KR100995451B1 - Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure - Google Patents

Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure Download PDF

Info

Publication number
KR100995451B1
KR100995451B1 KR1020030044799A KR20030044799A KR100995451B1 KR 100995451 B1 KR100995451 B1 KR 100995451B1 KR 1020030044799 A KR1020030044799 A KR 1020030044799A KR 20030044799 A KR20030044799 A KR 20030044799A KR 100995451 B1 KR100995451 B1 KR 100995451B1
Authority
KR
South Korea
Prior art keywords
titanium
thin film
zirconium
organic
film transistor
Prior art date
Application number
KR1020030044799A
Other languages
Korean (ko)
Other versions
KR20050004565A (en
Inventor
이상윤
박종진
류이열
변영훈
구본원
강인남
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030044799A priority Critical patent/KR100995451B1/en
Priority to US10/769,816 priority patent/US7005674B2/en
Priority to EP04253979A priority patent/EP1494298A3/en
Priority to CNA2004100621484A priority patent/CN1577912A/en
Priority to JP2004197515A priority patent/JP5054885B2/en
Publication of KR20050004565A publication Critical patent/KR20050004565A/en
Application granted granted Critical
Publication of KR100995451B1 publication Critical patent/KR100995451B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/474Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/478Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising a layer of composite material comprising interpenetrating or embedded materials, e.g. TiO2 particles in a polymer matrix
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 유기 박막 트랜지스터에 관한 것으로, 보다 상세하게는 기판 위의 게이트 전극, 게이트 절연층, 유기 활성층, 소스/드레인 전극 또는 게이트 전극, 게이트 절연층, 소스/드레인 전극, 유기 활성층이 차례로 형성된 유기 박막 트랜지스터에 있어서, 게이트 절연층이 ⅰ) 고유전율 재료의 제1 절연층과 ⅱ) 유기 활성층과 친화적인 절연성 유기 고분자의 제2 절연층을 포함하며, 제2 절연층이 유기 활성층 바로 아래에 존재하도록 구성되어 있는 다층 구조의 절연막인 것을 특징으로 하는 박막 트랜지스터에 관한 것이다. The present invention relates to an organic thin film transistor, and more particularly, to an organic substrate in which a gate electrode, a gate insulating layer, an organic active layer, a source / drain electrode or a gate electrode, a gate insulating layer, a source / drain electrode, and an organic active layer on a substrate are sequentially formed. In a thin film transistor, the gate insulating layer comprises i) a first insulating layer of a high dielectric constant material and ii) a second insulating layer of an insulating organic polymer friendly with the organic active layer, the second insulating layer being directly under the organic active layer. It relates to a thin film transistor characterized in that the insulating film of a multi-layer structure is configured to.

본 발명에 따르는 유기 박막 트랜지스터는 문턱전압 및 구동전압이 낮고, 전하 이동도 및 Ion/Ioff가 높고, 유기 반도체 층의 형성을 용이하게 할 수 있을 뿐만 아니라, 절연막 제조를 습식 공정으로 달성될 수 있어서 공정 단순화 및 비용 절감 효과를 도모할 수 있다.The organic thin film transistor according to the invention has a low threshold voltage and driving voltage, the charge transfer a high degree, and I on / I off, not only can facilitate the formation of the organic semiconductor layer, is achieved the insulating film prepared by the wet process, This can simplify the process and reduce the cost.

유기 박막 트랜지스터, 유기 반도체, 고유전상수, 다층 구조 절연막, 습식 공정Organic thin film transistor, organic semiconductor, high dielectric constant, multilayer structure insulating film, wet process

Description

다층 구조의 게이트 절연막을 포함하는 유기 박막 트랜지스터 {Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure}Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure}

도 1은 본 발명의 한 바람직한 구현예에 따르는 유기 박막 트랜지스터(이하, OTFT라고도 함)의 단면을 개략적으로 나타낸 모식도이다.1 is a schematic diagram schematically showing a cross section of an organic thin film transistor (hereinafter also referred to as OTFT) according to a preferred embodiment of the present invention.

도 2는 실시예 1, 실시예 3 및 비교예 1로부터 수득한 OTFT의 부가 전압의 변화에 따른 누설 전류 변화를 나타낸 그래프이다.2 is a graph showing changes in leakage current according to changes in the added voltage of the OTFT obtained from Example 1, Example 3, and Comparative Example 1. FIG.

도 3은 실시예 1 및 비교예 1로부터 수득한 OTFT의 전류 전달 특성 곡선이다.3 is a current transfer characteristic curve of the OTFT obtained from Example 1 and Comparative Example 1.

도 4는 실시예 1 및 비교예 1에 따르는 OTFT의 문턱전압 변화를 나타내는 전류 전달 특성 곡선이다.4 is a current transfer characteristic curve showing a change in the threshold voltage of the OTFT according to Example 1 and Comparative Example 1.

*도면의 주요 부호에 대한 설명** Description of Major Symbols in Drawings *

1 : 기판 2 : 게이트 절연막의 제1 절연층1 substrate 2 first insulating layer of gate insulating film

3 : 게이트 절연막의 제2 절연층 4 : 유기 반도체 층3: second insulating layer of gate insulating film 4: organic semiconductor layer

5 : 게이트 전극 6 및 7 : 소스 및 드레인 전극5 gate electrode 6 and 7 source and drain electrode

본 발명은 유기 박막 트랜지스터에 관한 것으로, 보다 상세하게는 기판 위의 게이트 전극, 게이트 절연층, 유기 활성층, 소스/드레인 전극 또는 게이트 전극, 게이트 절연층, 소스/드레인 전극, 유기 활성층이 차례로 형성된 유기 박막 트랜지스터에 있어서, 게이트 절연층이 ⅰ) 고유전율 재료의 제1 절연층과 ⅱ) 유기 활성층과 친화적인 절연성 유기 고분자의 제2 절연층을 포함하며, 제2 절연층이 유기 활성층 바로 아래에 존재하도록 구성되어 있는 다층 구조의 절연막인 것을 특징으로 하는 박막 트랜지스터에 관한 것이다.The present invention relates to an organic thin film transistor, and more particularly, to an organic substrate in which a gate electrode, a gate insulating layer, an organic active layer, a source / drain electrode or a gate electrode, a gate insulating layer, a source / drain electrode, and an organic active layer on a substrate are sequentially formed. In a thin film transistor, the gate insulating layer comprises i) a first insulating layer of a high dielectric constant material and ii) a second insulating layer of an insulating organic polymer friendly with the organic active layer, the second insulating layer being directly under the organic active layer. It relates to a thin film transistor characterized in that the insulating film of a multi-layer structure is configured to.

현재 디스플레이에 많이 이용되고 있는 박막 트랜지스터(Thin Film Transistor)는 대부분 비정질 실리콘 반도체, 산화실리콘 절연막 및 금속 전극으로 이루어져 있으나, 최근 다양한 전도성 유기재료가 개발됨에 따라, 유기 반도체를 이용한 유기 박막 트랜지스터(OTFT)를 개발하고자 하는 연구가 전 세계적으로 활발히 진행되고 있다. 1980년대 처음 개발된 OTFT는 유연성, 가공 및 제조시 편의성 등의 장점을 가지고 있어서, 현재 LCD와 같은 매트릭스 디스플레이 장치 등에 이용되고 있다. 새로운 전자재료인 유기 반도체는 고분자의 합성방법이 다양하고, 섬유나 필름 형태로의 성형이 용이하며, 유연하고, 생산비가 저렴하기 때문에, 기능성 전자 소자 및 광 소자 등으로 그 응용이 확대되고 있는 바, 비정질 Si 대신 전도성 고분자로 이루어진 유기 활성층을 트랜지스터 내의 유기 반도체로서 사용하는 OTFT는, 실리콘 트랜지스터와 비교할 때, 플라즈마를 이용한 화학증착(CVD)이 아닌 상압의 프린팅 공정에 의한 반도체 층의 형성이 가능하고, 필요에 따라서는 전체 제조공정이 플라스틱 기판을 이용한 연속 공정(Roll to Roll)에 의해 달성될 수 있어서 저가의 트랜지스터를 구현할 수 있는 큰 장점이 있다. Thin film transistors, which are widely used in displays, are mostly composed of amorphous silicon semiconductors, silicon oxide insulating films, and metal electrodes. However, as various conductive organic materials are recently developed, organic thin film transistors (OTFTs) using organic semiconductors are used. There is an active research around the world to develop the system. OTFT, first developed in the 1980s, has advantages such as flexibility, processing and manufacturing convenience, and is currently used in matrix display devices such as LCDs. Organic semiconductors, a new electronic material, have various methods of synthesizing polymers, are easily formed into fibers or films, are flexible, and their production costs are low. Therefore, their application is expanding to functional electronic devices and optical devices. OTFT, which uses an organic active layer made of a conductive polymer instead of amorphous Si as an organic semiconductor in a transistor, can form a semiconductor layer by an atmospheric pressure printing process rather than a chemical vapor deposition (CVD) using plasma. If necessary, the entire manufacturing process can be achieved by a continuous process using a plastic substrate (Roll to Roll), there is a great advantage to implement a low-cost transistor.

그러나, OTFT는 비정질 실리콘 TFT와 비교할 때, 전하 이동도가 낮고, 구동전압 및 문턱전압(Threshold Voltage)이 매우 높은 문제점이 있다. 엔. 잭슨(N. Jackson) 등은 펜타센(Pentacene)을 이용하여 0.6cm2·V-1·sec-1의 전하 이동도를 달성함으로써 유기 TFT의 실용화 가능성을 높였으나(참고: 54th Annual Device Research Conference Digest 1996), 이러한 경우에도 전하 이동도는 여전히 만족스럽지 않을 뿐만 아니라, 100V 이상의 구동전압 및 비정질 실리콘 TFT의 50배 이상에 해당하는 부문턱전압(sub-threshold)이 필요한 문제점이 있다. 한편, 미국 특허 제5,981,970호 및 문헌[참고: Science (Vol. 283, pp822-824)]에는 고유전율(High-k) 절연막을 사용하여 구동전압 및 문턱전압을 낮춘 OTFT가 개시되어 있는 바, 이러한 경우, 게이트 절연막은 BaxSr1-xTiO3 (BST; Barium Strontium Titanate), Ta2O5, Y2O3, TiO2과 같은 무기 금속 산화물 또는 PbZrxTi1-xO3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(Ta1-xNbx)2O9, Ba(Zr1-xTix)O3(BZT), BaTiO3, SrTiO3, Bi4Ti3O12 등의 강유전성 절연체로 이루어져 있으며, 화학증착, 물리증착, 스퍼터링, 졸-겔 코팅 방법에 의해 제조되고, 유전율이 15 이상이다. 위의 특허문헌에 따르는 OTFT는 구동전압을 -5V까지 낮출 수 있었으나, 달성 가능한 전하 이동도는 0.6cm2·V-1·sec-1 이하로 여전히 만족스럽지 않을 뿐만 아니라, 대부분의 제조 공정이 200 내지 400oC의 고온을 요구하므로, 다양한 소재의 기판을 사용할 수 없고, 소자 제작시 단순 코팅 또는 프린팅 등의 통상적인 습식 공정을 사용하기 어려운 문제가 있다. 한편, 미국 특허 제6,232,157호에는 유기 절연막으로서 폴리이미드, 벤조사이클로부텐(benzocyclobutene), 또는 폴리아크릴 등을 사용한 예가 개시되어 있으나, 무기 절연막을 대체할 정도의 소자 특성은 나타내지 못하고 있다.However, OTFT has a problem of low charge mobility and very high driving voltage and threshold voltage as compared with amorphous silicon TFTs. yen. Jackson et al. Increased the possibility of practical use of organic TFTs by using a pentacene to achieve charge mobility of 0.6 cm 2 · V −1 · sec −1 (see 54 th Annual Device Research). Conference Digest 1996), even in this case, the charge mobility is still not satisfactory, and there is a problem in that a driving voltage of 100V or more and a sub-threshold corresponding to 50 times or more of the amorphous silicon TFT are required. Meanwhile, U.S. Patent No. 5,981,970 and Document (Science (Vol. 283, pp822-824)) disclose an OTFT using a high-k insulating film to lower driving voltage and threshold voltage. In this case, the gate insulating layer may be an inorganic metal oxide such as Ba x Sr 1-x TiO 3 ( BST; Barium Strontium Titanate), Ta 2 O 5 , Y 2 O 3 , TiO 2 , or PbZr x Ti 1-x O 3 (PZT) , Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (Ta 1-x Nb x ) 2 O 9 , Ba (Zr 1-x Ti x ) O 3 (BZT), BaTiO 3 , SrTiO 3 , Bi 4 Ti 3 O 12 consists of a ferroelectric insulator such as, chemical vapor deposition, physical vapor deposition, sputtering, sol-gel is prepared by a coating method, a dielectric constant of 15 or more. The OTFT according to the above patent document was able to lower the driving voltage to -5V, but the attainable charge mobility is still not satisfactory below 0.6 cm 2 · V −1 · sec −1 , and most manufacturing processes are 200 Since it requires a high temperature of 400 ° C., it is difficult to use a substrate of a variety of materials, there is a problem that it is difficult to use a conventional wet process such as simple coating or printing when manufacturing the device. On the other hand, US Patent No. 6,232,157 discloses an example in which polyimide, benzocyclobutene, polyacrylic, or the like is used as the organic insulating film, but device characteristics that replace the inorganic insulating film are not shown.

박막 전자 소자의 성능 향상을 위해, 두 가지 이상의 다층 게이트 절연막을 사용하려는 시도도 있어 왔는데, 미국 특허 제6,563,174호에는 비정질 질화실리콘(silicon nitride) 및 산화규소(silicon oxide)로 이루어진 다층의 게이트 절연막이 개시되어 있는 한편, 미국 특허 제6,558,987호에는 동일 물질을 사용한 이중 절연막이 개시되어 있으며, 이에 의해 전기 절연성을 높이고, 반도체 층의 막질(crystalline quality)을 향상시켰다고 보고하고 있다. 그러나, 이들 특허문헌은 모두 비정질 실리콘계나 단결정 실리콘을 이용한 무기 TFT의 경우에 국한되어 개발되었으며, 모두 무기 재료를 사용하고 있어서 유기 반도체에 적용하기가 곤란한 문제가 있다.In order to improve the performance of thin film electronic devices, there have been attempts to use two or more multilayer gate insulating films. US Pat. No. 6,563,174 discloses a multilayer gate insulating film made of amorphous silicon nitride and silicon oxide. On the other hand, U.S. Patent No. 6,558,987 discloses a double insulating film using the same material, thereby increasing the electrical insulation and improving the crystalline quality of the semiconductor layer. However, all of these patent documents have been developed in the case of inorganic TFTs using amorphous silicon-based or single-crystal silicon, and all of them use an inorganic material, which makes it difficult to apply to organic semiconductors.

최근, 액정 표시소자(LCD) 뿐만 아니라 유기 EL을 이용한 플렉시블 디스플레이(flexible display)의 구동소자에 이르기까지 다양한 소자에서 OTFT를 이용하려는 시도가 이루어지고 있는데, 이를 위해서는 OTFT의 전하 이동도가 5cm2·V-1·sec-1 이상이어야 하고, 구동전압 및 문턱전압이 낮아야 하며, 절연막의 절연특성도 좋아야 한다. 특히, 공정의 단순화 및 비용 절감을 위해, 이의 제조가 플라스틱 기판상의 올-프린팅(all-printing)이나 올-스핀 온(all-spin on) 방식에 의해 이루어질 것이 요구되고 있다. 이러한 필요성 때문에 유기 게이트 절연막을 간단한 공정으로 수행할 수 있으며, 그 위의 유기 활성층과 계면에서 전하 이동도를 높일 수 있는 방법에 대한 연구가 활발히 수행되고 있으나, 만족할 만한 대안은 없는 상태이다.Recently, there is an attempt to use the OTFT in the various elements up to the drive element of a liquid crystal display (LCD) flexible displays (flexible display) using an organic EL as well as being made, the charge transfer OTFT FIG 5cm To do this, 2, V -1 · sec -1 or more, the driving voltage and the threshold voltage must be low, and the insulation characteristics of the insulating film must be good. In particular, for the sake of simplicity and cost reduction, it is required that its manufacture be done by all-printing or all-spin on methods on plastic substrates. Due to such a necessity, the organic gate insulating film can be performed by a simple process, and research on a method of increasing charge mobility at the interface with the organic active layer thereon has been actively conducted, but there is no satisfactory alternative.

따라서, 당해 기술분야에는 높은 전하 이동도를 보장할 뿐만 아니라, 전기 절연성이 우수하며, 구동전압 및 문턱전압도 낮고, 절연막의 제조가 모두 통상적인 습식 공정에 의해 달성될 수 있는 새로운 구조의 OTFT의 개발이 절실히 요구되고 있다.Therefore, in the art, not only ensure high charge mobility, but also have excellent electrical insulation, low driving voltage and threshold voltage, and the manufacture of the insulating film can all be accomplished by the conventional wet process. Development is urgently needed.

본 발명자들은 상기 과제를 해결하고자 예의 연구한 결과, OTFT에 있어서 ⅰ) 고유전율(High-k) 재료의 제1 절연층 및 ⅱ) 유기 활성층 바로 아래에 위치하고 유기 활성층과 친화적인(compatible) 절연성 유기 고분자의 제2 절연층을 포함하는 다층 구조의 게이트 절연막을 사용할 경우, 높은 수준의 전하 이동도를 유지하면서도 문턱전압과 구동전압이 낮으며, 이의 제조가 프린팅 또는 스핀 코팅 등의 습식 공정에 의해 완성될 수 있는 OTFT를 수득할 수 있음을 확인하고 본 발명에 이르게 되었다.The present inventors have diligently studied to solve the above problems, and as a result, in the OTFT, i) a first insulating layer made of a high-k material and ii) an organic insulating layer which is located directly under the organic active layer When using a multi-layered gate insulating film including a second insulating layer of a polymer, the threshold voltage and the driving voltage are low while maintaining a high level of charge mobility, and the preparation thereof is completed by a wet process such as printing or spin coating. It has been found that OTFTs can be obtained which leads to the present invention.

결국, 본 발명은 낮은 문턱전압 및 구동 전압을 가지며, 유기 활성층과의 전하 이동도가 높고, 이의 제조 또한 용이한 유기 박막 트랜지스터를 제공하고자 하는 것이다.As a result, the present invention is to provide an organic thin film transistor having a low threshold voltage and a driving voltage, high charge mobility with an organic active layer, and easy to manufacture thereof.

위와 같은 목적을 달성하기 위한 본 발명의 한 측면은, 기판 위의 게이트 전극, 게이트 절연층, 유기 활성층, 소스/드레인 전극 또는 게이트 전극, 게이트 절연층, 소스/드레인 전극, 유기 활성층이 차례로 형성된 유기 박막 트랜지스터에 있어서, 게이트 절연층이 ⅰ) 고유전율 재료의 제1 절연층과 ⅱ) 유기 활성층과 친화적인(compatible) 절연성 유기 고분자의 제2 절연층을 포함하며, 제2 절연층이 유기 활성층 바로 아래에 존재하도록 구성되어 있는 다층 구조의 절연막인 것을 특징으로 하는 박막 트랜지스터에 관한 것이다.One aspect of the present invention for achieving the above object is an organic, in which a gate electrode, a gate insulating layer, an organic active layer, a source / drain electrode or a gate electrode, a gate insulating layer, a source / drain electrode, an organic active layer formed on the substrate in order In a thin film transistor, the gate insulating layer comprises: i) a first insulating layer of a high dielectric constant material; and ii) a second insulating layer of an insulating organic polymer compatible with the organic active layer, the second insulating layer being just an organic active layer. A thin film transistor characterized in that it is an insulating film of a multilayer structure which is comprised so that it may exist below.

이하에서 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따르는 OTFT는 a) 표면 위에 게이트 전극이 위치할 기판; b) 게이트 전극; c) 게이트 전극 위에 위치하며 이를 오버랩핑(overlapping)할 게이트 절연층으로서, ⅰ) 고유전율 재료로 이루어진 제1 절연층 및 ⅱ) 유기 활성층 바로 아래에 존재하며, 유기 활성층과 친화적인 절연성 유기 고분자로 이루어진 제2 절연층을 포함하는 다층 구조를 가진 게이트 절연막; d) 게이트 절연막 위에 형성된 유기 활성층으로 이루어진 유기 반도체 층; 및 e) 소스/드레인 전극을 포함한다. 이때, 유기 활성층과 소스/드레인 전극은 적층 순서가 바뀔 수 있다.An OTFT according to the present invention comprises: a) a substrate on which a gate electrode is to be located; b) a gate electrode; c) a gate insulating layer over and overlapping the gate electrode, i) a first insulating layer made of a high dielectric constant material and ii) an insulating organic polymer which is directly underneath the organic active layer and which is friendly with the organic active layer. A gate insulating film having a multilayer structure including a second insulating layer formed thereon; d) an organic semiconductor layer comprising an organic active layer formed over the gate insulating film; And e) source / drain electrodes. In this case, the stacking order of the organic active layer and the source / drain electrodes may be changed.

삭제delete

본 발명의 한 바람직한 구현예에 따르는 OTFT의 모식적 단면 구조를 도 1에 나타내었다. 도 1은 2층으로 이루어진 게이트 절연막을 도시하고 있으나, 당해 도면은 하나의 바람직한 구현예이며, 본 발명의 목적을 저해하지 않는 범위 내에서 게이트 절연막이 2층 이상의 구조를 가질 수 있다. 당해 도 1에서, 1은 기판을, 2는 게이트 절연막의 제1 절연층을, 3은 게이트 절연막의 제2 절연층을, 4는 유기 활성층(즉, 유기 반도체 층)을, 5는 게이트 전극을, 그리고 6 및 7은 각각 소스 및 드레인 전극을 나타낸다. 제1 절연층과 제2 절연층의 두께를 조절하면 게이트 절연막의 총 유효 유전율을 조절할 수 있다.A schematic cross-sectional structure of an OTFT in accordance with one preferred embodiment of the present invention is shown in FIG. 1. Although FIG. 1 shows a gate insulating film composed of two layers, the figure is one preferred embodiment, and the gate insulating film may have a structure of two or more layers within a range that does not impair the object of the present invention. 1, 1 denotes a substrate, 2 denotes a first insulating layer of a gate insulating film, 3 denotes a second insulating layer of a gate insulating film, 4 denotes an organic active layer (ie, an organic semiconductor layer), and 5 denotes a gate electrode. And 6 and 7 represent source and drain electrodes, respectively. By controlling the thickness of the first insulating layer and the second insulating layer, the total effective dielectric constant of the gate insulating layer may be adjusted.

본 발명에 따르는 OTFT의 게이트 절연막은 전기절연 특성이 우수하고, 높은 유전상수(High-k dielectric)를 가진 고유전율 재료로 이루어진 제1 절연층을 포함한다. 제1 절연층은 습식 공정에 의해 형성될 수 있다. 보다 상세하게는, 제1 절연층은 ① 절연성 유기 고분자와 유전상수 5 이상의 유기 금속 화합물과의 혼합물 또는 ② 절연성 유기 고분자와 유전상수 5 이상의 무기 금속 산화물 또는 강유전성 절연체의 나노입자와의 혼합물로 이루어진다. 유기 고분자와 유기 금속 화합물간의 중량비 또는 유기 고분자와 나노입자간의 중량비를 조절하면 유전상수 k를 조절할 수 있다. 제1 절연층의 유전상수 k 값은 5 이상이며, 당해 값이 5 미만인 경우, 유효 유전율이 낮아서 구동특성의 개선을 기대하기가 어렵다. 무기 금속 산화물이나 강유전성 절연체의 나노입자 혼합물은 게이트 전극을 포함하는 기판 위에 습식 공정에 의해 당해 혼합물의 필름을 수득한 다음, 이를 베이킹하여 제조할 수 있다.The gate insulating film of the OTFT according to the present invention includes a first insulating layer made of a high dielectric constant material having excellent electrical insulating properties and having a high-k dielectric. The first insulating layer may be formed by a wet process. More specifically, the first insulating layer is composed of (1) a mixture of an insulating organic polymer and an organometallic compound having a dielectric constant of 5 or more, or (2) a mixture of an insulating organic polymer and a nanoparticle of an inorganic metal oxide or ferroelectric insulator having a dielectric constant of 5 or more. The dielectric constant k can be adjusted by adjusting the weight ratio between the organic polymer and the organic metal compound or the weight ratio between the organic polymer and the nanoparticle. When the dielectric constant k of the first insulating layer is 5 or more, and the value is less than 5, the effective dielectric constant is low, so that it is difficult to expect improvement in driving characteristics. Nanoparticle mixtures of inorganic metal oxides or ferroelectric insulators may be prepared by obtaining a film of the mixture by a wet process on a substrate comprising a gate electrode and then baking it.

제1 절연층을 구성하는 절연성 유기 고분자는 절연 특성을 나타내는 대부분의 고분자를 포함하며, 바람직한 유기 고분자의 예는 폴리에스테르(polyester), 폴리카보네이트(polycarbonate), 폴리비닐 알코올(polyvinyl alcohol), 폴리비닐 부티랄(polyvinyl butyral), 폴리아세탈(polyacetal), 폴리아릴레이트(polyarylate), 폴리아미드(polyamide), 폴리아미드이미드(polyamidimide), 폴리에테르이미드(polyetherimide), 폴리페닐렌 에테르(polyphenylen ether), 폴리페닐렌 설파이드(polyphenylene sulfide), 폴리에테르설폰(polyethersulfone), 폴리에테르 케톤(polyether ketone), 폴리프탈아미드(polyphthalamide), 폴리에테르니트릴(polyethernitrile), 폴리에테르설폰(polyethersulofone), 폴리벤즈이미다졸(polybenzimidazole), 폴리카보디이미드(polycarbodiimide), 폴리실록산(polysiloxane), 폴리메틸 메타크릴레이트(polymethyl methacrylate), 폴리메타크릴아마이드(polymethacrylamide), 니트릴 고무(nitrile rubber), 아크릴 고무(acryl rubber), 폴리에틸렌 테트라플루오라이드(polyethylene tetrafluoride), 에폭시 수지(epoxy resin), 페놀 수지(phenol resin), 멜라민 수지(melamine resin), 우레아 수지(urea resin), 폴리부텐(polybutene), 폴리펜텐(polypentene), 에틸렌-프로필렌 공중합체(ethylene-co-propylene), 에틸렌-부텐-디엔 공중합체(ethylene-co-butene diene), 폴리부타디엔(polybutadiene), 폴리이소프렌(polyisoprene), 에틸렌-프로필렌-디엔 공중합체(ethylene-co-propylene diene), 부틸 고무(butyl rubber), 폴리메틸펜텐(polymethylpentene), 폴리스티렌(polystyrene), 스티렌-부타디엔 공중합체(styrene-co-butadiene), 수첨 스티렌-부타디엔 공중합체(hydrogenated styrene-co-butadiene), 수첨 폴리이소프렌(hydrogenated polyisoprene), 수첨 폴리부타디엔(hydrogenated polybutadiene) 및 이들의 혼합물을 포함하나, 이들에 제한되지 않는다.The insulating organic polymer constituting the first insulating layer includes most polymers exhibiting insulating properties. Examples of preferred organic polymers include polyester, polycarbonate, polyvinyl alcohol, and polyvinyl. Butyral (polyvinyl butyral), polyacetal, polyarylate, polyamide, polyamidimide, polyetherimide, polyphenylen ether, polyphenylen ether Phenylene sulfide, polyethersulfone, polyether ketone, polyphthalamide, polyethernitrile, polyethersulofone, polybenzimidazole ), Polycarbodiimide, polysiloxane, polymethyl methacrylate, poly Methacrylamide, nitrile rubber, acrylic rubber, polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin , Urea resin, polybutene, polypentene, polypentene, ethylene-co-propylene, ethylene-co-butene diene, poly Butadiene, polyisoprene, ethylene-co-propylene diene, butyl rubber, polymethylpentene, polystyrene, styrene-butadiene air Styrene-co-butadiene, hydrogenated styrene-co-butadiene, hydrogenated polyisoprene, hydrogenated polybutadiene and mixtures thereof Also, but it is not limited to these.

제1 절연층의 제조에 사용되는 유기 금속 화합물은 티타늄계, 지르코늄계, 하프늄계 및 알루미늄계 유기 금속 화합물이다. 바람직한 유기 금속 화합물의 예는 티타늄(IV) n-부톡사이드[titanium(IV) n-butoxide], 티타늄(IV) t-부톡사이드[titanium(IV) t-butoxide], 티타늄(IV) 에톡사이드[titanium(IV) ethoxide], 티타늄(IV) 2-에틸헥소옥사이드[titanium(IV) 2-ethylhexoxide], 티타늄(IV) 이소프로폭사이드[titanium(IV) isopropoxide], 티타늄(IV) (디-이소프로폭사이드)비스(아세틸아세토네이트)[titanium(IV) (di-isopropoxide)bis-(acetylacetonate)], 티타늄(IV) 옥사이드 비스(아세틸아세토네이트)[titanium(IV) oxide bis(acetylacetonate)], 트리클로로트리스(테트라하이드로푸란) 티타늄(III) [trichlorotris(tetrahydrofuran) titanium(III)], 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(III)[tris(2,2,6,6-tetramethyl-3,5-heptanedionato) titanium(III)], (트리메틸)펜타메틸사이클로펜타디에닐 티타늄(IV)[(trimethyl) pentamethylcyclopentadienyl titanium(IV)], 펜타메틸사이클로펜타디에닐티타늄 트리클로라이드(IV)[pentamethylcyclopentadienyltitanium trichloride(IV)], 펜타메틸사이클로펜타디에닐티타늄 트리메톡사이드(IV)[pentamethylcyclopentadienyltitanium trimethoxide(IV)], 테트라클로로비스(사이클로헥실머캅토) 티타늄(IV)[tetrachlorobis(cyclohexylmercapto) titanium(IV)], 테트라클로로비스(테트라하이드로푸란) 티타늄(IV)[tetrachlorobis(tetrahydrofuran) titanium(IV)], 테트라클로로디아민 티타늄(IV)[tetrachlorodiammine titanium(IV)], 테트라키스(디에틸아미노) 티타늄(IV)[tetrakis(diethylamino) titanium(IV)], 테트라키스(디메틸아미노) 티타늄(IV)[tetrakis(dimethylamino) titanium(IV)], 비스(티-부틸사이클로펜타디에닐)티타늄 디클로라이드[bis(t-butylcyclopentadienyl)titanium dichloride], 비스(사이클로펜타디에닐)디카보닐 티타늄(II)[bis(cyclopentadienyl) dicarbonyl titanium(II)], 비스(사이클로펜타디에닐)티타늄 디클로라이드[bis(cyclopentadienyl)titanium dichloride], 비스(에틸사이클로펜타디에닐)티타늄 디클로라이드[bis(ethylcyclopentadienyl)titanium dichloride], 비스(펜타메틸사이클로펜타디에닐)티타늄 디클로라이드[bis(pentamethyl -cyclopentadienyl)titanium dichloride], 비스(이소프로필사이클로펜타디에닐)티타늄 디클로라이드[bis(isopropylcyclopentadienyl)titanium dichloride], 트리스 (2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 옥소티타늄(IV)[tris(2,2,6,6-tetramethyl-3,5-heptanedionato) oxotitanium(IV)], 클로로티타늄 트리이소프로폭사이드[chlorotitanium triisopropoxide], 사이클로펜타디에닐티타늄 트리클로라이드[cyclopentadienyltitanium trichloride], 디클로로비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(IV)[dichlorobis(2,2,6,6-tetramethyl-3,5-heptanedionato) titanium(IV)], 디메틸비스(3급-부틸사이클로펜타디에닐) 티타늄(IV)[dimethylbis(t-butylcyclopentadienyl) titanium(IV)] 또는 디(이소프로폭사이드)비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(IV)[di(isopropoxide)bis(2,2,6,6-tetramethyl-3,5-heptanedionato) titanium(IV)]과 같은 티타늄계 화합물; 지르코늄(IV) n-부톡사이드[zirconium (IV) n-butoxide], 지르코늄(IV) tert-부톡사이드[zirconium(IV) t-butoxide], 지르코늄(IV) 에톡사이드[zirconium(IV) ethoxide], 지르코늄(IV) 이소프로폭사이드[zirconium (IV) isopropoxide], 지르코늄(IV) n-프로폭사이드[zirconium(IV) n-propoxide], 지르코늄(IV) (아세틸아세토네이트)[zirconium(IV) acetylacetonate], 지르코늄(IV) 헥사플루오로아세틸아세토네이트[zirconium(IV) hexafluoroacetylacetonate], 지르코늄(IV) 트리플루오로아세틸아세토네이트[zirconium(IV) trifluoroacetylacetonate], 테트라키스(디에틸아미노)지르코늄[tetrakis(diethylamino)zirconium], 테트라키스(디메틸아미노)지르코늄[tetrakis(dimethylamino)zirconium], 테트라키스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 지르코늄(IV)[tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato) zirconium(IV)], 지르코늄(IV) 설페이트 4수화물[zirconium(IV) sulfate tetrahydrate], 하프늄(IV) n-부톡사이드[hafnium(IV) n-butoxide], 하프늄(IV) tert-부톡사이드[hafnium(IV) t-butoxide], 하프늄(IV) 에톡사이드[hafnium(IV) ethoxide], 하프늄(IV) 이소프로폭사이드[hafnium(IV) isopropoxide], 하프늄(IV) 이소프로폭사이드 모노이소프로필레이트[hafnium(IV) isopropoxide monoisopropylate], 하프늄(IV) (아세틸아세토네이트)[hafnium(IV) acetylacetonate] 또는 테트라키스(디메틸아미노)하프늄[tetrakis(dimethylamino) hafnium]과 같은 지르코늄 또는 하프늄 화합물; 및 알루미늄 n-부톡사이드 [aluminium n-butoxide], 알루미늄 tert-부톡사이드[aluminium t-butoxide], 알루미늄 s-부톡사이드[aluminium s-butoxide], 알루미늄 에톡사이드[aluminium ethoxide], 알루미늄 이소프로폭사이드[aluminium isopropoxide], 알루미늄 아세틸아세토네이트[aluminium acetylacetonate], 알루미늄 헥사플루오로아세틸아세토네이트[aluminium hexafluoroacetylacetonate], 알루미늄 트리플루오로아세틸아세토네이트[aluminium trifluoroacetylacetonate] 또는 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 알루미늄[tris(2,2,6,6-tetramethyl-3,5-heptanedionato) aluminium]) 등과 같은 알루미늄 화합물을 포함하나, 이들에 제한되지는 않는다.Organometallic compounds used in the production of the first insulating layer are titanium-based, zirconium-based, hafnium-based and aluminum-based organometallic compounds. Examples of preferred organometallic compounds are titanium (IV) n-butoxide, titanium (IV) t-butoxide, titanium (IV) ethoxide [ titanium (IV) ethoxide], titanium (IV) 2-ethylhexoxide, titanium (IV) isopropoxide, titanium (IV) (di-iso Propoxide) bis (acetylacetonate) [titanium (IV) (di-isopropoxide) bis- (acetylacetonate)], titanium (IV) oxide bis (acetylacetonate) [titanium (IV) oxide bis (acetylacetonate)], Trichlorotris (tetrahydrofuran) titanium (III) [trichlorotris (tetrahydrofuran) titanium (III)], tris (2,2,6,6-tetramethyl-3,5-heptanedionate) titanium (III) [tris (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium (III)], (trimethyl) pentamethylcyclopentadienyl titanium (IV) [(trimethyl) pentamethylcyclopentadienyl titanium (IV)], pentamethylcyclo pen Dienyltitanium trichloride (IV) [pentamethylcyclopentadienyltitanium trichloride (IV)], pentamethylcyclopentadienyltitanium trimethoxide (IV)], tetrachlorobis (cyclohexyl mercapto) titanium (IV) [tetrachlorobis (cyclohexylmercapto) titanium (IV)], tetrachlorobis (tetrahydrofuran) titanium (IV), tetrachlorodiammine titanium (IV), tetra Tetrakis (diethylamino) titanium (IV), tetrakis (dimethylamino) titanium (IV), bis (thi-butylcyclopentadier) Bis (cyclopentadienyl) dicarbonyl titanium (II) [bis (cyclopentadienyl) dicarbonyl titanium (II)], bis (cyclopentadienyl) titanium Chloride [bis (cyclopentadienyl) titanium dichloride], bis (ethylcyclopentadienyl) titanium dichloride [bis (ethylcyclopentadienyl) titanium dichloride], bis (pentamethylcyclopentadienyl) titanium dichloride [bis (pentamethyl -cyclopentadienyl) titanium dichloride], bis (isopropylcyclopentadienyl) titanium dichloride [bis (isopropylcyclopentadienyl) titanium dichloride], tris (2,2,6,6-tetramethyl-3,5-heptanedionate) oxotitanium (IV) [tris (2,2,6,6-tetramethyl-3,5-heptanedionato) oxotitanium (IV)], chlorotitanium triisopropoxide, cyclopentadienyltitanium trichloride, dichloropentadienyltitanium trichloride Dichlorobis (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium (IV)], bis (2,2,6,6-tetramethyl-3,5-heptanedionato) titanium (IV), Dimethylbis (tert-butylcyclopentadienyl) titanium (IV) [dimethylbis ( t-butylcyclopentadienyl) titanium (IV)] or di (isopropoxide) bis (2,2,6,6-tetramethyl-3,5-heptanedionate) titanium (IV) [di (isopropoxide) bis (2 , 2,6,6-tetramethyl-3,5-heptanedionato) titanium (IV)]; Zirconium (IV) n-butoxide, zirconium (IV) tert-butoxide, zirconium (IV) ethoxide, zirconium (IV) ethoxide, Zirconium (IV) isopropoxide, zirconium (IV) n-propoxide, zirconium (IV) (acetylacetonate) [zirconium (IV) acetylacetonate ], Zirconium (IV) hexafluoroacetylacetonate [zirconium (IV) hexafluoroacetylacetonate], zirconium (IV) trifluoroacetylacetonate [zirconium (IV) trifluoroacetylacetonate], tetrakis (diethylamino) zirconium [tetrakis (diethylamino) ) zirconium], tetrakis (dimethylamino) zirconium], tetrakis (2,2,6,6-tetramethyl-3,5-heptanedionate) zirconium (IV) [tetrakis (2, 2,6,6-tetramethyl-3,5-heptanedionato) zirconium (IV)], zirconium (IV) sulfate tetrahydrate [zirconium (IV) sulfate tetrahydrat e], hafnium (IV) n-butoxide, hafnium (IV) tert-butoxide, hafnium (IV) t-butoxide, hafnium (IV) ethoxide, hafnium (IV) ethoxide], hafnium (IV) isopropoxide, hafnium (IV) isopropoxide monoisopropylate, hafnium (IV) (acetylacetonate) [ zirconium or hafnium compounds such as hafnium (IV) acetylacetonate] or tetrakis (dimethylamino) hafnium; And aluminum n-butoxide, aluminum tert-butoxide, aluminum s-butoxide, aluminum ethoxide, aluminum ethoxide, aluminum isopropoxide aluminum isopropoxide, aluminum acetylacetonate, aluminum hexafluoroacetylacetonate, aluminum trifluoroacetylacetonate or tris (2,2,6,6-tetramethyl Aluminum compounds such as, but not limited to, -3,5-heptanedionato) aluminum [tris (2,2,6,6-tetramethyl-3,5-heptanedionato) aluminum].

제1 절연층의 제조에 사용되는 금속 산화물의 나노입자의 바람직한 예는 Ta2O5, Y2O3, TiO2, CeO2, 및 ZrO2의 나노입자를 포함하나, 이들에 제한되지는 않는다. 금속 산화물 나노입자들은 유전율이 5 이상인 것이 바람직하다. 제1 절연층의 제조에 사용되는 강유전성 절연체 나노입자의 예는 바륨 스트론튬 티타네이트[Barium Strontium Titanate(BST)], PbZrxTi1-xO3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(Ta1-xNbx)2O9, Ba(Zr1-xTix)O3(BZT), BaTiO3, SrTiO3, 및 Bi4Ti3O12의 나노입자를 포함하나, 이들에 제한되지는 않는다. 나노입자의 직경은 특별히 제한되지는 않으나, 바람직하게는 1 내지 100nm이다.Preferred examples of the metal oxide nanoparticles used in the preparation of the first insulating layer include, but are not limited to, nanoparticles of Ta 2 O 5 , Y 2 O 3 , TiO 2 , CeO 2 , and ZrO 2 . . The metal oxide nanoparticles preferably have a dielectric constant of 5 or more. Examples of ferroelectric insulator nanoparticles used in the preparation of the first insulating layer include barium strontium titanate (BST), PbZr x Ti 1 -xO 3 (PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , Nanoparticles of SrBi 2 (Ta 1-x Nb x ) 2 O 9 , Ba (Zr 1-x Ti x ) O 3 (BZT), BaTiO 3 , SrTiO 3 , and Bi 4 Ti 3 O 12 ; It is not limited to. The diameter of the nanoparticles is not particularly limited, but is preferably 1 to 100 nm.

본 발명에 따르는 OTFT에서 게이트 절연막은 유기 활성층 바로 아래에 존재하며, 유기 활성층과 친화적인(compatible) 절연성 유기 고분자의 제2 절연층을 포함한다. 제2 절연층은 제1 절연층과 마찬가지로 습식 공정에 의해 형성될 수 있다. 본 발명에 따르는 OTFT에서 제2 절연층의 제조에 사용될 수 있는 유기 고분자는 폴리비닐 페놀(polyvinyl phenol), 폴리메틸 메타크릴레이트(polymethyl metacrylate), 폴리아크릴레이트(polyacrylate), 폴리비닐 알코올(polyvinyl alcohol) 또는 다음 화학식 1의 중합체이다:In the OTFT according to the present invention, the gate insulating film is located directly below the organic active layer, and includes a second insulating layer of an insulating organic polymer compatible with the organic active layer. The second insulating layer may be formed by a wet process similarly to the first insulating layer. In the OTFT according to the present invention, organic polymers that can be used for the preparation of the second insulating layer are polyvinyl phenol, polymethyl methacrylate, polyacrylate, polyvinyl alcohol ) Or a polymer of formula

Figure 112003024234406-pat00001
Figure 112003024234406-pat00001

위의 화학식 1에서,
R은 다음 화학식 2의 라디칼이고,
m과 n의 합은 1이고,
m 및 n은 각각 0.3 내지 0.7의 실수이며,
x와 y의 합은 1이고,
x는 0.3 내지 0.7의 실수이고,
y는 0.3 내지 0.7의 실수이며,
i와 j의 합은 1이고,
i는 0 내지 1의 실수이고,
j는 0 내지 1의 실수이다.

Figure 112010039391796-pat00002
In Formula 1 above,
R is a radical of the formula
the sum of m and n is 1,
m and n are each a real number from 0.3 to 0.7,
the sum of x and y is 1,
x is a real number from 0.3 to 0.7,
y is a real number from 0.3 to 0.7,
the sum of i and j is 1,
i is a real number from 0 to 1,
j is a real number from 0 to 1.
Figure 112010039391796-pat00002

삭제delete

위의 화학식 2에서,
R1은 다음의 라디칼로 이루어진 그룹으로부터 선택되고,
In Formula 2 above,
R 1 is selected from the group consisting of

Figure 112010039391796-pat00003

(여기서, n은 0 내지 10의 정수이다)
Figure 112010039391796-pat00003

Where n is an integer from 0 to 10

R2는 아래의 그룹 Ⅰ및 Ⅱ로부터 선택(이때, 적어도 하나의 R2는 그룹 I로부터 선택된다)되고,R 2 is selected from groups I and II below, wherein at least one R 2 is selected from group I,

(I)(I)

Figure 112003024234406-pat00004
Figure 112003024234406-pat00004

(Ⅱ)(Ⅱ)

Figure 112003024234406-pat00005
Figure 112003024234406-pat00005

R3는 수소원자이거나, 아래의 그룹으로부터 선택되며,R 3 is hydrogen or selected from the group

Figure 112010039391796-pat00006
(여기서, X는 수소원자, 탄소수 1 내지 13의 알킬 라디칼 또는 알콕시 라디칼, 탄소수 6 내지 20의 방향족 라디칼, 헤테로 원자가 방향족 환에 포함된 탄소수 4 내지 14의 헤테로방향족 라디칼, -(OCH2)pCH3(여기서, p는 0 내지 12의 정수이다), 불소원자 또는 염소원자이고, m은 0 내지 18의 정수이다)
Figure 112010039391796-pat00006
(Wherein X is a hydrogen atom, an alkyl radical or alkoxy radical having 1 to 13 carbon atoms, an aromatic radical having 6 to 20 carbon atoms, a heteroaromatic radical having 4 to 14 carbon atoms in a heterovalent aromatic ring,-(OCH 2 ) p CH 3 (where p is an integer from 0 to 12), a fluorine atom or a chlorine atom, and m is an integer from 0 to 18)

k는 0 내지 3의 정수이고,
l은 1 내지 5의 정수이며,
R1 및 R2가 복수 개인 경우, 각각의 R1, R2는 서로 상이할 수 있다.
k is an integer from 0 to 3,
l is an integer from 1 to 5,
When there are a plurality of R 1 and R 2 , each of R 1 and R 2 may be different from each other.

화학식 1의 중합체와 같이, 절연성 유기 고분자에 광 배향기를 도입한 경우, 유기 활성막의 배향을 증가시켜 전하 이동도를 높이면서, 유기 활성막의 형성에 유리한 조건을 제공함으로써 활성층의 그레인 크기를 증가시켜서 트랜지스터 특성을 향상시킬 수 있는 면에서 더욱 바람직하다. 화학식 1에 따르는 중합체의 바람직한 예를 들면 다음 화학식 3 내지 6의 화합물이다: When the photoalignment group is introduced into the insulating organic polymer, as in the polymer of Formula 1, the grain size of the active layer is increased by providing favorable conditions for the formation of the organic active layer while increasing the charge mobility by increasing the orientation of the organic active layer. It is more preferable at the point which can improve transistor characteristics. Preferred examples of the polymer according to formula 1 are the compounds of formulas 3 to 6

삭제delete

삭제delete

Figure 112003024234406-pat00007
Figure 112003024234406-pat00007

Figure 112003024234406-pat00008
Figure 112003024234406-pat00008

Figure 112003024234406-pat00009
Figure 112003024234406-pat00009

Figure 112003024234406-pat00010
Figure 112003024234406-pat00010

본 발명에 따르는 OTFT에서 게이트 절연막을 형성하는 제1 절연층 및 제2 절연층을 제조하기 위해 사용가능한 습식 공정의 예는 딥 코팅(dip coating), 스핀 코팅(spin coating), 프린팅(printing), 분무 코팅(spray coating) 또는 롤 코팅(roll coating)을 포함하나, 이들에 제한되지는 않는다. Examples of wet processes usable for producing the first and second insulating layers for forming the gate insulating film in the OTFT according to the present invention include dip coating, spin coating, printing, Spray coating or roll coating, including but not limited to these.

본 발명자의 연구에 따르면, 전술한 다층 구조의 게이트 절연막은 우수한 절연특성을 가질 뿐만 아니라, 이를 사용한 OTFT는 전하 이동도가 높고 구동전압 및 문턱전압이 낮으며, Ion/Ioff도 단층 게이트 절연막일 때보다 우수하다. 특히, 게이트 절연막의 제조가 프린팅 또는 스핀 코팅 등, 통상의 습식 공정에 의해 제조가 가능한 반면, 그 성능은 화학증착 등의 번거로운 공정에 의해서만 형성될 수 있는 무기 절연막에 필적한다.According to the research of the present invention, the above-described multi-layered gate insulating film not only has excellent insulating properties, but also the OTFT using the same has high charge mobility, low driving voltage and threshold voltage, and I on / I off single layer gate insulating film. Better than when In particular, while the production of the gate insulating film can be produced by a conventional wet process such as printing or spin coating, the performance is comparable to the inorganic insulating film that can be formed only by a cumbersome process such as chemical vapor deposition.

본 발명에 따르는 OTFT에서 반도체 층으로 사용되는 유기 활성층은 유기 반도체로 사용되는 공지된 모든 재료를 사용하여 제조될 수 있으며, 바람직한 유기 활성층은 펜타센(pentacene), 구리 프탈로시아닌(copper phthalocyanine), 폴리티오펜 (polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole), 폴리페닐렌 비닐렌(polyphenylene vinylene) 또는 이들의 유도체로부터 제조될 수 있으나, 이들에 제한되지는 않는다.The organic active layer used as the semiconductor layer in the OTFT according to the present invention can be prepared using all known materials used as organic semiconductors, and preferred organic active layers are pentacene, copper phthalocyanine, polythione It can be prepared from, but not limited to, polythiophene, polyaniline, polyacetylene, polyacetylene, polypyrrole, polyphenylene vinylene, or derivatives thereof.

본 발명에 따르는 OTFT의 기판, 게이트 전극, 및 소스/드레인 전극의 재질은 유기 박막 트랜지스터에서 사용되는 것으로 알려진 모든 재료를 포함한다. 보다 바람직하게는, 기판은 플라스틱 기판, 유리 기판, 석영 기판 또는 실리콘 기판이고, 게이트 및 소스/드레인 전극은 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 인듐 주석 산화물(ITO)로 이루어지나, 이들에 제한되는 것은 아니다.The materials of the substrate, gate electrode, and source / drain electrodes of the OTFT according to the present invention include all materials known to be used in organic thin film transistors. More preferably, the substrate is a plastic substrate, a glass substrate, a quartz substrate or a silicon substrate, and the gate and source / drain electrodes are gold (Au), silver (Ag), aluminum (Al), nickel (Ni) , indium tin oxide. (ITO), but is not limited to these.

본 발명의 한 바람직한 구현예에 따르는 OTFT는 기판 위에 게이트 전극을 준비하고, 게이트 전극 위에 고유전율의 제1 절연층을 스핀 코팅, 프린팅 등, 습식 공정으로 형성하고, 제1 절연층 위에 유기 활성층과 친화성이 있는 절연성 유기 고분자의 제2 절연층을 습식 공정으로 형성한 다음, 그 위에 유기 활성층을 형성한 후에 소스 드레인 전극을 형성하거나, 또는 소스 드레인 전극을 형성한 후에 유기 활성층을 형성함으로써 제조할 수 있다An OTFT according to a preferred embodiment of the present invention comprises preparing a gate electrode on a substrate, forming a high dielectric constant first insulating layer on the gate electrode by a wet process, such as spin coating and printing, and forming an organic active layer on the first insulating layer. The second insulating layer of the affinity insulating organic polymer may be formed by a wet process, and then an organic active layer is formed thereon and then a source drain electrode is formed, or after the source drain electrode is formed, an organic active layer is formed. Can

[실시예][Example]

이하, 구체적인 실시예를 통해 본 발명의 구성 및 효과를 보다 상세히 설명하고자 하나, 하기 실시예는 설명을 목적으로 한 것으로, 본 발명의 범위를 제한하고자 하는 것은 아니다.Hereinafter, one or more exemplary embodiments will be described in detail with reference to the configuration and effects of the present invention. The following examples are for illustrative purposes only and are not intended to limit the scope of the present invention.

제조예 1 내지 4 : 고유전율의 제1 절연층 제조 Preparation Examples 1 to 4 : Preparation of the first insulating layer having a high dielectric constant

폴리비닐부티랄(PVB) 및 테트라부틸 티타네이트(Ti(OC4H9)4)를 표 1에 기재한 조성비로 혼합하고 이를 이소프로필 알콜에 용해시켜 농도 10 내지 20wt%의 용액을 제조하였다. 스핀 코팅법을 사용하여 알루미늄 기판 위에 당해 용액을 도포하여 두께 2000Å의 필름을 형성하고, 70℃에서 1시간 동안, 150℃에서 30분 동안 열경화시켜 제1 절연층을 제조하였다. 제조된 제1 절연층 위에 알루미늄 기판을 두어 금속-절연막-금속 구조의 커패시터(capacitor)를 제조하고, 이를 이용하여 100KHz에서 절연성을 측정하였다. 그 결과는 표 1에 나타내었다Polyvinyl butyral (PVB) and tetrabutyl titanate (Ti (OC 4 H 9 ) 4 ) were mixed at the composition ratios shown in Table 1 and dissolved in isopropyl alcohol to prepare a solution having a concentration of 10 to 20 wt%. The solution was applied on an aluminum substrate using a spin coating method to form a film having a thickness of 2000 mm 3, and thermally cured at 70 ° C. for 1 hour and at 150 ° C. for 30 minutes to prepare a first insulating layer. An aluminum substrate was placed on the manufactured first insulating layer to prepare a capacitor having a metal-insulating film-metal structure, and the insulation was measured at 100 KHz using the capacitor. The results are shown in Table 1.

PVB(wt%)PVB (wt%) Ti(OC4H9)4(wt%)Ti (OC 4 H 9 ) 4 (wt%) Ti 함량(wt%)Ti content (wt%) k (유전상수)k (dielectric constant) 제조예 1Preparation Example 1 7575 2525 4040 5.65.6 제조예 2Production Example 2 5050 5050 6666 1515 제조예 3Production Example 3 3030 7070 8282 2727 제조예 4Preparation Example 4 1010 9090 9595 3030

위의 표 1에서 나타낸 바와 같이, 티타네이트의 양을 조절함으로써 유전상수값을 최대 30까지 높일 수 있다. As shown in Table 1 above, the dielectric constant value can be increased up to 30 by controlling the amount of titanate.

실시예 1Example 1

알루미늄으로 이루어진 게이트 전극을 포함한 유리 기판 위에 제조예 2와 같은 방법으로 제1 절연층을 형성하였다. 화학식 3의 중합체(이하, S1이라고 함)의 사이클로헥사논 용액(10wt%)을 제조하고, 제1 절연층 위에 스핀 코팅하여 두께 5000Å의 필름을 형성한 다음, 질소 분위기하에서 온도를 100℃로 하여 1시간 동안 베이킹하여 총 두께 700nm의 게이트 절연막을 형성하였다. 제조된 게이트 절연막 위에, OMBD(Organic molecular beam deposition) 방식으로 700Å 두께로 펜타센의 유기 활성층을 형성하였다. 활성층의 형성은 진공도 2 × 10-6torr, 기판 온도 80℃, 증착비 0.3Å/sec의 조건하에 수행하였다. 이렇게 제조된 활성층 위에 채널 길이 100㎛, 채널 폭 1㎜인 새도우 마스크로 탑 컨택(top contact) 방식에 의해 소스/드레인 전극을 형성함으로써 OTFT를 제작하였다. 제조된 OTFT의 단위면적당 유전율 C0(nF/단위면적), 문턱전압, Ion/Ioff , 전하 이동도를 다음과 같이 측정하여 하기 표 2에 나타내었다:A first insulating layer was formed on the glass substrate including the gate electrode made of aluminum in the same manner as in Preparation Example 2. A cyclohexanone solution (10 wt%) of a polymer of Chemical Formula 3 (hereinafter referred to as S1) was prepared, spin-coated on a first insulating layer to form a film having a thickness of 5000 kPa, and then the temperature was set at 100 ° C. under a nitrogen atmosphere. Baking for 1 hour to form a gate insulating film having a total thickness of 700nm. On the manufactured gate insulating film, an organic active layer of pentacene was formed to a thickness of 700 kHz by an organic molecular beam deposition (OMBD) method. Formation of the active layer was carried out under the conditions of vacuum degree 2 × 10 -6 torr, substrate temperature of 80 ℃, deposition ratio 0.3 Pa / sec. The OTFT was fabricated by forming a source / drain electrode by a top contact method using a shadow mask having a channel length of 100 μm and a channel width of 1 mm on the thus prepared active layer. The dielectric constant C 0 (nF / unit area), threshold voltage, I on / I off , and charge mobility per unit area of the prepared OTFT are measured as follows and are shown in Table 2 below.

1) 단위면적당 유전율 C0 1) Permittivity C 0 per unit area

유전특성을 나타내는 유전상수는 측정된 유전율 C0로부터 하기 수학식 1로 구하였다:
C0 = εε0(A/d)
The dielectric constant showing the dielectric properties was calculated by the following Equation 1 from the measured permittivity C 0 :
C 0 = εε 0 (A / d)

삭제delete

위의 수학식 1에서,
A는 측정 소자의 면적이고,
d는 유전체 두께이며,
ε 및 ε0는 각각 유전체 및 진공의 유전상수이다.
In Equation 1 above,
A is the area of the measuring element,
d is the dielectric thickness,
ε and ε 0 are the dielectric constants of the dielectric and the vacuum, respectively.

2) 전하 이동도 및 문턱전압2) charge mobility and threshold voltage

전하 이동도는 아래의 포화 영역(saturation region) 전류식으로부터 추출하는 바, 아래 수학식 2 내지 4로부터 (ISD)1/2 과 VG 를 변수로 한 그래프를 얻고, 이의 기울기로부터 구하였다:

Figure 112010039391796-pat00028

Figure 112010039391796-pat00029

Figure 112010039391796-pat00030

Figure 112010039391796-pat00031
The charge mobility is extracted from the saturation region current equation below, a graph with (I SD ) 1/2 and V G as variables from equations 2 to 4 below is obtained from its slope:
Figure 112010039391796-pat00028

Figure 112010039391796-pat00029

Figure 112010039391796-pat00030

Figure 112010039391796-pat00031

삭제delete

삭제delete

위의 수학식 2 내지 5에서,
Isd는 소스-드레인 전류이고,
μ 또는 μFET는 전하 이동도이며,
C0는 산화막 정전용량이고,
W는 채널 폭이며,
L은 채널 길이이고,
VG는 게이트 전압이고,
VT는 문턱전압이다.
In Equations 2 to 5 above,
I sd is the source-drain current,
μ or μ FET is the charge mobility,
C 0 is the oxide capacitance,
W is the channel width,
L is the channel length,
V G is the gate voltage,
V T is the threshold voltage.

문턱전압(Threshold Voltage, VT)은 (ID)1/2 와 VG 간의 그래프에서 선형 부분의 연장선과 VG 축과의 교점으로부터 구하였다. 문턱전압은 절대값이 0에 가까워야 전력이 적게 소모된다.The threshold voltage (V T ) is obtained from the intersection of the extension line of the linear part and the V G axis in the graph between (I D ) 1/2 and V G. The threshold voltage consumes less power when the absolute value is close to zero.

3) Ion/Ioff 3) I on / I off

Ion/Ioff는 온(On) 상태의 최대 전류 값과 오프(Off) 상태의 최소 전류 값의 비로 구해지며, 아래의 수학식 6으로 표기된다:

Figure 112010039391796-pat00013
I on / I off is obtained by the ratio of the maximum current value in the on state to the minimum current value in the off state, and is represented by Equation 6 below:
Figure 112010039391796-pat00013

삭제delete

위의 수학식 6에서,
Ion은 최대 전류값이고,
Ioff는 차단 누설 전류(off-state leakage current)이며,
μ는 전하 이동도이고,
σ는 박막의 전도도이며,
q는 전하량이고,
NA는 전하 밀도이며,
t는 반도체 막의 두께이고,
C0는 산화막 정전용량이고,
VD는 드레인 전압이다.
In Equation 6 above,
I on is the maximum current value,
I off is off-state leakage current,
μ is the charge mobility,
σ is the conductivity of the thin film,
q is the charge amount,
NA is the charge density,
t is the thickness of the semiconductor film,
C 0 is the oxide capacitance,
V D is the drain voltage.

Ion/Ioff 전류비는 유전막의 유전율이 크고 두께가 작을수록 커지므로 유전막의 종류와 두께가 전류비를 결정하는 데 있어서 중요한 요인이 된다. 차단 누설 전류(off-state leakage current)인 I off 는 오프 상태일 때 흐르는 전류로, 오프 상태에서의 최소 전류로 구하였다.
도 3은 유효 유전율이 증가되었을 때, ISD 대 VG의 변화를 나타낸 것이다. 본 발명에 따르는 게이트 절연층을 사용하는 경우, 곡선이 0에 가까이 이동(shift)하고 있는 바, 문턱전압이 낮아짐을 보여준다. 도 4에서도 (ID)1/2의 VG 관계 그래프에서 문턱전압이 50% 이상 감소하고 있음을 보여준다.
실시예 2
Since the I on / I off current ratio increases as the dielectric constant and thickness of the dielectric film become larger, the type and thickness of the dielectric film become an important factor in determining the current ratio. The off-state leakage current I off is a current flowing in the off state, and is obtained as the minimum current in the off state.
Figure 3 shows the change in I SD vs V G when the effective permittivity is increased. In the case of using the gate insulating layer according to the present invention, the curve shifts to near zero, which shows that the threshold voltage is lowered. 4 also shows that the threshold voltage is reduced by 50% or more in the V G relation graph of (I D ) 1/2 .
Example 2

삭제delete

삭제delete

제조예 3과 동일한 조성, 용매 등을 사용하여 동일한 조건하에서 제1 절연층을 형성한 것을 제외하고는 실시예 1과 동일한 방식으로 OTFT를 제조하고 그 특성을 측정하였다. 측정 결과는 표 2에 나타내었다.
실시예 3
An OTFT was prepared in the same manner as in Example 1 except that the first insulating layer was formed under the same conditions using the same composition, solvent, and the like as Preparation Example 3, and the properties thereof were measured. The measurement results are shown in Table 2.
Example 3

삭제delete

제1 절연층의 두께를 300㎚로 하고, 제2 절연층 두께를 400㎚로 한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 OTFT를 제조하고 그 특성을 측정하였다. 측정 결과는 표 2에 나타내었다.An OTFT was manufactured in the same manner as in Example 1 except that the thickness of the first insulating layer was 300 nm and the thickness of the second insulating layer was 400 nm, and the properties thereof were measured. The measurement results are shown in Table 2.

비교예 1Comparative Example 1

다층의 게이트 절연막 대신, S1의 사이클로헥사논 용액(10wt%)을 제조하고, 두께 7000Å로 스핀 코팅한 후, 질소 분위기하에 100℃에서 1시간 동안 베이킹하여 수득한 필름을 게이트 절연막으로서 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 OTFT를 제조하고, 그 특성을 측정하였다. 측정 결과는 표 2에 나타내었다.Instead of using a multilayer gate insulating film, a cyclohexanone solution (10 wt%) of S1 was prepared, spin coated to a thickness of 7000 kPa, and then a film obtained by baking for 1 hour at 100 ° C. under a nitrogen atmosphere was used as the gate insulating film. Then, OTFT was manufactured by the same method as Example 1, and the characteristic was measured. The measurement results are shown in Table 2.

실시예 4Example 4

PVP(폴리비닐페놀)를 피그미아(Propylene Glycol Methyl Ether Acetate)에 용해시킨 용액(15wt%)을 두께 5000Å로 스핀 코팅한 후, 질소 분위기 및 100℃에서 1시간 동안 베이킹하여 수득한 필름을 제2 절연층으로 사용하는 것을 제외하고는 실시예 1과 동일한 방법으로 OTFT를 제조하고, 그 특성을 측정하였다. 측정 결과는 표 2에 나타내었다.
비교예 2
The film obtained by spin-coating a solution (15 wt%) in which PVP (polyvinyl phenol) was dissolved in Pygmia (Propylene Glycol Methyl Ether Acetate) with a thickness of 5000 kPa was baked for 1 hour at a nitrogen atmosphere and 100 ° C. Except for using it as an insulating layer, an OTFT was prepared in the same manner as in Example 1, and its properties were measured. The measurement results are shown in Table 2.
Comparative Example 2

삭제delete

다층의 게이트 절연막 대신, PVP를 피그미아(Propylene Glycol Methyl Ether Acetate)에 용해시킨 용액(15wt%)을 두께 5000Å로 스핀 코팅한 후, 질소 분위기 및 100℃에서 1시간 동안 베이킹하여 수득한 필름을 게이트 절연막으로 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 OTFT를 제조하고, 그 특성을 측정하였다. 측정 결과는 표 2에 나타내었다.Instead of a multi-layered gate insulating film, a solution obtained by spin-coating a solution (15 wt%) in which PVP was dissolved in Propylene Glycol Methyl Ether Acetate (thickness of 5000 wt%) was then baked at a nitrogen atmosphere and 100 ° C. for 1 hour to gate the film. Except for using as an insulating film, an OTFT was produced in the same manner as in Example 1, and the characteristics thereof were measured. The measurement results are shown in Table 2.

제1 절연층First insulating layer 제2 절연층Second insulating layer C0
(nF/단위면적)
C 0
(nF / unit area)
문턱전압Threshold voltage Ion/Ioff I on / I off 전하
이동도
Majesty
Mobility
실시예 1Example 1 PVB:Ti(OC4H9)4 50:50 (200 nm)PVB: Ti (OC 4 H 9 ) 4 50:50 (200 nm) S1 (500㎚)S1 (500 nm) 7.07.0 -11V-11V 1.02x104 1.02 x 10 4 3~53 to 5 실시예 2Example 2 PVB:Ti(OC4H9)4 30:70 (200 nm)PVB: Ti (OC 4 H 9 ) 4 30:70 (200 nm) S1 (500㎚)S1 (500 nm) 7.97.9 -9V-9V 1.02x104 1.02 x 10 4 3~53 to 5 실시예 3Example 3 PVB:Ti(OC4H9)4 50:50 (300 nm)PVB: Ti (OC 4 H 9 ) 4 50:50 (300 nm) S1 (400㎚)S1 (400 nm) 8.68.6 -7V-7V 7.76x103 7.76 x 10 3 3~53 to 5 실시예 4Example 4 PVB:Ti(OC4H9)4 50:50 (200 nm)PVB: Ti (OC 4 H 9 ) 4 50:50 (200 nm) PVP (500㎚)PVP (500 nm) 7.37.3 -13V-13V 1.24x105 1.24 x 10 5 66 비교예 1Comparative Example 1 -- S1 (700㎚)S1 (700 nm) 5.95.9 -15V-15V 6.67x103 6.67 x 10 3 3~53 to 5 비교예 2Comparative Example 2 -- PVP (700㎚)PVP (700nm) 5.55.5 -17V-17V 0.71x105 0.71 x 10 5 66

상기 표 2의 결과로부터 알 수 있는 바와 같이, 본 발명에 따르는 OTFT는 전하 이동도는 높은 반면, 구동전압과 문턱전압이 낮으며, Ion/Ioff는 높고, 전기 절연 특성도 우수하여 각종 전자소자에서 트랜지스터로써 유용하게 사용될 수 있다.As can be seen from the results of Table 2, the OTFT according to the present invention has high charge mobility, low driving voltage and threshold voltage, high I on / I off , and excellent electrical insulation properties. It can be usefully used as a transistor in the device.

본 발명에 따르는 유기 박막 트랜지스터는 문턱전압 및 구동전압이 낮고, 전하 이동도 및 Ion/Ioff 가 높으며, 유기 반도체 층의 형성을 용이하게 할 수 있을 뿐만 아니라, 절연막 제조가 습식 공정에 의해 달성될 수 있어서 공정 단순화와 비용 절감 효과를 가져온다. 본 발명에 따르는 OTFT는 플렉시블 디스플레이 분야에서 유용하게 사용될 수 있다.The organic thin film transistor according to the present invention has a low threshold voltage and driving voltage, high charge mobility and high I on / I off , and facilitates the formation of an organic semiconductor layer. This can simplify the process and reduce the cost. The OTFT according to the present invention can be usefully used in the field of flexible display.

Claims (11)

기판 위의 게이트 전극, 게이트 절연층, 유기 활성층, 소스/드레인 전극 또는 게이트 전극, 게이트 절연층, 소스/드레인 전극, 유기 활성층이 차례로 형성된 유기 박막 트랜지스터에 있어서, 게이트 절연막이 ⅰ) 고유전율 재료의 제1 절연층과 ⅱ) 유기 활성층과 친화적(compatible)이고 폴리비닐페놀, 폴리아크릴레이트, 폴리비닐 알코올 및 다음 화학식 1의 중합체로 이루어진 그룹으로부터 선택된 절연성 유기 고분자의 제2 절연층을 포함하며, 이때 제2 절연층이 유기 활성층 바로 아래에 존재하도록 되어 있는 다층 구조의 절연막을 가지는 박막 트랜지스터.In an organic thin film transistor in which a gate electrode, a gate insulating layer, an organic active layer, a source / drain electrode or a gate electrode, a gate insulating layer, a source / drain electrode, and an organic active layer on a substrate are sequentially formed, a gate insulating film is formed of a high dielectric constant material. Ii) a second insulating layer of an insulating organic polymer compatible with the first insulating layer and ii) an organic active layer and selected from the group consisting of polyvinylphenol, polyacrylate, polyvinyl alcohol and a polymer of the formula A thin film transistor having an insulating film of a multi-layer structure in which a second insulating layer is present under the organic active layer. 화학식 1Formula 1
Figure 112010039391796-pat00032
Figure 112010039391796-pat00032
위의 화학식 1에서, In the above formula (1) R은 다음 화학식 2의 라디칼이고,R is a radical of the formula m과 n의 합은 1이고, the sum of m and n is 1, m 및 n은 각각 0.3 내지 0.7의 실수이며,m and n are each a real number from 0.3 to 0.7, x와 y의 합은 1이고, the sum of x and y is 1, x는 0.3 내지 0.7의 실수이고, x is a real number from 0.3 to 0.7, y는 0.3 내지 0.7의 실수이며, y is a real number from 0.3 to 0.7, i와 j의 합은 1이고, the sum of i and j is 1, i는 0 내지 1의 실수이고, i is a real number from 0 to 1, j는 0 내지 1의 실수이다.j is a real number from 0 to 1. 화학식 2Formula 2
Figure 112010039391796-pat00033
Figure 112010039391796-pat00033
위의 화학식 2에서, In Formula 2 above, R1은 다음의 라디칼로 이루어진 그룹으로부터 선택되고,R 1 is selected from the group consisting of
Figure 112010039391796-pat00034
Figure 112010039391796-pat00034
(여기서, n은 0 내지 10의 정수이다)Where n is an integer from 0 to 10 R2는 아래의 그룹 Ⅰ및 Ⅱ로부터 선택(이때, 적어도 하나의 R2는 그룹 I로부터 선택된다)되고,R 2 is selected from groups I and II below, wherein at least one R 2 is selected from group I, (I)(I)
Figure 112010039391796-pat00035
Figure 112010039391796-pat00035
(Ⅱ)(Ⅱ)
Figure 112010039391796-pat00036
Figure 112010039391796-pat00036
R3는 수소원자이거나, 아래의 그룹으로부터 선택되며,R 3 is hydrogen or selected from the group
Figure 112010039391796-pat00037
(여기서, X는 수소원자, 탄소수 1 내지 13의 알킬 라디칼 또는 알콕시 라디칼, 탄소수 6 내지 20의 방향족 라디칼, 헤테로 원자가 방향족 환에 포함된 탄소수 4 내지 14의 헤테로방향족 라디칼, -(OCH2)pCH3(여기서, p는 0 내지 12의 정수이다), 불소원자 또는 염소원자이고, m은 0 내지 18의 정수이다)
Figure 112010039391796-pat00037
(Wherein X is a hydrogen atom, an alkyl radical or alkoxy radical having 1 to 13 carbon atoms, an aromatic radical having 6 to 20 carbon atoms, a heteroaromatic radical having 4 to 14 carbon atoms in a heterovalent aromatic ring,-(OCH 2 ) p CH 3 (where p is an integer from 0 to 12), a fluorine atom or a chlorine atom, and m is an integer from 0 to 18)
k는 0 내지 3의 정수이고,k is an integer from 0 to 3, l은 1 내지 5의 정수이며,l is an integer from 1 to 5, R1 및 R2가 복수 개인 경우, 각각의 R1, R2는 서로 상이할 수 있다.When there are a plurality of R 1 and R 2 , each of R 1 and R 2 may be different from each other.
제1항에 있어서, 게이트 절연막의 각 층이 습식 공정에 의해 형성되는 것을 특징으로 하는 박막 트랜지스터.The thin film transistor according to claim 1, wherein each layer of the gate insulating film is formed by a wet process. 제1항에 있어서, ⅰ) 제1 절연층을 위한 고유전율 재료가 절연성 유기 고분자와 유전상수 5 이상의 유기 금속 화합물과의 혼합물이거나, 또는 절연성 유기 고분자와 유전상수 5 이상의 무기 금속 산화물 또는 강유전성 절연체의 나노입자와의 혼합물인 것을 특징으로 하는 박막 트랜지스터.The high dielectric constant material for the first insulating layer is a mixture of an insulating organic polymer and an organometallic compound having a dielectric constant of 5 or higher, or an inorganic metal oxide or ferroelectric insulator of the insulating organic polymer and dielectric constant of 5 or higher. A thin film transistor, characterized in that the mixture with nanoparticles. 삭제delete 제1항에 있어서, 화학식 1의 중합체가 다음 화학식 3, 화학식 4, 화학식 5 또는 화학식 6의 화합물인 것을 특징으로 하는 박막 트랜지스터:The thin film transistor of claim 1, wherein the polymer of Formula 1 is a compound of Formula 3, Formula 4, Formula 5, or Formula 6: 화학식 3Formula 3
Figure 112010039391796-pat00020
Figure 112010039391796-pat00020
화학식 4Formula 4
Figure 112010039391796-pat00021
Figure 112010039391796-pat00021
화학식 5Formula 5
Figure 112010039391796-pat00022
Figure 112010039391796-pat00022
화학식 66
Figure 112010039391796-pat00023
Figure 112010039391796-pat00023
제1항에 있어서, 기판이 플라스틱 기판, 유리 기판, 석영 기판 또는 실리콘(silicon) 기판인 것을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 1, wherein the substrate is a plastic substrate, a glass substrate, a quartz substrate, or a silicon substrate. 제2항에 있어서, 습식 공정이 스핀 코팅, 딥 코팅, 프린팅 방식 또는 롤 코팅에 의한 공정인 것을 특징으로 하는 박막 트랜지스터.The thin film transistor of claim 2, wherein the wet process is a spin coating, a dip coating, a printing method, or a roll coating process. 제3항에 있어서, 유기 고분자가 폴리에스테르, 폴리카보네이트, 폴리비닐 알코올, 폴리비닐 부티랄, 폴리아세탈, 폴리아릴레이트, 폴리아미드, 폴리아미드이미드, 폴리에테르이미드, 폴리페닐렌 에테르, 폴리페닐렌 설파이드, 폴리에테르설폰, 폴리에테르 케톤, 폴리프탈아미드, 폴리에테르니트릴, 폴리에테르설폰, 폴리벤즈이미다졸, 폴리카보디이미드, 폴리실록산, 폴리메틸 메타크릴레이트, 폴리메타크릴아미드, 니트릴 고무, 아크릴 고무, 폴리에틸렌 테트라플루오라이드, 에폭시 수지, 페놀 수지, 멜라민 수지, 우레아 수지, 폴리부텐, 폴리펜텐, 에틸렌-프로필렌 공중합체, 에틸렌-부텐-디엔 공중합체, 폴리부타디엔, 폴리이소프렌, 에틸렌-프로필렌-디엔 공중합체, 부틸 고무, 폴리메틸펜텐, 폴리스티렌, 스티렌-부타디엔 공중합체, 수첨 스티렌-부타디엔 공중합체, 수첨 폴리이소프렌, 수첨 폴리부타디엔 및 이들의 혼합물로 이루어진 그룹으로부터 선택된 것을 특징으로 하는 박막 트랜지스터.The method of claim 3, wherein the organic polymer is polyester, polycarbonate, polyvinyl alcohol, polyvinyl butyral, polyacetal, polyarylate, polyamide, polyamideimide, polyetherimide, polyphenylene ether, polyphenylene Sulfide, polyethersulfone, polyether ketone, polyphthalamide, polyethernitrile, polyethersulfone, polybenzimidazole, polycarbodiimide, polysiloxane, polymethyl methacrylate, polymethacrylamide, nitrile rubber, acrylic rubber , Polyethylene tetrafluoride, epoxy resin, phenol resin, melamine resin, urea resin, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene-diene copolymer, polybutadiene, polyisoprene, ethylene-propylene-diene air Copolymer, Butyl Rubber, Polymethylpentene, Polystyrene, Styrene-Butadiene Copolymer, Hydrogenated Styrene-Part Diene copolymer, hydrogenated polyisoprene, hydrogenated polybutadiene and a thin film transistor, characterized in that it is selected from or a mixture thereof. 제3항에 있어서, 유기 금속 화합물이 티타늄(IV) n-부톡사이드, 티타늄(IV) tert-부톡사이드, 티타늄(IV) 에톡사이드, 티타늄(IV) 2-에틸헥소사이드, 티타늄(IV) 이소프로폭사이드, 티타늄(IV) (디-이소프로폭사이드)비스(아세틸아세토네이트), 티타늄(IV) 옥사이드 비스(아세틸아세토네이트), 트리클로로트리스(테트라하이드로푸란) 티타늄(III), 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(III), (트리메틸)펜타메틸-사이클로펜타디에닐 티타늄(IV), 펜타메틸사이클로펜타디에닐티타늄 트리클로라이드(IV), 펜타메틸사이클로펜타디에닐티타늄 트리메톡사이드(IV), 테트라클로로비스(사이클로헥실머르캅토) 티타늄(IV), 테트라클로로비스(테트라하이드로푸란) 티타늄(IV), 테트라클로로디아민 티타늄(IV), 테트라키스(디에틸아미노) 티타늄(IV), 테트라키스(디메틸아미노) 티타늄(IV), 비스(티-부틸사이클로펜타디에닐)티타늄 디클로라이드, 비스(사이클로펜타디에닐)디카보닐 티타늄(II), 비스(사이클로펜타디에닐)티타늄 디클로라이드, 비스(에틸사이클로펜타디에닐)티타늄 디클로라이드, 비스(펜타메틸사이클로펜타디에닐)티타늄 디클로라이드, 비스(이소-프로필사이클로펜타디에닐)티타늄 디클로라이드, 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 옥소티타늄(IV), 클로로티타늄 트리이소프로폭사이드, 사이클로펜타디에닐티타늄 트리클로라이드, 디클로로비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(IV), 디메틸비스(티-부틸사이클로펜타디에닐) 티타늄 (IV) 또는 디(이소프로폭사이드)비스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 티타늄(IV)의 티타늄계 화합물; 지르코늄(IV) n-부톡사이드, 지르코늄(IV) tert-부톡사이드, 지르코늄(IV) 에톡사이드, 지르코늄(IV) 이소프로폭사이드, 지르코늄(IV) n-프로폭사이드, 지르코늄(IV) (아세틸아세토네이트), 지르코늄(IV) 헥사플루오로아세틸아세토네이트, 지르코늄(IV) 트리플루오로아세틸아세토네이트, 테트라키스(디에틸아미노)지르코늄, 테트라키스(디메틸아미노)지르코늄, 테트라키스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토) 지르코늄(IV), 지르코늄(IV) 설페이트 4수화물, 하프늄(IV) n-부톡사이드, 하프늄(IV) tert-부톡사이드, 하프늄(IV) 에톡사이드, 하프늄(IV) 이소프로폭사이드, 하프늄(IV) 이소프로폭사이드 모노이소프로필레이트, 하프늄(IV) (아세틸아세토네이트) 또는 테트라키스(디메틸아미노)하프늄의 지르코늄 또는 하프늄 화합물; 알루미늄 n-부톡사이드, 알루미늄 tert-부톡사이드, 알루미늄 s-부톡사이드, 알루미늄 에톡사이드, 알루미늄 이소프로폭사이드, 알루미늄 아세틸아세토네이트, 알루미늄 헥사플루오로아세틸아세토네이트, 알루미늄 트리플루오로아세틸아세토네이트 또는 트리스(2,2,6,6-테트라메틸-3,5-헵탄디오네이토)알루미늄의 알루미늄계 화합물; 및 이들의 두 가지 이상의 혼합물로 이루어진 그룹으로부터 선택된 것을 특징으로 하는 박막 트랜지스터.The organometallic compound according to claim 3, wherein the organometallic compound is titanium (IV) n-butoxide, titanium (IV) tert-butoxide, titanium (IV) ethoxide, titanium (IV) 2-ethylhexoxide, titanium (IV) iso Propoxide, titanium (IV) (di-isopropoxide) bis (acetylacetonate), titanium (IV) oxide bis (acetylacetonate), trichlorotris (tetrahydrofuran) titanium (III), tris ( 2,2,6,6-tetramethyl-3,5-heptanedionato) titanium (III), (trimethyl) pentamethyl-cyclopentadienyl titanium (IV), pentamethylcyclopentadienyltitanium trichloride (IV ), Pentamethylcyclopentadienyltitanium trimethoxide (IV), tetrachlorobis (cyclohexyl mercapto) titanium (IV), tetrachlorobis (tetrahydrofuran) titanium (IV), tetrachlorodiamine titanium (IV) , Tetrakis (diethylamino) titanium (IV), tetrakis (dimeth Amino) titanium (IV), bis (thi-butylcyclopentadienyl) titanium dichloride, bis (cyclopentadienyl) dicarbonyl titanium (II), bis (cyclopentadienyl) titanium dichloride, bis (ethylcyclo Pentadienyl) titanium dichloride, bis (pentamethylcyclopentadienyl) titanium dichloride, bis (iso-propylcyclopentadienyl) titanium dichloride, tris (2,2,6,6-tetramethyl-3, 5-heptanedionate) oxotitanium (IV), chlorotitanium triisopropoxide, cyclopentadienyltitanium trichloride, dichlorobis (2,2,6,6-tetramethyl-3,5-heptanedionato) Titanium (IV), dimethylbis (thi-butylcyclopentadienyl) titanium (IV) or di (isopropoxide) bis (2,2,6,6-tetramethyl-3,5-heptanedionate) titanium Titanium compound of (IV); Zirconium (IV) n-butoxide, zirconium (IV) tert-butoxide, zirconium (IV) ethoxide, zirconium (IV) isopropoxide, zirconium (IV) n-propoxide, zirconium (IV) (acetyl Acetonate), zirconium (IV) hexafluoroacetylacetonate, zirconium (IV) trifluoroacetylacetonate, tetrakis (diethylamino) zirconium, tetrakis (dimethylamino) zirconium, tetrakis (2,2, 6,6-tetramethyl-3,5-heptanedionate) zirconium (IV), zirconium (IV) sulfate tetrahydrate, hafnium (IV) n-butoxide, hafnium (IV) tert-butoxide, hafnium (IV) Zirconium or hafnium compounds of ethoxide, hafnium (IV) isopropoxide, hafnium (IV) isopropoxide monoisopropylate, hafnium (IV) (acetylacetonate) or tetrakis (dimethylamino) hafnium; Aluminum n-butoxide, aluminum tert-butoxide, aluminum s-butoxide, aluminum ethoxide, aluminum isopropoxide, aluminum acetylacetonate, aluminum hexafluoroacetylacetonate, aluminum trifluoroacetylacetonate or tris Aluminum compounds of (2,2,6,6-tetramethyl-3,5-heptanedionato) aluminum; And a mixture of two or more thereof. 제3항에 있어서, 무기 금속 산화물이 Ta2O5, Y2O3, TiO2, CeO2, 또는 ZrO2이고, 강유전성 절연체가 바륨 스트론튬 티타네이트(BST), PbZrxTi1-xO3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(Ta1-xNbx)2O9, Ba(Zr1-xTix)O3(BZT), BaTiO3, SrTiO3 또는 Bi4Ti3O12이며, 나노입자의 직경이 1 내지 100nm인 것을 특징으로 하는 박막 트랜지스터.The inorganic metal oxide of claim 3, wherein the inorganic metal oxide is Ta 2 O 5 , Y 2 O 3 , TiO 2 , CeO 2 , or ZrO 2 , and the ferroelectric insulator is barium strontium titanate (BST), PbZr x Ti 1 -xO 3 ( PZT), Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (Ta 1-x Nb x ) 2 O 9 , Ba (Zr 1-x Ti x ) O 3 (BZT), BaTiO 3 , SrTiO 3 or Bi 4 A thin film transistor, wherein Ti 3 O 12 has a diameter of 1 to 100 nm. 제1항에 있어서, 유기 활성층이 펜타센, 구리 프탈로시아닌, 폴리티오펜, 폴리아닐린, 폴리아세틸렌, 폴리피롤, 폴리페닐렌비닐렌 및 이들의 유도체로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 박막 트랜지스터.The thin film transistor according to claim 1, wherein the organic active layer is selected from the group consisting of pentacene, copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylenevinylene and derivatives thereof.
KR1020030044799A 2003-07-03 2003-07-03 Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure KR100995451B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020030044799A KR100995451B1 (en) 2003-07-03 2003-07-03 Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure
US10/769,816 US7005674B2 (en) 2003-07-03 2004-02-03 Organic thin film transistor comprising multi-layered gate insulator
EP04253979A EP1494298A3 (en) 2003-07-03 2004-07-01 Organic thin film transistor comprising multi-layered gate insulator
CNA2004100621484A CN1577912A (en) 2003-07-03 2004-07-02 Organic thin film transistor comprising multi-layered gate insulator
JP2004197515A JP5054885B2 (en) 2003-07-03 2004-07-05 Organic thin-film transistor including multi-layer gate insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030044799A KR100995451B1 (en) 2003-07-03 2003-07-03 Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure

Publications (2)

Publication Number Publication Date
KR20050004565A KR20050004565A (en) 2005-01-12
KR100995451B1 true KR100995451B1 (en) 2010-11-18

Family

ID=33432455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030044799A KR100995451B1 (en) 2003-07-03 2003-07-03 Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure

Country Status (5)

Country Link
US (1) US7005674B2 (en)
EP (1) EP1494298A3 (en)
JP (1) JP5054885B2 (en)
KR (1) KR100995451B1 (en)
CN (1) CN1577912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221450B1 (en) 2005-07-19 2013-01-11 주식회사 동진쎄미켐 Photosensitive resin composition comprising organic and inorganic compound

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167569B2 (en) 1999-06-21 2013-03-21 ケンブリッジ・エンタープライズ・リミテッド Method for manufacturing transistor
CA2394881A1 (en) * 1999-12-21 2001-06-28 Plastic Logic Limited Solution processed devices
KR100814980B1 (en) 2000-09-28 2008-03-18 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Vapor deposition of oxides, silicates, and phosphates
EP1606844A2 (en) * 2003-03-17 2005-12-21 Philips Intellectual Property & Standards GmbH Semiconductor device with isolation layer
KR20050058062A (en) * 2003-12-11 2005-06-16 삼성전자주식회사 Composition for preparing organic insulating film and the organic insulating film prepared by using the same
JP4731840B2 (en) * 2004-06-14 2011-07-27 キヤノン株式会社 Field effect transistor and manufacturing method thereof
KR100560796B1 (en) * 2004-06-24 2006-03-13 삼성에스디아이 주식회사 organic TFT and fabrication method of the same
US7679079B1 (en) * 2004-07-14 2010-03-16 Northwestern University Nanoscale self-assembled organic dielectrics for electronic devices
KR100593300B1 (en) * 2004-11-10 2006-06-26 한국전자통신연구원 Thermosetting Organic Polymeric Gate Insulating Film and Organic Thin-Film Transister Using the Same
US7408187B2 (en) * 2004-11-19 2008-08-05 Massachusetts Institute Of Technology Low-voltage organic transistors on flexible substrates using high-gate dielectric insulators by room temperature process
KR101086159B1 (en) 2005-01-07 2011-11-25 삼성전자주식회사 Organic Thin Film Transistor comprising Fluorine-based polymer thin film
JP4951868B2 (en) * 2005-03-18 2012-06-13 凸版印刷株式会社 Thin film transistor manufacturing method
US20060214154A1 (en) * 2005-03-24 2006-09-28 Eastman Kodak Company Polymeric gate dielectrics for organic thin film transistors and methods of making the same
US20060231908A1 (en) * 2005-04-13 2006-10-19 Xerox Corporation Multilayer gate dielectric
US20060231889A1 (en) * 2005-04-13 2006-10-19 Tupei Chen Two-terminal solid-state memory device and two-terminal flexible memory device based on nanocrystals or nanoparticles
CN101687385A (en) * 2005-05-12 2010-03-31 佐治亚科技研究公司 Metal oxide nanoparticles that coats and preparation method thereof
US7507618B2 (en) * 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR101147087B1 (en) * 2005-06-28 2012-05-17 엘지디스플레이 주식회사 Fabricating method for flat display device
KR100732862B1 (en) * 2005-07-13 2007-06-27 삼성에스디아이 주식회사 thin film transistor and flat panel display using the same
KR20070013132A (en) 2005-07-25 2007-01-30 삼성전자주식회사 Thin film transistor substrate and manufacturing method thereof
KR100695013B1 (en) 2005-07-25 2007-03-16 삼성전자주식회사 Thin film transistor substrate and manufacturing method thereof
KR101240656B1 (en) 2005-08-01 2013-03-08 삼성디스플레이 주식회사 Flat panel display and manufacturing method of flat panel display
US7435989B2 (en) * 2005-09-06 2008-10-14 Canon Kabushiki Kaisha Semiconductor device with layer containing polysiloxane compound
KR100696195B1 (en) * 2005-09-13 2007-03-20 한국전자통신연구원 Low Thermal-Cured Gate Insulation Layer and Organic Thin Film Transistor Using the Gate Insulation Layer
US20070075308A1 (en) * 2005-09-30 2007-04-05 Florian Dotz Active semiconductor devices
KR100708720B1 (en) 2005-10-19 2007-04-17 삼성에스디아이 주식회사 A organic thin film transistor, a method for preparing the same and a flat panel display comprising the same
KR100708721B1 (en) 2005-10-20 2007-04-17 삼성에스디아이 주식회사 A thin film transistor and a flat panel display comprising the same
KR100730159B1 (en) 2005-11-10 2007-06-19 삼성에스디아이 주식회사 Organic TFT, flat panel display therewith, and manufacturing method of the organic TFT
KR100766318B1 (en) 2005-11-29 2007-10-11 엘지.필립스 엘시디 주식회사 The thin film transistor using organic semiconductor material and the array substrate for LCD with the same and method of fabricating the same
KR101139052B1 (en) 2005-12-06 2012-04-30 삼성전자주식회사 Organic Insulator composition having Fluorine and Organic Semiconductor Thin Film using the Same
WO2007066546A1 (en) * 2005-12-06 2007-06-14 Tri Chemical Laboratories Inc. Hafnium compound, hafnium thin film-forming material and method for forming hafnium thin film
KR100730181B1 (en) * 2005-12-12 2007-06-19 삼성에스디아이 주식회사 Organic thin film transistor and flat display apparatus comprising the same
KR101142981B1 (en) * 2005-12-15 2012-05-08 엘지디스플레이 주식회사 Thin film transistor array substrate and manufacturing method of the same
KR100787440B1 (en) * 2005-12-21 2007-12-26 삼성에스디아이 주식회사 Organic thin film transistor, method for prepairng the same and flat display device comprising the same
US20070145453A1 (en) * 2005-12-23 2007-06-28 Xerox Corporation Dielectric layer for electronic devices
KR101186725B1 (en) * 2006-02-21 2012-09-28 삼성전자주식회사 Organic Thin Film Transistor Comprising Fluorine-based Polymer Thin Film and Method for Fabricating the Same
JP5062435B2 (en) 2006-02-27 2012-10-31 株式会社村田製作所 Field effect transistor
JPWO2007099690A1 (en) * 2006-02-28 2009-07-16 パイオニア株式会社 Organic transistor and manufacturing method thereof
TWI307124B (en) * 2006-04-06 2009-03-01 Ind Tech Res Inst Method of fabricating a semiconductor device
KR101160489B1 (en) * 2006-04-07 2012-06-26 엘지디스플레이 주식회사 TFT array substrate and method for fabricating of the same
KR100770262B1 (en) * 2006-04-14 2007-10-25 삼성에스디아이 주식회사 Organic Thin Film Transistor, Organic Electroluminescence Device Including The Same And Fabricating Thereof
JP2009535838A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Composition for forming gate insulating film of organic thin film transistor and organic thin film transistor using the same
WO2007129643A1 (en) * 2006-05-09 2007-11-15 Japan Advanced Institute Of Science And Technology Field effect transistor using organic semiconductor material and method for manufacturing the same
KR101163791B1 (en) * 2006-05-16 2012-07-10 삼성전자주식회사 Method for Patterning Electrodes of Organic Electronic Devices, Organic Thin Film Transistor Comprising the Electrodes and Display Devices Comprising the Same
JP5541918B2 (en) * 2006-05-22 2014-07-09 ナンヤン テクノロジカル ユニヴァーシティー Inorganic films prepared by solution process for organic thin-film transistors
KR20070113893A (en) * 2006-05-26 2007-11-29 삼성전자주식회사 Organic insulator composition and method for manufacturing organic insulator film with dual thickness using the same
KR100820077B1 (en) * 2006-06-23 2008-04-08 홍익대학교부설과학기술연구소 Organic Thin Film Transistor Employed with Organic-Inorganic Synthetic Insulator
US20080161464A1 (en) * 2006-06-28 2008-07-03 Marks Tobin J Crosslinked polymeric dielectric materials and methods of manufacturing and use thereof
KR101255315B1 (en) * 2006-06-30 2013-04-15 엘지디스플레이 주식회사 Method For Fabricating Thin Film Transistor Array Substrate
KR101255320B1 (en) * 2006-06-30 2013-04-15 엘지디스플레이 주식회사 Method For Fabricating Thin Film Transistor Array Substrate
JP5470686B2 (en) * 2006-08-04 2014-04-16 三菱化学株式会社 Insulating layer, electronic device, field effect transistor, and polyvinyl thiophenol
US8207524B2 (en) * 2006-08-04 2012-06-26 Mitsubishi Chemical Corporation Insulating layer, electronic device, field effect transistor, and polyvinylthiophenol
KR100737383B1 (en) * 2006-09-11 2007-07-09 한국전자통신연구원 Insulation layer, organic thin film transistor using the same and manufacturing method
KR101224723B1 (en) * 2006-09-15 2013-01-21 삼성전자주식회사 Composition for Preparing Organic Insulating Film and Organic Insulating Layer and Organic Thin Film Transistor Prepared by Using the Same
US8405069B2 (en) * 2006-11-10 2013-03-26 Georgia Tech Research Corporation Printable thin-film transistors with high dielectric constant gate insulators and methods for producing same
ES2525040T3 (en) * 2006-11-28 2014-12-16 Polyera Corporation Dielectric materials based on photopolymer and methods of preparation and use thereof
JP2010514155A (en) * 2006-12-15 2010-04-30 ユニバーシティ オブ ソウル ファウンデーション オブ インダストリー−アカデミック コーオペレーション Ferroelectric material and method for forming ferroelectric layer using the same
TWI323034B (en) * 2006-12-25 2010-04-01 Ind Tech Res Inst Electronic devices with hybrid high-k dielectric and fabrication methods thereof
KR101340995B1 (en) * 2006-12-28 2013-12-13 엘지디스플레이 주식회사 Thin film transistor using liquid crystal display device
KR100877429B1 (en) 2006-12-29 2009-01-08 서울시립대학교 산학협력단 Ferroelectric memory device
KR101316291B1 (en) * 2007-02-16 2013-10-08 삼성전자주식회사 Copolymer, Organic Insulating Layer Composition, and Organic Insulating Layer and Organic Thin Film Transistor Prepared by using the Same
WO2008108136A1 (en) * 2007-03-02 2008-09-12 Nec Corporation Switching device and method for manufacturing the same
JP5320746B2 (en) * 2007-03-28 2013-10-23 凸版印刷株式会社 Thin film transistor
US7795614B2 (en) * 2007-04-02 2010-09-14 Xerox Corporation Device with phase-separated dielectric structure
US7754510B2 (en) * 2007-04-02 2010-07-13 Xerox Corporation Phase-separated dielectric structure fabrication process
US8084765B2 (en) * 2007-05-07 2011-12-27 Xerox Corporation Electronic device having a dielectric layer
KR101353824B1 (en) 2007-06-12 2014-01-21 삼성전자주식회사 Composition for Preparing Organic Insulator and Organic Insulator Prepared using the same
US8101948B2 (en) 2007-06-20 2012-01-24 Nec Corporation Switching element
FR2918797B1 (en) * 2007-07-13 2009-11-06 Sofileta Sa ORGANIC FIELD EFFECT TRANSISTOR AND METHOD OF MANUFACTURING THE TRANSISTOR
KR100889020B1 (en) * 2007-08-14 2009-03-19 한양대학교 산학협력단 Thin-film transistors utilizing multiple stacked layers acting as a gate insulator
KR100884357B1 (en) * 2007-09-18 2009-02-17 한국전자통신연구원 Organic gate insulation layer and organic thin film transistor using the same
KR101445876B1 (en) * 2008-02-19 2014-09-29 삼성전자주식회사 Organic insulator composition and organic insulating layer and organic thin film transistor using the same
US7863085B2 (en) 2008-05-07 2011-01-04 Electronics And Telecommunication Research Institute Organic thin film transistor, method of manufacturing the same, and biosensor using the transistor
KR101449755B1 (en) * 2008-06-13 2014-10-13 서울시립대학교 산학협력단 Ferroelectric material and method of forming ferroelectric layer using the same
KR101019852B1 (en) * 2008-07-24 2011-03-04 주식회사 케이티 Apparatus and method for transmitting service data
KR101045783B1 (en) * 2008-11-05 2011-07-04 국민대학교산학협력단 A method of manufacturing an organic thin film transistor including a multilayer thin film and an organic thin film transistor
TWI343129B (en) * 2008-11-24 2011-06-01 Ind Tech Res Inst Thin film transistor
JP5429784B2 (en) * 2009-02-06 2014-02-26 独立行政法人産業技術総合研究所 Organic thin film transistor and manufacturing method thereof
CN102598232B (en) * 2009-10-02 2015-06-24 国立大学法人大阪大学 Method for manufacturing organic semiconductor film, and organic semiconductor film array
TWI398952B (en) * 2009-11-19 2013-06-11 Ind Tech Res Inst Transistor
JP5533416B2 (en) * 2009-11-26 2014-06-25 Jsr株式会社 Insulating alignment composition for organic semiconductor element, insulating alignment film for organic semiconductor element, organic semiconductor element and method for producing the same
JP5564951B2 (en) * 2010-01-05 2014-08-06 Jsr株式会社 Composition for aligning organic semiconductor, organic semiconductor alignment film, organic semiconductor element and manufacturing method thereof
CN102110713B (en) * 2009-12-29 2013-08-07 财团法人工业技术研究院 Transistor
GB2490465B (en) * 2010-02-25 2016-03-23 Merck Patent Gmbh Electrode treatment process for organic electronic devices
JP5750105B2 (en) * 2010-07-29 2015-07-15 日本曹達株式会社 Maleimide copolymer and method for producing maleimide copolymer
CN103189971B (en) * 2010-11-01 2016-02-17 巴斯夫欧洲公司 As dielectric polyimides
WO2013061528A1 (en) 2011-10-24 2013-05-02 パナソニック株式会社 Thin film transistor, organic el light emitting element, and method for manufacturing thin film transistor
US9525071B2 (en) * 2012-02-22 2016-12-20 Massachusetts Institute Of Technology Flexible high-voltage thin film transistors
CN102637824B (en) * 2012-04-27 2014-09-03 中国科学院化学研究所 Organic electronic device
US9732224B2 (en) 2012-05-18 2017-08-15 Pbi Performance Products, Inc. Polybenzimidazole/polyvinylbutyral mixtures
CN105229812B (en) * 2013-05-06 2020-05-05 巴斯夫欧洲公司 Soluble cyclic imide-containing polymers as dielectrics in organic electronic applications
CN103325943A (en) * 2013-05-16 2013-09-25 京东方科技集团股份有限公司 Organic thin-film transistor and preparation method thereof
KR20150015071A (en) 2013-07-31 2015-02-10 삼성디스플레이 주식회사 Thin film transistor substrate, display device having the same and method of manufacturing the same
GB201418610D0 (en) * 2014-10-20 2014-12-03 Cambridge Entpr Ltd Transistor devices
EP3298081A1 (en) * 2015-05-18 2018-03-28 SABIC Global Technologies B.V. Improved dielectric strength compositions
SG11201807957SA (en) * 2016-03-18 2018-10-30 Ricoh Co Ltd Method for manufacturing a field effect transistor
CN105977380A (en) * 2016-06-17 2016-09-28 国家纳米科学中心 Organic field effect transistor and preparation method thereof and electronic circuit
KR102221385B1 (en) * 2016-10-05 2021-03-02 한국전기연구원 The silicon carbide diodes manufacturing methods, including the amine-based polymer
CN106531887B (en) * 2016-12-05 2019-05-07 吉林大学 It is a kind of can the erasable ferroelectricity organic transistor nonvolatile memory of low-voltage
US11690237B2 (en) * 2017-09-29 2023-06-27 Toray Industries, Inc. Field effect-transistor, method for manufacturing same, wireless communication device using same, and product tag
CN107611262B (en) * 2017-09-30 2020-04-07 中国科学院福建物质结构研究所 Flexible dielectric film and organic field effect transistor prepared from same
CN111834230B (en) * 2020-06-22 2023-01-13 华南师范大学 Preparation method of cerium-doped zirconium oxide film and application of cerium-doped zirconium oxide film in preparation of transistor
CN111769162B (en) * 2020-06-28 2024-05-07 贵州民族大学 Amorphous oxide thin film transistor with top gate structure and preparation method thereof
CN112374562B (en) * 2020-10-30 2022-05-20 哈尔滨工业大学 Preparation method and application of polypyrrole photothermal film for intercepting volatile organic matters in water pollution
CN113809234B (en) * 2021-09-18 2024-01-19 东北师范大学 Flexible liquid phase organic thin film field effect transistor and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983040A (en) * 1995-09-12 1997-03-28 Sharp Corp Thin film transistor and fabrication thereof
US6326640B1 (en) * 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
US5981970A (en) 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
US6265243B1 (en) * 1999-03-29 2001-07-24 Lucent Technologies Inc. Process for fabricating organic circuits
JP5167569B2 (en) * 1999-06-21 2013-03-21 ケンブリッジ・エンタープライズ・リミテッド Method for manufacturing transistor
KR100739366B1 (en) 1999-12-20 2007-07-16 엘지.필립스 엘시디 주식회사 Thin Film Transistor and method for fabricating the same
CA2394881A1 (en) * 1999-12-21 2001-06-28 Plastic Logic Limited Solution processed devices
US6586791B1 (en) * 2000-07-19 2003-07-01 3M Innovative Properties Company Transistor insulator layer incorporating superfine ceramic particles
JP3515507B2 (en) * 2000-09-29 2004-04-05 株式会社東芝 Transistor and manufacturing method thereof
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3963693B2 (en) * 2001-10-15 2007-08-22 富士通株式会社 Conductive organic compound and electronic device
US6617609B2 (en) * 2001-11-05 2003-09-09 3M Innovative Properties Company Organic thin film transistor with siloxane polymer interface
US6946676B2 (en) * 2001-11-05 2005-09-20 3M Innovative Properties Company Organic thin film transistor with polymeric interface
KR100949304B1 (en) * 2001-12-19 2010-03-23 메르크 파텐트 게엠베하 Organic field effect transistor with an organic dielectric
US6768132B2 (en) * 2002-03-07 2004-07-27 3M Innovative Properties Company Surface modified organic thin film transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221450B1 (en) 2005-07-19 2013-01-11 주식회사 동진쎄미켐 Photosensitive resin composition comprising organic and inorganic compound

Also Published As

Publication number Publication date
CN1577912A (en) 2005-02-09
US20050001210A1 (en) 2005-01-06
EP1494298A2 (en) 2005-01-05
EP1494298A3 (en) 2006-06-14
JP2005026698A (en) 2005-01-27
US7005674B2 (en) 2006-02-28
KR20050004565A (en) 2005-01-12
JP5054885B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
KR100995451B1 (en) Organic Thin Film Transistor comprising Gate Insulator having Multi-layered Structure
KR101012950B1 (en) Composition for Preparing Organic Insulator and the Organic Insulator
KR101139052B1 (en) Organic Insulator composition having Fluorine and Organic Semiconductor Thin Film using the Same
US7553706B2 (en) TFT fabrication process
KR101353824B1 (en) Composition for Preparing Organic Insulator and Organic Insulator Prepared using the same
KR101001441B1 (en) Organic-Inorganic Metal Hybrid Material and Organic Insulator Composition Comprising the Same
KR101130404B1 (en) Organic Insulator Composition Comprising High Dielectric Constant Insulator Dispersed in Hyperbranched Polymer and Organic Thin Film Transistor Using the Same
KR101186725B1 (en) Organic Thin Film Transistor Comprising Fluorine-based Polymer Thin Film and Method for Fabricating the Same
US8395146B2 (en) Composition and organic insulating film prepared using the same
US7564053B2 (en) Photo-reactive organic polymeric gate insulating layer composition and organic thin film transistor using the same
KR100889020B1 (en) Thin-film transistors utilizing multiple stacked layers acting as a gate insulator
KR100696195B1 (en) Low Thermal-Cured Gate Insulation Layer and Organic Thin Film Transistor Using the Gate Insulation Layer
KR101075620B1 (en) Ferroelectric field effect transistor with poly(styrene-r-methylmethacrylate) copolymer as a interlayer and the manufacturing method thereof
KR101140686B1 (en) Composition for Organic Gate Insulating Film And Organic Gate Insulating Film Prepared by using the same
KR20050094509A (en) Method of manufacturing organic thin film transistor
KR101386908B1 (en) A composition for organic thin-film transistor gate insulators and a method for making the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141022

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151020

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161018

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181024

Year of fee payment: 9