KR100484982B1 - Absorption tube for the analysis of volatile organic compounds and method thereof - Google Patents

Absorption tube for the analysis of volatile organic compounds and method thereof Download PDF

Info

Publication number
KR100484982B1
KR100484982B1 KR10-2002-0019302A KR20020019302A KR100484982B1 KR 100484982 B1 KR100484982 B1 KR 100484982B1 KR 20020019302 A KR20020019302 A KR 20020019302A KR 100484982 B1 KR100484982 B1 KR 100484982B1
Authority
KR
South Korea
Prior art keywords
adsorption tube
adsorption
analysis
volatile organic
present
Prior art date
Application number
KR10-2002-0019302A
Other languages
Korean (ko)
Other versions
KR20030080595A (en
Inventor
이승화
김혁전
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR10-2002-0019302A priority Critical patent/KR100484982B1/en
Publication of KR20030080595A publication Critical patent/KR20030080595A/en
Application granted granted Critical
Publication of KR100484982B1 publication Critical patent/KR100484982B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents
    • B01J20/285Porous sorbents based on polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/288Polar phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/54Sorbents specially adapted for analytical or investigative chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N2030/022Column chromatography characterised by the kind of separation mechanism
    • G01N2030/025Gas chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 고무 중합 과정중 대기 중으로 방출되거나 고무 제품의 중합후 제품중에 잔류하는 부타디엔, 이소프렌 및 스티렌 등의 고분자 단량체 및 헥산 톨루엔 등의 중합용매의 분석 방법 중의 하나인 헤드 스페이스-가스 크로마토그라피법에 사용되는 흡착제의 조성 및 이를 이용한 흡착관에 관한 것으로, 더욱 상세하게는 단일 흡착제를 사용하는 기존의 흡착관과는 달리 극성을 달리하는 흡착제들을 혼합하여 휘발성 유기 화합물을 효과적으로 흡착 및 탈착시켜 재현성있는 분석결과를 얻게 해주는 흡착관에 관한 것이다.The present invention relates to a head space-gas chromatography method, which is one of methods for analyzing polymer monomers such as butadiene, isoprene and styrene and polymer solvents such as hexane and toluene which are released into the atmosphere during the rubber polymerization or remain in the product after the polymerization of the rubber product. The present invention relates to the composition of the adsorbent used and the adsorption tube using the same. More specifically, unlike conventional adsorption tubes using a single adsorbent, the adsorbents having different polarities are mixed to effectively adsorb and desorb volatile organic compounds, thereby providing a reproducible analysis. It's about adsorption tubes that get results.

Description

휘발성 유기화합물의 분석을 위한 흡착관 및 그 제조방법{Absorption tube for the analysis of volatile organic compounds and method thereof}Absorption tube for the analysis of volatile organic compounds and method

본 발명은 휘발성 유기화합물의 분석에 사용되는 사전 전처리 장치인 흡착관에 관한 것으로서, 더욱 상세하게는 극성이 큰 물질에서 작은 극성을 지닌 물질까지 다양한 분포를 지니는 휘발성 유기 화합물을 효과적으로 흡착관에 흡착 및 탈착시키기 위하여 일반적으로 사용되는 단일 물질의 흡착제를 충진한 흡착관을 사용하는데 비하여 혼합 성분의 흡착제를 충진시켜 휘발성 유기화합물의 흡착 및 탈착 효율을 향상시키는 흡착관 및 그 제조방법에 관한 것이다.The present invention relates to an adsorption tube, which is a pre-treatment device used for the analysis of volatile organic compounds, and more particularly, to adsorption of volatile organic compounds having various distributions from highly polar materials to small polar materials. The present invention relates to an adsorption tube and a method for manufacturing the same, which improve the adsorption and desorption efficiency of volatile organic compounds by filling an adsorbent of mixed components, as compared with an adsorption tube packed with a single substance adsorbent for desorption.

국내에서는 대기중의 독성 유기물의 분석에 미국 환경 보호청의 공인된 시험 방법을 주로 사용하고 있다. 이에 관련된 전처리 방법으로 열 탈착 방법인 TO-1, TO-2, TO-14 법이 주로 사용되고 있다. 기존의 대기 분석을 위한 시료 전처리는 공기를 직접 채집하여 분석하는 방법과 용매 탈착용 흡착관에 원하는 시료를 흡착시켜 원하는 시료를 전처리하는 방법이 사용되었다. 그러나 이들 방법의 경우 수분이나 기타 불순물이 많이 섞이며, 수작업으로 이루어져 오차가 많고 시간과 노동력이 많이 소모된다는 단점이 있다. 또한 용매로 탈착하는 방법의 경우 고가의 독성 용매를 다량 사용해야 하기 때문에 유지비 및 2차 환경 오염원이 된다는 점에 문제 가 있다.Domestically, the US Environmental Protection Agency-approved test methods are mainly used for the analysis of toxic organics in the atmosphere. As a pretreatment method related thereto, the thermal desorption methods TO-1, TO-2, and TO-14 are mainly used. Conventional sample pretreatment for atmospheric analysis has been performed by collecting air directly and analyzing the sample and adsorbing the desired sample in a solvent desorption tube. However, these methods have a disadvantage in that a lot of moisture or other impurities are mixed, and by hand, a lot of errors and time and labor are consumed. In addition, the method of desorption with a solvent has a problem in that a large amount of expensive toxic solvents must be used, which is a source of maintenance costs and secondary environmental pollution.

본 발명에서는 이 두가지 방법에 비하여 전처리 방법이 단순하고 효율이 뛰어난 열 탈착법에 사용되는 흡착관에 관한 것으로, 열 탈착 시스템의 경우 열 탈착에 의하여 가스 크로마토그라피 칼럼까지 시료가 자동 주입되기 때문에 전처리 과정을 단순화시키고 흡착관의 종류에 따라 선택적으로 원하는 물질만을 분석할 수 있으며 미량 분석에서 뛰어난 감도와 분리능을 보여준다는 장점이 있다. 흡착관도 재사용이 가능하고 용매의 소비가 전혀 없기 때문에 용매 탈착관에 비해 유지비가 절감된다.("Method TO-1 and TO-2 in conpendium of methods for the determination of Toxic compounds in ambient air", EPA-600, June(1988))The present invention relates to an adsorption tube used for thermal desorption, which is simpler and more efficient than the two methods. In the case of a thermal desorption system, the sample is automatically injected into the gas chromatography column by thermal desorption. It is possible to simplify the analysis and to selectively analyze only the desired material according to the type of adsorption tube, and show the excellent sensitivity and resolution in the microanalysis. The adsorption tube is also reusable and consumes no solvent, thus reducing maintenance costs ("Method TO-1 and TO-2 in conpendium of methods for the determination of Toxic compounds in ambient air", EPA-). 600, June (1988)

열 탈착법은 다음과 같은 단계의 전처리 과정을 거친다.Thermal desorption involves the following pretreatment steps:

1) 시료 채취단계 : 펌프와 흡착제가 충진되어 있는 흡착관을 연결, 일정 유속으로 공기를 통과시켜 시료를 포집, 또는 고분자 시료를 가열하여 생성되는 가스를 불활성 기체를 이동상으로 이용하여 흡착관에 통과시킴.1) Sampling step: Connects the pump and the adsorption tube filled with adsorbent, and collects the sample by passing air at a constant flow rate, or passes the gas generated by heating the polymer sample using the inert gas as the mobile phase and passes through the adsorption tube. Sikkim.

2) 탈착 단계 : 흡착관을 분석 장비에 장착한 후 고온으로 가열하여 시료를 탈착시킨 후 저온 냉각 내부 흡착관에 재응축시킴.2) Desorption step: The adsorption tube is mounted on the analytical equipment and heated to a high temperature to desorb the sample and then recondensed to the low temperature cooling internal adsorption tube.

3) 칼럼 주입 단계 : 재응축되었다가 다시 탈착된 시료가 운반 기체와 함께 가스 크로마토그라피 칼럼으로 주입되어 분석 실행.3) Column injection step: Recondensed and then desorbed sample is injected into the gas chromatography column with carrier gas to carry out the analysis.

이상의 방법에 의하여 열 탈착을 이용한 대기중의 휘발성 유기 화학물질의 분석을 이용하기 위해서는 대기중의 시료를 흡착관에 정량적으로 흡착 및 탈착시키는 방법이 필요하게 된다.In order to use the analysis of volatile organic chemicals in the air by thermal desorption by the above method, a method of quantitatively adsorbing and desorption of atmospheric samples to the adsorption tube is required.

본 발명에서는 스티렌, 부타디엔 및 이소프렌등을 원료로 사용하는 고분자 중합에서 생성될 수 있는 휘발성 유기물질인 고분자 단량체 및 헥산 헵탄 및 톨루엔 등의 중합 용매등의 대기중의 농도 및 생산 제품중의 휘발성 유기물질의 잔류 농도를 효율적으로 분석할 수 있는 흡착관을 제작하는 것이다.In the present invention, the concentration of volatile organic substances in the air and the concentration of the polymer monomer and volatile organic substances such as hexane heptane and toluene that can be produced in the polymerization of polymers using styrene, butadiene and isoprene as raw materials The adsorption tube which can analyze the residual concentration of is efficiently manufactured.

현재 일반적으로 사용되고 있는 흡착물질들은 테낙스(폴리(2-디페닐-파라-페닐렌 옥사이드)) 계열의 고분자, 카본 블랙 및 미국 슈펠코사의 카보트랩 및 카보시브 등이 사용되고 있다. 상용화된 흡착관들은 대부분 위에서 언급한 흡착제들의 단일조성물로 미국 환경 보호청 규격에 적합하게 설계된 것인데 비슷한 극성을 지니는 물질들의 분석에 주로 사용되고 있다. 이러한 흡착관들은 본 발명에서 분석하고자 하는 스티렌, 부타디엔 및 이소프렌등을 원료로 사용하는 고분자 중합공정에서 생성될 수 있는 휘발성 유기물질인 고분자 단량체 및 헥산 헵탄 및 톨루엔 등의 중합 용매등의 대기중의 농도 및 생산 제품중의 휘발성 유기물질의 잔류 농도 분석에는 효과적으로 적용하기 어려운 문제점을 지니고 있다. 즉, 공정 중 대기중으로 방출되거나 제품중에 잔류될 수 있는 물질들의 극성이나 화학적인 성질들이 서로 상이하기 때문에 미국 환경 보호청에서 예시한 단일 조성의 흡착제를 사용한 흡착관으로는 정량적인 농도 분석의 문제점이 있다고 할 수 있다.Currently used adsorbents include tenax (poly (2-diphenyl-para-phenylene oxide)) polymer, carbon black, and carbrap and carbosib of Spellco, USA. Commercially available adsorption tubes are mostly a single composition of the above-mentioned adsorbents, which are designed to comply with US EPA standards, and are mainly used for the analysis of materials of similar polarity. These adsorption tubes are used in the present invention, such as styrene, butadiene, isoprene, etc., as the raw material. And it is difficult to apply effectively to the residual concentration analysis of volatile organic substances in the product. That is, because the polarity or chemical properties of the substances that may be released into the atmosphere or remain in the product during the process are different from each other, there is a problem of quantitative concentration analysis in the adsorption tube using a single composition of the adsorbent exemplified by the US Environmental Protection Agency. can do.

따라서, 본 발명은 상기와 같이 단일한 조성의 충진제로 이루어진 흡착관으로는 스티렌, 부타디엔 및 이소프렌등의 원료 및 헥산 헵탄 및 톨루엔 등의 중합 용매등을 대기중으로부터 정량적으로 흡착 및 탈착시키기 어려운 문제점을 극복하기 위한 것으로, 테낙스, 카본블랙, 카보트랩 및 카보시브 등의 다양한 흡착제를 효과적으로 배합하여 흡착관을 제조한 후 분석에 적용한 결과 공정 중 발생하는 휘발성 유기물질을 정량적으로 분석할 수 있도록 한 흡착관 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention provides a problem that it is difficult to quantitatively adsorb and desorb styrene, butadiene and isoprene, and a polymerization solvent such as hexane heptane and toluene in the air as an adsorption tube made of a filler having a single composition as described above. Adsorbed to overcome quantitative analysis of volatile organic substances generated in the process as a result of applying adsorption tubes by effectively mixing various adsorbents such as Tenax, Carbon Black, Carbotrap and Carbosib The object is to provide a tube and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명은, 흡착제인 테낙스, 카본 블랙, 카보트랩 및 카보 시브를 각각 일정 비율로 혼합한 후 흡착관에 충진 사용하여 휘발성 유기물질의 상온에서의 흡착 효율 및 고온에서의 탈착 효율을 증가시켜 정량적인 분석을 가능케 함을 그 특징으로 한다.The present invention for achieving the above object, the adsorbent Tenax, carbon black, carbo trap and carbo sheave is respectively mixed in a predetermined ratio and then used in the adsorption tube to fill the adsorption efficiency at room temperature and volatile organic materials at high temperature It is characterized by increasing the desorption efficiency to enable quantitative analysis.

삭제delete

이하, 본 발명에 의한 흡착관의 제조방법을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the production method of the adsorption tube according to the present invention will be described in more detail.

본 발명에서 사용된 흡착제는 테낙스, 카본 블랙 및 미국 슈펠코사 제품인 카보트랩 2000 및 카보시브 등이다. 일반적으로 테낙스는 대부분의 유기물을 흡착할 수 있다고 알려져 있으나, 상온에서는 부타디엔 등의 휘발성이 큰 기체는 흡착력이 약하다고 알려져 있다. 본 발명에서는 테낙스를 이용하여 상온에서 중합용매등을 흡착시키고 휘발성이 큰 물질은 카보트랩 및 카보시브 등을 이용하여 흡착시키는 방법을 이용하여 효율적인 흡착이 가능한 흡착관을 제작하였다.Adsorbents used in the present invention are Tenax, Carbon Black, and CarboTrap 2000 from Carpez, USA and Carbosib. Generally, tenax is known to adsorb most organic materials, but at room temperature, it is known that a gas having high volatility such as butadiene has a weak adsorption force. In the present invention, the adsorption tube capable of efficient adsorption is manufactured using a method of adsorbing a polymerization solvent and the like at room temperature using Tenax and adsorbing a high volatility material using carbotrap and carbosib.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.

하기의 실시예에서 휘발성 성분의 분석은 흡착관을 통해 포집한 가스를 일본 자이사의 헤드스페이스 샘플러를 가스 크로마토그라피에 연결하여 수행하였다. 열 탈착온도는 380도 부근이었으며 탈착된 가스를 가스 크로마토그라피를 이용하여 분석하였다.In the following examples, the analysis of the volatile components was carried out by connecting the gas collected through the adsorption tube to a gas chromatography using a headspace sampler of Japan's ZISA. The thermal desorption temperature was around 380 degrees and the desorbed gas was analyzed by gas chromatography.

여기에 기재된 실시예 및 비교예는 본 발명의 설명을 위한 것으로, 본 발명의 범위를 제한하려는 의도로 제공되는 것은 아니다.The examples and comparative examples described herein are for illustrative purposes only and are not intended to limit the scope of the present invention.

(실시예 1)(Example 1)

도 1과 같은 흡착관에 흡착제인 테낙스를 충진시킨 후 각 표준물질을 흡착관에 통과시킨 후 흡착 및 탈착 효율을 조사하였다. 시료 각 500ppb를 제조한 후 시료백에 주입한 후 펌프의 유량을 적절히 조절하여 흡착관에 통과시켰다. 분당 약 1L의 유량으로 통과시킨 후 흡착관을 분리한 후 헤드스페이스 샘플러로 분석한 결과를 표 1에 나타내었다.After adsorbing Tenax, an adsorbent, to the adsorption tube as shown in FIG. 1, each standard material was passed through the adsorption tube, and then adsorption and desorption efficiency were examined. 500ppb of each sample was prepared, and then injected into the sample bag, and the flow rate of the pump was properly adjusted and passed through the adsorption tube. After passing through at a flow rate of about 1L per minute, the adsorption tube was separated and analyzed by a headspace sampler.

휘발성이 큰 부타디엔등의 시료 분석시 회수율이 떨어짐을 알 수 있다. It can be seen that the recovery rate decreases when analyzing a sample of high volatility butadiene.

(실시예 2)(Example 2)

도 1과 같은 흡착관에 흡착제인 카본 블랙에 충진시킨 후 각 표준물질을 흡착관에 통과시킨 후 흡착 및 탈착 효율을 조사하였다. 시료 각 500ppb를 제조한 후 시료백에 주입한 후 펌프의 유량을 적절히 조절하여 흡착관에 통과시켰다. 분당 약 1L의 유량으로 통과시킨 후 흡착관을 분리한 후 헤드스페이스 샘플러로 분석한 결과를 표 1에 나타내었다. 실시예 1과 비슷한 결과를 나타냄을 알 수 있다.After filling the carbon black as an adsorbent in the adsorption tube as shown in FIG. 1, each standard material was passed through the adsorption tube, and then the adsorption and desorption efficiency were examined. 500ppb of each sample was prepared, and then injected into the sample bag, and the flow rate of the pump was properly adjusted and passed through the adsorption tube. After passing through at a flow rate of about 1L per minute, the adsorption tube was separated and analyzed by a headspace sampler. It can be seen that the results are similar to those of Example 1.

(실시예 3)(Example 3)

도 1과 같은 흡착관에 흡착제인 카보트랩 및 카보시브를 각각 50%씩 충진시킨 후 각 표준물질을 흡착관에 통과시킨 후 흡착 및 탈착 효율을 조사하였다. 시료 각 500ppb를 제조한 후 시료백에 주입한 후 펌프의 유량을 적절히 조절하여 흡착관에 통과시켰다. 분당 약 1L의 유량으로 통과시킨 후 흡착관을 분리한 후 헤드스페이스 샘플러로 분석한 결과를 표 1에 나타내었다. 휘발성이 큰 물질에서의 회수율은 증가하나 용매로 사용되는 물질들의 회수율은 감소함을 알 수 있다.After adsorption of carbotrap and carbosheb, which are adsorbents, was carried out by 50%, respectively, the adsorption and desorption efficiencies of the adsorption tubes were examined. 500ppb of each sample was prepared, and then injected into the sample bag, and the flow rate of the pump was properly adjusted and passed through the adsorption tube. After passing through at a flow rate of about 1L per minute, the adsorption tube was separated and analyzed by a headspace sampler. It can be seen that the recovery rate of the highly volatile material is increased but the recovery rate of the materials used as the solvent is decreased.

(실시예 4)(Example 4)

도 1과 같은 흡착관에 흡착제인 테낙스, 카본 블랙, 카보트랩 및 카보시브를 각각 25%씩 충진시킨 후 각 표준물질을 흡착관에 통과시킨 후 흡착 및 탈착 효율을 조사하였다. 시료 각 500ppb를 제조한 후 시료백에 주입한 후 펌프의 유량을 적절히 조절하여 흡착관에 통과시켰다. 분당 약 1L의 유량으로 통과시킨 후 흡착관을 분리한 후 헤드스페이스 샘플러로 분석한 결과를 표 1에 나타내었다.Adsorbents such as Tenax, Carbon Black, Carbotrap, and Carbosheb were filled in 25% of adsorbents as shown in FIG. 1, and each standard was passed through the adsorption tubes. 500ppb of each sample was prepared, and then injected into the sample bag, and the flow rate of the pump was properly adjusted and passed through the adsorption tube. After passing through at a flow rate of about 1L per minute, the adsorption tube was separated and analyzed by a headspace sampler.

모든 시료에 대하여 회수율이 증가하고 있음을 알 수 있다. It can be seen that the recovery rate is increasing for all samples.

표준 시료들의 회수율Recovery of Standard Samples 시료명Sample Name 실시예1(%)Example 1 (%) 실시예2(%)Example 2 (%) 실시예3(%)Example 3 (%) 실시예4(%)Example 4 (%) 부타디엔butadiene 7575 6767 8888 9696 스티렌Styrene 9595 8585 9494 9696 헥산Hexane 101101 9696 9090 101101 톨루엔toluene 9999 9898 9292 9898

이상에서 상세히 설명한 바와 같이, 본 발명에 의하면 혼합 조성의 흡착제를 사용한 흡착관의 경우 단일한 흡착제를 충진한 흡착관과 비교한 결과 각 시료의 회수율이 현격히 증가함을 볼 수 있었다. 단일 조성의 흡착관의 경우 흡착제의 물리 화학적인 성질에 따라 각 표준물질의 회수율이 상이하였으나, 혼합 물질의 충진제를 사용하였을 경우 선택된 표준물질의 정량적인 회수를 가능하게 할 수 있다.As described in detail above, according to the present invention, when the adsorption tube using the adsorbent of the mixed composition was compared with the adsorption tube packed with a single adsorbent, the recovery rate of each sample was significantly increased. In the case of a single composition adsorption tube, the recovery rate of each standard was different according to the physicochemical properties of the adsorbent. However, when a filler of a mixed material is used, it is possible to quantitatively recover the selected standard.

도 1은 본 발명에 의한 흡착관을 도시한 개략도.1 is a schematic view showing an adsorption tube according to the present invention.

** 도면의 주요부분에 대한 부호의 설명 **** Explanation of symbols for main parts of drawings **

a ; 유리 솜 b ; 흡착제 a; Glass wool b; absorbent

Claims (4)

대기중의 휘발성 유기 화학물질의 분석을 위한 시료 흡착관에 있어서, 상기 흡착관에 사용되는 흡착제를 혼합물질을 사용하는 것을 특징으로 하는 휘발성 유기화합물의 분석을 위한 흡착관의 제조방법.A sample adsorption tube for analysis of volatile organic chemicals in the air, wherein the adsorbent used in the adsorption tube is a mixture material. 제1항에 있어서, 상기 흡착제는 테낙스, 카본블랙, 카보트랩 및 카보시브의 혼합물질을 사용하는 것을 특징으로 하는 휘발성 유기화합물의 분석을 위한 흡착관의 제조방법.The method of claim 1, wherein the adsorbent is a mixture of tenax, carbon black, carbotrap, and carbosib. 삭제delete 제1항의 방법에 의해 제조된 것을 특징으로 하는 흡착관.An adsorption tube manufactured by the method of claim 1.
KR10-2002-0019302A 2002-04-09 2002-04-09 Absorption tube for the analysis of volatile organic compounds and method thereof KR100484982B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0019302A KR100484982B1 (en) 2002-04-09 2002-04-09 Absorption tube for the analysis of volatile organic compounds and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0019302A KR100484982B1 (en) 2002-04-09 2002-04-09 Absorption tube for the analysis of volatile organic compounds and method thereof

Publications (2)

Publication Number Publication Date
KR20030080595A KR20030080595A (en) 2003-10-17
KR100484982B1 true KR100484982B1 (en) 2005-04-25

Family

ID=32378331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0019302A KR100484982B1 (en) 2002-04-09 2002-04-09 Absorption tube for the analysis of volatile organic compounds and method thereof

Country Status (1)

Country Link
KR (1) KR100484982B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719156B1 (en) 2006-06-14 2007-05-18 건국대학교 산학협력단 High efficiency absorbent trap with multi-layer filter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100767996B1 (en) * 2006-12-06 2007-10-18 아쿠아셀 주식회사 Multi-bed adsorption tube and quantitative analysis method for trace multi-components of volatile organic compounds(vocs) and odors
CN113804810A (en) * 2020-06-15 2021-12-17 浙江科技学院 Chromatographic separation column and method for detecting VOCs gas chromatography
CN114527217A (en) * 2022-02-24 2022-05-24 山东星菲化学有限公司 Preparation method of quality control standard substance in adsorption tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545261A (en) * 1991-04-22 1993-02-23 Sekiyu Kodan Sampling and analyzing method for hydrocarbon contained in minute quantity in sea water
JPH10221224A (en) * 1997-02-10 1998-08-21 Suzuki Motor Corp Gas component adsorbing tube
KR0171651B1 (en) * 1993-12-17 1999-05-01 가네꼬 히사시 Apparatus for analyzing organic substance and method for the same
KR19990072391A (en) * 1998-02-04 1999-09-27 가네꼬 히사시 Method of analyzing substances exising in gas
JP2001124748A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Method and apparatus for high-speed analysis of chlorobenzene
JP2001159592A (en) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp Heat generated gas evaluating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545261A (en) * 1991-04-22 1993-02-23 Sekiyu Kodan Sampling and analyzing method for hydrocarbon contained in minute quantity in sea water
KR0171651B1 (en) * 1993-12-17 1999-05-01 가네꼬 히사시 Apparatus for analyzing organic substance and method for the same
JPH10221224A (en) * 1997-02-10 1998-08-21 Suzuki Motor Corp Gas component adsorbing tube
KR19990072391A (en) * 1998-02-04 1999-09-27 가네꼬 히사시 Method of analyzing substances exising in gas
JP2001124748A (en) * 1999-10-27 2001-05-11 Mitsubishi Electric Corp Method and apparatus for high-speed analysis of chlorobenzene
JP2001159592A (en) * 1999-12-02 2001-06-12 Mitsubishi Electric Corp Heat generated gas evaluating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719156B1 (en) 2006-06-14 2007-05-18 건국대학교 산학협력단 High efficiency absorbent trap with multi-layer filter

Also Published As

Publication number Publication date
KR20030080595A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
AU2016256798B2 (en) Sorbent devices and methods of using them
CN104569228B (en) A kind of sampling device
US20060137432A1 (en) Process for collecting and concentrating trace organics in a liquid sample
US10191019B2 (en) Vacuum-assisted in-needle capplicary adsorption trap with multiwalled polyaniline/carbon nanotube nanocomposite sorbent
CN102928499B (en) Rapid analysis device and method for ambient air volatile organic compounds
Mariné et al. Comparison between sampling and analytical methods in characterization of pollutants in biogas
Dettmer et al. Stability of reactive low boiling hydrocarbons on carbon based adsorbents typically used for adsorptive enrichment and thermal desorption
CN108680656A (en) A method of polybrominated biphenyls ether content in sludge composting sample is detected using accelerated solvent extraction in-line purification method
Hawthorne et al. Emission of organic air pollutants from shale oil wastewaters
CN113325098B (en) Synchronous analysis and detection method for micro-plastics and organic pollutants in soil
KR100484982B1 (en) Absorption tube for the analysis of volatile organic compounds and method thereof
Eiceman et al. Sensing of petrochemical fuels in soils using headspace analysis with photoionization-ion mobility spectrometry
CN204302250U (en) A kind of sampling device
CN106950303B (en) Method for measuring benzene series in biological sample blood
Chen et al. Fullerenes-extracted soot: a new adsorbent for collecting volatile organic compounds in ambient air
Hille Enrichment and mass spectrometric analysis of trace impurity concentrations in gases
Lecharlier et al. Promises of a new versatile field-deployable sorbent tube thermodesorber by application to BTEX analysis in CH4
Škrabáková et al. Use of a novel carbon sorbent for the adsorption of organic compounds from water
Galdiga et al. Ultra trace detection of perfluorocarbon tracers in reservoir gases by adsorption/thermal desorption in combination with NICI-GC/MS
KR100581473B1 (en) Apparatus for analysing vocalization accelerator contained in vulcanized natural and synthetic rubber product
Bertoni et al. A graphitized carbon black diffusive sampler for the monitoring of organic vapours in the environment
RU2789634C1 (en) Method for determining furan and methylfuran in atmospheric air by capillary gas chromatography with a mass selective detector using the low-temperature concentration method
KR102568572B1 (en) Method for quantitative analysis of volatile organic compounds in adsorbent
COCHEO et al. An apparatus for the thermal desorption of solvents sampled by activated charcoal
Knöppel Sampling and analysis of organic indoor air pollutants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee