 (b) 9:1의 혼합비 이하에서 나노섬유사가 잘 형성되기 시작하였지만 기공은 DMF의 비율이 증가 할수록 감소하는 것을 알 수 있었다.However, in the mixing ratio of (a) 10: 0 of FIG. 3, the polymer solution is hardened at the end of the radiator due to the low boiling point of DCM, so that the electrospinning is not easy, and the low dielectric constant does not facilitate the electrospinning. It was another factor. (B) Although the nanofiber yarn began to form well below the mixing ratio of 9: 1, pores decreased as the ratio of DMF was increased.

따라서, 본 발명에서는 다공성 나노섬유 부직포를 제조하기 위해서는 DCM과 DMF를 중량비율 9:1 ~ 7:3으로 혼합한 용매를 사용하는 것이 바람직하다는 것을 확인할 수 있었다.Therefore, in the present invention, it was confirmed that it is preferable to use a solvent in which DCM and DMF are mixed in a weight ratio of 9: 1 to 7: 3 to prepare a porous nanofiber nonwoven fabric.

(실험예 3)Experimental Example 3

다음으로는, 전기방사시 상대습도가 나노섬유 부직포의 나노섬유사의 표면구조에 직접적인 영향을 미친다는 점에 착안하여, 상대습도에 따른 나노섬유사 표면의 특성을 확인하기 PMMA 18wt% 용액을 DCM과 DMF를 중량비율 8:2로 혼합한 용매를 사용하여, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0 mL/hr로 고정하고 상대 습도만을 15 ~ 60%로 변화시켜서 전기방사를 하였다.Next, paying attention to the fact that the relative humidity during electrospinning directly affects the surface structure of the nanofiber yarn of the nanofiber nonwoven fabric. Using a solvent mixed with DMF in a weight ratio of 8: 2, electrospinning was performed by applying an applied voltage of 20 kV, a spinning distance of 15 cm, a fluid injection speed of 2.0 mL / hr, and changing only relative humidity to 15 to 60%.

그 결과, 도 4의 (a)에서는 기공이 없이 약간의 표면 변화가 있음을 확인할 수 있으며. 도 4의 (a)보다 습도가 증가한 도 4의 (b)에서는 나노섬유사의 표면에 기공이 형성되기 시작하는 것을 확인하였으며, 도 4의 (c)에서는 표면에 많은 기공을 가진 나노섬유사를 얻을 수 있었으며, 도 4의 (d)에서는 표면에 더 많은 기공을 가진 나노섬유사를 얻을 수 있었다.As a result, in Figure 4 (a) it can be seen that there is a slight surface change without pores. In (b) of FIG. 4 in which the humidity is increased from (a) of FIG. 4, it was confirmed that pores were formed on the surface of the nanofiber yarn. In FIG. 4 (c), nanofiber yarns having many pores on the surface were obtained. In (d) of FIG. 4, nanofiber yarns having more pores on the surface could be obtained.

그러나, 매우 높은 습도는 전기방사가 잘 되지 않기 때문에 기공을 형성한 나노섬유 부직포를 제조하기 위해서 적절한 상대 습도는 20 ~ 50%이며, 가장 바람직하게는 30 ~ 40%인 것을 확인할 수 있었다.However, since the very high humidity is not good for electrospinning, it was confirmed that the proper relative humidity is 20 to 50%, and most preferably 30 to 40% to prepare the nanofiber nonwoven fabric having pores.

상기와 같이, 기공이 형성된 나노섬유 부직포를 제조하기 위해서는 PMMA를 DCM과 DMF 중량비율 9:1 ~ 7:3으로 혼합된 혼합용매에 용해하여서 방사용액을 얻고, 상기 방사용액에 인가전압 17 ~ 23Kv, 방사거리 12 ~ 18㎝, 유체주입속도는 1.5 ~ 2.3 mL/hr, 상대습도 20 ~ 50%의 방사조건으로 전기방사하는 것이 바람직하다는 것을 확인할 수 있었다.As described above, in order to prepare a nanofiber nonwoven fabric with pores is formed by dissolving PMMA in a mixed solvent mixed with DCM and DMF weight ratio of 9: 1 to 7: 3 to obtain a spinning solution, the applied voltage 17 ~ 23Kv to the spinning solution , Spinning distance 12 ~ 18㎝, fluid injection speed was 1.5 ~ 2.3 mL / hr, it was confirmed that the electrospinning is preferable in the spinning conditions of 20 ~ 50% relative humidity.

이제, 상기와 같은 제조방법에 의해 제조된 다공성 나노섬유 부직포의 특성을 평가하기 위하여 기공이 없는 일반 나노섬유 부직포와 비교하여 비표면적의 증가 및 형성된 기공의 크기를 확인하고, 비표면적의 증가를 가장 쉽게 확인 할 수 있는 요오드, 메틸렌블루, 페놀의 흡착실험을 통해 비표면적이 흡착에 미치는 영향을 알아보았다.Now, in order to evaluate the characteristics of the porous nanofiber nonwoven fabric prepared by the above-described manufacturing method, the increase in specific surface area and the size of the formed pores, and the increase in the specific surface area are compared with those of general nanofiber nonwoven fabrics without pores. Adsorption experiments of iodine, methylene blue, and phenol, which can be easily identified, examined the effect of specific surface area on adsorption.

먼저, 기공의 유무에 따라 비표면적의 증감을 확인하기 위하여 도 4와 같이, PMMA 18wt% 용액을 DCM과 DMF를 중량비율 8:2로 혼합한 용매를 사용하여, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0 mL/hr로 고정하고, 상대 습도를 15 ~ 40%로 변화시켜서 전기방사를 하여, 기공이 형성된 나노섬유와 기공이 형성되지 않은 나노섬유를 제조하고 이를 비표면적 분석기로 비표면적을 측정하여 기공형성에 따른 비표면적의 차이를 알아보았다. 그 결과는 하기의 표 2와 같다.First, in order to confirm the increase or decrease of specific surface area depending on the presence or absence of pores, as shown in FIG. 4, using a solvent in which a PMMA 18wt% solution is mixed with DCM and DMF in a weight ratio of 8: 2, an applied voltage of 20 kV and a spinning distance of 15 cm, Fixed the fluid injection rate at 2.0 mL / hr, and electrospinning by changing the relative humidity to 15 to 40% to prepare nanofibers with no pores and nanofibers without pores, and use the specific surface area analyzer to measure the specific surface area. By measuring the difference in specific surface area according to the pore formation. The results are shown in Table 2 below.

고분자Polymer
비표면적(㎡/g)Specific surface area (m < 2 > / g)
기공이 형성되지 않은 PMMA 부직포PMMA nonwoven fabric with no pores 20.3620.36 기공이 형성된 PMMA 부직포Porous PMMA Nonwoven Fabric 139.0
139.0

즉, 본원발명자들은 상기의 실험에서 기공이 형성되지 않은 PMMA 부직포보다 기공이 형성된 PMMA 부직포의 비표면적이 매우 크다는 것을 확인할 수 있었다.That is, the inventors of the present invention was able to confirm that the specific surface area of the PMMA nonwoven fabric having pores is much larger than that of the PMMA nonwoven fabric without pores.

그리고, 기공을 형성한 PMMA 나노섬유사의 단면의 구조를 확인하기 위하여 기공이 형성되지 않은 PMMA 부직포와, 기공이 형성된 PMMA 부직포를 적당하게 잘라 주사형 전자 현미경 사진으로 단면을 측정하였다. 그 결과, 표면에 기공이 형성되지 않은 PMMA 나노섬유사의 경우에는 도 5의 (a)와 같이, 절단면 안쪽에 아무런 특징도 없이 깨끗한 단면을 보여 주었으며, 이에 반해 기공이 형성된 PMMA 나노섬유사의 경우에는 도 5의 (b)와 같이, 기공이 표면뿐만 아니라 내부까지 형성되어 있었다. 이러한 기공이 형성된 PMMA 나노섬유사의 구조는 활성탄과 비슷한 원리로 비표면적이 극대화 되어 표 2와 같이 비표면적 차이를 만들었다고 확인할 수 있었다.In addition, in order to confirm the structure of the cross section of the PMMA nanofiber yarn having pores, the PMMA nonwoven fabric having no pores and the PMMA nonwoven fabric having pores were appropriately cut and the cross section was measured by a scanning electron micrograph. As a result, in the case of PMMA nanofiber yarn without pores formed on the surface, as shown in (a) of FIG. 5, the cross section showed a clean cross section without any features inside, but in the case of PMMA nanofiber yarn with pores formed thereon, FIG. As shown in 5 (b), pores were formed not only on the surface but also on the inside. The structure of PMMA nanofiber yarns in which such pores were formed was confirmed that the specific surface area was maximized by the principle similar to that of activated carbon, thereby making the specific surface area difference as shown in Table 2.

다음으로, PMMA 나노섬유사의 평균 기공 및 공극의 직경(pore diameter)을 알아보기 위하여 비표면적 및 기공도 측정기(BET)를 이용하여 기공 및 공극의 직경을 측정하였다. 이 실험에 사용된 PMMA 나노섬유 부직포는 18wt%, DCM과 DMF을 8:2로 중량비율로 혼합하였고, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0 ml/h, 상대습도 15 ~ 40%에서 제조하였다. 그 결과는 하기 표 3과 같다.Next, in order to determine the average pore diameter and pore diameter of the PMMA nanofiber yarn, the diameters of the pores and the pores were measured using a specific surface area and a porosity measuring instrument (BET). The PMMA nanofiber nonwoven fabric used in this experiment was mixed at a weight ratio of 18 wt%, DCM and DMF at 8: 2, and applied voltage 20kV, spinning distance 15cm, fluid injection speed 2.0 ml / h, relative humidity 15-40%. Prepared. The results are shown in Table 3 below.

고분자Polymer
평균 기공 및 공극의 직경(Å)Average pore and pore diameter
기공이 형성되지 않은 PMMAPMMA without pores 37.8
37.8
기공이 형성된 PMMA
Porous PMMA
34.834.8

상기 표 3의 수치는 기공이 형성되지 않은 PMMA 나노섬유사의 경우는 공극의 평균직경 수치를 나타내고, 기공이 형성된 PMMA 나노섬유사의 경우는 공극 및 기공의 평균직경 수치를 나타낸다. 상기의 표 3에서 기공이 형성된 PMMA 나노섬유사가 기공이 형성된 PMMA 나노섬유사에 비해 평균 공극 및 기공의 직경이 더 작음을 확인할 수 있었다. 이러한 공극 및 기공의 직경이 매우 작은 PMMA 나노섬유사로 형성된 부직포를 필터 같은 곳에 응용한다면 아주 미세한 입자까지 거를 수 있고, 비표면적이 높아 그 효과가 매우 우수할 것이다.The numerical value of Table 3 indicates the average diameter value of the pores in the case of PMMA nanofiber yarn without pores, and the average diameter value of the pores and pores in the case of PMMA nanofiber yarn with pores. In Table 3, the pore-formed PMMA nanofiber yarn was found to have a smaller average pore size and pore diameter than the pore-formed PMMA nanofiber yarn. If the nonwoven fabric formed of PMMA nanofiber yarn having a very small pore and pore diameter is applied to a filter or the like, the fine particles can be filtered out, and the specific surface area will be very high.

이제, PMMA 나노섬유 부직포의 비표면적 증가에 따른 흡착력을 알아보기 위하여 요오드(iodine), 메틸렌 블루(methylene blue), 페놀(phenol)을 이용하여 흡착력 실험을 실시하였다. 이 실험에 사용된 PMMA 나노섬유 부직포는 18wt%, DCM과 DMF는 8:2 비율로 혼합하였고, 인가전압 20kV, 방사거리 15cm, 유체주입속도 2.0ml/h, 상대습도 15 ~ 40%에서 제조하였다.Now, in order to determine the adsorption power of the PMMA nanofiber nonwoven fabric by increasing the specific surface area, an adsorption force experiment was conducted using iodine, methylene blue, and phenol. The PMMA nanofiber nonwoven fabric used in this experiment was mixed at 18wt%, DCM and DMF at 8: 2 ratio, and applied at 20kV applied voltage, spinning distance 15cm, fluid injection speed 2.0ml / h, and relative humidity 15 ~ 40%. .

먼저, 기공이 형성되지 않은 PMMA 나노섬유 부직포와 기공이 형성된 PMMA 나노섬유 부직포의 요오드 흡착력을 실험해 보았다. 그 결과, 하기의 표 4와 같이, 기공이 형성되지 않은 PMMA는 1g당 117.4119mg 흡착한 것에 비해 기공이 형성된 PMMA의 경우에는 1g당 202.8052mg을 흡착하였다. 상기의 결과로 비표면적의 차이가 기공이 형성된 PMMA와 형성되지 않은 PMMA 간의 요오드의 흡착에 큰 영향을 주는 것을 확인할 수 있었다.First, the iodine adsorption power of the PMMA nanofiber nonwoven fabric without pores and the PMMA nanofiber nonwoven fabric with pores was tested. As a result, as shown in Table 4 below, the PMMA without pores was adsorbed 202.8052 mg per g in the case of PMMA having pores, whereas the PMMA without pores was adsorbed per 1 g. As a result, it was confirmed that the difference in specific surface area has a great influence on the adsorption of iodine between the PMMA having no pores and the PMMA having no pores.

고분자Polymer
흡착량(mg/g)Adsorption amount (mg / g)
기공이 형성되지 않은 PMMA
PMMA without pores
117.4119117.4119
기공이 형성된 PMMA
Porous PMMA
202.8052202.8052

그리고, 메틸렌 블루의 665nm에서 빛을 흡수하는 성질을 이용하여 기공이 형성되지 않은 PMMA와 기공이 형성된 PMMA의 메틸렌블루에 대한 탈색능력을 실험해 보았다. 그 결과, 하기의 표 5에서 볼 수 있듯이 기공이 형성되지 않은 PMMA의 흡착력과 탈색력은 1g당 1.0449mg과 0.8707mg이고, 기공이 형성된 PMMA의 흡착력과 탈색력은 1g당 1.0520mg과 0.8761mg으로 차이가 거의 없음을 확인할 수 있었다.And, using the properties of absorbing light at 665 nm of methylene blue, the decolorizing ability of the PMMA with no pores and the PMMA with pores was tested. As a result, as shown in Table 5, the adsorption and decolorizing power of PMMA without pore formation was 1.0449 mg and 0.8707 mg per 1 g, and the adsorption and decolorizing power of PMMA with pores was 1.0520 mg and 0.8761 mg per 1 g. Little difference was found.

고분자Polymer
흡착량(mg/g)Adsorption amount (mg / g) 탈색력(㎖/g)Decolorizing power (ml / g)
기공이 형성되지 않은 PMMAPMMA without pores 1.0449
1.0449
1.05201.0520
기공이 형성된 PMMAPorous PMMA 0.8707
0.8707
0.87610.8761

이는, PMMA의 흡착에 큰 영향을 미치는 요소로는 비표면적과 흡착물질과의 친화력인데, PMMA는 비극성 물질보다는 극성인 물질, 그리고 중성이나 염기보다는 산성인 물질을 잘 흡착 하기 때문에 그 결과 표면에 기공이 형성된 PMMA 부직포가 비표면적은 더 크지만 메틸렌블루와 친화력이 작기 때문에 메틸렌블루와의 흡착이 큰 차이가 없음을 확인할 수 있었다.This is a factor that greatly influences the adsorption of PMMA, which is affinity between specific surface area and adsorbent. Since PMMA adsorbs more polar material than non-polar material and acidic material than neutral or base, the result is pore on the surface. The formed PMMA nonwoven fabric has a larger specific surface area, but has a small affinity with methylene blue.

마지막으로, 페놀의 269nm에서 빛을 흡수하는 성질을 이용하여 기공이 형성되지 않은 PMMA와, 기공이 형성된 PMMA의 페놀의 흡착성능에 대해 실험했다.Finally, the adsorption performance of the phenol of PMMA with no pores and the PMMA with pores was tested using the light absorbing property at 269 nm of phenol.

그 결과, 하기의 표 6에서 볼 수 있듯이, 기공이 형성되지 않은 PMMA의 경우에는 시료 1g당 1.78047mg의 흡착량을 보였으며, 그에 비해서 기공이 형성된 PMMA는 시료 1g당 3.73127mg의 흡착량을 보였다. 이 또한, 비표면적의 차이가 기공이 형성된 PMMA와 형성되지 않은 PMMA 간의 페놀의 흡착에 큰 영향을 주는 것을 확인할 수 있었다.As a result, as shown in Table 6, in the case of PMMA without pores, the adsorption amount was 1.78047 mg per 1 g of sample, whereas the PMMA with pores was 3.73127 mg per 1 g of sample. . In addition, it was confirmed that the difference in specific surface area has a great influence on the adsorption of phenol between PMMA having pores and PMMA having no pores.

고분자Polymer
흡착량(mg/g)Adsorption amount (mg / g)
기공이 형성되지 않은 PMMA
PMMA without pores
1.780471.78047
기공이 형성된 PMMA
Porous PMMA
3.731273.73127

이러한 비교를 통한 확인은 본 발명의 실시예에 따라 제조된 다공성 나노섬유 부직포는 비표면적이 극대화되어 흡착성능이 매우 우수하다는 것을 증명하여 준다.Confirmation through this comparison proves that the porous nanofiber nonwoven fabric prepared according to the embodiment of the present invention maximizes the specific surface area and has excellent adsorption performance.

본 발명의 다공성 나노섬유 부직포는 분리용 필터, 전자 디바이스, 고효율 센서, 복합재료용 보강재 등에 특히 유용하게 사용할 수 있다.Porous nanofiber nonwoven fabric of the present invention can be particularly useful for separation filters, electronic devices, high efficiency sensors, composite materials reinforcement.

상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위의 균등한 것에 의해 정해 져야 한다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the equivalent of claims and claims.

도 1은 PMMA 용액의 농도변화에 따른 점도곡선,1 is a viscosity curve according to the concentration change of the PMMA solution,

도 2는 PMMA 용액의 농도변화에 따른 나노섬유 FE-SEM 이미지도,2 is a nanofiber FE-SEM image diagram according to the concentration change of the PMMA solution,

도 3은 DCM과 DMF의 혼합비에 따른 나노섬유 부직포의 FE-SEM 이미지도,3 is a FE-SEM image of the nanofiber nonwoven fabric according to the mixing ratio of DCM and DMF,

도 4는 상대습도에 따른 PMMA 나노섬유 부직포의 FE-SEM 이미지도,4 is a FE-SEM image of the PMMA nanofiber nonwoven fabric according to relative humidity,

도 5는 기공형성유무에 따른 PMMA 나노섬유사의 단면을 나타낸 FE-SEM 이미지도이다.5 is a FE-SEM image showing a cross section of PMMA nanofiber yarn with or without pore formation.

Claims (5)

나노섬유 부직포의 제조방법에 있어서,In the method of manufacturing a nanofiber nonwoven fabric, 아크릴수지계의 비결정성고분자 17 ~ 21Wt%를 디클로로메탄과 디메틸포르마미드 중량비율 9:1 ~ 7:3으로 혼합된 혼합용매에 용해하여서 휘발성과 방사성이 좋은 방사용액을 얻고, 상기 방사용액을 전기방사하여 나노섬유사에 다수 기공이 형성된 나노섬유 부직포를 제조하되, 상기 나노섬유사의 기공의 평균크기는 30 ~ 37Å이며, 상기 나노섬유 부직포의 비표면적은 125 ~ 150㎡/g이 되게 구성함을 특징으로 하는 다공성 나노섬유 부직포의 제조방법.17-21 Wt% of an acrylic resin of acrylic resin was dissolved in a mixed solvent mixed with dichloromethane and dimethylformamide in a weight ratio of 9: 1 to 7: 3 to obtain a volatile and radioactive spinning solution. To prepare a nanofiber nonwoven fabric with a plurality of pores formed on the nanofiber yarn, the average size of the pores of the nanofiber yarn is 30 ~ 37Å, the specific surface area of the nanofiber nonwoven fabric is configured to be 125 ~ 150㎡ / g Method for producing a porous nanofiber nonwoven fabric characterized in that. 삭제delete 제1항에 있어서,The method of claim 1, 인가전압은 17 ~ 23Kv, 방사거리는 12 ~ 18㎝, 유체주입속도는 1.5 ~ 2.3 mL/hr, 상대습도는 20 ~ 50%로 하여 전기방사함을 특징으로 하는 다공성 나노섬유 부직포의 제조방법.Applied voltage is 17 ~ 23Kv, spinning distance is 12 ~ 18㎝, fluid injection speed is 1.5 ~ 2.3 mL / hr, relative humidity is 20 ~ 50% electrospinning method of producing a porous nanofiber nonwoven fabric, characterized in that. 제1항에 있어서,The method of claim 1, 상기 아크릴수지계의 비결정성고분자는 폴리메틸메타크리레이트로 구성함을 특징으로 하는 다공성 나노섬유 부직포의 제조방법.The acrylic resin amorphous polymer is a method of producing a porous nanofiber nonwoven fabric, characterized in that composed of polymethyl methacrylate. 상기 제1항, 제3항 또는 제4항 중 어느 한 항의 다공성 나노섬유 부직포의 제조방법으로 제조된 다공성 나노섬유 부직포.Porous nanofiber nonwoven fabric prepared by the method of producing a porous nanofiber nonwoven fabric of any one of claims 1, 3 or 4.
KR1020090028563A 2009-04-02 2009-04-02 Porous nanofiber webs and manufacturing method thereof KR101101924B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090028563A KR101101924B1 (en) 2009-04-02 2009-04-02 Porous nanofiber webs and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090028563A KR101101924B1 (en) 2009-04-02 2009-04-02 Porous nanofiber webs and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20100110141A KR20100110141A (en) 2010-10-12
KR101101924B1 true KR101101924B1 (en) 2012-01-02

Family

ID=43130879

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090028563A KR101101924B1 (en) 2009-04-02 2009-04-02 Porous nanofiber webs and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR101101924B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102071485A (en) * 2010-12-06 2011-05-25 北京化工大学常州先进材料研究院 Method for preparing nanofiber containing pore structure
KR101342702B1 (en) * 2010-12-14 2013-12-17 한국타이어 주식회사 Tire cord and tire comprising the same
CN102747453B (en) * 2012-07-05 2015-01-07 四川大学 Porous superfine polymer fiber and preparation method thereof
CN106192208A (en) * 2015-05-28 2016-12-07 长沙维纳斯克信息技术有限公司 The preparation method of a kind of printing opacity 3D printed material and material
CN111575917B (en) * 2020-05-25 2021-09-17 东华大学 High-specific-surface-area honeycomb-like structure nanofiber material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007659A (en) * 2002-11-20 2003-01-23 주식회사 파인셀 Microporous Inorganic Solid Electrolytes and Methods for Preparing Them
KR100623004B1 (en) * 2004-10-20 2006-09-19 전남대학교산학협력단 Electrospinning of Pitch Solution Dissolved in Mixed Solvents and Preparation of Ultrafine Carbon Fiber Web and Ultraactive Carbon Fiber Web
KR100746643B1 (en) * 2006-02-24 2007-08-06 인하대학교 산학협력단 A method for producing a superhydrophobic fibrous membrane of polystyrene and the membrane with the same
KR20080013510A (en) * 2006-08-09 2008-02-13 한국생명공학연구원 Silica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030007659A (en) * 2002-11-20 2003-01-23 주식회사 파인셀 Microporous Inorganic Solid Electrolytes and Methods for Preparing Them
KR100623004B1 (en) * 2004-10-20 2006-09-19 전남대학교산학협력단 Electrospinning of Pitch Solution Dissolved in Mixed Solvents and Preparation of Ultrafine Carbon Fiber Web and Ultraactive Carbon Fiber Web
KR100746643B1 (en) * 2006-02-24 2007-08-06 인하대학교 산학협력단 A method for producing a superhydrophobic fibrous membrane of polystyrene and the membrane with the same
KR20080013510A (en) * 2006-08-09 2008-02-13 한국생명공학연구원 Silica capsules having nano-holes or nano-pores on their surfaces and method for preparing the same

Also Published As

Publication number Publication date
KR20100110141A (en) 2010-10-12

Similar Documents

Publication Publication Date Title
Reshmi et al. Fabrication of superhydrophobic polycaprolactone/beeswax electrospun membranes for high-efficiency oil/water separation
Teng et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules
Balgis et al. Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration
KR101101924B1 (en) Porous nanofiber webs and manufacturing method thereof
Thamer et al. Functionalized electrospun carbon nanofibers for removal of cationic dye
You et al. High flux low pressure thin film nanocomposite ultrafiltration membranes based on nanofibrous substrates
Wang et al. Tuning hierarchically aligned structures for high-strength PMIA–MWCNT hybrid nanofibers
Liu et al. Preparation of carbon nanofibres through electrospinning and thermal treatment
Sun et al. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges
CN104014196B (en) A kind of high absorption nanofiber composite filter material and preparation method thereof
Tissera et al. Photocatalytic activity of ZnO nanoparticle encapsulated poly (acrylonitrile) nanofibers
Dadol et al. Solution blow spinning–polyacrylonitrile–assisted cellulose acetate nanofiber membrane
Namsaeng et al. Synergistic effect of welding electrospun fibers and MWCNT reinforcement on strength enhancement of PAN–PVC non-woven mats for water filtration
KR101668391B1 (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
Tian et al. Novel reusable porous polyimide fibers for hot-oil adsorption
Zhao et al. Studies of electrospinning process of zirconia nanofibers
CN103895293A (en) Nanofiber membrane fabric with modified self-cleaning carbon nano tube and preparation method
Shu et al. Morphologies and properties of PET nano porous luminescence fiber: oil absorption and fluorescence-indicating functions
Chen et al. Online fabrication of ultralight, three-dimensional, and structurally stable ultrafine fibre assemblies with a double-porous feature
Zhu et al. Physical characterization of electrospun nanofibers
CA2941642A1 (en) Polymer fibres comprising aerogel and method for production
CN111282342B (en) Long-acting electret nanofiber filtering material and preparation method thereof
Zhang et al. One-step, large-scale blow spinning to fabricate ultralight, fibrous sorbents with ultrahigh oil adsorption capacity
KR20050040872A (en) Preparation method of polyacrylonitrile(pan)/polyimide(pi) composite nano-fibers by electrospinning, and carbon fibers, activated carbon fibers therefrom
Fan et al. Hierarchical porous carbon nanofibrous membranes with an enhanced shape memory property for effective adsorption of proteins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171110

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 9