KR100459986B1 - Advanced Step Aeration with Media(ASA, SFC-Biofilter) - Google Patents

Advanced Step Aeration with Media(ASA, SFC-Biofilter) Download PDF

Info

Publication number
KR100459986B1
KR100459986B1 KR10-2002-0007796A KR20020007796A KR100459986B1 KR 100459986 B1 KR100459986 B1 KR 100459986B1 KR 20020007796 A KR20020007796 A KR 20020007796A KR 100459986 B1 KR100459986 B1 KR 100459986B1
Authority
KR
South Korea
Prior art keywords
tank
sludge
phosphorus
nitrogen
water
Prior art date
Application number
KR10-2002-0007796A
Other languages
Korean (ko)
Other versions
KR20030066271A (en
Inventor
강용태
Original Assignee
강용태
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강용태 filed Critical 강용태
Priority to KR10-2002-0007796A priority Critical patent/KR100459986B1/en
Publication of KR20030066271A publication Critical patent/KR20030066271A/en
Application granted granted Critical
Publication of KR100459986B1 publication Critical patent/KR100459986B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/102Permeable membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/02Odour removal or prevention of malodour

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 하수 또는 오수의 처리를 위한 수질처리장치에 관한 것으로, 보다 상세하게는 단계적으로 유입수를 유입시키고, 각 반응조의 위치 및 반응조건을 달리하여 질소, 인을 효율적으로 제거함과 동시에 장치의 설치 면적을 최소화하고, 수처리시에 발생되는 악취를 제거할 수 있는 담체를 이용하는 단계유입형 질소, 인 처리장치에 관한 것이다.The present invention relates to a water treatment apparatus for the treatment of sewage or sewage, and more particularly, inflow of water inflow step by step, and by removing the nitrogen and phosphorus at the same time by varying the position and reaction conditions of each reactor, the installation of the device at the same time It relates to a step inlet nitrogen, phosphorus treatment apparatus using a carrier that can minimize the area and remove odor generated during water treatment.

본 발명의 단계유입 질소, 인 처리장치는 유입수(오수 또는 하수)를 생물학적으로 여과시키는 생물반응조로서, 유입수를 단계적으로 반응조에 유입시킨다는 점, 호기조를 무산소조 선단에 설치하고 혐기조 선단에 무산소슬러지조를 별도로 설치하며 무산소조 후단에 재포기조를 별도로 설치하여 생물반응조의 순서가 무산소슬러지조 →혐기조 → 호기조 →무산소조 →재포기조 →최종침전지 순으로 구성하였다는 점이 종래의 순환식 수질처리장치와 구별된다.The step inflow nitrogen and phosphorus treatment apparatus of the present invention is a bioreactor for biologically filtering the inflow water (sewage or sewage), and the inflow water is introduced into the reaction tank step by step. It is installed separately and re-aeration tank is installed after anoxic tank, and the order of bioreactor is anaerobic sludge tank → anaerobic tank → aerobic tank → anaerobic tank → re-aeration tank → final sedimentation cell.

Description

담체를 이용하는 단계유입형 질소, 인 처리장치{Advanced Step Aeration with Media(ASA, SFC-Biofilter)}Advanced step aeration with media (ASA, SFC-Biofilter) using carrier

본 발명은 하수 또는 오수의 처리를 위한 수질처리장치에 관한 것으로, 보다 상세하게는 단계적으로 유입수를 유입시키고, 각 반응조의 위치 및 반응조건을 달리하여 질소, 인을 효율적으로 제거함과 동시에 장치의 설치 면적을 최소화하고, 수처리시에 발생되는 악취를 제거할 수 있는 담체를 이용하는 단계유입형 질소, 인 처리장치에 관한 것이다.일반적으로 하수고도처리법들은 고농도 하수처리에 보다 효과적이므로 우리나라와 같이 관계수로가 미비하여 수질 및 수량의 변화가 심한 하수나 지하수 유입이 많은 저농도 하수에 대해서 고도처리효과를 높이는 것은 대단히 곤란하였다.종래의 하수고도처리는 대부분 순환법을 적용하여 왔다. 즉, 원수가 유입되는 혐기조, 혐기조에서 배출된 혼합액을 교반시키는 무산소조, 무산조에서 배출된 혼합액을 미세산기관을 통해서 공기를 유입시키는 호기조(포기조)를 차례로 거친 후, 호기조에서 배출된 액은 최종침전지에서 고체와 액체로 분리되어, 고체(침전슬러지)는 다시 상기 혐기조로 유입되고 액체(상등수, 고도처리수)는 배출되도록 구성된다. 이 순환법에서는 호기조에 펌프를 부착하여 호기조내의 혼합액을 일정량 무산소조에 다시 순환시키는 구조를 가지고 있다. 즉, 호기조(포기조)의 혼합액을 무산소조(DO≒0)로 다시 순환시켜 탈질반응으로 질소를 제거하여 왔다.고도하수처리법은 대부분 순환법으로 되어 있어 질소제거율이 50∼70%에 머물고 있으며 인제거율 또한 혐기조나 포기조의 안정이 어려워 제거율이 50∼70%에 머물고 있으며 순환시 과다한 동력비 증가는 물론 각 반응조 조건을 만족시키기 어렵고 유지관리비가 높다. 또한 유입수가 유입단에서 동시에 유입함으로 반응조의 부피가 커질 수밖에 없다.즉, 순환법은 무산소 조건을 만족시키기가 어렵고 동력비(순환비가 보통 2Q 정도임)가 높아, 질소 제거에 한계(50∼70% 전후)가 있어 유입수에 함유된 질소의 비율이 높을 경우 수질기준을 만족시키기 어렵다는 문제가 있었다. 또한, 인 제거 또한 유입수가 혐기조 또는 무산소조 전량 유입하므로 전체 수질처리장치의 부피가 커지고, 또한 각 반응조의 조건을 안정시키기 어려워 제거율이 50∼70%정도로서 충분한 제거효과를 얻을 수 없다는 문제가 있었다. 아울러, 겨울철에는 슬러지 팽화현상(Builking) 등으로 인해 처리수질에 악영향을 끼치는 등의 문제점을 지니고 있었다.이러한 단점을 보완하기 위해 여러 연구자들에 의해 순환에 의한 고도 활성슬러지변법들의 연구개발이 진행되어 왔으나, 표준활성슬러지법이나 순환고도처리시스템의 질소, 인 제거가 거의 되지 않거나 제거가 미흡한 실정이다.The present invention relates to a water treatment apparatus for the treatment of sewage or sewage, and more particularly, inflow of water inflow step by step, and by removing the nitrogen and phosphorus at the same time by varying the position and reaction conditions of each reactor, the installation of the device at the same time The present invention relates to a step inflow nitrogen and phosphorus treatment apparatus using a carrier which minimizes the area and removes odor generated during water treatment. Generally, sewage altitude treatment methods are more effective for high concentration sewage treatment. It is very difficult to increase the high treatment effect for low concentration sewage with high inflow of water and groundwater due to inadequate water quality and yield. Most of the conventional sewage altitude treatments have been applied to the circulation method. That is, after passing through an anaerobic tank into which raw water is introduced, an anaerobic tank to agitate the mixed liquid discharged from the anaerobic tank, and an aerobic tank (aeration tank) to introduce air to the mixed liquid discharged from the anaerobic tank through the micro-acid pipe, the liquid discharged from the aerobic tank is finally Separated into solid and liquid in the settling basin, the solid (precipitated sludge) is introduced into the anaerobic tank again and the liquid (supernatant, highly treated water) is discharged. This circulation method has a structure in which a pump is attached to an aerobic tank to circulate the mixed liquid in the aerobic tank again to a certain amount of an oxygen-free tank. In other words, the mixed liquid in the aerobic tank (aeration tank) has been circulated back to an oxygen-free tank (DO # 0) to remove nitrogen through denitrification. Most of the advanced sewage treatment methods are circulating and the nitrogen removal rate remains at 50 to 70%. In addition, it is difficult to stabilize the anaerobic tank or the aeration tank, so the removal rate remains at 50 to 70%. It is difficult to satisfy the conditions of each reactor as well as excessive power costs during circulation, and maintenance costs are high. In addition, the influent flows from the inlet at the same time, which inevitably increases the volume of the reactor.The circulation method is difficult to meet anoxic conditions and has a high power cost (the circulation ratio is usually about 2Q), limiting nitrogen removal (50 to 70%). There was a problem that it is difficult to meet the water quality standards when the ratio of nitrogen contained in the influent is high. In addition, since phosphorus removal also introduces the entire amount of the inflow water into the anaerobic tank or the anaerobic tank, the volume of the entire water treatment apparatus becomes large, and it is difficult to stabilize the conditions of each reaction tank, so that there is a problem that a sufficient removal effect is not obtained as the removal rate is about 50 to 70%. In addition, in winter, sludge swelling (Builking), etc. had a problem that adversely affects the treated water quality.To compensate for this disadvantage, research and development of highly active sludge variations by circulation have been conducted by various researchers. However, there is little or no removal of nitrogen and phosphorus in the standard activated sludge method or the circulating advanced treatment system.

따라서, 본 발명자는 기존 표준슬러지법의 개선 및 새로운 고도처리 시스템을 개발하여 호소, 하천의 조류, 바다의 적조 등의 부영양화 원인물질인 질소, 인의 제거를 극대화하고 팽화현상(Builking)을 없애고자 하였다.또한, 도심에 가까운 하수처리장의 냄새제거와 처리하수량 증대에 대처할 수 있도록 하여 수질처리장치의 용적을 최소화하면서 BOD(생물학적 산소요구량), SS(부유성 고형물)등의 유기물 및 냄새원인 물질의 제거율을 극대화해야 한다.본 발명자는 이러한 문제를 동시에 해결할 수 있는 단계적으로 유입수(하수 또는 오수)를 유입시키며, 각 반응조의 배치를 새로이 함과 동시에 미생물 담체를 첨가하여 질소, 인의 제거효율을 높이고, 시설의 설치면적을 최소화하고, 동력비를 절감할 수 있는 수질처리장치를 제공하고자 한다.기존의 하수고도처리법인 순환법과는 시스템 구성이 전혀 다른 단계유입과 냄새제거용 매체를 수질처리장치(즉, 생물반응조)의 첫 단계에 고정화(냄새 문제가 있을 경우에 한하여 설치)시키고, 하수처리 시스템 중 후단공정의 생물반응조에 대형 플록(Floc)을 형성함과 동시에 섬유상 매체를 장착(HRT가 부족하여 보완이 필요할 때에 한함)하여 SVI 값이 낮아져서 슬러지 침강농축성이 우수하고 팽화현상(Builking)을 억제할 수 있는 수질처리장치를 제공하는 것이다.Therefore, the present inventors have improved the existing standard sludge method and developed a new advanced treatment system to maximize the removal of nitrogen and phosphorus, which are eutrophic agents such as appeal, river algae, and red tide of the sea, and try to eliminate bulking. In addition, it is possible to cope with the odor removal and the increase of the amount of treated sewage in the sewage treatment plant near the city center, while minimizing the volume of the water treatment system, while removing the organic substances such as BOD (biological oxygen demand) and SS (floating solids) and odor causing substances. The present inventors introduce inflow water (sewage or sewage) in stages to solve these problems at the same time, and improve the efficiency of nitrogen and phosphorus removal by adding microbial carriers at the same time as the arrangement of each reactor. To minimize the installation area and reduce power costs. The inflow and odor removal medium is completely different from the circulating method, which is a circulating method, and fixed at the first stage of the water treatment system (ie, bioreactor) (installed only if there is an odor problem). The formation of a large floc in the bioreactor of the process and the mounting of fibrous media (only when supplementation is needed due to lack of HRT) results in a low SVI value, resulting in excellent sludge settling concentration and suppression of bulking. It is to provide a water treatment apparatus that can.

도 1은 본 발명의 바람직한 실시예에 따른, 담체를 이용하는 단계유입형 질소, 인 처리장치의 시스템 개략도이다.1 is a system schematic diagram of a step inlet nitrogen, phosphorus treatment apparatus using a carrier according to a preferred embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>

1 ; 무산소슬러지조 2 ; 혐기조 3 ; 호기조 4 ; 무산소조One ; Oxygen free sludge tank 2; Anaerobic tank 3; Aerobic tank 4; Anaerobic

5 ; 재포기조 6,7 ; 미세산기관 8 ; Air Lift Pump5; Reaeration tank 6,7; Microacid engine 8; Air lift pump

9 ; 최종침전지 10 ; 반송슬러지 11 ; 내부순환9; Final settler 10; Conveying sludge 11; Internal circulation

12 ; MediaⅠ 13 ; MediaⅡ 14 ; 고도처리수12; MediaI 13; Media II 14; Advanced treatment water

15 ; 잉여슬러지 16 ; Biofilter 17 ; 중수도처리수15; Surplus sludge 16; Biofilter 17; Water treatment

18 ; MF막18; MF film

상기의 목적을 달성하기 위해서, 본 발명은 단계적으로 유입수(하수 또는 오수)를 유입시켜 유입수를 처리하기 위한, 담체를 이용하는 단계유입형 질소, 인 처리장치로서,최종침전지에서 반송된 침전 슬러지(0.3∼0.5Q)가 유입되어, 슬러지 내의 질소, 인, 유기물을 제거하도록 교반기를 이용하여 교반작용시키는 무산소슬러지조,상기 무산소슬러지조에서 교반된 슬러지와 유입수(0.7∼0.8Q)가 함께 유입되어, 유입수 중 쉽게 분해가능한 유기물을 에너지원으로 하여 인 방출 및 슬러지내의 질소가 흡착 제거되도록 교반기를 이용하여 교반작용시키는 혐기조,상기 혐기조에서 유입된 혼합액 내의 NH3-N, 유기성 질소가 질산화 반응에 의해 NOx-N으로 전환되고, 인 과잉섭취 및 유기물 산화현상이 동시에 일어나도록, 유입된 혼합액에 미세산기관을 통해서 공기를 유입시키는 호기조,상기 호기조에서 배출된 혼합액과 단계 유입된 유입수(0.2∼0.3Q)를 혼합하여, 질산염을 질소가스(N2) 형태로 제거하도록 교반기를 이용하여 교반작용시키는 무산소조,상기 무산소조에서 배출된 혼합액을 유입시켜, 전단 반응조에서 미처리된 유기물 및 인을 제거하고, 처리수의 DO 확보를 통해 최종 침전지의 혐기화를 방지하여 인 재용출 예방효과 및 슬러지 침전성을 높이도록, 유입된 혼합액에 미세산기관을 통해서 공기를 유입시키는 재포기조, 및상기 재포기조에서 유입된 혼합액에서 슬러지를 침전시켜, 하부의 침전슬러지는 상기 무산소슬러지조로 반송하고, 상부의 상등수(고도처리수)는 배출시키는 최종침전지를 포함한다.바람직한 실시예에 따르면, 상기 무산소슬러지조는 토양성 미생물을 이용하여 냄새를 제거할 수 있도록 토양성 미생물이 함유된 탈취용 담체(Media I)를 추가로 포함하고, 상기 호기조 및 상기 재포기조는 미생물 농도를 증가시켜 장치의 HRT를 단축하고 질소, 인, 및 부유성 유기물의 제거율을 고효율로 유지시킬 수 있도록 미생물부착 담체(Media Ⅱ)를 추가로 포함한다.바람직한 다른 실시예에 따르면, 별도의 부지를 확보할 필요없이 처리수 중의 일부를 중수도로 재이용할 수 있도록, 상기 재포기조는 맴브레인 필터막(MF막)을 추가로 포함한다.바람직한 또다른 실시예에 따르면, 상기 최종침전지에서 유입되는 상등수를 생물막 여과시킬 수 있도록 생물여과장치(biofilter)를 추가로 포함한다.바람직한 또다른 실시예에 따르면, 질소, 인의 제거율을 증대시키도록, 혼합액 중의 일정량을 재포기조에서 무산소조로 반송시키는 순환용 에어 리프트 펌프가 재포기조에 추가적으로 설치된다.본 발명의 단계유입형 질소,인 처리장치는 유입수(오수 또는 하수)를 생물학적으로 여과시키는 생물반응조로서, 유입수를 단계적으로 반응조에 유입시킨다는 점, 호기조를 무산소조 선단에 설치하고 혐기조 선단에 무산소슬러지조를 별도로 설치하며 무산소조 후단에 재포기조를 별도로 설치하여 생물반응조의 순서가 무산소슬러지조 →혐기조 → 호기조 →무산소조 →재포기조 →최종침전지 순으로 구성하였다는 점이 종래의 순환식 수질처리장치와 구별된다.이 수질처리장치를 SA(Step Aeration) 시스템에서 발전개량하였다는 의미로 본 발명자는 "ASA(Advanced Step Aeration)"라고 명하였다. 본 "ASA"장치는 추가적으로 재포기조 내에 순환용 에어 리프트 펌프를 설치하여 재포기 내의 혼합액 중 일정량을 재포기조에서 무산소조로 다시 반송시킬 수도 있다.한편, 이 "ASA"장치에 담체를 설치하여 부유 유기물 및 냄새원인물질을 제거함과 동시에 반응조의 HRT(수리학적 체류시간)를 단축시켜 반응조 부피를 줄이면서 안정된 처리 수질을 얻을 수 있도록 구성하였다. 즉, "ASA" 장치의 전단에 설치된 무산소슬러지조(안정화조)에는 토양성 미생물을 이용하여 냄새를 제거할 수 있도록 토양성 미생물이 함유된 탈취용 담체(Media I)를 설치하고, 호기조(포기조) 및 재포기조에는 미생물의 농도를 증가시켜 장치의 HRT(수리학적 체류시간)을 단축시키고 질소, 인, 및 부유성 유기물의 제거율을 고효율로 유지시킬 수 있도록 미생물부착 담체(Media Ⅱ)를 설치한다. "ASA"장치에 담체를 추가하였다는 의미로, 본 발명자는 이와 같은 장치를 "ASAM(Advanced Step Aeration With Media)"라 명하였다.이 ASAM 장치는 저농도 및 고농도 하수처리 뿐만아니라 기존 활성슬러지법 또는 순환고도처리법으로 처리가 미흡한 부영양화의 원인물질인 질소 및 인 제거효율의 극대화는 물론 BOD, SS, 냄새 원인물질까지 제거할 수 있다.한편, 이 'ASA'장치의 재포기조 내에 MF막(맴브레인필터막)을 침적시켜 처리수의 일부를 중수도로써 재이용가능하도록 하였다. "ASA"장치에 MF막을 추가하였다는 의미로, 본 발명자는 이와 같은 장치를 "ASAMF"라 명하였다.아울러, 본 발명자는 상기의 수질처리장치의 운전조건을 변형하여 BOD, SS 제거 시간을 단축함과 동시에 최종침전지에서 배출되는 상등수(고도처리수)를 생물막 여과시킬 수 있도록 최종침전지 후단에 생물여과장치를 추가적으로 설치하였다. 이는 경제성이 매우 높은 중수도 시스템이라 할 수 있다. 상기의 수질처리장치인 중수도 시스템은 안정화조(무산조슬러지조)에서 안정화하고, 혐기조, 호기조, 무산소조, 재포기조에서 Floc을 형성하고, 최종침전지에서 침전시키며, 마지막 생물여과장치(biofilter)에서 생물학적 여과를 시킨다는 의미로, 본 발명자는 이와 같은 중수도 시스템을 "SFC(Stabilization Flocculation Clarification)-Biofilter"라 명하였다.이하에서는 첨부된 도면을 참조로 하여 본 발명의 수질처리장치를 설명하기로 한다.도 1 은 본 발명의 바람직한 실시예에 따른, 담체를 이용하는 단계유입형 질소, 인 처리장치의 시스템 개략도이다.도 1을 참조하면, 안정적인 유기물과 질소, 인 제거율을 높이기 위해 최종침전지(9)에서 반송된 슬러지(0.3Q)는 무산소슬러지조(1)에 유입시켜 질소를 제거시키는 탈질반응을 시킨다. 즉, 무산소슬러지(1)에서는 최종침전지(9)에서 유입된 침전 슬러지(반송 슬러지)내의 질소, 인, 유기물을 제거하도록 교반기를 이용하여 슬러지를 교반시킨다.혐기조(2)는 무산소슬러지조(1)에서 일정시간 교반된 슬러지 및 유입수(0.2∼0.3Q)가 함께 유입되어 일정시간동안 교반된다. 유입수는 하수 또는 오수이다. 혐기조에서는 유입수 중 쉽게 분해가능한 유기물(readily biodegradable organics)을 에너지원으로 하여 인 방출 및 슬러지내의 질소가 흡착 제거된다.호기조(3)에서는 혐기조에서 유입된 혼합액에 미세산기관을 통해서 공기를 유입시킨다. '포기'란 '공기를 유입시킨다'는 의미인데, '호기조'는 다른 말로 '포기조'라 한다. 호기조에서는 NH3-N, 유기성 질소가 질산화 반응에 의해 NOx-N으로 전환되며, 인 과잉섭취 및 유기물 산화현상이 동시에 일어난다.다음 반응조인 무산소조(4)는 호기조(3)에서 유입되는 혼합액과 단계 유입된 유입수(0.2∼0.3Q)를 혼합교반시킨다. 무산소조(4)에서는 탈질산화를 위한 유기탄소원으로 유입하수를 이용하여 질산염을 질소가스(N2) 형태로 제거한다. 이때 탄소에너지로 이용되는 유입하수 중의 용해성 BOD(생물학적 산소요구량)가 상당부분 제거되면 암모니아성 질소는 생체내에 합성된다. 즉, 무산소조(4)로 단계유입된 하수는 탄소원으로 활용되어 탈질효과를 증대시킬 뿐만 아니라 순환이 없으므로 동력비는 절감할 수 있다.이와 같이, 유입수(하수 또는 오수)는 혐기조(2)(0.7∼0.8Q) 및 무산소조(4)(0.2∼0.3Q)에서 단계유입됨으로 반응조의 부피를 줄일 수 있다는 장점이 있다.무산소조를 거친 혼합액은 재포기조(5)에서 유입된다. 재포기조(5)에서는 일정시간동안 미세산기관을 통해서 공기를 유입시킨다. 재포기조(5)는 전단 반응조에서 미처리된 유기물 및 인을 제거하고, 처리수의 DO 확보를 통해 최종 침전지의 혐기화를 방지하여 인 재용출 예방효과 및 슬러지 침전성을 높이기 위한 공정이다.재포기조(5)에서 배출된 액은 최종침전지(9)로 유입된다. 최종침전지는 재포기조에서 유입된 액을 고체(즉, 침전슬러지)와 액체로 분리하는 반응조이다. 하부의 침전 슬러지조는 다시 무산소슬러지조(1)로 반송되며, 상부의 상등수(고도처리수)는 배출된다. 재포기조(5)에는 추가적으로 순환용 에어 리프트 펌프(18)를 설치하여 재포기 내의 혼합액 중 일정량을 재포기조에서 무산소조로 다시 반송시킬수도 있다.즉, 최종침전지(9)의 반송슬러지를 무산소슬러지조(1)에 유입시켜 무산소슬러지조(1)를 안정조로 이용하면서 안정화된 슬러지와 유입하수를 혐기조(2)시킨 후 혐기조(2), 호기조(3), 무산소조(4), 재포기조(5)의 반응조 교반속도 조절로 대형 플록(Floc)을 형성한 후 최종침전지(9)에서 침강속도를 높여(SVI 60∼100이하) 상등수를 바이오필터(Biofilter)를 통과시켜 처리수를 중수도로 이용케 하였으며, 부지면적이 협소한 경우에는 재포기조(5)내에 MF막(18)을 설치하여 처리수중의 일부를 중수도로 이용가능케 하였다.ASA시스템은 무산소슬러지조(1), 혐기조(2), 호기조(3), 무산소조(4), 재포기조(5), 최종침전지(9)로 구성하고, 유입하수는 혐기조(2)와 무산소조(4)로 분할하여 단계유입 처리하며, MLSS농도 2,000mg/L∼4,000mg/L, 반송슬러지 비율(0.3∼0.5Q)로 하면서 각 반응조의 HRT(수리학적 체류시간)를 무산소슬러지조(1)에서 1시간, 혐기조(2)에서 1∼1.5시간, 호기조(3)에서 1.5∼2.5시간, 무산소조(4)에서 1.5∼2시간, 재포기조(5)에서 1시간으로 SRT 10일로 하였을 때 T-N, T-P, BOD, COD, SS의 제거율이 HRT가 8시간일 때 각각 85∼95%, 90∼95%, 95%, 95%, 95%이상을 얻을 수 있었다.이러한 ASA시스템의 HRT를 더욱 단축시키고 저온시 처리수질의 효과를 더욱 높이기 위해서 호기조(3)과 재포기조(5)에 MediaⅡ(13)을 설치한 ASAM장치를 구성하여 개발하였다.하기 표 1은 HRT가 6시간일 때 본 발명의 섬모상여재가 호기조(3)와 재포기조(5)에 설치된 ASAM시스템 장치의 처리 특성표이다.[표 1] ITEM Influent(mg/L) Effluent(mg/L) Removal Rate BOD 200 ∼ 350 10 ∼ 20 95% 이상 CODMn 100 ∼ 250 8 ∼16 95% 이상 SS 90 ∼ 300 7 ∼ 12 95% 이상 T-N 40 ∼ 80 5.4 ∼13 85 ∼ 95% 이상 T-P 4.0 ∼ 8.0 0.4 ∼ 0.6 90 ∼ 95% 이상 위와같이 ASAM법을 HRT 6시간에서 처리효율은 BOD, SS, COD 95%이상, T-N 85∼95%, T-P 90∼95%로써 방류수역에서의 부영양화를 개선시킬 수 있다.또한, ASA시스템의 후단공정인 재포기조(5)에 MF막(18)을 설치하여 처리수 중의 일부를 중수도로 재이용 함으로써 양질의 중수도를 생산할 수 있는 ASAMF장치를 개발하였다.그리고, ASA시스템을 SFC로 변형한 후 Biofilter 공정을 추가한 중수도 시스템인 SFC-Biofilter법으로도 변형하여 운전이 가능하다.즉, 최종침전지(9)의 슬러지를 반송하여 안정화조(1)(Stabilization)에서 활성슬러지를 안정시킨 후 유입수량 전량Q와 함께 혐기조(2)로 유입시키면서 혐기조(2), 호기조(3)의 교반 40rpm으로, 무산소조(4), 재포기조(5)의 교반을 30rpm으로 혐기조(2)∼재포기조(5)의 체류시간을 전체 37분으로 하여 통과시킨 후, 최종침전지(9)(체류시간 1.7시간)를 거쳐 Biofilter(16)(EBCT 22.5분)를 통과시키면 처리수 재이용이 가능하다.이때 무산소슬러지조(1)의 MLSS농도 1,000∼1,400mg/L, DO 0.5∼2mg/L, HRT 1시간(반송슬러지 0.3∼0.5Q의 3시간), 혐기조(2), 호기조(3), 무산소조(4), 재포기조(5)의 MLSS농도 450∼700mg/L HRT 37분, MCRT 3일, 최종침전지 침전시간 1.7시간으로 한 후 최종 Biofilter(16)(여재:Zeocarbon : 입경 1∼4mm, 깊이 1∼2m)를 EBCT 22.5분으로 하여 통과시키면 양질의 처리수질을 가지는 재이용 가능한 처리수(중수도)를 전체소요시간 3∼4시간의 단시간 내에 확보할 수 있었다.In order to achieve the above object, the present invention is a step inlet nitrogen, phosphorus treatment apparatus using a carrier for treating the influent by introducing the influent (sewage or sewage) step by step, the sludge (0.3) -0.5Q) is introduced, the oxygen-free sludge tank to be stirred by using a stirrer to remove nitrogen, phosphorus, organic matter in the sludge, the sludge and influent (0.7-0.8Q) stirred in the oxygen-free sludge tank is introduced together, Anaerobic tank for agitation by using a stirrer to release phosphorus and nitrogen in sludge by adsorption of easily decomposable organic matter in the inflow water, NH 3 -N in the mixed liquid introduced from the anaerobic tank, NOx by organic oxidation Is converted to -N, and air flows through the microacid pipe into the mixed solution so that phosphorus excess and organic oxidation occur simultaneously. Inlet of aerobic tank, the anoxic tank, discharged from the anoxic tank to the mixing the mixture liquid and the step of flowing the influent (0.2~0.3Q) discharged from the aerobic tank, the action of nitrate stirred using a stirrer to remove in the form of nitrogen gas (N 2) The mixed solution is introduced to remove the untreated organic matter and phosphorus from the shear reaction tank, and to secure the DO of the treated water to prevent the anaerobicization of the final sedimentation basin to prevent phosphorus elution and increase the sludge sedimentation, Re-aeration tank for introducing air through the micro-acid pipe, and the sludge from the mixed liquid introduced from the re-aeration tank, the lower settling sludge is returned to the oxygen-free sludge tank, the upper supernatant (highly treated water) is discharged According to a preferred embodiment, the oxygen-free sludge tank can remove the smell by using soil microorganisms. It further comprises a deodorizing carrier (Media I) containing soil microorganisms, the aerobic tank and the re-aeration tank to increase the concentration of microorganisms to shorten the HRT of the device and to remove the nitrogen, phosphorus, and floating organic matter A microbial attachment carrier (Media II) is further included to maintain the microorganisms. According to another preferred embodiment, the reaeration tank is a membrane so that some of the treated water can be reused as the heavy water without having to secure a separate site. A filter membrane (MF membrane) is further included. According to another preferred embodiment, a biofilter is further included to filter the supernatant introduced from the final settler. According to the present invention, a circulating air lift pump for conveying a certain amount in the mixed liquid from the reaeration tank to the anoxic tank to increase the removal rate of nitrogen and phosphorus is The step inflow nitrogen and phosphorus treatment apparatus of the present invention is a bioreactor for biologically filtering influent water (sewage or sewage), and inlet water is introduced into the reactor in stages, and an aerobic tank is installed at the anoxic tank tip. The anaerobic sludge tank is separately installed at the end of the anaerobic tank and the reaeration tank is separately installed at the rear end of the anaerobic tank. The water treatment apparatus is called "Advanced Step Aeration (ASA)" in the sense that the water treatment apparatus has been developed and improved in a SA (Step Aeration) system. The "ASA" apparatus may additionally install a circulating air lift pump in the reaeration tank to return a certain amount of the mixed liquid in the reaeration tank from the reaeration tank to the anoxic tank. And while removing the source of odor and at the same time shortening the HRT (hydraulic retention time) of the reactor was configured to obtain a stable treated water quality while reducing the reactor volume. That is, an oxygen-free sludge tank (stabilization tank) installed in front of the "ASA" device is installed with a deodorizing carrier (Media I) containing soil microorganisms to remove odors using soil microorganisms, and an aerobic tank (aeration tank). ) And reaeration tanks are equipped with a microbial attachment carrier (Media II) to increase the concentration of microorganisms to shorten the HRT (hydraulic residence time) of the device and to maintain high removal rates of nitrogen, phosphorus, and suspended organics. . In the sense that the carrier was added to the "ASA" device, the inventors named such a device as "Advanced Step Aeration With Media" (ASAM). This ASAM device is not only low and high concentration sewage treatment but also existing activated sludge method or circulation. In addition to maximizing the removal efficiency of nitrogen and phosphorus, which are the causes of poor nutrition, the BOD, SS, and odor-causing substances can be removed by the advanced treatment method.In addition, the MF membrane (membrane filter membrane) can be removed in the reaeration tank of this 'ASA' device. ) Was deposited so that a portion of the treated water was re-usable as heavy water. In the sense that the MF membrane was added to the "ASA" apparatus, the inventors named such an apparatus "ASAMF". In addition, the inventor modified the operating conditions of the water treatment apparatus to shorten the BOD and SS removal time. At the same time, a biofiltration device was additionally installed at the rear of the final settler to filter the supernatant (highly treated water) discharged from the final settler. This is a very economical heavy water system. The water treatment system of the above water treatment system is stabilized in a stabilization tank (anoxic sludge tank), forms a floc in an anaerobic tank, an aerobic tank, an anoxic tank, a reaeration tank, precipitates in a final settler, and the biological in the last biofilter (biofilter). In the sense of filtration, the present inventors named such a water system as "SFC (Stabilization Flocculation Clarification) -Biofilter". Hereinafter, the water treatment apparatus of the present invention will be described with reference to the accompanying drawings. Is a system schematic diagram of a step inlet nitrogen and phosphorus treatment apparatus using a carrier according to a preferred embodiment of the present invention. Referring to FIG. Sludge (0.3Q) is introduced into the oxygen-free sludge tank (1) to the denitrification reaction to remove nitrogen. That is, in the oxygen-free sludge 1, the sludge is stirred using a stirrer to remove nitrogen, phosphorus, and organic matter in the settling sludge (conveying sludge) introduced from the final settler 9. The anaerobic tank 2 is an oxygen-free sludge tank 1 ) And the sludge and inflow water (0.2-0.3Q) stirred for a certain time are introduced together and stirred for a certain time. Influent is sewage or sewage. In the anaerobic tank, phosphorus release and nitrogen in the sludge are adsorbed and removed using readily biodegradable organics in the influent. In the aerobic tank (3), air is introduced into the mixed solution from the anaerobic tank through the microacid pipe. 'Abandon' means 'to introduce air', and 'gigi-jo' is called 'gigi-jo' in other words. In the aerobic tank, NH 3 -N and organic nitrogen are converted to NOx-N by nitrification reaction, and phosphorus excess intake and organic substance oxidation occur simultaneously. The next reaction tank, the anoxic tank (4), is mixed with the mixed liquid flowing from the aerobic tank (3). Mix and stir the influent (0.2-0.3Q). In the anoxic tank 4, nitrates are removed in the form of nitrogen gas (N 2 ) by using influent sewage as an organic carbon source for denitrification. At this time, if the soluble BOD (biological oxygen demand) in the influent sewage used as carbon energy is largely removed, ammonia nitrogen is synthesized in vivo. In other words, the sewage introduced into the anaerobic tank 4 is utilized as a carbon source to increase the denitrification effect and reduce the power cost since there is no circulation. Thus, the influent (sewage or sewage) is anaerobic tank 2 (0.7 to 0.7). 0.8Q) and anoxic tank 4 (0.2-0.3Q) have the advantage of reducing the volume of the reaction tank. The mixed liquid passed through the anoxic tank is introduced from the reaeration tank 5. In the reaeration tank 5, air is introduced through the microacid engine for a predetermined time. The reaeration tank 5 is a process for removing the untreated organics and phosphorus from the shear reaction tank and preventing the anaerobicization of the final sedimentation basin by securing DO of the treated water, thereby improving phosphorus re-dissolution prevention and sludge sedimentation. The liquid discharged from (5) flows into the final settler (9). The final settler is a reaction tank that separates the liquid introduced from the reaeration tank into a solid (ie sediment sludge) and a liquid. The lower settling sludge tank is returned to the anaerobic sludge tank 1, and the upper supernatant water (highly treated water) is discharged. An additional circulation air lift pump 18 may be installed in the reaeration tank 5 to return a certain amount of the mixed liquid in the reaeration tank from the reaeration tank to the anoxic tank. That is, the conveying sludge of the final settler 9 is anoxic sludge tank. (1) Anaerobic tank (2), anaerobic tank (2), anaerobic tank (4), anaerobic tank (4), reaeration tank (5) After forming a large floc by controlling the reactor's stirring speed, the sedimentation rate was increased in the final settler (9) (SVI 60 ~ 100 or less), and the supernatant water was passed through a biofilter to use the treated water as a heavy water. In the case of a small area, the MF membrane 18 was installed in the reaeration tank 5 so that a part of the treated water could be used as the heavy water. The ASA system is an anaerobic sludge tank (1), an anaerobic tank (2), and an aerobic tank ( 3) to anoxic tank (4), reaeration tank (5), final settler (9) The influent sewage is divided into anaerobic tank (2) and anoxic tank (4), and the step inflow treatment is carried out, and the MLSS concentration is 2,000 mg / L to 4,000 mg / L, and the return sludge ratio (0.3 to 0.5Q) is used. (Humanological residence time) 1 hour in the anaerobic sludge tank (1), 1 to 1.5 hours in the anaerobic tank (2), 1.5 to 2.5 hours in the aerobic tank (3), 1.5 to 2 hours in the anaerobic tank (4), reaeration tank ( The removal rate of TN, TP, BOD, COD, and SS was 8-95%, 90-95%, 95%, 95%, 95% or more when the HRT was 8 hours in 5 hours at 5 hours. In order to further shorten the HRT of the ASA system and to further enhance the effect of the treated water quality at low temperatures, an ASAM device having Media II (13) installed in the aeration tank (3) and the reaeration tank (5) was developed. Table 1 is a processing characteristic table of the ASAM system apparatus in which the ciliary filter medium of the present invention is installed in the aerobic tank 3 and the reaeration tank 5 when the HRT is 6 hours. ITEM Influent (mg / L) Effluent (mg / L) Removal rate BOD 200 to 350 10 to 20 More than 95% COD Mn 100 to 250 8 to 16 More than 95% SS 90 to 300 7-12 More than 95% TN 40 to 80 5.4 to 13 85 to 95% or more TP 4.0 to 8.0 0.4 to 0.6 90-95% or more As mentioned above, ASAM method can improve eutrophication in effluent water with treatment efficiency of BOD, SS, COD more than 95%, TN 85-95%, TP 90-95% in HRT 6 hours. The MF membrane 18 was installed in the reaeration tank 5, which is a process, and a part of the treated water was reused as heavy water to develop an ASAMF device capable of producing high quality water. SFC-Biofilter method, which is a heavy water system with the addition of the SFC-Biofilter method, can be used for operation.In other words, the sludge of the final settler 9 is returned to stabilize the activated sludge in the stabilization tank 1, and then the amount of inflow water Q While stirring the anaerobic tank (2) and the aerobic tank (3) at 40 rpm, the agitation of the anaerobic tank (4) and the reaeration tank (5) at 30 rpm was maintained in the anaerobic tank (2) to the reaeration tank (5). After passing the time to 37 minutes in total, the final settler 9 (retention time 1.7 hours) was After passing through Biofilter (16) (EBCT 22.5 minutes), the treated water can be reused.In this case, the MLSS concentration of oxygen-free sludge tank (1) is 1,000 to 1,400 mg / L, DO 0.5 to 2 mg / L, HRT 1 hour (return sludge). 0.3-0.5Q 3 hours), anaerobic tank (2), aerobic tank (3), anaerobic tank (4), reaeration tank (5) MLSS concentration 450-700 mg / L HRT 37 minutes, MCRT 3 days, final settling precipitation time 1.7 After passing through the final Biofilter (16) (mediator: Geocarbon: particle size: 1-4mm, depth: 1-2m) with EBCT 22.5 minutes, the total amount of time required to recycle the treated water (medium water) with high quality treatment water 3 It could be secured in a short time of -4 hours.

이와같이 된 본 발명은 단계유입으로 인한 부지면적이 최소화 될 수 있고, 중수도 장치로 이용시에는 후단부에 생물막여과를 설치하여 처리수를 중수도로써 이용하여 수자원 확충에 기여할 수 있으며, 처리장의 이취미로 민원발생의 소지가 있을시에는 무산소슬러지조(1)에 MediaⅠ(12)을 충진하여 냄새원인물질을 제거할 수 있으며, 동절기 질산화율이 감소되거나, 생물반응조의 체류시간 확보가 용이하지 않은 경우 호기조(3)와 재포기조(5)에 Media Ⅱ(13)를 충진하여 질소제거효율을 향상시켜 방류수역에서의 부영양화를 개선시킬 수 있다.The present invention as described above can be minimized the land area due to the step inflow, and when using as a water-based device, biofilm filtration can be installed at the rear end to contribute to the expansion of water resources by using the treated water as water-based water, and appeals to the taste of the treatment plant. In case of occurrence, oxygen-free sludge tank (1) can be filled with Media I (12) to remove odor-causing substances, and if the nitrification rate in winter is reduced or the retention time of bioreactor is not easy, ) And reaeration tank (5) can be filled with Media II (13) to improve the nitrogen removal efficiency, thereby improving eutrophication in the effluent.

Claims (4)

단계적으로 유입수(하수 또는 오수)를 유입시켜 유입수를 처리하기 위한, 담체를 이용하는 단계유입형 질소, 인 처리장치로서,As a step inlet nitrogen, phosphorus treatment apparatus using a carrier for treating the influent by introducing the influent (sewage or sewage) in stages, 최종침전지(9)에서 반송된 침전 슬러지(0.3∼0.5Q)가 유입되어, 슬러지 내의 질소, 인, 유기물을 제거하도록 교반기를 이용하여 교반작용시키는 무산소슬러지조(1),Precipitated sludge conveyed from the final settler 9 (0.3-0.5Q) flows in, and the oxygen-free sludge tank 1 which is stirred by using an agitator to remove nitrogen, phosphorus and organic matter in the sludge, 상기 무산소슬러지조(1)에서 교반된 슬러지와 유입수(0.7∼0.8Q)가 함께 유입되어, 유입수 중 쉽게 분해가능한 유기물을 에너지원으로 하여 인 방출 및 슬러지내의 질소가 흡착 제거되도록 교반기를 이용하여 교반작용시키는 혐기조(2),The sludge stirred in the oxygen-free sludge tank (1) is introduced together with the inflow water (0.7 to 0.8Q), and is stirred using a stirrer to release phosphorus and adsorb and remove nitrogen in the sludge using an easily decomposable organic material in the inflow water as an energy source. Anaerobic tank (2), 상기 혐기조(2)에서 유입된 혼합액 내의 NH3-N, 유기성 질소가 질산화 반응에 의해 NOx-N으로 전환되고, 인 과잉섭취 및 유기물 산화현상이 동시에 일어나도록, 유입된 혼합액에 미세산기관(6)을 통해서 공기를 유입시키는 호기조(3),NH 3 -N, organic nitrogen in the mixed solution introduced from the anaerobic tank (2) is converted to NOx-N by nitrification reaction, so that phosphorus excess intake and organic matter oxidation occurs at the same time, the micro-acid pipe (6) Aeration tank (3) for introducing air through 상기 호기조(3)에서 배출된 혼합액과 단계 유입된 유입수(0.2∼0.3Q)를 혼합하여, 질산염을 질소가스(N2) 형태로 제거하도록 교반기를 이용하여 교반작용시키는 무산소조(4),Oxygen-free tank (4) to mix the mixed liquid discharged from the aerobic tank (3) and the inflow water (0.2 ~ 0.3Q) introduced into the step, using a stirrer to remove nitrate in the form of nitrogen gas (N 2 ), 상기 무산소조(3)에서 배출된 혼합액을 유입시켜, 전단 반응조에서 미처리된 유기물 및 인을 제거하고, 처리수의 DO 확보를 통해 최종 침전지의 혐기화를 방지하여 인 재용출 예방효과 및 슬러지 침전성을 높이도록, 유입된 혼합액에 미세산기관(7)을 통해서 공기를 유입시키는 재포기조(5), 및By introducing the mixed solution discharged from the oxygen-free tank (3), to remove the untreated organic matter and phosphorus in the shear reaction tank, to prevent the anaerobic of the final sedimentation basin through the DO of the treated water to prevent phosphorus elution and sludge sedimentation Re-aeration tank 5 for introducing air through the fine acid pipe (7) to the introduced mixed liquid to increase, and 상기 재포기조(5)에서 유입된 혼합액에서 슬러지를 침전시켜, 하부의 침전슬러지는 상기 무산소슬러지조(1)로 반송하고, 상부의 상등수(고도처리수)는 배출시키는 최종침전지(9)를 포함하며,Precipitating sludge in the mixed liquid introduced from the re-aeration tank (5), the lower settling sludge is returned to the oxygen-free sludge tank (1), and includes the final settling battery (9) for discharging the upper supernatant water (highly treated water) , 상기 무산소슬러지조(1)는 토양성 미생물을 이용하여 냄새를 제거할 수 있도록 토양성 미생물이 함유된 탈취용 담체(Media I, 12)를 포함하고,The oxygen-free sludge tank 1 includes a deodorizing carrier (Media I, 12) containing soil microorganisms to remove odors using soil microorganisms, 상기 호기조 및 상기 재포기조는 미생물 농도를 증가시켜 장치의 HRT를 단축하고 질소, 인, 및 부유성 유기물의 제거율을 고효율로 유지시킬 수 있도록 미생물부착 담체(Media Ⅱ, 13)를 포함하는 것을 특징으로 하는 담체를 이용하는 단계유입형 질소, 인 처리장치.The aeration tank and the reaeration tank may include a microorganism attachment carrier (Media II, 13) to increase the microbial concentration to shorten the HRT of the apparatus and maintain the removal rate of nitrogen, phosphorus, and suspended organic matter with high efficiency. A step inlet nitrogen, phosphorus treatment apparatus using a carrier to. 삭제delete 제 1항에 있어서,The method of claim 1, 별도의 부지를 확보할 필요없이 처리수 중의 일부를 중수도로 재이용할 수 있도록, 상기 재포기조(5)는 맴브레인 필터막(MF막,18)을 추가로 포함하는 것을 특징으로 하는 담체를 이용하는 단계유입형 질소, 인 처리장치.In order to reuse some of the treated water as heavy water without having to secure a separate site, the reaeration tank 5 is introduced using a carrier, which further comprises a membrane filter membrane (MF membrane) 18. Mold nitrogen, phosphorus treatment equipment. 제 1항에 있어서,The method of claim 1, 상기 최종침전지(9)에서 유입되는 상등수를 생물막 여과시킬 수 있도록 생물여과장치(biofilter, 16)를 추가로 포함하는 것을 특징으로 하는 담체를 이용하는 단계유입형 질소, 인 처리장치.Step inflow type nitrogen, phosphorus treatment apparatus using a carrier, characterized in that it further comprises a biofilter (biofilter, 16) to filter the supernatant water flowing from the final settler (9).
KR10-2002-0007796A 2002-02-05 2002-02-05 Advanced Step Aeration with Media(ASA, SFC-Biofilter) KR100459986B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0007796A KR100459986B1 (en) 2002-02-05 2002-02-05 Advanced Step Aeration with Media(ASA, SFC-Biofilter)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0007796A KR100459986B1 (en) 2002-02-05 2002-02-05 Advanced Step Aeration with Media(ASA, SFC-Biofilter)

Publications (2)

Publication Number Publication Date
KR20030066271A KR20030066271A (en) 2003-08-09
KR100459986B1 true KR100459986B1 (en) 2004-12-04

Family

ID=32221319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0007796A KR100459986B1 (en) 2002-02-05 2002-02-05 Advanced Step Aeration with Media(ASA, SFC-Biofilter)

Country Status (1)

Country Link
KR (1) KR100459986B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807801B1 (en) 2006-12-08 2008-02-27 강원대학교산학협력단 A high rate liquid composting system in swine farms
KR100926268B1 (en) * 2009-01-13 2009-11-12 호암엔지니어링 주식회사 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water
KR101190472B1 (en) 2010-12-10 2012-10-12 (주)범한엔지니어링 종합건축사 사무소 A none piping membrane bioreactor with circulation-agitater

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680899B1 (en) * 2005-09-22 2007-02-08 주식회사 가경코스모 Filteration method and apparatus of polluted water and sewage using microbial carriers
KR100670776B1 (en) * 2005-09-23 2007-01-17 이용환 The creation a method of construction of an artificiality-marsh
KR100714825B1 (en) * 2006-03-03 2007-05-04 신강하이텍(주) Method for treating sewage and high organic loading wastewater by anaerobic/oxic process with membrane and biological aerated filter
KR100993432B1 (en) * 2006-07-19 2010-11-09 주식회사 엘지화학 Lactam-based additive for electrolyte and secondary battery comprising the same
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
CN109107392A (en) 2007-05-29 2019-01-01 懿华水处理技术有限责任公司 Use the Membrane cleaning of pulsed airlift pump
KR100861554B1 (en) * 2007-06-27 2008-10-02 건국대학교 산학협력단 Filtration and adsorption multistage wastewater processing unit that remove t-p of discharge waterway a sewage disposal
EP2331242B1 (en) 2008-07-24 2018-09-05 Evoqua Water Technologies LLC Frame system for membrane filtration modules
CN102869432B (en) 2010-04-30 2016-02-03 伊沃夸水处理技术有限责任公司 Fluid flow distribution device
EP2618916A4 (en) 2010-09-24 2016-08-17 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR101639085B1 (en) * 2011-04-20 2016-07-12 엘지전자 주식회사 Apparatus and method for treating water
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
KR20140097140A (en) 2011-09-30 2014-08-06 에보쿠아 워터 테크놀로지스 엘엘씨 Isolation valve
CN103214140A (en) * 2012-01-20 2013-07-24 宇一环境株式会社 Sewage deep processing apparatus used for biological nitrogen and phosphorus removal
CN104394965B (en) 2012-06-28 2016-11-23 伊沃夸水处理技术有限责任公司 encapsulating method
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
KR20150059788A (en) 2012-09-27 2015-06-02 에보쿠아 워터 테크놀로지스 엘엘씨 Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
CN107847869B (en) 2015-07-14 2021-09-10 罗门哈斯电子材料新加坡私人有限公司 Aeration device for a filtration system
CN105347489B (en) * 2015-12-03 2018-02-09 华仪环保有限公司 A kind of efficiently integrated integrated sewage treating apparatus
CN106698814A (en) * 2016-12-01 2017-05-24 国佳环境科技湖北连锁有限公司 Treatment method and treatment device for wastewater
KR102324595B1 (en) * 2021-05-07 2021-11-10 주식회사 맑은물환경 Septic tank odor removal system connected to the internal transfer line
CN113562860A (en) * 2021-08-10 2021-10-29 江苏誉泽建设有限公司 Nano aeration device for treating black and odorous water body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970062320U (en) * 1996-05-02 1997-12-10 한국과학기술연구원 Large-scale sewage treatment facility
KR19990030405A (en) * 1998-12-23 1999-04-26 이상일 Wastewater Purification Using Distribution Inflow
KR20000047294A (en) * 1998-12-31 2000-07-25 장덕 System for removing nitrogen in water
KR20000074335A (en) * 1999-05-20 2000-12-15 주덕영 Method for highly biologically the tannery waste-water
KR20030026175A (en) * 2001-09-25 2003-03-31 박종순 Waste water treatment system by micro-filter & bio-filter.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970062320U (en) * 1996-05-02 1997-12-10 한국과학기술연구원 Large-scale sewage treatment facility
KR19990030405A (en) * 1998-12-23 1999-04-26 이상일 Wastewater Purification Using Distribution Inflow
KR20000047294A (en) * 1998-12-31 2000-07-25 장덕 System for removing nitrogen in water
KR20000074335A (en) * 1999-05-20 2000-12-15 주덕영 Method for highly biologically the tannery waste-water
KR20030026175A (en) * 2001-09-25 2003-03-31 박종순 Waste water treatment system by micro-filter & bio-filter.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807801B1 (en) 2006-12-08 2008-02-27 강원대학교산학협력단 A high rate liquid composting system in swine farms
KR100926268B1 (en) * 2009-01-13 2009-11-12 호암엔지니어링 주식회사 Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water
KR101190472B1 (en) 2010-12-10 2012-10-12 (주)범한엔지니어링 종합건축사 사무소 A none piping membrane bioreactor with circulation-agitater

Also Published As

Publication number Publication date
KR20030066271A (en) 2003-08-09

Similar Documents

Publication Publication Date Title
KR100459986B1 (en) Advanced Step Aeration with Media(ASA, SFC-Biofilter)
EP0543457B1 (en) Method for the treatment of sewage
AU2661292A (en) Method and system for biologically removing nitrogen from wastewater
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
JP3122654B2 (en) Method and apparatus for treating highly concentrated wastewater
US5643453A (en) Process for the treatment of liquid effluents by activated sludge
KR101010053B1 (en) Apparatus for treating wastewater
KR100459950B1 (en) Apparatus and mode of transformed sequential batch reactor with separating nitrification basin for purifying sewage and wastewater
KR100705541B1 (en) A configuration of process and system for bnr/cpr with a filamentous bio-solids bulking control
KR100814743B1 (en) Removal of nitrogen and phosphate using small sewage treatment system with an anaerobic, anoxic, aerobic combined biofilters
EP0849230A1 (en) Dual-stage biological process for removing nitrogen from wastewater
JPH08318292A (en) Waste water treatment method and apparatus
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100360561B1 (en) A treatment methods for organic sewage
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR0183334B1 (en) Biological treatment of nitrogen from waste water
KR100318367B1 (en) Waste water treatment apparatus
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
KR100312544B1 (en) Method for highly biologically the tannery waste-water
KR100191195B1 (en) Night soil treatment method and unit with high efficiency
KR100283127B1 (en) Wastewater treatment methods including denitrification and dephosphorization
JPH0661552B2 (en) Organic wastewater treatment method
KR0183461B1 (en) Biological treatment of organic waste water using immobilized carrier
KR100373136B1 (en) Chemical composition for removing nitrogen and phospate in waste water and method for treating waste water using the same
JP3281885B2 (en) Wastewater treatment method and wastewater treatment device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121119

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131125

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20151209

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee