KR100835535B1 - Composition of new microbial pesticide using technique suppressing insect immune capacity - Google Patents

Composition of new microbial pesticide using technique suppressing insect immune capacity Download PDF

Info

Publication number
KR100835535B1
KR100835535B1 KR1020070004281A KR20070004281A KR100835535B1 KR 100835535 B1 KR100835535 B1 KR 100835535B1 KR 1020070004281 A KR1020070004281 A KR 1020070004281A KR 20070004281 A KR20070004281 A KR 20070004281A KR 100835535 B1 KR100835535 B1 KR 100835535B1
Authority
KR
South Korea
Prior art keywords
hormone
insect
juvenile hormone
analogue
effect
Prior art date
Application number
KR1020070004281A
Other languages
Korean (ko)
Inventor
김용균
Original Assignee
안동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안동대학교 산학협력단 filed Critical 안동대학교 산학협력단
Priority to KR1020070004281A priority Critical patent/KR100835535B1/en
Application granted granted Critical
Publication of KR100835535B1 publication Critical patent/KR100835535B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/075Bacillus thuringiensis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Pest Control & Pesticides (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Biomedical Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A juvenile hormone or an analogue thereof is provided to inhibit immunity of an insect, thereby being used as a novel biotic pesticide. A method for sterilizing insects is provided to enhance the activity of a conventional biotic pesticide by using the juvenile hormone or the analogue thereof in combination with Bacillus thuringiensis. An agricultural insecticide comprises a juvenile hormone or an analogue thereof, which enhances the activity of a microbial pesticide, and Bacillus thuringiensis, wherein the analogue is pyriproxyfen. To kill insects, the juvenile hormone or the analogue thereof is used together with Bacillus thuringiensis. The juvenile hormone or the analogue thereof is used together with Bacillus thuringiensis in order to sterilize insects.

Description

곤충면역억제를 이용한 새로운 미생물농약 조성물 {Composition of New Microbial Pesticide Using Technique Suppressing Insect Immune Capacity}Composition of New Microbial Pesticide Using Technique Suppressing Insect Immune Capacity

도 1은 배추좀나방 유충(Plutella xylostella larvae)의 혈구활착현상을 위상차현미경으로 관찰한 것이다. 1 is a Chinese cabbage moth larva ( Plutella) Hemocytosis of xylostella larvae) was observed by phase contrast microscope.

도 2a 및 2b는 호르몬이 배추좀나방 유충의 혈구활착현상에 미치는 영향을 그래프로 나타낸 것이다. Figures 2a and 2b graphically shows the effect of the hormone on the hemagglutination of the cabbage moth larvae.

도 3a 및 3b는 혈구활착에 대한 JH와 20E의 상호작용을 분석한 결과이다. 3A and 3B show the results of analyzing the interaction of JH and 20E on hemagglutination.

도 4는 배추좀나방 4령충을 대상으로 파이라이프록시펜(‘PYR’)과 비티(Bacillus thuringiensis subsp. kurstaki : ‘(Bt’)의 살충효과 상승작용을 시험한 결과이다. Figure 4 is a pyriproxyfen ('PYR') and Beati ( Bacillus ) targeting four cabbage moths thuringiensis subsp. kurstaki : Result of testing the synergistic effect of '(Bt').

Beckage, N.E. and L.M. Riddiford. 1982. Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm, Manduca sexta. Gen. Comp. Endocrinol. 47: 308-322.Beckage, NE and LM Riddiford. 1982.Effects of parasitism by Apanteles congregatus on the endocrine physiology of the tobacco hornworm, Manduca sexta . Gen. Comp. Endocrinol. 47: 308-322.

Beckage, N.E., F.F. Tan, K.W. Schleifer, R.D. Lane and L.L. Cherubin. 1994. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta. Arch. Insect Biochem. Physiol. 26: 165-195.Beckage, NE, FF Tan, KW Schleifer, RD Lane and LL Cherubin. 1994. Characterization and biological effects of Cotesia congregata polydnavirus on host larvae of the tobacco hornworm, Manduca sexta . Arch. Insect Biochem. Physiol. 26: 165-195.

Clark, K.D., Y. Kim and M.R. Strand. 2005. Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51: 587-596.Clark, K.D., Y. Kim and M.R. Strand. 2005. Plasmatocyte sensitivity to plasmatocyte spreading peptide (PSP) fluctuates with the larval molting cycle. J. Insect Physiol. 51: 587-596.

Cole, T.J., N.E. Beckage, F.F. Tan, A. Srinivasan and S.B. Ramaswamy. 2002. Parasitoid-host endocrine relationships: self-reliance or co-optation· Insect Biochem. Mol. Biol. 32: 1673-1679.Cole, T. J., N. E. Beckage, F. F. Tan, A. Srinivasan and S.B. Ramaswamy. 2002. Parasitoid-host endocrine relationships: self-reliance or co-optation Insect Biochem. Mol. Biol. 32: 1673-1679.

Fathpour, H. and D.L. Dahlman. 1995. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein content of the host, Heliothis virescens. Arch. Insect Biochem. Physiol. 28: 33-48.Fathpour, H. and DL Dahlman. 1995. Polydnavirus of Microplitis croceipes prolongs the larval period and changes hemolymph protein content of the host, Heliothis virescens . Arch. Insect Biochem. Physiol. 28: 33-48.

Figueiredo, M.B., D.P. Castro, N.F.S. Nogueira, E.S. Garcia and P. Azambuja. 2006. Cellular immune response in Rhodnius prolixus: role of ecdysone in hemocyte phagocytosis. J. Insect Physiol. 52: 711-716.Figueiredo, MB, DP Castro, NFS Nogueira, ES Garcia and P. Azambuja. 2006.Cellular immune response in Rhodnius prolixus : role of ecdysone in hemocyte phagocytosis. J. Insect Physiol. 52: 711-716.

Fleming, J-A.G.W. 1992. Polydnaviruses: mutualists and pathogens. Annu. Rev. Entomol. 37: 401-425.Fleming, J-A.G.W. 1992. Polydnaviruses: mutualists and pathogens. Annu. Rev. Entomol. 37: 401-425.

Franssens, V., G. Smagghe, G. Simonet, I. Claeys, B. Breugelmans, A. De Loof and J. V. Broeck. 2006. 20-Hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata. Dev. Comp. Immunol. 30: 735-740. Franssens, V., G. Smagghe, G. Simonet, I. Claeys, B. Breugelmans, A. De Loof and JV Broeck. 2006. 20-Hydroxyecdysone and juvenile hormone regulate the laminarin-induced nodulation reaction in larvae of the flesh fly, Neobellieria bullata . Dev. Comp. Immunol. 30: 735-740.

Hoffmann, J.A. 1970. Endocrine regulation of production and differentiation of haemocytes in an orthopteran insect Locusta migratoria migratoroides. Gen. Comp. Endocrinol. 15: 198-219.Hoffmann, JA 1970. Endocrine regulation of production and differentiation of haemocytes in an orthopteran insect Locusta migratoria migratoroides . Gen. Comp. Endocrinol. 15: 198-219.

Ibrahim, AMA and Y. Kim. 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella. J. Insect Physiol. 52: 943-950.Ibrahim, AMA and Y. Kim. 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth, Plutella xylostella . J. Insect Physiol. 52: 943-950.

Jones, J.C. 1967. Effects of repeated haemolymph withdrawals and of ligaturing the head on differential haemocyte counts of Rhodnius prolixus. J. Insect Physiol. 13: 1351-1360. Jones, JC 1967. Effects of repeated haemolymph withdrawals and of ligaturing the head on differential haemocyte counts of Rhodnius prolixus . J. Insect Physiol. 13: 1351-1360.

Kaeslin, M., R. Pfister-Wilhelm and B. Lanzrein. 2005. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development. J. Insect Physiol. 51: 1330-1339.Kaeslin, M., R. Pfister-Wilhelm and B. Lanzrein. Influence of the parasitoid Chelonus inanitus and its polydnavirus on host nutritional physiology and implications for parasitoid development. J. Insect Physiol. 51: 1330-1339.

Lavin, M.D. and M.R. Strand. 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32: 1295-1309.Lavin, M.D. and M.R. Strand. 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32: 1295-1309.

Lee, S. and Y. Kim. 2004. Juvenile hormone esterase of diamondback moth, Plutella xylostella, and parasitism of Cotesia plutellae. J. Asia-Pacific Entomol. 7: 283-287.Lee, S. and Y. Kim. 2004.Juvenile hormone esterase of diamondback moth, Plutella xylostella , and parasitism of Cotesia plutellae . J. Asia-Pacific Entomol. 7: 283-287.

Loret, S.M. and M.R. Strand. 1998. Follow-up of protein release from Pseudoplusia includens hemocytes: a first step to identification of factors mediating encapsulation in vitro. Eur. J. Cell. Biol. 76: 146-155.Loret, SM and MR Strand. 1998.Follow-up of protein release from Pseudoplusia includens hemocytes: a first step to identification of factors mediating encapsulation in vitro. Eur. J. Cell. Biol. 76: 146-155.

Nakahara, Y., Y. Kanamori, M. Kiuchi and M. Kamimura. 2003. In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J. Insect Physiol. 49: 907-916.Nakahara, Y., Y. Kanamori, M. Kiuchi and M. Kamimura. 2003. In vitro studies of hematopoiesis in the silkworm: cell proliferation in and hemocyte discharge from the hematopoietic organ. J. Insect Physiol. 49: 907-916.

Pech, L.L. and M.R. Strand. 1996. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J. Cell Sci. 109: 2053-2060.Pech, L.L. and M.R. Strand. 1996. Granular cells are required for encapsulation of foreign targets by insect haemocytes. J. Cell Sci. 109: 2053-2060.

Plantevin, G., G. Bosquet, B. Calvez and C. Nardon. 1987. Relationship between juvenile hormone levels and synthesis of major haemolymph protein in Bombyx mori larvae. Comp. Biochem. Physiol. 86B: 455-461.Plantevin, G., G. Bosquet, B. Calvez and C. Nardon. 1987.Relationship between juvenile hormone levels and synthesis of major haemolymph protein in Bombyx mori larvae. Comp. Biochem. Physiol. 86B: 455-461.

Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORSTOM. Ser. Ent. Med. Parasitol. 22: 117-121.Raymond, M. 1985. Presentation d'un program d'analyse log-probit pour micro-ordinateur. Cah. ORSTOM. Ser. Ent. Med. Parasitol. 22: 117-121.

Riddiford, L.M. 1994. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24: 213-274.Riddiford, L.M. 1994. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24: 213-274.

Sakurai, S. 1983. Temporal organization of endocrine events underlying larval-pupal ecdysis in the silkworm, Bombyx mori. J. Insect Physiol. 29: 919-932.Sakurai, S. 1983. Temporal organization of endocrine events underlying larval-pupal ecdysis in the silkworm, Bombyx mori . J. Insect Physiol. 29: 919-932.

SAS Institute. 1989. SAS/STAT User's Guide, Release 6.03. Ed. Cary, N.C.SAS Institute. 1989. SAS / STAT User's Guide, Release 6.03. Ed. Cary, N.C.

Schopf, A. and H. Rembold. 1993. Changes in juvenile hormone titer of gypsy moth larvae by parasitism of Glyptapanteles liparidis. Naturwissenschaften 80: 527-528.Schopf, A. and H. Rembold. 1993.Changes in juvenile hormone titer of gypsy moth larvae by parasitism of Glyptapanteles liparidis . Naturwissenschaften 80: 527-528.

Sorrentino, R.P., Y. Carton and S. Govind. 2002. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243: 65-80.Sorrentino, RP, Y. Carton and S. Govind. 2002. Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243: 65-80.

Strand, M.R. and B.A. Dover. 1991. Development disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Arch. Insect Biochem. Physiol. 18: 131-145.Strand, MR and BA Dover. 1991.Development disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor . Arch. Insect Biochem. Physiol. 18: 131-145.

Strand, M.R. and L.L. Pech. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 40: 31-56.Strand, M.R. and L.L. Pech. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 40: 31-56.

Vinson, S.B. 1990. Physiological interactions between the host genus Heliothis and its guild of parasitoids. Arch. Insect Biochem. Physiol. 13: 63-81.Vinson, SB 1990. Physiological interactions between the host genus Heliothis and its guild of parasitoids. Arch. Insect Biochem. Physiol. 13: 63-81.

Vinson, S.B., K.M. Edson and D.B. Stoltz. 1979. Effect of a virus associated with the reproductive system of the parasitoid wasp, Campoletis sonorensis, on host weight-gain. J. Invertebr. Pathol. 34: 133-137.Vinson, SB, KM Edson and DB Stoltz. 1979.Effect of a virus associated with the reproductive system of the parasitoid wasp, Campoletis sonorensis , on host weight-gain. J. Invertebr. Pathol. 34: 133-137.

Wyatt, G.R. and K.G. Davey. 1996. Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26: 1-155. Wyatt, G.R. and K.G. Davey. 1996. Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26: 1-155.

본 발명은 곤충면역억제를 이용한 새로운 미생물농약 조성물에 관한 것으로, 특히 유약호르몬(juvenile hormone: JH)의 곤충면역억제효과와 이를 이용한 미생물농약 활성 제고에 관한 것이다. The present invention relates to a novel microbial pesticide composition using insect immunosuppression, and more particularly, to an insect immunosuppressive effect of juvenile hormone (JH) and to enhancing microbial pesticide activity using the same.

유약호르몬(juvenile hormone: JH)과 탈피호르몬의 상대적 농도는 곤충의 성장과 변태를 결정한다(Riddiford, 1994). 스테로이드 물질인 탈피호르몬은 탈피 및 변태를 촉진하는 반면, 이때 상대적 JH 농도는 탈피의 성격을 결정한다. 즉, 뚜렷한 JH 농도 하에서 탈피호르몬의 분비는 또 다른 유충탈피를 유도하나, 감수성시기에 JH가 나타나지 않을 경우 탈피는 용 또는 성충 변태를 유도하게 된다(Sakurai, 1983; Plantevin et al., 1987). 한편 JH와 탈피호르몬은 성충시기에 생식선촉진호르몬으로 작용할 수 있게 된다(Wyatt and Davey, 1996). 또한 면역에 관련하여 탈피호르몬은 혈구생성에 촉진 효과를 준다는 보고가 있다(Nakahara et al., 2003).The relative concentrations of juvenile hormone (JH) and molten hormone determine insect growth and metamorphosis (Riddiford, 1994). The steroid substance molting hormone promotes peeling and transformation, while the relative JH concentration determines the character of the peeling. In other words, secretion of molten hormone under a distinct JH concentration induces another larval peel, but if JH does not appear during susceptibility, molting leads to dragon or adult transformation (Sakurai, 1983; Plantevin et al ., 1987). On the other hand, JH and molting hormones can act as gonadotropin during adulthood (Wyatt and Davey, 1996). In addition, it has been reported that molten hormones have a promoting effect on hematopoiesis in relation to immunity (Nakahara et. al ., 2003).

일부 내부기생봉들은 기주 곤충의 내분비를 교란하여 자신의 기생 생활을 유지하게 한다. 맵시벌류인 캄폴레티스 소노렌시스(Campoletis sonorensis)에 의해 기생된 헬리오티스 비레센스(Heliothis virescens)는 유충탈피가 지연되고, 변태가 억제되는 것을 보였다(Vinson et al., 1979; Fleming, 1992). 또한 이 기생봉이 보유하고 있는 공생바이러스인 CsⅣ를 주입하면 유사한 발육억제를 나타냈다(Vinson, 1990). 동일한 기주에 대해서 고치벌류인 마이크로플리티스 크로세이페스(Microplitis croceipes)의 폴리드나바이러스인 McBV를 주입한 결과 체중 감소, 유충저장단백질 생성 감소, 그리고 용화율 저하를 나타냈다(Fathpour and Dahlman, 1995). 또 다른 고치벌의 예로서 M. demolitor의 공생바이러스인 MdBV를 슈도플러시아 인클루덴스(Pseudoplusia includens)에 주입한 결과 유충 발육 지연은 물론이고 과탈피를 유도하였으며, 심지어 유충과 용의 형태가 공존하는 기형을 유발하였다(Strand and Dover, 1991). 알에 기생하여 기주의 유충 발육을 저하시키는 첼로너스 이나니투스(Chelonus inanitus)는 스포답테라 리토랄리스(Spodoptera littoralis)에 기생할 경우 조숙변태를 유발하고, 전용단계에서 발육을 정지시키며, 기주의 영양분의 용도를 기생봉의 발육으로 전환시키게 된다(Kaeslin et al., 2005). 코테시아 콘그레가타(Cotesia congregata)에 의해 기생된 만두카 섹스타(Manduca sexta)는 면역, 성장, 발육, 체색 색소 형성 및 혈림프단백질 등에 변화를 초래한다 (Beckage et al., 1994). Some internal parasitic rods disrupt the endocrine of host insects to maintain their parasitic life. Heliothis virescens , parasitic by Campoletis sonorensis , has been shown to delay larval escape and suppress metamorphosis (Vinson et al ., 1979; Fleming, 1992). In addition, injection of CsIV, a symbiotic virus possessed by the parasitic rods, showed similar growth inhibition (Vinson, 1990). Injecting McBV , a polydnavirus from the microplitis croceipes, cocoons, resulted in weight loss, reduced larval storage protein production, and lowered solubility (Fathpour and Dahlman, 1995). As another example of cocoon bees, MdBV , a symbiotic virus of M. demolitor , was injected into Pseudoplusia includens , resulting in overgrowth as well as delayed larval development, and even coexisting larvae and dragon forms. Causes malformations (Strand and Dover, 1991). Chelonus inanitus , which parasites eggs and reduces host larval development, causes premature transformation when parasitized in Spodoptera littoralis and stops development in a dedicated stage. Nutrients are converted into parasitic rod development (Kaeslin et. al ., 2005). Manduca parasitic by Cotesia congregata sexta ) alters immunity, growth, development, color pigmentation and hemolymph proteins (Beckage et. al ., 1994).

프루텔고치벌(Cotesia plutellae)은 배추좀나방(Plutella xylostella)에 대해서 특이적 기생을 유발하며, 기생된 배추좀나방은 유충기간 연장, 변태불능 및 면역저하가 유도된다(Lee and Kim, 2004; Ibrahim and Kim, 2006). 최근에 클락 등(Clark et al.)(2005)은 유약호르몬이 곤충 혈구세포의 하나인 부정형혈구의 사이토카인에 대한 혈구행동반응성을 낮추는 반면, 탈피호르몬은 촉진시키는 길항적 효과를 나타낸다고 보고했다. 즉, 여러 유충기생봉이 내분비계를 조절하여 기주의 발육을 조절한다는 점과 이렇게 기생된 기주들이 면역저하가 유도된다는 사실로부터 내분비계의 조절이 유충발육 조절은 물론이고 면역에도 영향을 줄 수 있다는 가설을 제시할 수 있다. Cotesia plutellae induces specific parasites against Plutella xylostella , and parasitic cabbage moths induce larval prolongation, metamorphosis and immunodeficiency (Lee and Kim, 2004; Ibrahim and Kim, 2006). Recently, Clark et al. al .) (2005) reported that glaze hormone lowered the hematopoietic behavioral response to cytokines of atypical blood cells, one of the insect blood cells, while molar hormones had an antagonistic effect. In other words, it is hypothesized that the control of the endocrine system can affect not only the larval development but also immunity from the fact that several larval parasites regulate the development of the host by regulating the endocrine system. Can be presented.

본 발명에서는, 프루텔고치벌이 배추좀나방의 유충기간을 연장시켜 자신의 생활환을 맞추어간다는 점에 착안하여, 이 고치벌이 배추좀나방의 유약호르몬 농도는 올리고 탈피호르몬 방출은 억제할 것으로 추정하였다. 이 경우 고치벌은 유충기간 연장 이외에 유약호르몬에 의한 면역억제기작도 나타낼 것으로 생각해볼 수 있다. 본 발명에서는, 이러한 가설을 증명하기 위해 배추좀나방의 혈구세포 활착현상을 대상으로 이들 두 호르몬의 상호 작용을 분석했다. 본 발명에서는 실험을 통해 유약호르몬이 곤충의 면역을 억제한다는 사실을 확인하고, 나아가 유약호르몬과 비티(Bacillus thuringiensis)와 같은 생물농약의 병용에 의한 살충효과 상승작용을 확인한다. 본 발명에서는 이러한 결과를 토대로 유약호르몬을 이용하여 미생물농약의 활성을 제고하는 기술을 제공한다. In the present invention, focusing on the fact that the fruit worm cocoon beetle lengthens the larvae of Chinese cabbage moth to match its life cycle, it is estimated that the cocoon bee raises the concentration of the glaze hormone of the Chinese cabbage moth and suppresses the release of skin hormones. . In this case, the cocoon bee may be thought to exhibit immunosuppressive mechanisms by glaze hormone in addition to larval period extension. In the present invention, in order to prove this hypothesis, the interaction of these two hormones was analyzed in blood cell slid phenomena of Chinese cabbage moth. In the present invention, the experiment confirms the fact that the glaze hormone suppresses the immunity of insects, and further confirms the synergistic effect of the insecticide effect by the combination of biological pesticides, such as glaze hormone and Beati ( Bacillus thuringiensis ). The present invention provides a technique for enhancing the activity of microbial pesticides using glaze hormone based on these results.

기타 본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시에 의해 더 잘 알게 될 것이다. Other objects and advantages of the present invention will be described below and will be better understood by practice of the present invention.

유약호르몬(juvenile hormone: JH)과 탈피호르몬은 곤충의 성장과 변태를 포 함한 다양한 생리과정에 영향을 준다. 여러 내부기생봉들이 기주의 JH와 탈피호르몬의 체내 농도를 조절하며, 기생된 기주는 발육 지연이나 면역저하를 보이게 된다. 본 발명에서는 이러한 내분비 조절이 어떻게 면역 기능에 영향을 주는지 알아보기 위해 배추좀나방(Plutella xylostella)의 혈구세포의 활착현상을 대상으로 이 두 호르몬의 영향을 분석하였다. JH와 JH유사체(pyriproxyfen)는 농도 의존적으로 혈구세포 활착현상을 억제시켰다. 반면에 탈피호르몬(20-hydroxyecdysone: 20E)은 단독으로 처리할 경우 어떠한 영향도 주지 않았다. JH와 20E를 함께 처리한 결과, 두 호르몬은 혈구세포 활착행동에 대해서 특징적인 길항작용을 보였다. JH는 10-9M의 20E가 존재할 경우 농도의존적으로 억제현상을 보인 반면, 20E는 10-9M의 JH에 대해서 농도의존적으로 혈구세포 활착 촉진 효과를 보였다. Juvenile hormone (JH) and molten hormone affect a variety of physiological processes, including insect growth and metamorphosis. Several internal parasitic rods regulate the concentrations of JH and molten hormones in the host, and parasitic hosts show delayed development or reduced immunity. In the present invention, the Chinese cabbage moth ( Plutella) to find out how this endocrine regulation affects immune function The effects of these two hormones were analyzed in the blood cell swelling of xylostella ). JH and JH analogs (pyriproxyfen) suppressed blood cell sticking in a concentration-dependent manner. On the other hand, molten hormone (20-hydroxyecdysone: 20E) did not have any effect when treated alone. When JH and 20E were treated together, the two hormones showed characteristic antagonism against hematopoietic activity. JH, on the other hand is of 10 -9 M 20E showing the inhibition in a concentration-dependent manner when present, 20E showed a concentration-dependent manner to promote blood cell survival effect on the 10 -9 M JH.

본 발명에서는 이렇게 확인된 JH 및 유사체의 곤충면역억제 효과를 해충의 살충에 이용할 수 있음을 확인한다. 또한 본 발명에서는, 실험을 통해 JH 및 유사체와, 종래 사용되고 있는 비티(Bacillus thuringiensis)와 같은 미생물농약과의 상호 협력작용을 확인한다. 파이라이프록시펜(Pyriproxyfen)과 비티를 혼합 처리할 때가 비티를 단독으로 처리할 때보다 뚜렷하게 증강된 살충효과를 나타냈다. 본 발명에서는 이러한 결과를 토대로, JH 및 유사체를 이용하여 기존 미생물농약의 활성을 제고하는 기술, 즉 새로운 미생물농약 조성물을 제공한다. In the present invention, it is confirmed that the insecticide inhibitory effect of the JH and the analogs thus identified can be used for insect pests. In addition, in the present invention, JH and analogues through experiments, and the conventionally used Beati ( Bacillus Confirm interactions with microbial pesticides such as thuringiensis . The combination of Pyriproxyfen and Bitty showed a markedly enhanced insecticidal effect than the treatment with Bitty alone. Based on these results, the present invention provides a technique for enhancing the activity of existing microbial pesticides, that is, a new microbial pesticide composition, using JH and analogs.

혈구의 활착 현상은 세포성면역반응에 중요한 행동으로 면역능력과 직결될 수 있다(Strand and Pech, 1995). 혈구세포의 피낭 형성 과정의 경우, 침입된 외래인자에 대해서 먼저 과립혈구가 표면에 부착되고, 1차피막을 형성하게 된다(Pech and Strand, 1996; Loret and Strand, 1998). 이후 부정형혈구가 유인되고 이들의 활착현상에 의해 여러 겹의 2차피막이 형성되면, 곧 과립혈구에 의해 최종 단일피막을 형성하면서 피낭형성이 종료된다(Lavine and Strand, 2002). 이 내분비의 조절효과를 크게 두 부분으로 나눠보면 혈구의 생성과정과 분화에 대한 효과와 세포성 면역반응 조절 효과로 구분할 수 있다. 첫 번째 내분비 조절 연구 결과로서 Rhodnius prolixus에서 전흉샘의 호르몬 공급을 차단하는 결절 처리를 통해 탈피호르몬이 혈구의 생성과 분화에 중요한 역할을 담당한다고 보고되었다(Jones, 1967). 호프만(Hoffmann)(1970)은 로커스타 미그라토리아(Locusta migratoria)에서 이를 뒷받침했다. 세포성면역반응 조절 효과로서 초파리류에서는 탈피호르몬을 억제할 경우 기생봉 알에 대한 피낭형성 능력이 저하된다고 보고되었다(Sorrentino et al., 2002). 파리류인 네오벨리에리아 불라타(Neobellieria bullata)는 라미나린(laminarin) 처리에 대해서 소낭형성을 일으키고 이 소낭형성 반응은 본 발명에서 보여 주었던 바와 같이 JH와 탈피호르몬이 길항적으로 작용한다고 밝혔다(Franssens et al., 2006). 전흉샘에 작용하여 탈피호르몬의 생합성을 억제하는 아자디라크틴을 처리할 경우 R. prolixus는 혈구의 포식작용이 억제되나, 이때 탈피호르몬을 부가할 경우 다시 포식작용이 회복된다고 밝혔다(Figueiredo et al., 2006). 혈구세포 활착현상에 대해서 이들 내분비의 조절효과가 또한 최근에 알려지기 시작했다. 즉, 곤충의 사이토카인인 PSP1 (plasmatocyte-spreading peptide 1)에 대한 혈구 반응성이 곤충의 발육 시기에 따라 다르다는 것에 기인하여 JH와 탈피호르몬의 조절효과를 분석하였다(Clark et al., 2005). 여기에서도 본 발명과 마찬가지로 JH는 PSP1에 대한 반응성이 억제되었고, 20E는 촉진하는 결과를 보였다. Blood cell sticking is an important behavior for cellular immune response and can be directly linked to immune capacity (Strand and Pech, 1995). In the case of encapsulation of blood cells, granulocytes first adhere to the surface of the invading foreign factors and form a primary coating (Pech and Strand, 1996; Loret and Strand, 1998). Then, when the atypical blood cells are attracted and their multiple swellings are formed, the formation of the final single film by granulocytes ends, which leads to the end of the cyst formation (Lavine and Strand, 2002). Dividing the regulation effect of the endocrine into two parts can be divided into the effect on the production and differentiation of blood cells and the effect of regulating cellular immune response. Rhodnius as the first endocrine control study It has been reported that molten hormones play an important role in the production and differentiation of blood cells through nodular treatment that blocks the hormonal supply of the prothymus in prolixus (Jones, 1967). Hoffmann (1970) supported this in Locusta migratoria . In Drosophila, as a modulator of cellular immune response, it has been reported that the inhibition of molten hormone decreases the encapsulation ability of parasite eggs (Sorrentino et. al ., 2002). The fly, Neobellieria bullata , causes vesicle formation against laminarin treatment, and the vesicle-forming reaction revealed that JH and molpy hormone act antagonistically as shown in the present invention (Franssens et. al ., 2006). R. prolixus inhibited blood cell phagocytosis when treated with azadiractin , which acts on the thymus and inhibits the biosynthesis of molten hormones, but the addition of molten hormones restores the phagocytosis again (Figueiredo et. al ., 2006). The regulatory effects of these endocrines on blood cell lubrication have also recently become known. That is, the blood cell responsiveness to cytokines of PSP1 (plasmatocyte-spreading peptide 1) of the insects due to differ depending on the developmental timing of the insect control effect of the analyzed JH and break hormone (Clark et al ., 2005). Here as in the present invention, JH was inhibited in reactivity to PSP1, and 20E was promoted.

본 발명이나 기존의 보고된 이들 호르몬의 기작으로부터 혈구의 활착행동에 대한 JH와 탈피호르몬의 분자수준의 기작을 설명하기는 어렵다. 그러나 JH의 세포막에 관한 일부 보고(Sevala et al., 1995; Kim et al., 1999)에 따라, 이에 대한 기능적 유추를 해볼 수 있다. 난포세포에서 JH 막수용체는 프로테인 키나제 C(protein kinase C: PKC) 신호전달체계를 이용하여 Na+-K+ ATpase를 활성시키고, 이는 세포의 부피감소를 유발하게 된다(Ilenchuk and Davey, 1987; Sevala and Davey, 1989). 현재 확인할 수는 없지만, 혈구세포의 JH 막수용체가 JH에 대해서 이러한 부피감소를 유발할 경우 혈구의 활착 억제 효과가 유발될 수 있다. 이때 탈피호르몬이 PKC 신호전달 과정을 다시 억제할 경우, 이 두 호르몬 사이에는 길항관계가 성립될 수 있다. It is difficult to explain the molecular level mechanisms of JH and escape hormones on the slidability of blood cells from the present or existing reported mechanisms of these hormones. However, some reports on the membranes of JH (Sevala et al. al ., 1995; Kim et al ., 1999), a functional analogy can be made. In follicular cells, the JH membrane receptor activates Na + -K + ATpase using protein kinase C (PKC) signaling, which leads to a decrease in cell volume (Ilenchuk and Davey, 1987; Sevala). and Davey, 1989). Although it cannot be confirmed at present, when the JH membrane receptor of blood cells causes such volume reduction for JH, the effect of inhibiting the adhesion of blood cells may be induced. At this time, if the escape hormone inhibits the PKC signaling process again, an antagonistic relationship between the two hormones can be established.

이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능한 것은 물론이다. Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the scope of the present invention is not limited by the following examples, and those skilled in the art to which the present invention pertains should be within the equivalent scope of the technical concept of the present invention and the claims to be described below. Of course, various modifications and variations are possible.

재료 및 방법Materials and methods

분석시약Analysis reagent

JH Ⅲ와 20-하이드록시엑디손(20-hydroxyecdysone: 20E)은 모두 시그마제품 (Sigma, MO, USA)을 사용하였다. JH 유사체인 파이라이프록시펜(pyriproxyfen)은 동방아그로(Seoul, Korea) 회사에서 얻은 것으로 98%의 주성분을 포함한 원제를 사용하였다. JH Ⅲ와 파이라이프록시펜(pyriproxyfen)은 모두 디메틸설폭사이드(dimethylsulfoxide)에 녹였고, 20E는 50% 에탄올에 녹여 사용하였다. 항응고완충용액으로, 4 ㎎의 L-시스틴 하이드로클로라이드(L-cysteine hydrochloride, Sigma)를 5 ㎖의 TBS(Tris-buffered saline: 50 mM Tris-HCl, 100 mM dextrose, 5 mM KCl, 2.5 mM MgCl2, 50 mM NaCl, pH 7.5, 300 mOsm)에 첨가하여 조제하였다. Both JH III and 20-hydroxyecdysone (20E) were made from Sigma (Sigma, MO, USA). The pyriproxyfen, a JH analogue, was obtained from Dong-Agro (Seoul, Korea) and used 98% of the active ingredient. JH III and pyriproxyfen were both dissolved in dimethylsulfoxide and 20E was dissolved in 50% ethanol. As an anticoagulant buffer, 4 mg of L-cysteine hydrochloride (Sigma) was added to 5 ml of TBS (Tris-buffered saline: 50 mM Tris-HCl, 100 mM dextrose, 5 mM KCl, 2.5 mM MgCl 2). , 50 mM NaCl, pH 7.5, 300 mOsm).

배추좀나방 사육과 프루텔고치벌 기생Chinese Cabbage Moth Breeding and Fruit Crust

배추좀나방 유충은 배추잎으로 사육되었으며, 성충에게는 10% 설탕물이 공급되었다. 프루텔고치벌은 안동의 배추 포장에서 채집된 배추좀나방에서 얻은 야외 집단을 실내 조건(온도 약 25℃, 광주기 16:8 (L:D)h)에서 누대사육하였다. 배추좀나방 2령 유충을 프루텔고치벌 기생에 이용하였다. 배추좀나방 유충에 대한 기생은 우화 후 1일 동안 미리 교미가 허용된 성충 집단에 배추좀나방 유충을 24시간동안 노출시켜 기생시켰다. 이후 기생된 배추좀나방은 일반 사육 방법으로 사육되었으며, 형성된 고치에서 우화된 성충은 50% 설탕물을 먹이로 공급하였다. Chinese cabbage larvae were bred as cabbage leaves, and adults were fed 10% sugar water. Fruitel cocoon bee was cultivated under indoor conditions (temperature about 25 ° C, photoperiod 16: 8 (L: D) h) from outdoor cabbage moth collected from Andong cabbage package. Cabbage moth 2 larvae were used for the parasitization of fruitel cocoon bees. The parasites of the cabbage moth larvae were parasitic by exposing the cabbage moth larvae for 24 hours to adult groups that were allowed to mate in advance for one day after allegory. Since the parasitic cabbage moth was bred in the general breeding method, the adult adult in the cocoon formed was fed 50% sugar water.

혈림프채취Blood lymph collection

충분한 혈림프를 채취하기 위해 비교적 혈구세포 밀도가 높은 산란후 7-8일째된 배추좀나방 유충을 이용하였다. 유충을 70% 에탄올로 소독한 후, 가는 핀셋으로 유충의 복부 다리를 절제하고 흘러나오는 혈액을 채취하였다. 모아진 100 ㎕의 혈림프는 1 ㎖의 차가운(약 4℃) 항응고완충용액과 혼합하였다. To collect enough hemolymph, cabbage moth larvae 7-8 days after spawning with relatively high blood cell density were used. After the larvae were sterilized with 70% ethanol, the tweezers were excised with thin tweezers and blood was collected. Collected 100 μl of blood lymphocytes were mixed with 1 ml of cold (about 4 ° C.) anticoagulant buffer solution.

혈구활착생물검정Hemagglutination Bioassay

소독된 슬라이드그라스에 50㎕ 혈구용액을 분주하고, 습한 조건 및 25℃에서 40분간 혈구단일층 형성 및 활착을 유도하였다. 호르몬은 혈구용액에 다양한 농도로 처리되었다. 혈구의 활착은 혈구세포의 세포질 돌기 구조에 따라 판별하였다(도 1). 이러한 혈구 구조관찰은 위상차현미경(Olympus BX41, Tokyo, Japan)을 이용하여 40배의 배율(unspreading cells) 또는 100배의 배율(spreading cells)에서 관찰하였다. 혈구활착 정도는 현미경 시야에서 약 100개의 세포를 임의로 선택하고, 이들의 활착 정도를 결정하였으며, 각 반복은 독립적으로 시행되었다. 이렇게 얻어진 활착의 정도는 백분율로 환산되었으며, 처리 효과 검정은 Arcsin transformation한 후 SAS의 PROC GLM (SAS Institute, 1989)을 이용하여 one-way ANOVA로 분석하였다. 50 μl blood cell solution was dispensed on the sterilized slidegrass, and the formation of monocytic hemocytosis was performed for 40 minutes at 25 ° C. under humid conditions. Hormones were treated in various concentrations in blood cell solutions. The adhesion of blood cells was determined according to the cytoplasmic process of blood cells (FIG. 1). These blood cell structures were observed at 40 times magnification (unspreading cells) or 100 times magnification (spreading cells) using a phase contrast microscope (Olympus BX41, Tokyo, Japan). The degree of hemagglutination was randomly selected from about 100 cells in the microscope field of view, and their degree of adhesion was determined, and each repetition was performed independently. The degree of adhesion thus obtained was converted into a percentage, and the treatment effect assay was analyzed by one-way ANOVA using SAS PROC GLM (SAS Institute, 1989) after Arcsin transformation.

도 1a 내지 1c는 배추좀나방 유충(Plutella xylostella larvae)의 혈구세포의 활착현상(spread hemocytes, %)을 위상차현미경으로 관찰한 것이다. 도 1a는 활착현상이 나타나지 않은 혈구세포이고, 1b는 활착현상이 나타난 과립혈구('GR')이고, 1c는 활착현상이 나타난 부정형혈구('PL')이다. 배추좀나방 혈구세포는 시스테인 하이드로클로라이드(cysteine hydrochloride)가 함유된 완충용액에서 응고반응 없이 세포질 돌기를 형성하는 특징적인 활착현상을 보였다. 모든 세포가 활착을 보이지만, 뚜렷한 활착은 과립혈구('GR')와 부정형혈구('PL')에서 나타났다. 과립혈구('GR')의 경우 실(filopodia: ‘fp’)과 같은 세포질 돌기를 만드는 반면, 부정형혈구('PL')는 세포질 허족(pseudopodia: 'pp')을 형성하였다. Figures 1a to 1c is observed by the phase contrast microscope of the spread hemocytes (%) of the blood cells of the Chinese cabbage moth larvae ( Plutella xylostella larvae). Figure 1a is a blood cell that did not appear lubrication, 1b is a granulocyte ('GR') showing the swelling phenomenon, 1c is an atypical blood cell ('PL') showing the swelling phenomenon. Cabbage moth blood cells showed characteristic lubrication of cytoplasmic processes without coagulation in a buffer solution containing cysteine hydrochloride. All cells showed sticking, but clear sticking was seen in granulocytes ('GR') and atypical blood cells ('PL'). In the case of granulocytes ('GR'), cytoplasmic projections such as filopodia ('fp') were produced, whereas atypical blood cells ('PL') formed pseudopodia ('pp').

도 2a 및 2b는 호르몬이 배추좀나방 유충(Plutella xylostella larvae)의 혈구세포 활착현상에 미치는 영향을 그래프로 나타낸 것이다. 도 2a(그래프 A)는 유약호르몬('JH Ⅲ') 및 유약호르몬 유사체(pyriproxyfen)가 혈구세포 활착현상에 미치는 영향을 농도별로 나타낸 것이며, 도 2b(그래프 B)는 20E가 혈구세포 활착현상에 미치는 영향을 농도별로 나타낸 것이다. 각각의 측정은 3회 반복으로 실시되었다. 배추좀나방 유충의 혈구는 본 시험 조건에서 약 80%의 높은 활착을 보였다. 그러나 유약호르몬('JH Ⅲ') 또는 유약호르몬 유사체(pyriproxyfen)가 이 호르몬의 체내 농도로 여겨지는 1-103 nM 범위에서 첨가되면서 혈구 활착을 뚜렷하게 억제시켰다(도 2a). 그러나 동일한 농도 범위에서 20E는 혈구 활착을 억제하지 않았다(도 2b). 2a and 2b is a hormone larvae of Chinese cabbage ( Plutella) The effect of xylostella larvae on blood cell adhesion is shown graphically. Figure 2a (graph A) shows the effect of the glaze hormone ('JH Ⅲ') and glare hormone analogs (pyriproxyfen) by the concentration of blood cells, and Figure 2b (graph B) shows the effect of 20E blood cell The effect is shown by concentration. Each measurement was performed in three replicates. Blood cells of Chinese cabbage moth larvae showed high activity of about 80% under these test conditions. However, glaze hormone ('JH III') or glaze hormone analogue (pyriproxyfen) was added in the range of 1-10 3 nM, which is considered to be the body's concentration of this hormone, which markedly inhibited blood cell adhesion (FIG. 2A). However, 20E did not inhibit blood cell sticking in the same concentration range (FIG. 2B).

JH의 혈구활착 억제 반응은 병원균 침입의 위협 속에서 곤충의 입장에서 보면 유리하지 않은 현상으로 이를 억제할 다른 신호가 있어 보완적 관계를 유지할 가능성을 내포하고 있다. 이를 밝히기 위해 혈구세포의 활착에 대한 JH와 20E의 상호작용을 분석하였으며, 결과는 도 3a(그래프 A) 및 3b(그래프 B)와 같다. 상호작용은 두 가지 조건에서 검정되었다. 즉, JH Ⅲ 농도를 일정하게(10-9 M) 놓고 20E를 증가시키면서 JH의 억제작용을 20E가 완화시켜주는 지를 검정하였다(도 3a). 그리고 20E 농도를 일정하게(10-9 M) 놓고 JH Ⅲ를 증가시키면서 다시 처리된 JH가 혈구활착을 농도 의존적으로 억제시킬 수 있는 지를 검정하였다(도 3b). 각각의 측정은 3회 반복으로 실시하였다. 낮은 JH Ⅲ의 존재 속에 20E는 농도 의존적으로 혈구활착을 뚜렷하게 증가시켰다. 반면에 낮은 20E의 농도 노출에 JH Ⅲ는 다시 농도 의존적으로 혈구활착을 억제시켰다. JH's suppression of hemagglutination is an unfavorable phenomenon for insects in the threat of pathogen invasion, and there is another signal to suppress it, suggesting the possibility of maintaining a complementary relationship. In order to clarify this, the interaction of JH and 20E on the adhesion of blood cells was analyzed, and the results are shown in FIGS. 3A (graph A) and 3B (graph B). Interactions were tested under two conditions. In other words, the JH III concentration was constant (10 −9 M) and 20E was increased to test whether 20E relieved the inhibitory action of JH (FIG. 3A). In addition, the concentration of 20E was constant (10 −9 M) and JH III was increased while increasing the concentration of JH III. Each measurement was performed three times. In the presence of low JH III, 20E significantly increased hemagglutination in a concentration dependent manner. On the other hand, at low concentrations of 20E, JH III again inhibited hemagglutination.

파이라이프록시펜과With pyriproxyfen 비티의Beatty 혼합효과 생물검정 Mixed Effect Bioassay

앞에서 확인한 JH의 면역억제 효과가 비티의 병원성 제고에 영향을 미치는지 확인하였다. 먼저 파이라이프록시펜(Pyriproxyfen)은 미리 일정량을 1 ㎖의 아세톤에 녹인 후 물에 현탁시켜 농도별로 현탁액을 제조하였다. 비티 제제는 B. thuringiensis subsp. kurstaki (Thuricide: Misung Inc., Korea)로서 제제에 3.0 x 1010 cfu/g의 세균수와 기타 독소물이 포함되어 있었다.We confirmed whether the immunosuppressive effects of JH identified above affect the pathogenicity of Beatty. First, Pyriproxyfen was previously dissolved in 1 ml of acetone in an amount, and then suspended in water to prepare a suspension for each concentration. Bitty formulations are described in B. thuringiensis subsp. kurstaki (Thuricide: Misung Inc., Korea), the formulation contained 3.0 x 10 10 cfu / g of bacterial counts and other toxins.

배추좀나방 4령충에 대해서 각 제제의 10% 치사약량(LC10, ppm)은 10마리씩 3 반복하여서 얻었다. 즉, 각 약제의 농도에 배추잎(1 x 1 ㎝)을 1분간 침지시키 고, 건조한 후 직경 9 ㎝의 사육용기에 넣은 후 여기에 배추좀나방을 처리하였다. 파이라이프록시펜은 2,000-0 ppm 까지 두 배의 비율로 희석하여 15개 농도처리를 분석하였고, 비티는 동일한 농도 구간에서 7개 농도처리를 분석하였다. 살충효과는 24시간 간격으로 분석하였으며, 처리후 5일째 되는 시점에서 나타나는 사망숫자를 살충률로 결정하였다. LC10은 probit 분석법(Raymond, 1985)으로 산출하였다. 두 약제의 10% 치사약량은 pyriproxyfen이 7.81 ppm이고, 비티가 250 ppm으로 산출되었다.10% lethal dose (LC 10 , ppm) of each preparation was obtained by repeating three 3 cabbage moths 4 insects. In other words, the cabbage leaf (1 x 1 cm) was immersed for 1 minute at the concentration of each drug, dried and placed in a breeding container of 9 cm in diameter and then treated with Chinese cabbage moth. Pyriproxyfen was diluted at a rate of 2 to 2,000-0 ppm and analyzed for 15 concentrations. Beati analyzed 7 concentrations in the same concentration range. The insecticidal effect was analyzed at 24 hour intervals, and the death rate at 5 days after treatment was determined as the insecticide rate. LC 10 was calculated by probit analysis (Raymond, 1985). The 10% lethal doses of both drugs were calculated to be 7.81 ppm for pyriproxyfen and 250 ppm for betty.

혼합효과는 각 약제의 LC10의 농도를 기준으로 파이라이프록시펜은 7.81 ppm, 비티는 250 ppm을 단독 및 혼합하여 처리한 후 살충력을 비교하였다. 각각의 측정은 3회 반복으로 실시되었다.The mixing effect was compared to the pesticides after the treatment with a mixture of 7.81 ppm of pyriproxyfen, 250 ppm of Beati alone based on the concentration of LC 10 of each drug. Each measurement was performed in three replicates.

결과는 도 4와 같다. 10% 치사약량으로 파이라이프록시펜(‘PYR’)과 비티(Bacillus thuringiensis subsp. kurstaki : ‘(Bt’)를 단독처리한 결과에서는 각각 약 10%의 살충력을 보였다. 반면에 이 두 약제를 혼합하여 처리한 결과에서는 약 70%의 살충력을 나타내어 큰 상승효과를 보였다. The results are shown in FIG. 10% lethal dose of Pyriproxyfen ('PYR') and Beati ( Bacillus) thuringiensis subsp. kurstaki : Treatment with '(Bt') alone showed about 10% insecticidal activity. On the other hand, the treatment resulted from the mixing of the two drugs showed about 70% of insecticide, showing a great synergistic effect.

본 발명에서 확인된 유약호르몬 및 유사체의 면역억제효과는 농업분야에 새로운 생물농약 조성물의 이용을 가능하게 한다. 특히 본 발명에서 확인된 미생물농약과 유약호르몬 및 유사체의 협력작용은 비티 및 유사 미생물농약의 살충효과를 증대시키는 기술로서 농업분야에서 크게 활용될 수 있고, 종래 많은 장점에도 불구하고 화학농약에 비해 살충효과가 떨어져 활용이 저조했던 미생물농약의 사용을 활성화시키는 계기가 될 수 있다. The immunosuppressive effects of glaze hormones and analogs identified in the present invention allow the use of new biopesticide compositions in the agricultural sector. In particular, the cooperative action of microbial pesticides and glaze hormones and analogues identified in the present invention can be greatly utilized in the agricultural field as a technique for increasing the insecticidal effect of BTI and similar microbial pesticides, and despite the many advantages of the conventional pesticides It may be an opportunity to activate the use of microbial pesticides, which are less effective.

Claims (4)

삭제delete 미생물농약의 활성을 증강시키기 위한 유약호르몬(juvenile hormone) 또는 그 유사체와 비티(Bacillus thuringiensis)를 유효성분으로 함께 포함하는 농업용 살충제.An agricultural insecticide comprising juvenile hormone or its analogues and beta ( Bacillus thuringiensis ) together as an active ingredient to enhance the activity of microbial pesticides. 제2항에 있어서, 상기 유약호르몬 유사체가 파이라이프록시펜(Pyriproxyfen)인 농업용 살충제.The agricultural insecticide according to claim 2, wherein the glaze hormone analogue is Pyriproxyfen. 유약호르몬(juvenile hormone) 또는 그 유사체를 비티(Bacillus thuringiensis)와 함께 사용하는 것을 특징으로 하는 농업용 살충방법.A pesticidal method for agriculture, characterized by using juvenile hormone or an analog thereof with Bacillus thuringiensis .
KR1020070004281A 2007-01-15 2007-01-15 Composition of new microbial pesticide using technique suppressing insect immune capacity KR100835535B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070004281A KR100835535B1 (en) 2007-01-15 2007-01-15 Composition of new microbial pesticide using technique suppressing insect immune capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070004281A KR100835535B1 (en) 2007-01-15 2007-01-15 Composition of new microbial pesticide using technique suppressing insect immune capacity

Publications (1)

Publication Number Publication Date
KR100835535B1 true KR100835535B1 (en) 2008-06-09

Family

ID=39770178

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070004281A KR100835535B1 (en) 2007-01-15 2007-01-15 Composition of new microbial pesticide using technique suppressing insect immune capacity

Country Status (1)

Country Link
KR (1) KR100835535B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178662A1 (en) * 2012-05-30 2013-12-05 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098706A (en) 1988-11-01 1992-03-24 The Regents Of The University Of California Juvenile hormone esterase for insect control
KR930011810A (en) * 1991-12-24 1993-07-20 모리 히데오 Pest control
US5762924A (en) 1992-06-16 1998-06-09 Commonwealth Scientific And Industrial Research Organisation Recombinant entomopoxvirus
US20030108585A1 (en) * 2001-05-04 2003-06-12 Roe R. Michael Polymer conjugates of insecticidal peptides or nucleic acids or insecticides and methods of use thereof
JP2006089467A (en) * 2004-08-25 2006-04-06 Sumitomo Chemical Co Ltd Insecticide composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098706A (en) 1988-11-01 1992-03-24 The Regents Of The University Of California Juvenile hormone esterase for insect control
KR930011810A (en) * 1991-12-24 1993-07-20 모리 히데오 Pest control
US5762924A (en) 1992-06-16 1998-06-09 Commonwealth Scientific And Industrial Research Organisation Recombinant entomopoxvirus
US20030108585A1 (en) * 2001-05-04 2003-06-12 Roe R. Michael Polymer conjugates of insecticidal peptides or nucleic acids or insecticides and methods of use thereof
JP2006089467A (en) * 2004-08-25 2006-04-06 Sumitomo Chemical Co Ltd Insecticide composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013178662A1 (en) * 2012-05-30 2013-12-05 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide
US9585399B2 (en) 2012-05-30 2017-03-07 Bayer Cropscience Ag Compositions comprising a biological control agent and an insecticide

Similar Documents

Publication Publication Date Title
Christen et al. Molecular effects of neonicotinoids in honey bees (Apis mellifera)
Olds et al. Abscisic acid: new perspectives on an ancient universal stress signaling molecule
Koosha et al. Delivery of a genetically marked Serratia AS1 to medically important arthropods for use in RNAi and paratransgenic control strategies
Rosengaus et al. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis
Trauer-Kizilelma et al. Impact of transgenerational immune priming on the defence of insect eggs against parasitism
Ma et al. Effects of the botanical insecticide, Toosendanin, on blood digestion and egg production by female Aedes aegypti (Diptera: Culicidae): topical application and ingestion
Mabiala-Moundoungou et al. Deadly venom of Asobara japonica parasitoid needs ovarian antidote to regulate host physiology
Meng et al. Effects of ovarian fluid, venom and egg surface characteristics of Tetrastichus brontispae (Hymenoptera: Eulophidae) on the immune response of Octodonta nipae (Coleoptera: Chrysomelidae)
Blumberg et al. Employing the mosquito microflora for disease control
Ergin et al. In vivo and in vitro activity of venom from the endoparasitic wasp Pimpla turionellae (L.)(Hymenoptera: Ichneumonidae)
Fiorotti et al. The role of complement in the tick cellular immune defense against the entomopathogenic fungus Metarhizium robertsii
Manfredini et al. Parasitic infection protects wasp larvae against a bacterial challenge
Luiz Rosa da Silva et al. Larvicidal and growth-inhibitory activity of entomopathogenic bacteria culture fluids against Aedes aegypti (Diptera: Culicidae)
KR102200332B1 (en) Streptomyces abikoensis MJM10673 having insect juvenile hormone antagonist and insecticidal activities and uses thereof
Khafagi et al. Effects of juvenile hormones and precocenes on the immune response of Spodoptera littoralis larvae to supernumerary larvae of the solitary parasitoid, Microplitis rufiventris Kok.
KR100835535B1 (en) Composition of new microbial pesticide using technique suppressing insect immune capacity
Barreaux et al. Overloading the immunity of the mosquito Anopheles gambiae with multiple immune challenges
Wardhaugh et al. Efficacy of macrocyclic lactones for the control of larvae of the Old World Screw‐worm Fly (Chrysomya bezziana)
Soares et al. Physiological selectivity of insecticides from different chemical groups and cuticle thickness of Protonectarina sylveirae (Saussure) and Brachygastra lecheguana (Latreille)
Castrillo The host population
Buxton et al. Comparative susceptibility of four strains of Aedes aegypti (Diptera: Culicidae) to infection with Dirofilaria immitis
Friesen et al. Effects of the avermectin, MK-243, on ovary development and salivary gland degeneration in the ixodid tick, Amblyomma hebraeum
Yadav et al. Entomopathogenic Protozoa
Senthoorraja et al. Eco-Smart Biorational Approaches in Housefly Musca domestica L. 1758 Management
Masler et al. Inhibition of larval growth in the gypsy moth (Lepidoptera: Lymantriidae) by venom from the parasitic wasp Microbracon hebetor (Hymenoptera: Braconidae)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140423

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee