KR101027321B1 - 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치 - Google Patents

비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치 Download PDF

Info

Publication number
KR101027321B1
KR101027321B1 KR1020090127134A KR20090127134A KR101027321B1 KR 101027321 B1 KR101027321 B1 KR 101027321B1 KR 1020090127134 A KR1020090127134 A KR 1020090127134A KR 20090127134 A KR20090127134 A KR 20090127134A KR 101027321 B1 KR101027321 B1 KR 101027321B1
Authority
KR
South Korea
Prior art keywords
unit
laser
optical fiber
optical
lens
Prior art date
Application number
KR1020090127134A
Other languages
English (en)
Inventor
윤태현
장광훈
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to EP10837873A priority Critical patent/EP2515393A2/en
Priority to PCT/KR2010/008987 priority patent/WO2011074877A2/ko
Priority to US13/516,949 priority patent/US8908721B2/en
Application granted granted Critical
Publication of KR101027321B1 publication Critical patent/KR101027321B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using intracavity saturable absorbers
    • H01S3/1118Semiconductor saturable absorbers, e.g. semiconductor saturable absorber mirrors [SESAMs]; Solid-state saturable absorbers, e.g. carbon nanotube [CNT] based

Abstract

비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치가 개시된다. 펌프 레이저 발생부는 사전에 설정된 파장을 갖는 펌프 레이저를 생성한다. 광섬유부는 편광 유지 광섬유로 이루어지며, 일단부로부터 타단부 방향으로 제1영역에는 브래그 격자가 형성되어 있고, 나머지 제2영역에는 코어에 이득물질이 도핑되어 있다. 광결합부는 펌프 레이저를 입력받아 광섬유부의 일단부로 제공하고, 광섬유부로부터 입력되는 레이저를 출력한다. 렌즈부는 광섬유부의 타단으로부터 출력되는 광의 경로를 변경하여 평행광을 생성하는 제1렌즈와 평행광의 경로를 변경하여 일정한 영역에 집중시키는 제2렌즈로 이루어진다. 편광조절부는 제1렌즈와 제2렌즈 사이에 배치되며, 각각의 고속 축이 서로 직교하도록 적층된 두 개의 사분 파장 결정판으로 이루어진 비색수차 사분 파장판이 광섬유부의 고속축 또는 저속축에 대해 각도조절되어 레이저의 모드록킹과 스펙트럼 필터링 대역폭을 제어한다. 포화흡수부는 제2렌즈부를 통과한 광을 포화흡수 반사시켜 모드록킹을 유발한다. 본 발명에 따르면, 비색수차 사분 파장판에 의해 레이저의 모드록킹과 스펙트럼 필터링을 동시에 수행함으로써 장치의 구성을 간단하게 할 수 있다.
광섬유 레이저, 비색수차 사분 파장판, 모드록, 도핑, 편광

Description

비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치{Apparatus for generating environmentally stable mode-locked fiber laser with Achromatic Quarter-Wave-Plate}
본 발명은 레이저 발생 장치에 관한 것으로, 보다 상세하게는 비색수차 사분 파장판을 가진 환경적으로 안정적인 광섬유 모드록 레이저 발생 장치에 관한 것이다.
광섬유 증폭기를 구성하는 100 MHz 이상의 반복율을 갖는 다이오드 펌핑 피코초 이터비움 도핑된 광섬유 모드록 레이저가 광 주파수 분야에서의 잠재적인 용도에 있어서 관심을 받고 있다. 이때 보다 높은 반복율은 광 주파수 빗(Comb)에서 보다 많은 모드당 전력을 전달한다. 또한 1 nJ 이상의 펄스 에너지를 갖는 고 에너지 피코초 이터비움 도핑된 광섬유 레이저 공진기가 활발하게 연구되고 있다. 나아가 피코초 정상 분산 이터비움 도핑된 광섬유 레이저가 광섬유 기반의 100 fs 차수의 디첩된 펄스 폭을 갖는 펨토초 레이저를 생성하기 위해 적용되어 왔다. 출력 펄스는 정상 분산 공진기에서 얻어진 양의 선형 첩을 가지므로, 광자 결정 광섬유 또는 격자 쌍을 사용하여 외부적으로 압축하는 기술이 성공적으로 적용된 바 있다.
편광 유지(Polarization Maintaining : PM) 공진기 부품을 이용한 광섬유 모드록 레이저의 환경적으로 안정적인 동작은 광섬유 레이저의 실용적인 장기간 동작을 위한 핵심적인 문제였다. 초기 연구에서 에르비움(Er) 도핑된 광섬유 레이저에 있어서 패러데이 회전자/편광자 쌍 또는 주파수 천이된 피드백을 위한 음향 광학 변조기/격자 쌍이 안정적인 단일 편광 광섬유 레이저를 만들기 위해 사용되어 왔다. 최근에 연장된 펄스 동작을 위한 비 PM 에르비움 도핑된 광섬유와 공동 코어 광자 결정 광섬유를 결합함으로써 시그마 타입의 공진기에서 단일 편광 진동이 일어남이 발견되었다.
그러나 정상 분산 구조에서 환경적으로 안정적인 PM 이터비움 도핑된 광섬유 레이저는 최근에서야 선형 정상파 진공기 또는 링형 진행파 공진기에서 상대적으로 낮은 반복율을 가짐이 입증되었다. 이는 부분적으로 비 PM 광섬유 레이저에서 널리 사용된 비선형 편광 회전(Nonlinear Polarization Rotation : NPR)을 구현하기 어렵다는 점에 기인한다. 따라서 이터비움 도핑된 광섬유 레이저에서 자기 시작 모드록킹은 일반적으로 반도체 포화 흡수 거울(Semiconductor saturable Absorber Mirror : SAM)을 사용하여 얻어진다. NPR 기술은 패러데이 거울/PM 커플러 쌍을 이용하여 선형 공진기에서 구현되었다. 그러나 100 MHz 이상의 반복율과 1 nJ 이상의 펄스 에너지를 가진 환경적으로 안정적인 모든 정상 분산 PM 이터비움 도핑된 광섬유 레이저는 아직까지 보고된 바 없다.
본 발명이 이루고자 하는 기술적 과제는 100 MHz 이상의 반복율과 1 nJ 이상의 펄스 에너지를 가진 레이저를 생성할 수 있는 환경적으로 안정적인 광섬유 모드록 레이저 발생 장치를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한 본 발명에 따른 환경적으로 안정된 광섬유 모드록 레이저 발생 장치는, 사전에 설정된 파장을 갖는 펌프 레이저를 생성하는 제1펌프 레이저 발생부; 광섬유의 일단부로부터 타단부 방향으로 제1영역에는 브래그 격자가 형성되어 있고, 상기 광섬유의 나머지 제2영역에는 코어에 이득물질이 도핑되어 있는 광섬유부; 상기 펌프 레이저 발생부로부터 상기 펌프 레이저를 입력받아 상기 광섬유부의 일단부로 제공하고, 상기 광섬유부로부터 입력되는 모드록된 레이저 광을 출력하는 제1광결합부; 상기 광섬유부의 타단부로부터 출력되는 광의 경로를 변경하여 평행광을 생성하는 제1렌즈와 상기 제1렌즈를 통과한 평행광의 경로를 변경하여 일정한 영역에 집중시키는 제2렌즈를 포함하는 렌즈부; 각각의 고속 축이 서로 직교하도록 적층된 두 개의 사분 파장 결정판으로 이루어진 비색수차 사분 파장판이 상기 제1렌즈와 상기 제2렌즈 사이에 배치되며, 상기 광섬유부의 고속 축 또는 저속 축에 대해 각도조절되어 상기 레이저 광의 편광조절과 스펙트럼 필터링 대역폭을 제어하는 편광조절부; 및 상기 제2렌즈부를 통과한 광을 포화흡수하여 반사시키는 포화흡수부;를 구비한다.
본 발명에 따른 환경적으로 안정된 광섬유 모드록 레이저 발생 장치는 비색수차 사분 파장판(Achromatic Quarter-Wave-Plate : AQWP)을 이용하여 정상 분산을 갖는 광섬유 선형 공진기에서 단일 편광 선형 레이저를 생성한다. 이러한 단일 편광 PM 도핑된 광섬유 모드록 레이저는 2 ps의 펄스폭, 117 MHz의 반복율 및 1 nJ의 펄스 에너지를 갖는다. 본 발명에서 AQWP는 공진기 내부의 전기장의 편광 상태를 제어할 뿐만 아니라 레이저의 스펙트럼 필터링 대역폭을 제어하여 정상 분산 공진기에서 모드록킹 상태를 유지한다. 그리고 PM 이터비움 도핑된 광섬유의 저속 축을 벗어난 AQWP의 고속 축 각도에 따라 서로 다른 편광 상태를 가지는 두 개의 고유한 모드록킹 상태를 분석하였다. 단일 편광 이터비움 도핑된 광섬유 레이저의 기본 RF 반송파 주파수는 1초의 게이트 시간에 3.8×10-8의 수동적인 안정도와 능동적인 환경적 분리없이 10 Hz 오프셋 주파수에서 -95 dBc/Hz(4 MHz 오프셋 주파수에서 -140 dBc/Hz)의 위상 잡음 스펙트럼 밀도를 나타낸다. 본 발명에 따르면 100 MHz 이상의 높은 반복율과 1 nJ의 펄스 에너지를 가진 매우 안정적인 단일 편광 광섬유 모드록 레이저를 생성할 수 있다. 또한 AQWP에 의해 레이저의 편광조절과 스펙트럼 필터링을 모두 수행함으로써 장치의 전체적인 구성을 간단하게 할 수 있고, 부품의 수를 줄일 수 있다.
이하에서 첨부된 도면들을 참조하여 본 발명에 따른 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치의 바람직한 실시예에 대해 상세하게 설명한다. 이하의 설명에서 이득물질로서 이터비움이 도핑된 광섬유를 사용한 레이저 발생 장치를 예로 들어 설명하나, 광섬유에 도핑되는 이득 물질은 이터비움, 에르비움 및 이들의 혼합물 중 어느 하나가 될 수 있다.
자기 시작 모드록킹(self-starting mode locking)은 SAM과 AQWP를 이용하여 얻어진다. 본 발명에 따른 이터비움 도핑된 광섬유 모드록 레이저 발생 장치에서 AQWP는 내부 공진기 전기장의 편광 상태 뿐만 아니라 스펙트럼 필터링 밴드폭을 조절한다. PM 이터비움 도핑된 광섬유의 저속 축(slow-axis)을 벗어나 AQWP 고속 축(fast-axis) 각도를 회전시킴으로써 상이한 편광 상태를 가지는 두 개의 고유 모드록 구조를 생성할 수 있다. 이에 의해 117 MHz의 반복율과 2 ps 동안에 1 nJ의 펄스 에너지를 가진 단일 편광 PM 이터비움 도핑된 광섬유 레이저가 생성된다. 선형 편광된 이터비움 도핑된 모드록 광섬유 레이저의 기본적인 RF 반송파 주파수는 능동적인 환경적 격리없이 1초의 평균 시간에 3.8×10-8의 수동 안정성과 10 Hz의 오프셋 주파수에서 -95 dBc/Hz(10 kHz의 오프셋 주파수에서 -120 dBc/Hz)의 위상 잡음을 갖는다.
도 1은 본 발명에 따른 환경적으로 안정적인 이터비움 도핑된 광섬유 모드록 레이저 발생 장치의 구조를 도시한 도면이다.
도 1을 참조하면, 본 발명에 따른 광섬유 모드록 레이저 발생 장치는 펌프 레이저 발생부(110), 광결합부(120), 광섬유부(130), 렌즈부(140), 편광조절 부(150), 포화흡수부(160) 및 광출력부(170)를 구비한다.
펌프 레이저 발생부(110)는 특정한 파장을 갖는 펌프 레이저를 생성한다. 일예로, 펌프 레이저 발생부(110)는 976 nm의 파장에서 460 mW의 최대 출력 전력을 제공하는 분산 피드백 단일 편광 다이오드 레이저 발생기로 구성될 수 있다. 이러한 펌프 레이저 발생부(110)로부터 출력되는 펌프 레이저는 광섬유와 같은 광전달매체를 통해 광결합부(120)로 입력된다.
광결합부(120)는 펌프 레이저 발생부(110)로부터 입력된 펌프 레이저를 광섬유부(130)를 구성하는 광섬유로 제공하고, 광섬유부(130)로부터 입력되는 레이저를 광출력부(170)를 통해 출력한다. 이러한 광결합부(120)는 박막 PM 파장분할다중화(wavelength division multiplexing : WDM) 방식의 커플러로 이루어질 수 있다.
광섬유부(130)는 광결합부(120)와 접속되는 일단부로부터 타단부 방향으로 일정한 제1영역(132)에는 브래그 격자(Fiber Bragg Grating : FBG)가 형성되어 있고, 나머지 제2영역(134)에는 976 nm에서 250 dB/m의 흡수율을 갖도록 코어에 높게 이터비움 원소가 도핑되어 있는 광섬유로 구성된다. 이때 광섬유부(130)는 6 ㎛의 모드 필드 직경(Mode-Field Diameter : MFD)과 +0.023 ps2/m의 그룹 속도 분산(Group Velocity Dispersion : GVD)을 가진 50 cm 길이의 PM 광섬유로 구성될 수 있다. 이와 같이 코어에 이터비움 도핑된 PM 광섬유(134)는 이득 물질로 사용되며, 높은 편광 소멸비와 낮은 손실로 결합된다. 또한 광섬유부(130)를 구성하는 광섬유의 제1영역(132)에 형성된 브래그 격자는 양의 첩(chirp)되어 있으며, 출력 커플러 로 사용된다. 일예로, 광섬유부(130)를 구성하는 광섬유의 제1영역(132)에 형성된 브래그 격자로 기능하는 FBG 출력 커플러는 60 nm의 스펙트럼 가우시안 대역폭을 가지며, 1055 nm의 중심에서 15 %의 피크 반사율과 +0.057 ps2의 분산을 가진다. 공진기의 총 분산은 모든 정상 분산 공진 성분을 고려할 때 0.1 ps2정도이다. 한편 브래그 격자가 형성된 단일모드 광섬유의 제1영역(132)의 길이를 짧게 하면 레이저 광의 반복율을 높일 수 있으며, 이에 의해 모드당 출력을 높일 수 있다. 이와 반대로 브래그 격자가 형성된 단일모드 광섬유의 제1영역(132)의 길이를 길게 하면 레이저 광의 반복율을 낮출 수 있으며, 이에 의해 펄스당 에너지를 증가시킬 수 있다.
렌즈부(140)는 광섬유부(130)의 타단으로부터 출력되는 광의 경로를 변경하여 평행광을 생성하는 제1렌즈(142)와 제1렌즈(142)를 통과한 평행광의 경로를 변경하여 일정한 영역에 집중시키는 제2렌즈(144)를 구비한다.
편광조절부(150)는 렌즈부(140)의 제1렌즈(142)와 제2렌즈(144) 사이에 배치되며, 각각의 고속 축이 서로 직교하도록 적층된 두 개의 사분 파장 결정판으로 이루어진 AQWP로 구성된다. 편광조절부(150)를 구성하는 AQWP는 광섬유부(130)의 고속 축 또는 저속 축에 대해 각도조절되어 레이저 광의 편광조절과 스펙트럼 필터링 대역폭을 제어한다.
포화흡수부(160)는 렌즈부(140)의 제2렌즈(144)를 통과한 레이저 광을 포화흡수하여 반사시킨다. 포화흡수부(160)는 SAM으로 이루어지며, 반공명 다중 양자 우물 구조를 가진 SAM은 1010 nm에서 1080 nm 사이의 파장에서 상대적으로 70 %의 편평한 반사율, 20 %의 변조 깊이(최대 반사율-최저반사율), 500 fs의 포화 시간, 그리고 120 μJ/cm2의 포화 감응력을 가진다. 자기 시작 수동 모드록킹은 지지부재(190) 상에 부착된 SAM(바톱 GmbH)(160)과 AQWP(150)의 결합을 사용하여 얻어진다. 한편 포화흡수부(160)는 단일벽 탄소나노튜브나 다이아몬드 파우더가 코팅된 전반사 거울로 구성될 수 있다. 이러한 포화흡수부(160)는 입사되는 광의 세기에 비례하여 광의 반사율이 증가하는 특성을 가지고 있으며, 바람직하게는 광의 세기에 따라 70 %의 최저 반사율과 95 %의 최대 반사율을 갖는다. 만약 포화흡수부(160)를 구성하는 소자의 최저 반사율이 낮으면, 펌프 레이저의 파워를 높임으로써 레이저 광의 생성이 가능하다. 한편 포화흡수부(160)의 후단에는 공진기 길이 조절을 위한 압전 변환기(180)가 추가적으로 설치될 수 있다. 압전 변환기(180)는 가해지는 전기 신호의 세기에 따라 포화흡수부(160)가 렌즈부(140)에 대해 전후로 이동됨으로써 전체적인 공진기의 길이(브래그 격자가 형성된 광섬유 영역(132)으로부터 SAM(160)까지의 거리)를 미세조절할 수 있다. 이와 같은 공진기 길이의 미세 조절에 의해 레이저 광의 반복율의 추가적인 안정화가 가능하다.
광출력부(170)는 일단이 광결합부(120)에 접속되어 광결합부(120)로부터 입력되는 레이저 광을 출력한다. 이때 광출력부(170)에는 출력되는 레이저 광을 증폭하기 위한 광증폭기가 결합될 수 있다.
도 2에는 광출력부(170)에 결합되는 광증폭기의 일 예가 도시되어 있다.
도 2를 참조하면, 광증폭기는 광입력부(210), 증폭부(220), 펌프 레이저 발생부(230), 광결합부(240) 및 광출력부(250)를 구비한다. 광입력부(210)에는 본 발명에 따른 광섬유 레이저 발생 장치의 광출력부(170)가 광학적으로 결합되며, 이를 통해 본 발명에 따른 광섬유 레이저 발생 장치에서 생성된 레이저 광이 입력된다. 증폭부(220)는 일단이 광입력부(210)에 광학적으로 접속되고, 타단은 광결합부(240)에 광학적으로 접속된다. 증폭부(220)는 코어에 이득 물질로서 이터비움, 에르비움 또는 이들의 혼합물이 도핑된 광섬유로 이루어진다. 이때 증폭부(220)를 구성하는 광섬유는 내부를 주회하는 레이저 광의 높은 에너지를 견디기 위해 이중 클래딩 광섬유를 사용하는 것이 바람직하다. 펌프 레이저 발생부(230)는 증폭용 펌프 레이저를 발생하여 광결합부(240)로 제공한다. 펌프 레이저 발생부(230)로부터 발생되는 증폭용 펌프 레이저는 976 ㎚ 또는 915 ㎚의 파장을 갖는다. 광결합부(240)는 펌프 레이저 발생부(230)로부터 입력된 펌프 레이저를 증폭부(220)를 구성하는 광섬유로 제공하고, 증폭부(220)로부터 입력되는 레이저를 광출력부(250)를 통해 출력한다. 이러한 광결합부(240)는 박막 PM 파장분할다중화(wavelength division multiplexing : WDM) 방식의 커플러 또는 이색 코팅된 빔 분할기로 이루어질 수 있다.
한편 본 발명에 따른 광섬유 레이저 발생 장치의 광출력부(170) 또는 광증폭기의 광출력부(250)에는 양으로 첩이된 피코초 펄스에 음의 첩을 가해 펨토초(femtosecond) 펄스로 변환하는 광변환기가 추가로 결합될 수 있다. 도 3에는 광변환기의 일 예가 도시되어 있다. 도 3을 참조하면, 광변환기는 광입력부(310), 광 분리부(320), 광변환부(330), 광반사부(340) 및 광출력부(350)를 구비한다. 광입력부(310)에는 본 발명에 따른 광섬유 레이저 발생 장치의 광출력부(170) 또는 광증폭기의 광출력부(250)가 광학적으로 결합되며, 이를 통해 본 발명에 따른 광섬유 레이저 발생 장치에서 생성되거나 광증폭기에 의해 증폭된 레이저 광이 입력된다. 광분리부(320)는 광입력부(310)를 통해 입력되는 피코초 레이저 광을 광변환부(330)로 제공하고, 광변환부(330)로부터 입력되는 펨토초 레이저 광을 광출력부(350)로 제공한다. 광변환부(330)는 두 개의 브래그 격자로 구성되어 피코초 레이저 광을 펨토초 레이저 광으로 변환한다. 광반사부(340)는 광변환부(330)의 후단에 배치되어 입사되는 레이저 광을 전반사한다. 광출력부(350)는 광분리부(320)로부터 입력되는 펨토초 레이저 광을 출력한다. 이와 같은 구조의 광변환기를 통해 피코초 레이저 광을 특성의 변화없이 펨토초 레이저 광으로 간단하게 변환할 수 있다.
환경적으로 안정적인 단일 편광 이터비움 도핑된 광섬유 모드록 레이저를 생성하기 위한 중요한 요소는 도 1에 도시된 선형 레이저 발생 장치의 개방 공간(즉, 렌즈부(140)를 구성하는 제1렌즈(142)와 제2렌즈(144) 사이의 공간)에 삽입되는 AQWP(150)이다. AQWP(150)는 상이한 복굴절 수정과 MgF2 유리로 만들어진 두 개의 다중 차수 QWP를 가지는 사분 파장판의 특별한 형태이다. 두 개의 QWP가 300 nm 이상의 초광대역 동작 파장을 얻기 위해 하나의 결정의 저속 축이 다른 결정의 고속 축과 평행하게 설치된다.
도 4에는 본 발명에 따른 광섬유 레이저 발생 장치에 구비되는 렌즈부(140)와 편광조절부(150)의 상세한 구성이 도시되어 있다.
도 4를 참조하면, 광섬유부(130)를 통해 전달된 레이저 광은 렌즈부(140)를 구성하는 제1렌즈(142)와 제2렌즈(144)의 광축 상으로 출력된다. 편광조절부(150)를 구성하는 AQWP는 제1렌즈(142)와 제2렌즈(144) 사이의 공간에 광축방향으로 이동가능하게 설치된다. 또한 AQWP(150)는 광축을 중심으로 회전되어 광섬유부(130)를 통해 전달된 레이저 광의 편광을 조절한다.
이하에서는 공진기 내부의 전기장이 편광 조절을 위한 AQWP(150)의 역할을 살펴본다.
도 1의 점 A에서 공진기 내부의 전기장을 나타내는 Jones 벡터를 [Ex, Ey]t라 정의한다. 여기서, Ex(Ey)는 PM 이터비움 도핑된 광섬유의 저속 축을 따라 진동하는 전기장이고, t는 전치(transpose)를 나타낸다. 이때 비색수차 복굴절 위상지연판은 다음의 수학식과 같은 Jones 행렬 Mbr을 갖는다.
Figure 112009078589303-pat00001
여기서, φ(λ)는 전기장의 두 개의 성분에 의해 발생하는 위상 차이이고, λ는 파장이며,
Figure 112009078589303-pat00002
Figure 112009078589303-pat00003
(
Figure 112009078589303-pat00004
Figure 112009078589303-pat00005
)는 각각 결정 수정과 MgF2 위상 지연판의 특수한(extra-ordinary) 빔과 일반적인(ordinary) 빔의 파장 의존적인 굴절율이고, lq(lm)는 결정 수정(MgF2)의 두께이다.
만약 φ(λ)=mπ/2 (m=1,3,5…)이면, 위상 지연판은 AQWP가 되고, 특히 n=1일 때 위상 지연판은 영차 AQWP가 된다.
이제, 반사 거울의 Jones 행렬
Figure 112009078589303-pat00006
을 사용하여 SAM(160)에서 반사되어 AQWP(150)를 통해 공진기 내부의 점 A에서의 전기장의 Jones 벡터를 구한다. PM 이터비움 도핑된 광섬유(134)는 선형 편광자로 작용하여 초기 공진기 내부의 전기장은 [Ex, Ey]t=[1, 0]t인 Jones 벡터를 가지는 것으로 추정한다. 이때, PM 이터비움 도핑된 광섬유(134)의 저속 축을 기준으로 AQWP(150)의 고속 축의 네 개의 특정한 회전각 θ는 다음의 표 1에 기재된 바와 같이 각각 θ=-π/4 rad, θ=0 rad, θ=+π/4 rad, θ=+π/2 rad로 추정한다.
θ (rad) Jones 벡터 편광 상태 -3 dB 대역폭 (nm) 출력 편광
-π/4 [0,-i]t 선형 수직 15 두 개의 수직
0 [-i,0]t 선형 수평 26 단일 선형
+π/4 [0,+i]t 선형 수직 15 두 개의 수직
+π/2 [+i,0]t 선형 수평 26 단일 선형
명백하게, AQWP(150)의 고속 축 각도에 종속적으로 레이저 공진기 내부에 별개의 편광 상태들이 존재한다. θ=±π/4 rad에 대해 AQWP(150)는 사분 파장판과 같이 작용하여 한 바퀴 이동한 후에 점 A에서의 전기장은 Jones 벡터가 [0,
Figure 112009078589303-pat00007
i]t인 선형 수직 편광을 갖는다. 이러한 경우에 이터비움 도핑된 광섬유(134) 내부의 전기장은 점 A로 돌아올 때까지 동일한 편광 상태를 유지하면서 저속 축에 수직한(따라서 고속 축에 평행한) 편광을 가지고 진행한다. 이와 같은 방식에 의해 전체 선형 레이저 공진기를 두 번 일주 후에 레이저 광은 초기 공진기 내부의 전기장을 가진 동일한 선형 편광을 가질 수 있다. 그러므로, AQWP(150)가 QWP로 작용할 때 FBG 출력 커플러(132)를 통해 나오는 레이저 광의 출력 빔은 유효 공진 길이가 두 배로 되기 때문에 절반의 반복율을 가진 두 개의 수직 편광된 출력빔을 가진다. 다른 한편, θ=±π/2 rad에 대해 AQWP(150)는 복굴절 위상지연판과 같이 작용하여 한 바퀴 이동한 후에 점 A에서의 전기장은 PM 이터비움 도핑된 광섬유의 저속 축을 따르는 초기 공진기 내부의 전기장에 평행하게 Jones 벡터 [
Figure 112009078589303-pat00008
i,0]t를 가지고 선형 편광된다. 그러므로, 레이저 공진기 내외부에서 단지 단일 편광 성분만 존재한다.
한편 선형 레이저 공진기에서 AQWP(150)는 모든 정상 분산 구조에서 SAM(160)에 의해 구동되는 모드록킹 상태의 안정화를 위한 광대역 스펙트럼 필터의 역할을 한다. 이때 결정 수정과 MgF2 결정에 대한 셀마이어 방정식을 사용하여 출력 펄스의 스펙트럼 대역폭을 파악할 수 있다. PM 이터비움 도핑된 광섬유(134)의 저속 축에 투영된 공진기 내부의 전기장의 투과율은 주로 공진기 내부의 전기장의 두 개의 수직한 편광 성분에 의해 수학식 1에서 AQWP(150) 내에서 발생하는 위상차 φ(λ)에 의해 지배된다.
도 5에는 두께 d=lq+lm=1.83 mm인 AQWP(150)를 통과하는 공진기 내부의 전기장의 투영된 투과율 T=cos[φ(λ)/2]2이 도시되어 있다. 여기서, lq=0.83 mm이고, lm=1.0 mm이다. 도 5에서 알 수 있듯이, AQWP(150)는 이터비움 도핑된 광섬유(132)의 이득 파장 영역 내에서 34 nm의 대역폭의 투과 곡선을 갖는다. 그리고 이론적으로 AQWP(150)의 두께를 약간 변경함으로써, 투과 중심 파장과 투과율 곡선의 대역폭을 변화시킬 수 있다. 도 6에는 AQWP(150)를 교체하지 않고 두께를 변경시킬 수 있는 원리가 도시되어 있다. 도 6을 참조하면, AQWP(150)의 두께 변경은 제1렌즈(142)와 제2렌즈(144)의 중심을 연결하는 직선에 수직한 평면(610)을 기준으로 AQWP(150)의 각도(φ)를 변경함으로써 달성될 수 있다. 이는 곧 제1렌즈(142) 또는 제2렌즈(144)를 통과한 레이저 광이 AQWP(150)으로 입사되는 입사각(φ)을 변경하여 AQWP(150) 내부를 진행하는 레이저 광의 경로길이를 증가시킴으로써 AQWP(150)의 두께를 변경할 수 있음을 의미한다. 이와 같은 AQWP(150)의 각도 변경을 위해 AQWP(150)는 제1렌즈(142)와 제2렌즈(144)의 중심을 연결하는 직선에 수직한 직선을 회전축으로 하여 회전될 수 있도록 설치된다. 이와 같이 레이저 광의 최대 출력 파장은 AQWP(150)의 두께를 변경시킴으로써 변경되며, 나아가 AQWP(150)을 구성하는 QWP의 물질에 따라서도 변경될 수 있다. 그리고 실험적으로는 AQWP(150)에 대한 공진기 내부의 전기장의 입사각을 변화시킴으로써 동일한 효과를 얻을 수 있다. 따라서 도 5에 도시된 투과 곡선과 1020 nm 근처의 단파장 영역에서 반사율 감소를 고려하면, 도 11에 도시된 출력 스펙트럼의 -3 dB 스펙트럼 대역폭이 정성적으로 설명될 수 있다.
이하에서는 본 발명에 따른 광섬유 레이저 발생 장치의 특성을 살펴보기 위한 실험결과에 대해 기술한다. 먼저, 실험을 통해 펌프 파워 Ppump에 의해 레이저의 자기 시작 모드록킹 특성을 측정했다.
도 7에는 AQWP(150)의 고속 축과 PM 도핑된 광섬유(130)의 저속 축이 평행할 때(즉, θ=0 rad), 펌프 파워에 의존하는 전형적인 출력 파워가 도시되어 있다. 도 7을 참조하면, 펌프 파워가 증가함에 따라 Ppump=80 mW에서 연속파 임계값에 도달하며, Ppump=330 mW(점 A)에서 수동 모드록킹 임계값에 도달한다. 모드록된 상태는 펌프 파워의 이용가능한 최대값 Pmax=440 mW(점 B)까지 유지되며, 모드록된 레이저는 펌프 파워가 최대값으로부터 감소할 때 히스테리시스 특성을 가진다. 그리고 모드록킹 상태는 Ppump=220 mW(점 D)에서 종료된다. 실험에서는 점 C에서 환경적으로 안정적인 모드록된 이터비움 도핑된 광섬유 레이저를 동작시켰다. 이때 레이저의 출력 파워는 펌프 파워 Ppump=380 mW에서 광학 대 광학 변환 효율이 26 %인 100 mW이다.
다음으로, AQWP(150)의 고속 축 각도 θ에 의존하는 출력 빔의 편광 상태를 살펴본다. 도 8에는 레이저 출력 빔의 편광 분석 결과가 도시되어 있다. 측정을 위해 PM 출력 광섬유(130)의 저속 축을 편광 빔 스플리터(Polarization Beam Splitter : SPB)의 축에 정렬시키고, 반파장판(Half-wave Plate : HWP)의 고속 축 각도 β를 회전시켰다. 도 8에 도시된 그래프 중에서 사각형과 삼각형으로 표시된 그래프는 각각 θ=-π/4 rad과 θ=+π/4 rad에서 레이저 공진기로부터 출력되는 레이저 빔의 출력 파워이다. 사각형과 삼각형으로 표시된 그래프들을 살펴보면, θ=-π/4 rad과 θ=+π/4 rad일 때 모두 유사하게 HWP 회전각 β에 덜 의존적이며, 이들은 PBS의 다른 출력단에서 반대의 크기를 가짐을 알 수 있고, 레이저 빔은 두 개의 수직한 편광 성분을 가짐을 확인할 수 있다. θ=±π/4 rad에 대해 AQWP(150)는 영차 QWP와 같은 역할을 하며, 따라서 레이저 진공기 내부에 두 개의 수직한 선형 편광 성분들이 존재하고 이로 인해 레이저 출력 빔에도 두 개의 수직한 선형 편광 성분이 존재한다. 이와 달리 레이저 진공기를 θ=0 rad 또는 θ=π/2 rad에서 동작시키면, 검출된 파워가 HPW의 회전각 β에 강한 의존성을 가지며, 레이저 빔이 선형 편광임을 알 수 있다. 이러한 두 개의 각도에서 100 이상의 편광 소멸비를 가진 거의 동일한 단일 편광 상태가 관찰되었으며, 이는 레이저가 항상 PM 이터비움 도핑된 광섬유(150)의 저속 축을 따라 단일 선형 평광 상태로 진동함을 뒷받침한다.
도 9에는 단일 편광 이터비움 도핑된 광섬유 레이저의 전형적인 간섭 필드 자기 상관 신호가 도시되어 있다. 도 9를 참조하면 자기 상관 신호는 2 ps의 펄스폭을 갖는 쌍곡선 코사인 펄스 형태이다. 필드 자기 상관 신호는 PM FBG 출력 커플러에 결합된 1 m 길이의 PM 광섬유를 전파한 후에 측정되었다.
도 10에는 AQWP의 상이한 네 개의 각도 θ를 가진 레이저 공진기로부터 생성된 레이저 출력 빔에서 관찰된 RF 스펙트럼이 도시되어 있다. 이들은 300 kHz의 해상도 대역폭(Resolution Bandwidth : RBW)를 가진 RF 스펙트럼 분석기에 의해 측정되었다. 또한 RF 스펙트럼은 θ=±π/4 rad를 가진 레이저 공진기로부터 생성된 레이저 빔과 θ=0 rad와 θ=+π/2 rad를 가진 레이저 공진기로부터 생성된 레이저 빔은 상이한 형태를 가진다. θ=0 rad와 θ=+π/2 rad를 가진 단일 편광 레이저 빔에 대응하는 RF 스펙트럼은 쉽게 이해될 수 있다. 이 경우, 레이저 공진기는 단지 단일 편광 성분만을 가지며, 따라서 RF 스펙트럼은 단지 frep=1/τc=117 MHz의 기본 반복율의 하모닉 성분이 나타난다. 이때 τc는 공진기의 왕복 시간이다. 이와 달리 θ=±π/4 rad를 가진 제이저 공진기에 있어서는 두 개의 선형 편광된 공진기 내부의 전기장이 176 cm의 유효 공진 길이를 가지고 동시에 진동하며, 반복율의 절반 하모닉 스펙트럼을 낳게 된다. 다시 말해 선형 편광을 가진 단일 레이저 펄스가 레이저 공진기로부터 출력되고 나서, 정확히 공진기 왕복 시간인 τc=8.5 ns 지연된 펄스가 출력된다. 뒤따르는 펄스는 AQWP에 의한 π/2의 편광 플립으로 인해 앞선 펄스에 대해 수직한 편광을 갖는다. 모드록킹 시점에서 공진기 내부의 전기장은 두 개의 직교하는 편광 성분을 가지고 있기 때문에 레이저 출력 빔에는 항상 수직 편광을 가진 일련의 펄스가 존재한다. 그러므로 AQWP가 영차 QWP와 같은 역할을 할 때 두 개의 수직한 편광 모드들이 편광 혼합될 수 있으며, 이는 반복율의 하모닉에서 향상된 비트 노트들을 이끌어 낸다.
도 11에 도시된 바와 같은 레이저 출력 빔의 광학적 스펙트럼은 AQWP의 네 개의 상이한 각도 θ를 가진 레이저 공진기로부터 생성된다. 각각의 스펙트럼 그림에서 위의 그래프는 로그 스케일이고, 아래의 그래프는 임의의 단위를 가진 선형 스케일이다. θ=0 rad 또는 θ=+π/2 rad를 가진 레이저 공진기로부터 생성된 단일 편광 레이저는 θ=±π/4 rad를 가진 레이저 공진기로부터 생성된 두 개의 직교하는 편광 레이저와 비교할 때 상당히 다른 광학적 스펙트럼을 가진다. 이들 사이의 주요한 차이점은 광학 스펙트럼 형태이다. 두 개의 직교하는 편광 성분을 가진 레이저 빔은 절반전대역(Full Width at Half Maximum : FWHM)에 걸쳐 15 nm의 스펙트럼 대역폭을 가지며, 스펙트럼 파워는 최대값에서 선형적으로 감소한다. 이와 달리 θ=0 rad 또는 θ=+π/2 rad를 가진 단일 편광 레이저는 보다 넓은 26 nm의 대여폭을 가지며, 정상 분산 구조에서 자기 유사 펄스의 특성 스펙트럼 형태인 포물선 형태이다. 1020 nm 근처의 단파장 스펙트럼은 주로 FBG에 의해 필터링되는 반면, 1050 nm 근처의 장파장 스펙트럼은 AQWP에 의해 필터링된다.
마지막으로, 주파수 도메인과 시간 도메인에서 단일 편광 피코초 이터비움 도핑된 광섬유 레이저의 안정성을 살펴본다. 도 12에는 고속 포토 다이오드와 1 GHz 디지털 오실로스코프를 이용하여 얻어진 레이저 출력의 연속하는 펄스가 도시되어 있다. 펄스 간격이 8.52 ns=1/frep인 규칙적인 펄스 열은 매우 낮은 크기의 변동을 가짐이 관찰되었다. 또한 장시간 스케일로 펄스열을 기록함에 의해 Q 스위칭없이 레이저의 연속파 모드록킹이 이루어짐이 확인되었다. 도 13에 도시된 fc=117.356671 MHz의 중심 주파수 근처의 기본 RF 반송파 주파수 높은 해상도의 RF 스펙트럼은 2 Hz의 RBW를 갖는다. 80 dB 이상의 높은 신호 대 잡음비가 관찰되었으며, 해당 잡음 레벨에서 어떠한 부가 피크도 없다. 기본 RF 반송파 주파수의 시간 도메인 안정성은 앨런 편차 σy(τ)를 이용하여 평가될 수 있다. 측정된 앨런 편차는 도 14에 도시된 바와 같이 1초의 평균 시간에서 3.8×10-8이다. 그리고 레이저가 어떠한 능동적인 환경 안정화없이 광 테이블에 놓여 있다 해도 100초의 게이트 시간 동안 앨런 편차가 느리게 증가하여 2×10-7의 값에 도달함을 알 수 있다. 또한 RF 반송파 주파수의 매우 안정적인 특성은 도 15에 도시된 위상 잡음 스펙트럼에서도 명확하게 드러난다. 위상 잡음 스펙트럼 밀도는 10 Hz의 오프셋 주파수에서 -95 dBc/Hz의 매우 낮은 값이며, 주로 백색 주파수 잡음(또는 위상의 무작위 변동)에 의해 백색 위상 잡음이 우세해지는 4 MHz에서 -140 dBc/Hz의 잡음 플로어까지 f-2에 비례하는 기울기로 감소한다.
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.
도 1은 본 발명에 따른 광섬유 레이저 발생 장치의 상세한 구조를 도시한 도면,
도 2는 본 발명에 따른 광섬유 레이저 발생 장치에 결합되는 광증폭기의 상세한 구성을 도시한 도면,
도 3은 본 발명에 따른 광섬유 레이저 발생 장치 또는 광증폭기에 결합되는 광변환기의 상세한 구성을 도시한 도면,
도 4는 본 발명에 따른 광섬유 레이저 발생 장치의 렌즈부와 편광조절부의 상세한 구조를 도시한 도면,
도 5는 두께 d=lq+lm=1.83 mm인 AQWP를 통과하는 공진기 내부의 전기장의 투영된 투과율을 도시한 그래프,
도 6은 본 발명에 따른 광섬유 레이저 발생 장치의 편광조절부의 회전상태를 도시한 도면,
도 7은 AQWP의 고속 축과 PM 도핑된 광섬유의 저속 축이 평행할 때(즉, θ=0 rad) 펌프 파워에 의존하는 전형적인 출력 파워를 도시한 도면,
도 8은 레이저 출력 빔의 편광 분석 결과를 도시한 그래프,
도 9는 단일 편광 이터비움 도핑된 광섬유 레이저의 전형적인 간섭 필드 자기 상관 신호를 도시한 도면,
도 10은 AQWP의 상이한 네 개의 각도를 가진 레이저 공진기로부터 생성된 레 이저 출력 빔에서 관찰된 RF 스펙트럼을 도시한 도면,
도 11은 AQWP의 상이한 네 개의 각도를 가진 레이저 공진기로부터 생성된 레이저 출력 빔의 광학적 스펙트럼을 도시한 도면,
도 12는 고속 포토 다이오드와 1 GHz 디지털 오실로스코프를 이용하여 얻어진 레이저 출력의 연속하는 펄스를 도시한 도면,
도 13은 fc=117.356671 MHz의 중심 주파수에서 진동하는 기본 RF 반송파 주파수의 고해상도 스펙트럼을 도시한 도면,
도 14는 fc=117.356671 MHz의 중심 주파수에서 진동하는 기본 RF 반송파 주파수의 앨런 편차를 도시한 도면, 그리고,
도 15는 fc=117.356671 MHz의 중심 주파수에서 진동하는 기본 RF 반송파 주파수의 평균 위상 잡음 스펙트럼 밀도를 도시한 도면이다.

Claims (13)

  1. 사전에 설정된 파장을 갖는 펌프 레이저를 생성하는 제1펌프 레이저 발생부;
    광섬유의 일단부로부터 타단부 방향으로 제1영역에는 브래그 격자가 형성되어 있고, 상기 광섬유의 나머지 제2영역에는 코어에 이득물질이 도핑되어 있는 광섬유부;
    상기 펌프 레이저 발생부로부터 상기 펌프 레이저를 입력받아 상기 광섬유부의 일단부로 제공하고, 상기 광섬유부로부터 입력되는 모드록된 레이저 광을 출력하는 제1광결합부;
    상기 광섬유부의 타단부로부터 출력되는 광의 경로를 변경하여 평행광을 생성하는 제1렌즈와 상기 제1렌즈를 통과한 평행광의 경로를 변경하여 일정한 영역에 집중시키는 제2렌즈를 포함하는 렌즈부;
    각각의 고속 축이 서로 직교하도록 적층된 두 개의 사분 파장 결정판으로 이루어진 비색수차 사분 파장판이 상기 제1렌즈와 상기 제2렌즈 사이에 배치되며, 상기 광섬유부의 고속 축 또는 저속 축에 대해 각도조절되어 상기 레이저 광의 편광조절과 스펙트럼 필터링 대역폭을 제어하는 편광조절부; 및
    상기 제2렌즈를 통과한 광을 포화흡수하여 반사시키는 포화흡수부;를 포함하는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  2. 제 1항에 있어서,
    상기 이득물질은 이터비움, 에르비움 및 이터비움과 에르비움의 혼합물 중에서 선택되는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  3. 제 1항 또는 제 2항에 있어서,
    상기 광섬유부를 구성하는 광섬유는 단일 모드 편광 유지 광섬유인 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  4. 제 1항 또는 제 2항에 있어서,
    상기 편광조절부는 상기 제1렌즈의 중심과 상기 제2렌즈의 중심을 연결하는 직선에 수직인 평면에 대해 각도조절되는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  5. 제 1항 또는 제 2항에 있어서,
    상기 편광조절부는 상기 제1렌즈로부터 상기 제2렌즈에 이르는 광 경로를 회전축으로 하여 회전되어 상기 제1렌즈로부터 입사되거나 상기 제2렌즈로부터 입사된 광의 편광을 조절하는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  6. 제 1항 또는 제 2항에 있어서,
    상기 편광조절부는 상기 광섬유부를 구성하는 광섬유의 저속축을 기준으로 상기 비색수차 사분 파장판의 고속축으로 각도를 변경함으로써 상기 제1렌즈로부터 입사되거나 상기 제2렌즈로부터 입사된 광의 편광을 조절하는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  7. 제 1항 또는 제 2항에 있어서,
    상기 광섬유부의 제1영역에 형성되는 브래그 격자는 양의 첩(Chirp)되어 있는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  8. 제 1항 또는 제 2항에 있어서,
    상기 포화흡수부는 반공명 다중 양자 우물 구조를 가진 반도체 포화 흡수 거울인 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  9. 제 1항 또는 제 2항에 있어서,
    상기 포화흡수부는 단일벽 탄소나노튜브 또는 나노 다이아몬드 파우더로 코팅된 포화 흡수 반사 거울인 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  10. 제 1항 또는 제 2항에 있어서,
    상기 포화흡수부는 압전 변환 소자 상에 부착되어 공진 길이가 미세 조절되는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  11. 제 1항에 있어서,
    상기 레이저 광의 세기를 증폭하는 광증폭기를 더 포함하며,
    상기 광증폭기는,
    상기 제1광결합부가 광학적으로 결합되며, 상기 제1광결합부로부터 출력되는 레이저 광이 입력되는 제1광입력부;
    코어에 이득물질이 도핑된 광섬유로 구성되어 상기 제1광입력부로부터 입력된 레이저 광을 증폭하는 광증폭부;
    사전에 설정된 파장의 증폭용 펌프 레이저를 생성하여 출력하는 제2펌프 레이저 발생부; 및
    상기 제2펌프 레이저 발생부로부터 입력되는 상기 증폭용 펌프 레이저를 상기 광증폭부로 제공하고, 상기 광증폭부로부터 입력된 레이저 광을 출력하는 제2광결합부;를 포함하는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  12. 제 11항에 있어서,
    상기 광증폭부를 구성하늑 광섬유의 코어에 도핑되는 이득 물질은 이터비움, 에르비움 및 이터비움과 에르비움의 혼합물 중에서 선택되는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
  13. 제 1항 또는 제 11항에 있어서,
    상기 레이저 광의 펄스폭을 변경하는 광변환기를 더 포함하며,
    상기 광변환기는,
    상기 레이저 광이 입력되는 제2광입력부;
    두 개의 브래그 격자로 구성되어 상기 제2광입력부로 입력되는 레이저 광의 펄스폭을 변환하는 광변환부;
    상기 제2광입력부를 통해 입력되는 레이저 광을 상기 광변환부로 제공하고, 상기 광변환부로부터 입력된 레이저 광을 출력하는 광분리부; 및
    상기 광변환부로부터 출력되는 레이저 광을 전반사하는 광반사부;를 포함하는 것을 특징으로 하는 광섬유 모드록 레이저 발생 장치.
KR1020090127134A 2009-10-19 2009-12-18 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치 KR101027321B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10837873A EP2515393A2 (en) 2009-12-18 2010-12-15 Environmentally stabilised optical-fibre mode-locked laser generating device having an achromatic quarter wave plate
PCT/KR2010/008987 WO2011074877A2 (ko) 2009-12-18 2010-12-15 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치
US13/516,949 US8908721B2 (en) 2009-12-18 2010-12-15 Environmentally stable optical fiber mode-locked laser generating device having an achromatic quarter wave plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090099235 2009-10-19
KR1020090099235 2009-10-19

Publications (1)

Publication Number Publication Date
KR101027321B1 true KR101027321B1 (ko) 2011-04-08

Family

ID=44049674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090127134A KR101027321B1 (ko) 2009-10-19 2009-12-18 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치

Country Status (1)

Country Link
KR (1) KR101027321B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165878A2 (ko) * 2011-06-03 2012-12-06 고려대학교 산학협력단 에너지 조절이 가능한 단일 편광 단일 펄스 모드 잠금 레이저 발생 장치
KR101296284B1 (ko) 2012-01-12 2013-08-20 한국과학기술원 포화흡수체 커넥터 간의 거리 조절을 통해 다양한 펄스파를 발생시키는 장치
KR101356386B1 (ko) 2012-04-09 2014-02-05 한국과학기술원 파이버 타입 펨토초 레이저의 펄스 안정화 장치 및 그 방법
KR102363400B1 (ko) * 2021-08-11 2022-02-15 국방과학연구소 양자 광-마이크로파 상호 변환 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333544A (ja) * 1994-06-07 1995-12-22 Dainippon Screen Mfg Co Ltd 光偏向器
KR20040071054A (ko) * 2002-01-17 2004-08-11 소니 가부시끼 가이샤 광학픽업
KR20070062194A (ko) * 2005-12-12 2007-06-15 한국전자통신연구원 중적외선 파장대 완전 광섬유 레이저 소자
JP2008172166A (ja) 2007-01-15 2008-07-24 Sumitomo Electric Ind Ltd ノイズライクレーザ光源および広帯域光源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333544A (ja) * 1994-06-07 1995-12-22 Dainippon Screen Mfg Co Ltd 光偏向器
KR20040071054A (ko) * 2002-01-17 2004-08-11 소니 가부시끼 가이샤 광학픽업
KR20070062194A (ko) * 2005-12-12 2007-06-15 한국전자통신연구원 중적외선 파장대 완전 광섬유 레이저 소자
JP2008172166A (ja) 2007-01-15 2008-07-24 Sumitomo Electric Ind Ltd ノイズライクレーザ光源および広帯域光源

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012165878A2 (ko) * 2011-06-03 2012-12-06 고려대학교 산학협력단 에너지 조절이 가능한 단일 편광 단일 펄스 모드 잠금 레이저 발생 장치
KR101216013B1 (ko) 2011-06-03 2012-12-27 고려대학교 산학협력단 에너지 조절이 가능한 단일 편광 단일 펄스 모드 잠금 레이저 발생 장치
WO2012165878A3 (ko) * 2011-06-03 2013-02-07 고려대학교 산학협력단 에너지 조절이 가능한 단일 편광 단일 펄스 모드 잠금 레이저 발생 장치
US8817829B2 (en) 2011-06-03 2014-08-26 Korea University Research And Business Foundation Apparatus for generating single-polarization mode-locked laser capable of energy control
KR101296284B1 (ko) 2012-01-12 2013-08-20 한국과학기술원 포화흡수체 커넥터 간의 거리 조절을 통해 다양한 펄스파를 발생시키는 장치
US8817364B2 (en) 2012-01-12 2014-08-26 Korea Advanced Institute Of Science And Technology Device which produces various types of pulses by controlling the distance between the saturable absorber connectors
KR101356386B1 (ko) 2012-04-09 2014-02-05 한국과학기술원 파이버 타입 펨토초 레이저의 펄스 안정화 장치 및 그 방법
KR102363400B1 (ko) * 2021-08-11 2022-02-15 국방과학연구소 양자 광-마이크로파 상호 변환 장치

Similar Documents

Publication Publication Date Title
JP3781206B2 (ja) モードロックレーザー装置
US8908721B2 (en) Environmentally stable optical fiber mode-locked laser generating device having an achromatic quarter wave plate
JP3803979B2 (ja) 環境変化に対して安定な受動型モードロック・レーザー
US7190705B2 (en) Pulsed laser sources
US8130802B2 (en) Tunable laser
US20140300951A1 (en) Directly driven source of multi-gigahertz, sub-picosecond optical pulses
KR20060064531A (ko) 마이크로 단위의 비선형 편광 펄스 고정 모드 섬유 레이저
CN107024816B (zh) 高阶色散补偿啁啾光谱展宽系统
GB2395353A (en) Pulsed coherent light sources
WO2005086299A1 (ja) 希土類添加ファイバを使用する光ファイバレーザ及び広帯域光源
JP2006332666A (ja) 全ファイバをベースにした1ミクロンにおける短パルス増幅
KR101027321B1 (ko) 비색수차 사분 파장판을 가진 환경적으로 안정된 광섬유 모드록 레이저 발생 장치
KR101394720B1 (ko) 비선형 편광 회전과 포화흡수체의 결합 모드잠금에 의해 생성되는 고출력 광섬유 펨토초 레이저 공진기
JP2006165563A (ja) 1ミクロンにおける非線形偏光パルス整形モード同期ファイバレーザ
US8817829B2 (en) Apparatus for generating single-polarization mode-locked laser capable of energy control
Jang et al. Environmentally-stable all-normal-dispersion picosecond Yb-doped fiber laser with an achromatic quarter-wave-plate
Kang et al. Characterization of wavelength-tunable single-frequency fiber laser employing acoustooptic tunable filter
Fang et al. 978 nm Single Frequency Actively $ Q $-Switched All Fiber Laser
TW201228161A (en) Mode locked fiber laser system
Guo et al. 27nJ, 114fs pulses from an environmentally stable all-normal all-PM Yb-doped fiber laser mode-locked with a nonlinear amplifying loop mirror
WO2019053487A1 (en) LASER OR STABILIZED OPTICAL AMPLIFIER AND METHOD OF STABILIZATION
Chen et al. Single-frequency linearly-polarization Q-switched nanosecond fiber ring-cavity laser enabled by an electro-optic modulator
KR20150002050A (ko) 모드 잠금된 광섬유 레이저의 잡음 최소화를 위한 방법 및 장치
Wang et al. Environmentally stable pulse energy-tunable picosecond fiber laser
KR20140049994A (ko) 비선형 편광 회전과 포화흡수체의 결합 모드잠금에 의해 생성되는 고출력 광섬유 펨토초 레이저 공진기

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160401

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee