KR100838825B1 - Sic fiber reinforced reaction bonded sic porous body and its fabrication process - Google Patents

Sic fiber reinforced reaction bonded sic porous body and its fabrication process Download PDF

Info

Publication number
KR100838825B1
KR100838825B1 KR1020070020641A KR20070020641A KR100838825B1 KR 100838825 B1 KR100838825 B1 KR 100838825B1 KR 1020070020641 A KR1020070020641 A KR 1020070020641A KR 20070020641 A KR20070020641 A KR 20070020641A KR 100838825 B1 KR100838825 B1 KR 100838825B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
porous body
powder
silicon
sic
Prior art date
Application number
KR1020070020641A
Other languages
Korean (ko)
Inventor
박상환
한재호
황성식
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020070020641A priority Critical patent/KR100838825B1/en
Application granted granted Critical
Publication of KR100838825B1 publication Critical patent/KR100838825B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6263Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • C04B38/0074Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores expressed as porosity percentage
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Ceramic Products (AREA)

Abstract

An SiC fiber reinforced reaction bonded SiC porous body of which pore size and porosity are adjustable, and which has improved mechanical properties is provided, and a fabrication process of the SiC fiber reinforced reaction bonded SiC porous body is provided. As an SiC porous body comprising an SiC powder(1), an SiC fiber(2), a carbon powder(4), and Si, an SiC fiber reinforced reaction bonded SiC porous body is characterized in that: the SiC fiber has a length being five times as long as a mean particle diameter of the SiC powder to 10 mm, and is contained in a fabricated SiC porous body(3) in the amount of 1 to 15 wt.%; and the silicon is formed by melt infiltration in inner and outer portions of the porous body. The fabricated SiC porous body has a porosity of 10 to 60 vol.%. A fabrication process of an SiC fiber reinforced SiC porous body comprises performing melt infiltration of molten silicon from an outer portion into an inner portion of a green compact at a temperature of 1450 to 1650 deg.C under a vacuum of 1 to 10 torr or an inert gas atmosphere, the green compact comprising an SiC powder, an SiC fiber which has a length of five times a mean particle diameter of the SiC powder to 10 mm, and is contained in a fabricated SiC porous body in the amount of 1 to 15 wt.%, and a carbon powder.

Description

탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의 제조방법{SiC fiber reinforced reaction bonded SiC porous body and its fabrication process}Silicon carbide fiber reinforced reaction sintered silicon carbide porous body and its manufacturing method {SiC fiber reinforced reaction bonded SiC porous body and its fabrication process}

도 1은 본 발명에 따라 실시예 1에서 제조된 탄화규소 다공체의 미세구조로, 1 : 출발 원료로 사용된 탄화규소 분말, 2 : 탄화규소 섬유, 3 : 반응소결시 형성된 탄화규소, 4 : 잔류 카본 또는 그라파이트, 5 : 잔류 규소, 및 6 : 기공을 나타낸 것이다.1 is a microstructure of the silicon carbide porous body prepared in Example 1 according to the present invention, 1: silicon carbide powder used as starting materials, 2: silicon carbide fibers, 3: silicon carbide formed during reaction sintering, 4: residual Carbon or graphite, 5: residual silicon, and 6: pores.

도 2는 본 발명에 따라 실시예 1에서 제조된 탄화규소 섬유강화 탄화규소 다공체의 SEM 사진으로, (a)는 잔류 규소(14.2 중량%)이고, (b)는 잔류 규소(22 중량%)를 나타낸 것이다.Figure 2 is a SEM photograph of the silicon carbide fiber-reinforced silicon carbide porous body prepared in Example 1 according to the present invention, (a) is the residual silicon (14.2% by weight), (b) is the residual silicon (22% by weight) It is shown.

도 3은 본 발명에 따라 실시예 1에서 제조된 탄화규소 섬유강화 탄화규소 다공체의 3점 굽힘 강도를 나타낸 것이다.Figure 3 shows the three-point bending strength of the silicon carbide fiber reinforced silicon carbide porous body prepared in Example 1 according to the present invention.

도 4는 본 발명에 따라 실시예 1에서 제조된 탄화규소 섬유강화 탄화규소 다공체의 잔류 규소 양에 따른 다공도 및 기공크기의 변화를 나타낸 것이다.Figure 4 shows the change in porosity and pore size according to the amount of residual silicon of the silicon carbide fiber-reinforced silicon carbide porous body prepared in Example 1 according to the present invention.

도 5는 실시예 1로부터 제조된 탄화규소 섬유강화 탄화규소 다공체의 XRD 패턴을 나타낸 것이다.Figure 5 shows the XRD pattern of the silicon carbide fiber reinforced silicon carbide porous body prepared from Example 1.

도 6은 실시예 1로부터 제조된 탄화규소 섬유강화 탄화규소 다공체의 변위에 따른 파괴강도를 나타낸 것이다.Figure 6 shows the fracture strength according to the displacement of the silicon carbide fiber-reinforced silicon carbide porous body prepared in Example 1.

본 발명은 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 섬유 강화상으로 특정의 크기로 잘게 절단된 탄화규소 섬유, 탄화규소 분말, 카본 분말 및 규소를 함유하여 이루어지며, 상기 규소는 외부에서 주입하거나 성형체 내부에 함유하여 용융 및 침윤 반응으로 형성된 반응소결 탄화규소 다공체로, 상기 침윤되는 규소의 양 및 탄화규소 분말의 크기 제어로 기공 크기와 기공율의 조절이 가능하고, 상기 절단된 탄화규소 섬유가 형성된 탄화규소 분말 사이에 새롭게 형성된 넥(neck)상을 강화시키고 탄화규소 다공체내에서 원료분말로 사용된 탄화규소 입자를 연속적으로 연결시켜 탄화규소 다공체의 파괴강도를 향상 시킬 뿐만 아니라 파괴 시 지연 파괴현상을 유도하여 신뢰성 향상이 가능하여 산업체 대형 고온로 분진 필터, 디젤 엔진용 분진 필터 특히 석탄 가스화 발전용 고온 가스필터 소재로 활용 가능한 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의 제조방법에 관한 것이다.The present invention relates to a silicon carbide fiber reinforced reaction sintered silicon carbide porous body and a method for manufacturing the same, and more particularly, to contain silicon carbide fibers, silicon carbide powder, carbon powder, and silicon The silicon is a reaction-sintered silicon carbide porous body formed by melting and infiltrating by injecting from the outside or contained in a molded body, and controlling pore size and porosity by controlling the amount of silicon infiltrated and the size of silicon carbide powder. And reinforcing the newly formed neck phase between the silicon carbide powders formed with the cut silicon carbide fibers and continuously connecting the silicon carbide particles used as the raw powder in the silicon carbide porous body to break the strength of the silicon carbide porous body. Not only does it improve, but it also induces delayed fracture when destroying, which leads to improved reliability. Large body temperature as relates to the particulate filter, the particulate filter for diesel engines, in particular of silicon carbide can take advantage of the hot-gas filter material for coal gasification power generation reaction sintered silicon carbide fiber-reinforced porous body and a method.

반응소결 탄화규소는 내열, 내부식 및 기계적 특성이 우수할 뿐만 아니라 제조공정의 경제성이 높기 때문에 고온 열 교환기 소재, 고온 구조재료 및 일반 내부식성 산업용 소재 등에 주로 응용되고 있다. 또한, 반응소결 탄화규소는 소결 후 성형체의 원래 치수와 형상을 유지할 수 있기 때문에 최소한의 가공만으로 원하는 형태의 탄화규소 제품을 제조할 수 있어 상업적 가치가 높은 것으로 평가되고 있다.Reaction sintered silicon carbide is mainly applied to high temperature heat exchanger materials, high temperature structural materials and general corrosion resistant industrial materials because of its excellent heat resistance, corrosion resistance and mechanical properties as well as high economic efficiency of the manufacturing process. In addition, since the reaction sintered silicon carbide can maintain the original size and shape of the molded body after sintering, it is evaluated to have high commercial value because it can produce a silicon carbide product in a desired form with minimal processing.

이러한 반응소결 탄화규소는 탄화규소와 잔류 규소로 구성되어 있으며, 성형체의 미세구조 및 밀도를 제어함으로써 다양한 기계적, 전기적 특성을 갖는 제품을 제조할 수 있다. 특히, 고순도 반응소결 탄화규소는 반도체 공정에 사용되는 반응관, 서셉터(susceptor) 및 히터(heater) 소재로 개발되어 사용되고 있으며, 최근에는 다공질 반응소결 탄화규소 제품이 디젤엔진용 분진필터로 사용되고 있다.Such reaction-sintered silicon carbide is composed of silicon carbide and residual silicon, it is possible to manufacture a product having a variety of mechanical and electrical properties by controlling the microstructure and density of the molded body. In particular, high-purity reaction-sintered silicon carbide is developed and used as reaction tubes, susceptors and heaters used in semiconductor processes, and recently, porous reaction-sintered silicon carbide products are used as dust filters for diesel engines. .

고온용 필터 개발을 위하여 가격 경쟁력이 높고 우수한 열, 기계적 특성을 갖는 다공질 반응소결 탄화규소 소재를 개발하기 위하여 탄화규소 및 카본으로 이루어진 성형체에 용융 규소를 침윤시켜 제조된 반응소결 탄화규소를 1800 ℃ 이상의 고온에서 잔류 규소 중 일부를 증발시켜 다공질 반응소결 탄화규소를 제조하는 기술 및 성형체에 과잉 그라파이트(graphite) 입자를 사용하여 반응소결 후 그라파이트를 산화시켜 제거하여 다공질 반응소결 탄화규소를 제조하는 기술이 알려져 있다[미국특허 공보 제 4,525,429호, 제 4,532,091호, 제 4,564,496호]. 그러나, 공지된 다공질 반응소결 탄화규소 제조공정은 다공질 반응소결 탄화규소 내 기공의 미세구조 및 기공율을 제어하는데 있어 어려움이 있다. In order to develop a porous reaction sintered silicon carbide material having high cost competitiveness and excellent thermal and mechanical properties for the development of a filter for high temperature, the reaction sintered silicon carbide produced by infiltration of molten silicon into a molded body made of silicon carbide and carbon is not less than 1800 ° C. Known techniques for producing porous reaction sintered silicon carbide by evaporating some of the residual silicon at high temperature, and techniques for producing porous reaction sintered silicon carbide by oxidizing and removing graphite after reaction sintering using excess graphite particles [US Pat. Nos. 4,525,429, 4,532,091, 4,564,496]. However, the known porous reaction sintered silicon carbide manufacturing process has difficulty in controlling the microstructure and porosity of pores in the porous reaction sintered silicon carbide.

이외에도 무기질 소재를 사용하여 탄화규소 입자사이에 넥(neck)상을 형성한 점토 결합 다공질 탄화규소 소재가 개발되어 디젤 엔진 분진 필터 소재로 사용되고 있다. 그러나, 현재까지 개발된 다공질 탄화규소 소재는 파괴 시 취성파괴가 일어나기 때문에 높은 신뢰성이 요구되는 발전용 고온 가스 필터 소재로 적용하는데 많은 문제점이 있다.In addition, clay-bonded porous silicon carbide materials in which necks are formed between silicon carbide particles using inorganic materials have been developed and used as diesel engine dust filter materials. However, the porous silicon carbide material developed to date has many problems in application as a high temperature gas filter material for power generation, which requires high reliability because brittle fracture occurs at breakage.

이에, 다공질 탄화규소 소재의 취성 파괴 특성을 극복하기 위하여 다양한 종류의 복합재료가 개발되고 있는 바, 그 한 예로 다공질 탄화규소의 열, 기계적 특성을 향상시키기 위하여 섬유 강화 다공질 탄화규소 복합재료가 개발되었다. Therefore, various kinds of composite materials have been developed to overcome brittle fracture characteristics of porous silicon carbide materials. For example, fiber reinforced porous silicon carbide composite materials have been developed to improve the thermal and mechanical properties of porous silicon carbide materials. .

섬유 강화 다공질 탄화규소 복합재료 제조기술은 잘게 절단된 탄화규소 섬유로 만들어진 탄화규소 섬유 매트(mat)를 이용하여 성형체를 제조한 후, 매트내 탄화규소 섬유 표면에 화학증착 방법으로 카본을 코팅하여 탄화규소 섬유 사이에 넥을 이루어 다공질 탄화규소를 제조하는 방법 및 세라믹 섬유로 이루어진 직포 및 펠트(felt)를 이용하여 성형체를 제조한 후 화학 증착 방법으로 섬유상 사이에 결합층을 형성하여 다공체를 제조하는 방법 등이 제시되고 있다[미국특허 공개 제 5,552,049호 및 제 5,075,160호]. Fiber-reinforced porous silicon carbide composites manufacturing technology uses a silicon carbide fiber mat made of finely cut silicon carbide fibers to produce a molded body, and then carbonizes the surface of the silicon carbide fibers in the mat by carbon coating. A method of producing a porous silicon carbide by forming a neck between silicon fibers and a method of manufacturing a porous body by forming a bonding layer between the fibrous phases by chemical vapor deposition after producing a molded body using a woven fabric and felt made of ceramic fibers. And the like (US Patent Publication Nos. 5,552,049 and 5,075,160).

그러나, 이러한 방법으로 제조된 세라믹 섬유 강화 세라믹 다공체는 다공체 구조를 형성하기 위해 높은 부피비의 세라믹 섬유를 필요로 하기 때문에 제조단가가 일반 탄화규소 다공체와 비교하여 현저하게 높고 기공 구조 제어가 용이하지 않기 때문에 개발된 세라믹 섬유 강화 탄화규소 다공체의 실제 적용에 많은 제약이 있다. However, since the ceramic fiber-reinforced ceramic porous body produced by this method requires a high volume ratio of ceramic fiber to form the porous structure, the manufacturing cost is significantly higher than that of the general silicon carbide porous body and the pore structure control is not easy. There are many limitations in the practical application of the developed ceramic fiber reinforced silicon carbide porous body.

결론적으로 현재까지 알려진 세라믹 섬유 강화 다공질 필터 소재는 세라믹 섬유를 매트상 또는 직포상으로 이용하여 성형체를 제조한 후 다양한 방법으로 세라믹 섬유상 사이에 세라믹 결합상을 형성하여 세라믹 섬유 강화 다공질 탄화규소 소재를 제조하기 때문에 고가의 세라믹 섬유상이 높은 분율을 유지해야 한다.In conclusion, the ceramic fiber reinforced porous filter material known to date is manufactured using a ceramic fiber mat or woven fabric, and then a ceramic bond phase is formed between the ceramic fiber phases in various ways to produce a ceramic fiber reinforced porous silicon carbide material. Therefore, the expensive ceramic fiber phase must maintain a high fraction.

또한, 높은 분율의 탄화규소 섬유로 이루어진 성형체를 사용하여 다양한 방법으로 탄화규소 섬유상 사이를 결합시켜 제조된 탄화규소 섬유 강화 탄화규소 다공체는 섬유상에 강한 결합이 이루어지지 않기 때문에 고강도화를 달성하기가 어려운 문제가 있다. In addition, silicon carbide fiber-reinforced silicon carbide porous bodies manufactured by bonding the silicon carbide fibrous phases in various ways by using a molded body made of a high fraction of silicon carbide fibers are difficult to achieve high strength because they do not have strong bonding on the fibers. There is.

이에 본 발명자들은 종래 세라믹 섬유강화 탄화규소 다공체와 동등 이상의 물성을 유지하면서, 함유되는 세라믹 섬유상의 분율을 최소화하여 제조 단가를 획기적으로 낮출 수 있는 탄화규소 섬유 강화 반응소결 탄화규소 다공체를 개발하고자 연구 노력하였다. 그 결과, 출발원료로 탄화규소 분말, 카본 분말, 및 규소 등의 성분을 사용하되, 섬유 강화상으로 특정의 크기로 잘게 절단된 탄화규소 섬유를 소량첨가하여 성형체를 형성하고, 상기 규소는 외부에서 주입하거나 성형체 내부에 함유하여 용융 및 침윤 반응을 수행하여 형성된 반응소결 탄화규소 다공체로서, 상기 침윤되는 규소의 양 및 탄화규소 분말의 크기 제어로 반응소결 탄화규소 다공체 내의 기공 크기와 기공율의 조절이 가능하고, 상기 절단된 탄화규소 섬유가 형성된 탄화규소 분말 사이의 넥(neck)상을 강화시키고 탄화규소 다공체내에서 수 ∼ 수십 개의 원료분말로 사용된 탄화규소 입자를 넥상과 함께 연속적으로 연결시켜 탄화규소 다공체의 파괴강도를 향상 시킬 뿐만 아니라 파괴 시 지연 파괴현상을 유도하여 신뢰성을 향상시킬 수 있다는 것을 알게되어 본 발명을 완성하게 되었다.Accordingly, the present inventors endeavor to develop a silicon carbide fiber reinforced reaction sintered silicon carbide porous body that can significantly lower the manufacturing cost by minimizing the fraction of the ceramic fiber contained while maintaining physical properties equivalent to those of the conventional ceramic fiber reinforced silicon carbide porous body. It was. As a result, a component such as silicon carbide powder, carbon powder, and silicon is used as a starting material, but a small amount of silicon carbide fiber finely cut to a specific size is added to a fiber-reinforced phase to form a molded body. A reaction-sintered silicon carbide porous body formed by injecting or contained in a molded body to perform melting and infiltration reaction, and the pore size and porosity in the reaction-sintered silicon carbide porous body can be controlled by controlling the amount of silicon infiltrated and the size of silicon carbide powder. And reinforcing the neck phase between the silicon carbide powders formed with the cut silicon carbide fibers and continuously connecting the silicon carbide particles used as the raw material powder in the silicon carbide porous body together with the neck phase and the silicon carbide. It not only improves the breaking strength of the porous body, but also induces the delayed fracture phenomenon when destroying, thus improving the reliability. It was found that the present invention was completed.

따라서, 본 발명은 기공크기 및 기공율 조절이 가능하고, 기계적 물성이 향상된 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a pore size and porosity control, and to provide a silicon carbide fiber reinforced reaction sintered silicon carbide porous body having improved mechanical properties and a method of manufacturing the same.

본 발명은 탄화규소 분말, 탄화규소 섬유, 카본 분말 및 규소를 함유하여 이루어진 탄화규소 다공체로, 상기 탄화규소 섬유의 길이는 탄화규소 분말 평균입경의 5 배 ∼ 10 ㎜ 이고, 상기 규소는 다공체 내·외부에서 용융 및 침윤하여 형성된 탄화규소 섬유 강화 반응소결 탄화규소 다공체에 그 특징이 있다.The present invention is a silicon carbide porous body containing silicon carbide powder, silicon carbide fibers, carbon powder and silicon, the length of the silicon carbide fiber is 5 times to 10 mm of the average particle diameter of silicon carbide powder, the silicon is a porous body The silicon carbide fiber reinforced reaction sintered silicon carbide porous body formed by melting and infiltrating externally has its characteristics.

이하, 본 발명은 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 기공크기 및 기공율 조절이 가능하고, 종래에 비해 파단강도 및 신뢰성 향상에 기여하는 지연 파괴 현상 등의 기계적 물성이 향상된 탄화규소 섬유 강화 반응소결 탄화규소 다공체에 관한 것이다.The present invention relates to a silicon carbide fiber reinforced reaction sintered silicon carbide porous body capable of controlling the pore size and porosity, and improved mechanical properties such as delayed fracture phenomena, which contribute to the improvement of breaking strength and reliability compared to the prior art.

탄화규소 다공체는 일반적으로 탄화규소 분말, 카본 분말, 탄화규소 섬유 및 규소 등을 소결하여 제조되어지는 바, 본 발명은 종래의 탄화규소 다공체와 동등 이상의 물성을 유지하면서, 상기 탄화규소 섬유상인 세라믹 섬유의 사용 분율을 최소화하여 제조 단가를 현격히 낮춘 것이다.The silicon carbide porous body is generally manufactured by sintering silicon carbide powder, carbon powder, silicon carbide fiber, silicon, and the like. The present invention is a ceramic fiber which is in the form of the silicon carbide fiber while maintaining physical properties equivalent to those of the conventional silicon carbide porous body. By minimizing the fraction used, the manufacturing cost is significantly lowered.

이의 방법으로 본 발명은 상기 탄화규소 섬유상의 길이를 특정범위로 잘게 자른 것을 사용하여 형성된 규소와 탄소의 고온반응으로 새로이 형성된 넥(neck)상 내의 탄화규소 및 잔류 규소와 결합을 형성하게 되고, 상기 절단된 탄화규소 섬유 가 넥(neck)상과 동시에 다공질 복합재료 내의 원료분말로 사용된 탄화규소 입자 사이 결합력 및 넓은 범위에서 탄화규소 입자 사이의 연결성을 향상시켜 다공질 탄화규소 복합재료의 파단강도 및 지연파괴현상 등을 향상시키게 된다.In this manner, the present invention forms a bond with silicon carbide and residual silicon in a newly formed neck phase by the high temperature reaction of silicon and carbon formed by cutting the length of the silicon carbide fiber phase into a specific range. Breaking strength and retardation of porous silicon carbide composites by cutting the silicon carbide fibers on the neck and at the same time improving the bonding strength between silicon carbide particles used as raw material powder in porous composites and the connectivity between silicon carbide particles in a wide range It will improve the breakdown phenomenon.

또한, 본 발명은 침윤되는 규소의 양 및 탄화규소 분말의 크기 제어로 탄화규소 다공체 내의 기공 크기와 기공율의 조절이 가능하다. In addition, the present invention can control the pore size and porosity in the silicon carbide porous body by controlling the amount of silicon infiltrated and the size of the silicon carbide powder.

본 발명의 탄화규소 섬유 강화 반응소결 탄화규소 다공체는 일반적으로 사용되는 탄화규소 분말, 탄화규소 섬유, 카본 분말 및 규소 등의 성분 중에서 제조된 제품의 경제성에 큰 영향력을 갖는 탄화규소 섬유로, 특정의 길이로 잘게 절단된 것을 소량 사용한다. 즉, 탄화규소 섬유 사용량의 증가에 따라 기계적 물성도 함께 향상되나 가격이 동시에 증가하는 문제를 개선하여 탄화규소 섬유 길이를 제한하여 소량으로도 종래와 동등 이상의 물성을 확보하도록 하는 것이다.The silicon carbide fiber reinforced reaction sintered silicon carbide porous body of the present invention is a silicon carbide fiber having a great influence on the economics of a product manufactured from components such as silicon carbide powder, silicon carbide fiber, carbon powder, and silicon, which are generally used. Use a small amount of finely cut to length. That is, the mechanical properties are also improved with the increase in the amount of silicon carbide fibers, but the price is increased at the same time to improve the problem of limiting the length of silicon carbide fibers to ensure the same or more physical properties than the conventional.

본 발명은 특정범위로 탄화규소 섬유 길이가 한정된 것을 사용하는 데 기술구성상의 특징이 있는 바, 상기 탄화규소 섬유의 길이는 출발원료로 사용된 탄화규소 분말의 평균입경의 5 배 ∼ 10 ㎜ 범위를 유지하는 것이 바람직하다. 상기 길이가 출발원료로 사용된 탄화규소 분말의 평균입경의 5 배 크기 미만이면 탄화규소 입자와 입자를 연결시켜주는 그물망 효과에 의한 기계적 특성 향상 효과가 감소하며, 10 ㎜를 초과하는 경우에는 제조공정의 어려움 및 기계적 특성 향상에 대한 한계 효과가 감소하는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.The present invention is characterized by the technical configuration of using a limited silicon carbide fiber length in a specific range, the length of the silicon carbide fiber ranges from 5 times to 10 mm of the average particle diameter of the silicon carbide powder used as a starting material It is desirable to maintain. If the length is less than 5 times the average particle diameter of the silicon carbide powder used as the starting material, the mechanical property improvement effect by the mesh effect connecting the silicon carbide particles with the particles is reduced, and if it exceeds 10 mm, the manufacturing process It is preferable to maintain the above range because the problem of reducing the limiting effect on the difficulty and the improvement of the mechanical properties.

이때, 상기 탄화규소 분말의 평균입경은 탄화규소 섬유 다공질 복합재료가 사용되는 분야에서 요구되는 기공 크기에 의해 결정되기 때문에 본 발명에서는 특 별히 한정하지 않는다. At this time, the average particle diameter of the silicon carbide powder is not particularly limited in the present invention because it is determined by the pore size required in the field in which the silicon carbide fiber porous composite material is used.

이러한 탄화규소 섬유는 제조된 탄화규소 다공체에 대하여 1 ∼ 15 중량% 범위로 사용하며, 상기 사용량이 1 중량% 미만이면 그 양이 미미하여 본 발명이 목적으로 하는 효과 달성이 어려우며, 15 중량%를 초과하는 경우에는 탄화규소 다공체내 탄화규소 섬유의 분산이 잘 이루어지지 않아 균일한 미세구조를 갖는 다공질 복합재료인 탄화규소 다공체 제조가 어려운 문제가 있다. Such silicon carbide fibers are used in the range of 1 to 15% by weight with respect to the manufactured silicon carbide porous body, and when the amount is less than 1% by weight, the amount is insignificant, and thus it is difficult to achieve the effect desired by the present invention, and exceeds 15% by weight. In this case, the dispersion of the silicon carbide fibers in the silicon carbide porous body is difficult to produce, which makes it difficult to manufacture the porous silicon carbide porous material having a uniform microstructure.

이외의 나머지 성분, 구체적으로 탄화규소 분말, 카본분말 및 규소 등은 상기 탄화규소 섬유를 제외한 나머지 양에서 어느 범위로 다양한 조합이 가능하므로 특별히 제한하지 않는다. 즉, 상기 성분의 어떠한 조합에 의해서도 탄화규소 다공체는 형성되며, 본 발명은 상기 탄화규소 섬유의 한정에 의해 본 발명이 목적으로 하는 효과 달성이 가능하다. 이중, 규소는 기공크기 및 기공율 제어를 위해 사용되는 것으로 바람직하기로는 사용된 카본분말의 몰(mole)수 이상의 범위로 사용하는 것이 좋다. 상기 규소의 사용량이 카본분말의 사용량 미만으로 사용되면 잔류 카본의 양이 증가하여 다공질 탄화규소 복합재료의 기계적 특성을 저하시킨다. The other components, specifically silicon carbide powder, carbon powder and silicon, etc. are not particularly limited because various combinations are possible in the remaining amount except for the silicon carbide fiber. That is, the silicon carbide porous body is formed by any combination of the above components, and the present invention can achieve the object of the present invention by the limitation of the silicon carbide fibers. Of these, silicon is used for controlling the pore size and porosity, and it is preferable to use it in the range of more than the number of moles of the carbon powder used. When the amount of silicon used is less than the amount of carbon powder, the amount of residual carbon is increased to lower the mechanical properties of the porous silicon carbide composite material.

한편, 본 발명의 탄화규소 섬유 강화 반응소결 탄화규소 다공체 제조 방법을 구체적으로 설명하면 다음과 같다.On the other hand, when the silicon carbide fiber reinforced reaction sintered silicon carbide porous body manufacturing method of the present invention will be described in detail.

본 발명은 탄화규소 분말/탄화규소 섬유/카본 분말을 함유한 성형체에, 용융된 규소를 침윤시켜 제조하거나, 또는 탄화규소 분말/탄화규소 섬유/규소/카본 분말에 성형체를 형성시킨 다음 가열하여 상기 성형체 내의 규소 분말을 용해 및 침 윤시키는 방법으로 수행 가능하다.The present invention is produced by infiltration of molten silicon into a molded body containing silicon carbide powder / silicon carbide fiber / carbon powder, or by forming a molded body on silicon carbide powder / silicon carbide fiber / silicon / carbon powder and then heating the It can be carried out by the method of dissolving and infiltrating the silicon powder in the molded body.

상기 탄화규소 섬유는 사이징 처리된 탄화규소 섬유 다발(bundle)내 탄화규소 섬유가 개별로 나누어질 수 있도록 묽은 질산용액(<10%)으로 처리하여 수세 및 건조한 후 일정 크기로 잘게 절단된 탄화규소 섬유를 사용한다. The silicon carbide fibers are chopped silicon carbide fibers to a predetermined size after washing with water and dried with dilute nitric acid solution (<10%) so that the silicon carbide fibers in the sized silicon carbide fiber bundles can be divided individually. Use

상기 성형체 성분의 혼합분말은 당 분야에서 일반적으로 사용되는 결합제가 첨가된 수용액 또는 비수용액을 사용하여 탄화규소 구성 입자의 크기 변화가 일어나지 않도록 균일하게 혼합한 후 용액을 건조시켜 탄화규소, 탄화규소 섬유 또는 규소 입자 표면이 카본 분말로 코팅된 혼합 분말을 제조한다. The powder mixture of the molded component is uniformly mixed so as not to change the size of the silicon carbide particles using an aqueous solution or a non-aqueous solution to which a binder commonly used in the art is added, and then the solution is dried to form silicon carbide and silicon carbide fibers. Or a mixed powder in which the silicon particle surface is coated with the carbon powder.

상기 결합제는 페놀수지(phenollic resin)계 및 폴리비닐 알코올계 등을 사용할 수 있는 바, 이들에 의해 탄화공정이 수행된다. 이러한 성분은 성형체 혼합분말에 대하여 2 ∼ 10 중량% 사용하는 것이 좋은 바, 이는 성형체 혼합 분말이 규소와 고온 반응 시 용융 규소의 침윤을 활성화시키기 위함이다. 이후에 카본함량이 높은 결합제 구체적으로 페놀레진(phenollic resin) 또는 메틸셀룰로오스(Methylcellulose)를 5 ∼ 40 중량% 범위로 첨가 혼합하여 성형 공정을 수행하는 바, 상기 성형은 압출 및 일축 가압 성형 등을 할 수 있다. The binder may be a phenolic resin, polyvinyl alcohol, and the like, and the carbonization process is performed by them. It is preferable to use 2 to 10% by weight of such a component with respect to the molded powder mixture, in order to activate the infiltration of the molten silicon when the molded powder mixture reacts with silicon at a high temperature. Thereafter, a binder having a high carbon content, specifically, phenolic resin or methylcellulose is added and mixed in a range of 5 to 40% by weight to perform a molding process. The molding may be performed by extrusion and uniaxial pressure molding. Can be.

상기 용융된 규소를 외부에서 성형체에 침윤시켜 소결체를 제조하는 경우, 상기 규소가 용융 가능한 온도, 구체적으로 1450 ∼ 1650 ℃ 범위 및 1 ∼ 10 torr 범위의 진공 하 또는 불활성 분위기 하에서 침윤 반응을 수행한다.When the molten silicon is infiltrated into the molded body from the outside to produce a sintered body, the infiltration reaction is performed under vacuum or in an inert atmosphere in which the silicon is meltable, specifically, in the range of 1450 to 1650 ° C. and 1 to 10 torr.

또한, 상기 성형체에 규소 성분을 함유시켜 성형체를 제조하는 경우에는 성형체 제조 후 소결과정을 수행하는 바, 상기 소결은 1450 ∼ 1650 ℃에서 흑연 반응로를 사용하여 1 ∼ 10 torr의 진공 하 또는 불활성 분위기하에서 수행한다. In addition, in the case of manufacturing a molded body by containing a silicon component in the molded body, a sintering process is performed after the molded body is manufactured. The sintering is performed in a vacuum or inert atmosphere of 1 to 10 torr using a graphite reactor at 1450 to 1650 ° C. Perform under

상기와 같이 제조된 탄화규소 다공체는 탄화질 성형체 내 규소 또는 탄화질 성형체 외부에서 공급되는 규소가 용융되어 탄화질 성형체로 침윤되며, 탄화질 성형체 외부에서 탄화질 성형체 내부로 용융 규소의 침윤은 탄화질 성형체 표면과 용융 규소사이에 놓인 카본 직포내 모세관을 따라 일어나게 된다. 탄화질 성형체에 침윤된 용융 규소는 탄화규소 표면의 카본과 반응으로 새로운 탄화규소를 형성하고 잔류되는 미 반응 또는 과잉의 규소와 함께 출발 원료로 사용된 탄화규소 입자 사이에 넥(neck) 상을 탄화규소 섬유와 같이 형성한다.The silicon carbide porous body manufactured as described above is infiltrated into the carbonaceous molded body by melting silicon supplied from the silicon in the carbonized molded body or the outside of the carbonized molded body, and the infiltration of molten silicon from the outside of the carbonized molded body into the carbonized molded body is carbonized. It occurs along a capillary in a carbon woven fabric placed between the surface of the molded body and the molten silicon. The molten silicon infiltrated into the carbonaceous molded body reacts with the carbon on the silicon carbide surface to form new silicon carbide and carbonizes the neck phase between the silicon carbide particles used as starting materials with the remaining unreacted or excess silicon. It is formed like silicon fibers.

도 1은 본 발명에 따라 제조된 탄화규소 섬유강화 반응소결 탄화규소의 미세구조를 나타낸 것으로, 잘게 절단된 탄화규소 섬유는 대부분 출발원료로 사용된 탄화규소 분말 사이에 새롭게 반응소결 시 형성된 베타상 탄화규소, 미 반응 카본 및 잔류 규소로 이루어진 넥 기지상 또는 탄화규소 분말의 자유 표면에 위치한다. 또한, 다공체내 탄화규소 섬유는 사용된 탄화규소 섬유의 길이 만큼 출발 원료로 사용된 탄화규소 입자를 연속적으로 연결하고 있다. Figure 1 shows the microstructure of the silicon carbide fiber-reinforced reaction sintered silicon carbide prepared according to the present invention, the finely cut silicon carbide fiber is beta-phase carbonization formed when newly reaction sintered between the silicon carbide powder used as the starting material It is located on the free surface of the neck matrix or silicon carbide powder consisting of silicon, unreacted carbon and residual silicon. In addition, the silicon carbide fibers in the porous body continuously connect the silicon carbide particles used as starting materials by the length of the silicon carbide fibers used.

이와 같이 제조된 탄화규소 섬유강화 다공질 탄화규소 소결체의 평균 기공크기 및 기공율은 출발원료로 사용된 탄화규소 입자 크기 및 규소 양에 의해 결정되며 기공크기는 수 나노미터(nm) ∼ 수백 마이크로 미터(㎛) 크기로 제어할 수 있으며 기공율은 10 ∼ 60 부피%, 바람직하기로는 30 ∼ 60 부피% 범위까지 제어할 수 있다. 탄화규소 섬유가 강화된 다공질 탄화규소 복합재료는 파괴강도는 기존의 다공질 탄화규소 소재보다 최대 200% 이상 향상되고 지연 파괴 현상이 일어나기 때문에 본 발명의 탄화규소 섬유 강화 반응소결 탄화규소 다공체는 다양한 분야 특히 필터용 소재 구체적으로 석탄가스화복합발전(Integrated Gasification Combined Cycle)용 등의 고온필터용 소재, 디젤분진 필터용 소재 및 수질여과필터용 소재로 활용이 가능하다.The average pore size and porosity of the silicon carbide fiber-reinforced porous silicon carbide sintered body thus prepared are determined by the size of silicon carbide particles and the amount of silicon used as starting materials, and the pore size is from several nanometers (nm) to several hundred micrometers (㎛). ) Can be controlled in size and porosity can be controlled in the range of 10 to 60% by volume, preferably 30 to 60% by volume. In the porous silicon carbide composite material reinforced with silicon carbide fiber, the fracture strength is improved by up to 200% or more than the existing porous silicon carbide material, and the delayed fracture phenomenon occurs. Therefore, the silicon carbide fiber reinforced reaction sintered silicon carbide porous body of the present invention Specifically, the filter material can be used as a material for high temperature filter, a diesel dust filter, and a water filtration filter, such as an integrated gasification combined cycle.

이하, 실시예에 의거하여 본 발명을 더욱 구체적으로 설명하겠는 바, 다음 실시예에 의거하여 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.

실시예 1Example 1

탄화규소 섬유 강화 반응소결 탄화규소 다공체 기지상을 제조하기 위하여 180 ㎛ 및 250 ㎛ 크기의 탄화규소 분말 54 ∼ 62 중량%, 규소 괴(ingot) 28 중량%, 페놀레진 4 중량% 및 카본블랙 4 중량% 및 강화재로 Hi-Nicalon 탄화규소 섬유(Nippon carbon사) 2 ∼ 10 중량%를 사용하였다. 이때, 상기 탄화규소 섬유는 파괴 시 다공질 탄화규소에 작용하는 힘을 충분히 분산시킬 수 있도록 탄화규소 섬유를 5 ∼ 7 ㎜ 길이로 잘게 절단한 후 탄화규소 다발의 탄화규소 섬유를 묽은 질산을 사용하여 개별 분리하여 사용하였다. Silicon Carbide Fiber Reinforced Reaction Sintered Silicon Carbide Powders 54 to 62 wt%, 28 wt% silicon ingot, 4 wt% phenol resin, and 4 wt% carbon black to produce silicon carbide porous matrix And 2 to 10% by weight of Hi-Nicalon silicon carbide fibers (Nippon carbon). In this case, the silicon carbide fibers are finely cut into 5 to 7 mm long silicon carbide fibers so as to disperse the force acting on the porous silicon carbide at the time of breakdown, and then the silicon carbide fibers of the silicon carbide bundles are diluted with dilute nitric acid. It was used separately.

탄화규소 섬유가 개별 분리 처리된 잘게 절단된 섬유를 180 ㎛ 및 250 ㎛ 크기의 탄화규소 입자/카본블랙/페놀레진으로 이루어진 수계 슬러리 70 중량%에 분산시켜 성형체 제조용 슬러리를 제조하였다. 상기 탄화규소 섬유의 사용량을 성 형체 슬러리에 대하여 2 ∼ 10 중량 % 범위로 변화시키면서 수행하였다. 상기 제조된 탄화규소 섬유/탄화규소 입자/카본블랙/페놀레진 슬러리를 탈 기포 처리한 후 몰드에 주입하고 80 ℃에서 24시간 건조하여 복합분말을 제조하였다. 상기에서 제조된 복합분말 96 중량%와 유·무기 바인더인 페놀레진을 4 중량% 균일하게 혼합하여 일축 가압 성형 방법으로 성형체를 제조하였다.The finely divided fibers in which the silicon carbide fibers were separately separated were dispersed in 70 wt% of an aqueous slurry composed of silicon carbide particles / carbon black / phenol resins of 180 μm and 250 μm in size to prepare a slurry for forming a molded article. The amount of silicon carbide fibers used was carried out while varying in the range of 2 to 10% by weight based on the molded slurry. The prepared silicon carbide fiber / silicon carbide particles / carbon black / phenol resin slurry was defoamed, injected into a mold, and dried at 80 ° C. for 24 hours to prepare a composite powder. 96% by weight of the composite powder prepared above Phenol resin, which is an organic and inorganic binder, was uniformly mixed by 4% by weight to prepare a molded body by a uniaxial pressure molding method.

상기 건조된 성형체는 용융 규소를 외부에서 성형체 내부로 침윤시켜 다공질 탄화규소 섬유 강화 반응소결 탄화규소 복합재료를 제조하는 바, 상기 용융 규소의 침윤 공정은 성형체 및 규소 괴를 카본 직포위에 배열한 후 1550 ℃, 약 10-1 torr 이하의 진공분위기하에서 30분간 흑연 반응로를 사용하여 수행하였다. The dried molded body is infiltrated with molten silicon from the outside into the molded body to prepare a porous silicon carbide fiber reinforced reaction sintered silicon carbide composite material. It was carried out using a graphite reactor for 30 minutes in a vacuum atmosphere of less than about 10 -1 torr ℃.

다음 도 2는 180 ㎛ 크기의 탄화규소 입자에 탄화규소 섬유 4 부피% 사용하여 (a)는 잔류 규소(14.2 중량%)이고, (b) 잔류 규소(22 중량%)의 SEM 사진을 나타낸 것이다. 상기 SEM 사진에 나타낸 바와 같이, 탄화규소 섬유는 출발 원료로 사용된 탄화규소 분말 사이에 형성 된 넥(neck)기지상 및 탄화규소 분말 표면에 위치하며 탄화규소 분말을 연결하고 있다. Next, FIG. 2 shows a SEM image of (a) residual silicon (14.2% by weight) and (b) residual silicon (22% by weight) using 4% by volume of silicon carbide fibers in 180 µm-sized silicon carbide particles. As shown in the SEM photograph, the silicon carbide fibers are located on the neck base and the surface of the silicon carbide powder formed between the silicon carbide powders used as starting materials and connect the silicon carbide powders.

또한, 다음 도 3에 나타낸 바와 같이, 가로 세로 및 높이가 3 ㎜, 4 ㎜ 및 30 ㎜ 크기의 시편을 사용한 3점 굽힘 강도 시험시 제조된 탄화규소 섬유 강화 반응소결 탄화규소 다공체는 탄화규소 섬유의 빠져 나옴 현상이 관찰되었으며, 이러한 탄화규소 섬유의 빠져 나옴 현상이 지연 파괴 현상을 일으키며 변 위(displacement) 양은 4 ㎜ 이상이었으며 탄화규소 섬유의 부피 분율이 증가될수록 변위 양은 증가하였다.In addition, as shown in Figure 3, the silicon carbide fiber reinforced reaction sintered silicon carbide porous body produced during the three-point bending strength test using specimens of 3 mm, 4 mm and 30 mm in size, width and height are The escape phenomenon of the silicon carbide fiber caused the delayed fracture phenomenon and the displacement amount was 4 mm or more and the displacement amount increased as the volume fraction of the silicon carbide fiber increased.

도 4는 본 발명에 따라 실시예 1에서 제조된 탄화규소 다공체의 잔류 규소 양에 따른 기공도 및 기공크기의 변화를 나타낸 것이다.Figure 4 shows the change in porosity and pore size according to the amount of residual silicon of the silicon carbide porous body prepared in Example 1 according to the present invention.

상기 제조된 다공질 탄화규소 섬유 강화 반응소결 탄화규소 복합재료 내 계산된 잔류 규소 양은 12 ∼ 22 중량% 이었다. 상기 제조된 탄화규소 섬유 강화 반응소결 탄화규소 다공체의 평균 기공 크기는 약 70 ㎛ 정도이었으며 기공율은 약 30 ∼ 40 부피% 이었으며, 파괴강도는 50 ∼ 70 MPa를 나타내었다. 상기 제조된 탄화규소 다공체의 X-선 회절 분석 패턴을 다음 도 5에 나타내었다. 그 결과, 상기 제조된 섬유 강화 반응소결 탄화규소 다공체에는 잔류 규소, 잔류 탄소 및 그라파이트가 존재한다는 것을 확인할 수 있었다. The calculated amount of residual silicon in the prepared porous silicon carbide fiber reinforced reaction sintered silicon carbide composite was 12 to 22% by weight. The average pore size of the prepared silicon carbide fiber reinforced reaction sintered silicon carbide porous body was about 70 μm, the porosity was about 30 to 40% by volume, and the breaking strength was 50 to 70 MPa. An X-ray diffraction analysis pattern of the prepared silicon carbide porous body is shown in FIG. 5. As a result, it was confirmed that residual silicon, residual carbon, and graphite were present in the prepared fiber-reinforced sintered silicon carbide porous body.

탄화규소 섬유의 부피 분율 및 잔류 규소의 양이 증가됨에 따라 점차 증가하였으나, 탄화규소 섬유 부피 분율이 7 % 이상에서는 파괴강도의 증가폭은 낮게 나타났으며, 다공체내 기공율이 증가됨에 따라 파괴강도는 감소됨을 확인할 수 있었다. 또한, 상기 제조된 탄화규소 섬유강화 탄화규소 다공체의 굽힘강도 시험시 치밀한 세라믹 섬유 강화 세라믹 복합재료에서 나타나는 지연 파괴 특성이 나타났다. 이는 상기 제조된 탄화규소 다공체 내에 함유된 잘게 절단된 탄화규소 섬유가 치밀한 세라믹 섬유 강화 세라믹 복합재료에서 나타나는 세라믹 섬유의 빠짐 현상(pull-out)으로 지연 파괴가 일어나기 때문이다. 상기 실시예 1의 3-점 파괴강도 측정시 나타나는 응력(stress)-변위(displacement) 곡선은 다음 도 6에 나 타내었다.As the volume fraction of silicon carbide fibers and the amount of residual silicon increased, the increase in fracture strength was low when the silicon carbide fiber volume fraction was more than 7%, and the fracture strength decreased as the porosity in the porous body increased. Could confirm. In addition, when the bending strength test of the prepared silicon carbide fiber-reinforced silicon carbide porous body showed a delayed fracture characteristic that appears in the dense ceramic fiber reinforced ceramic composite material. This is because finely chopped silicon carbide fibers contained in the prepared silicon carbide porous bodies are delayed by pull-out of ceramic fibers appearing in a dense ceramic fiber reinforced ceramic composite material. Stress-displacement curves appearing in the 3-point breakdown strength measurement of Example 1 are shown in FIG. 6.

실시예 2 Example 2

탄화규소 섬유 강화 반응소결 탄화규소 다공체 기지상을 제조하기 위하여 10 ㎛ 크기의 탄화규소 입자 66 중량%, 페놀레진 4 중량%, 카본블랙 4 중량%, 강화재로 Hi-Nicalon 탄화규소 섬유(Nippon carbon사) 4 중량% 및 규소 분말 22 중량%를 사용하였다.Silicon carbide fiber reinforced reaction sintered To produce silicon carbide porous matrix, 66% by weight of 10 µm silicon carbide particles, 4% by weight of phenol resin, 4% by weight of carbon black, and Hi-Nicalon silicon carbide fibers (Nippon carbon) as a reinforcing material 4 wt% and 22 wt% silicon powder were used.

이때, 상기 탄화규소 섬유는 파괴 시 다공질 탄화규소에 작용하는 힘을 충분히 분산시킬 수 있도록 탄화규소 섬유를 0.1 ∼ 0.2 ㎜ 길이로 잘게 절단한 후 탄화규소 다발의 탄화규소 섬유를 묽은 질산을 사용하여 개별 분리하여 사용하였다. At this time, the silicon carbide fiber is finely cut silicon carbide fibers to 0.1 ~ 0.2 mm long so that the force acting on the porous silicon carbide at the time of breakage, and then the silicon carbide fibers of the silicon carbide bundle using dilute nitric acid It was used separately.

탄화규소 섬유가 개별 분리 처리된 잘게 절단된 섬유를 10 ㎛ 크기의 탄화규소 입자/카본블랙/페놀레진/규소 분말로 이루어진 수계 슬러리 70 중량%에 분산시켜 성형체 제조용 슬러리를 제조하였다. The finely divided fibers in which the silicon carbide fibers were separately separated were dispersed in 70 wt% of an aqueous slurry composed of silicon carbide particles / carbon black / phenol resin / silicon powder having a size of 10 μm to prepare a slurry for producing a molded product.

상기 제조된 탄화규소 섬유/탄화규소 입자/카본블랙/페놀레진 슬러리를 탈 기포 처리한 후 몰드에 주입하고 80 ℃에서 24시간 건조하여 복합분말을 제조하였다. 상기에서 제조된 복합분말 96 중량%와 유·무기 바인더인 페놀레진을 4 중량% 균일하게 혼합하여 일축 가압 성형 방법으로 성형체를 제조하였다. The prepared silicon carbide fiber / silicon carbide particles / carbon black / phenol resin slurry was defoamed, injected into a mold, and dried at 80 ° C. for 24 hours to prepare a composite powder. 96% by weight of the composite powder prepared above Phenol resin, which is an organic and inorganic binder, was uniformly mixed by 4% by weight to prepare a molded body by a uniaxial pressure molding method.

이후에 반응 소결 공정을 수행하는 바, 약 1500 ℃, 아르곤(Ar) 분위기하에서 30분간 흑연 반응로를 사용하였다. Thereafter, the reaction sintering process was performed, and a graphite reactor was used for about 30 minutes in an argon (Ar) atmosphere at about 1500 ° C.

상기에서 제조된 다공질 탄화규소 섬유 강화 반응소결 탄화규소 복합재료 내 계산된 잔류 규소 양은 15 중량% 이었다. The calculated amount of residual silicon in the porous silicon carbide fiber reinforced reaction sintered silicon carbide composite material prepared above was 15% by weight.

상기에서 제조된 탄화규소 섬유 강화 반응소결 탄화규소 다공체의 평균 기공 크기는 2 ㎛ 정도이었으며 기공율은 35 부피%이었으며, 파괴강도는 평균 50 MPa 이었으며 다공체내 평균 기공 크기가 감소하고 기공율이 크게 다르지 않은데도 불구하고 성형체 외부에서 성형체로 용융 규소의 침윤에 의해 제조된 탄화규소 섬유 강화 반응소결 탄화규소 다공체의 파괴 강도 보다 다소 낮게 나타났다. The average pore size of the silicon carbide fiber reinforced reaction sintered silicon carbide porous body prepared above was about 2 μm, the porosity was 35% by volume, the breaking strength was 50 MPa on average, and the average pore size in the porous body was decreased and the porosity was not significantly different. And the fracture strength of the silicon carbide fiber reinforced reaction sintered silicon carbide porous body produced by infiltration of molten silicon into the molded body outside the molded body.

또한, 실시예 1에서 보여주는 것과 같은 방법으로 굽힘 강도 시험 시 제조된 탄화규소 섬유 강화 반응소결 탄화규소 다공체는 지연 파괴 현상이 나타났으며 변위(displacement) 양은 2 ∼ 3 ㎜ 정도이었으며, 탄화규소/규소/카본 블랙/탄화규소 섬유로 이루어진 성형체를 사용하여 제조된 탄화규소 섬유 강화 반응소결 탄화규소에서도 파괴 시 탄화규소 섬유의 빠져 나옴 현상이 관찰되었으나 빠져 나온 섬유의 길이는 감소되었다. In addition, the silicon carbide fiber reinforced reaction sintered silicon carbide porous body prepared during the bending strength test in the same manner as in Example 1 exhibited a delayed fracture phenomenon and the displacement amount was about 2 to 3 mm, and the silicon carbide / silicon Silicon carbide fibre-reinforced reaction sintered silicon carbide fabricated using a molded body made of carbon black / silicon carbide fibers was also observed to escape the silicon carbide fibers upon fracture, but the length of the fibers was reduced.

상기에서 살펴본 바와 같이, 본 발명은 잘게 절단된 탄화규소 섬유 및 규소의 용융 및 침윤 반응으로 형성된 탄화규소 다공체는 고강도 및 지연 파괴 현상에 따른 고신뢰성 가질 수 있을 뿐만 아니라 기지상을 형성하는 출발물질의 제어에 의해 기공 크기 제어 및 기공율의 제어가 용이하고, 종래에 비해 소량의 탄화규소 섬 유를 사용하여 제조 단가를 획기적으로 낮출 수 있어 높은 신뢰성이 요구되는 산업체 대형 고온로 분진 필터, 디젤 엔진 분진 필터 뿐만 아니라 최근 활발히 개발되고 있는 석탄 가스화 발전용 고온 가스필터 소재로 활용될 수 있기 때문에 미래 산업의 고도화 및 신 발전 기술의 실용화를 앞당길 수 있다. As described above, the present invention is a silicon carbide porous body formed by melting and infiltration of finely chopped silicon carbide fibers and silicon may not only have high reliability due to high strength and delayed fracture phenomenon, but also control of a starting material to form a matrix phase. It is easy to control pore size and porosity, and it is possible to reduce the manufacturing cost by using a small amount of silicon carbide fiber compared to the conventional ones. In addition, since it can be used as a hot gas filter material for coal gasification power generation, which is being actively developed recently, it is possible to advance the industrialization of future industries and the practical use of new power generation technology.

Claims (7)

탄화규소 분말, 탄화규소 섬유, 카본 분말 및 규소를 함유하여 이루어진 탄화규소 다공체로, A silicon carbide porous body containing silicon carbide powder, silicon carbide fibers, carbon powder and silicon, 상기 탄화규소 섬유는 길이가 탄화규소 분말 평균입경의 5 배 ∼ 10 ㎜ 이고, 제조된 탄화규소 다공체에 대하여 1 ∼ 15 중량% 함유되어 있고, The silicon carbide fiber has a length of 5 to 10 mm of the average particle diameter of silicon carbide powder, and contains 1 to 15% by weight based on the manufactured silicon carbide porous body, 상기 규소는 다공체 내·외부에서 용융 및 침윤하여 형성된 것을 특징으로 하는 탄화규소 섬유 강화 반응소결 탄화규소 다공체.The silicon carbide fiber reinforced reaction sintered silicon carbide porous body, characterized in that formed by melting and infiltrating the inside and outside of the porous body. 제 1 항에 있어서, 상기 제조된 탄화규소 다공체는 기공율이 10 ∼ 60 부피%인 것을 특징으로 하는 탄화규소 섬유 강화 반응소결 탄화규소 다공체.The silicon carbide fiber reinforced reaction sintered silicon carbide porous body according to claim 1, wherein the prepared silicon carbide porous body has a porosity of 10 to 60% by volume. 삭제delete 청구항 1 또는 청구항 2에서 선택된 어느 한 항의 탄화규소 섬유 강화 반응소결 탄화규소 다공체를 소재로 사용하여 제조된 필터용 소재.The filter material manufactured using the silicon carbide fiber reinforced reaction sintered silicon carbide porous body of any one of Claims 1 or 2 as a material. 제 4 항에 있어서, 상기 필터용 소재는 고온 가스 필터용, 디젤분진 필터용 및 수질여과필터용 소재인 것을 특징으로 하는 필터용 소재.The filter material according to claim 4, wherein the filter material is a material for a hot gas filter, a diesel dust filter, and a water filtration filter. 탄화규소 분말, 길이가 탄화규소 분말 평균입경의 5 배 ∼ 10 ㎜ 이고 제조된 탄화규소 다공체에 대하여 1 ∼ 15 중량% 함유량의 탄화규소 섬유, 및 카본 분말이 함유된 성형체에, In a molded body containing silicon carbide powder, silicon carbide fibers having a content of 1 to 15% by weight based on the silicon carbide porous body having a length of 5 to 10 mm of the average particle diameter of the silicon carbide powder, and carbon powder, 용융된 규소를 1450 ∼ 1650 ℃ 온도, 1 ∼ 10 torr의 진공 하 또는 불활성 분위기하에서 성형체 외부에서 내부로 침윤 반응시켜 제조하는 것을 특징으로 하는 탄화규소 섬유 강화 탄화규소 다공체의 제조방법.A method for producing a silicon carbide fiber-reinforced silicon carbide porous body, characterized in that the molten silicon is produced by infiltration reaction from the outside of the molded body to the inside under a vacuum of 1450-1650 ° C., 1-10 torr or in an inert atmosphere. 탄화규소 분말, 길이가 탄화규소 분말 평균입경의 5 배 ∼ 10 ㎜ 이고 제조된 탄화규소 다공체에 대하여 1 ∼ 15 중량% 함유량의 탄화규소 섬유, 규소 분말, 및 카본 분말을 함유한 성형체를 제조한 다음, A molded article containing silicon carbide fibers, silicon powder, and carbon powder containing 1 to 15% by weight of the silicon carbide powder, the length of which is 5 to 10 mm of the average particle diameter of the silicon carbide powder, and produced from the porous silicon carbide porous body was prepared. , 1450 ∼ 1650 ℃ 온도 범위, 1 ∼ 10 torr의 진공 하 또는 불활성 분위기하에서 소결과정을 수행하여 상기 성형체 내의 규소 분말을 용해 및 침윤 반응시켜 제조하는 것을 특징으로 하는 탄화규소 섬유 강화 탄화규소 다공체의 제조방법.Method for producing a silicon carbide fiber-reinforced silicon carbide porous body, characterized in that the sintering process is carried out in a vacuum range of 1450 ~ 1650 ℃, 1 to 10 torr or inert atmosphere to dissolve and infiltrate the silicon powder in the molded body .
KR1020070020641A 2007-02-28 2007-02-28 Sic fiber reinforced reaction bonded sic porous body and its fabrication process KR100838825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070020641A KR100838825B1 (en) 2007-02-28 2007-02-28 Sic fiber reinforced reaction bonded sic porous body and its fabrication process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070020641A KR100838825B1 (en) 2007-02-28 2007-02-28 Sic fiber reinforced reaction bonded sic porous body and its fabrication process

Publications (1)

Publication Number Publication Date
KR100838825B1 true KR100838825B1 (en) 2008-06-17

Family

ID=39771599

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070020641A KR100838825B1 (en) 2007-02-28 2007-02-28 Sic fiber reinforced reaction bonded sic porous body and its fabrication process

Country Status (1)

Country Link
KR (1) KR100838825B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100086527A (en) * 2009-01-23 2010-08-02 한국과학기술연구원 Ceramic body coated with diamond layer and preparation method thereof using two-phase composite
KR101101244B1 (en) 2009-05-14 2012-01-04 한국원자력연구원 Method for manufacturing high density SiCf/SiC composites
EP3192786A4 (en) * 2014-09-09 2018-05-16 Nanjing University of Technology Preparation method of sic porous ceramic material and porous ceramic material manufactured by using same
KR20180130164A (en) 2017-05-29 2018-12-07 한국과학기술연구원 A compostion for preparing a liquid phase sintered silicon carbide porous body, the liquid phase sintered silicon carbide porous body using the composition having high strength and resistivity and a method for manufacturing thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552352A (en) 1991-06-17 1996-09-03 General Electric Company Silicon carbide composite with coated fiber reinforcement
US5840221A (en) 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
JP2002356381A (en) 2001-05-31 2002-12-13 Japan Science & Technology Corp METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552352A (en) 1991-06-17 1996-09-03 General Electric Company Silicon carbide composite with coated fiber reinforcement
US5840221A (en) 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
JP2002356381A (en) 2001-05-31 2002-12-13 Japan Science & Technology Corp METHOD OF MANUFACTURING SiC COMPOSITE MATERIAL OF SiC REINFORCED TYPE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
이상필 외, 대한기계학회 2001년도 추계학술대회논문집 A pp. 27-31

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100086527A (en) * 2009-01-23 2010-08-02 한국과학기술연구원 Ceramic body coated with diamond layer and preparation method thereof using two-phase composite
KR101101244B1 (en) 2009-05-14 2012-01-04 한국원자력연구원 Method for manufacturing high density SiCf/SiC composites
EP3192786A4 (en) * 2014-09-09 2018-05-16 Nanjing University of Technology Preparation method of sic porous ceramic material and porous ceramic material manufactured by using same
KR20180130164A (en) 2017-05-29 2018-12-07 한국과학기술연구원 A compostion for preparing a liquid phase sintered silicon carbide porous body, the liquid phase sintered silicon carbide porous body using the composition having high strength and resistivity and a method for manufacturing thereof

Similar Documents

Publication Publication Date Title
US7648932B2 (en) Molded porous ceramic article containing beta-SiC and process for the production thereof
KR100624094B1 (en) The method of producing carbon fiber reinforced ceramic matrix composites
KR101241775B1 (en) Method for preparing high density fiber reinforced silicon carbide composite materials
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
EP2664601B1 (en) Oxide-based ceramic matrix composites
CN110256082B (en) Method for preparing single crystal silicon carbide nanofiber/silicon carbide ceramic matrix composite material by reaction sintering
JP2001505522A (en) Silicon carbide reinforced silicon carbide composite material
EP1375452B1 (en) Method for producing sic fiber-reinforced sic composite material by means of hot press
Chen et al. Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration
CN109095930A (en) A kind of boron nitride foam material and preparation method thereof
KR100838825B1 (en) Sic fiber reinforced reaction bonded sic porous body and its fabrication process
CN105948781B (en) A kind of preparation method of high opening rate porous silicon carbide ceramic material
US20060269683A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP1284251B1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP2361897B1 (en) PROCESS FOR PRODUCING SiC FIBER BONDED CERAMIC
CN111170754A (en) Composite material with Si-Y-C ternary ceramic matrix and preparation method thereof
CN114702328A (en) SiC nanowire network reinforced layered porous SiC ceramic and preparation method thereof
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
Rocha et al. Formation of carbon fiber-reinforced ceramic matrix composites with polysiloxane/silicon derived matrix
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
JPH0157075B2 (en)
JP2000351676A (en) Fiber coated with silicon-doped boron nitride in composite melt-infiltrated with silicon
JPH0313194B2 (en)
KR100419778B1 (en) Manufacturing method of silicon cabide-boron carbide composites by liquid phase reaction sintering
JPH06199578A (en) Ceramic-base composite material, its production and ceramic fiber for composite material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160601

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180418

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 12