KR100376247B1 - Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame - Google Patents

Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame Download PDF

Info

Publication number
KR100376247B1
KR100376247B1 KR10-2000-0018311A KR20000018311A KR100376247B1 KR 100376247 B1 KR100376247 B1 KR 100376247B1 KR 20000018311 A KR20000018311 A KR 20000018311A KR 100376247 B1 KR100376247 B1 KR 100376247B1
Authority
KR
South Korea
Prior art keywords
flow rate
gas
pipe
nano
flame
Prior art date
Application number
KR10-2000-0018311A
Other languages
Korean (ko)
Other versions
KR20010094903A (en
Inventor
장희동
김성길
Original Assignee
삼화페인트공업주식회사
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화페인트공업주식회사, 한국지질자원연구원 filed Critical 삼화페인트공업주식회사
Priority to KR10-2000-0018311A priority Critical patent/KR100376247B1/en
Priority to US09/828,282 priority patent/US6613301B2/en
Publication of KR20010094903A publication Critical patent/KR20010094903A/en
Application granted granted Critical
Publication of KR100376247B1 publication Critical patent/KR100376247B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/07Producing by vapour phase processes, e.g. halide oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • Y10S977/777Metallic powder or flake
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/891Vapor phase deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 초미분체 제조 방법 중 화염(flame)을 이용하여 증기상의 사염화티타늄(TiCl4)을 기상산화반응에 의해 나노사이즈 이산화티타늄(TiO2) 초미분체를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing nano-size titanium dioxide (TiO 2 ) ultrafine powder by vapor phase oxidation of titanium tetrachloride (TiCl 4 ) using a flame in a method of preparing ultrafine powder.

기상화학반응에 의해 나노사이즈 초미분체를 제조하는 경우에는 반응가스 중의 시료의 농도가 상당히 낮게 유지되어야 하므로 단위시간당 나노사이즈 분말의 생산량을 증가시키기 위해서는 반응물질 주입량의 증가와 함께 다량의 가스가 함께 반응영역(화염)으로 주입되어야 하므로 본 발명에서는 5중관으로 구성된 확산형 화염반응기를 사용하여 TiCl4-알곤-수소-산소-공기 등의 반응계를 이용하여 TiCl4로부터 나노사이즈 TiO2초미분체를 제조하여 미 반응 물질이 적게 존재하도록 하며 연소가스가 완전연소 할 수 있도록 하여 단위시간당 나노사이즈 분말의 생산량을 증가시킨 것을 특징으로 한다.In the case of preparing nano-sized ultrafine powders by gas phase chemical reaction, the concentration of the sample in the reaction gas must be kept very low. Therefore, in order to increase the production of nano-sized powder per unit time, a large amount of gas reacts with the increase of the reactant injection amount. In the present invention, the nano-size TiO 2 ultrafine powder is prepared from TiCl 4 by using a reaction system such as TiCl 4 -argon-hydrogen-oxygen-air using a diffusion flame reactor composed of a five-pipe. It is characterized by increasing the production of nano-size powder per unit time so that less unreacted material is present and the combustion gas can be completely burned.

Description

화염을 이용한 기상산화반응에 의한 나노사이즈 이산화티타늄 초미분체 제조 방법{Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame}Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame}

본 발명은 초미분체 제조 방법 중 화염(flame)을 이용하여 증기상의 사염화티타늄(TiCl4)을 기상산화반응에 의해 나노사이즈 이산화티타늄(TiO2) 초미분체를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing nano-size titanium dioxide (TiO 2 ) ultrafine powder by vapor phase oxidation of titanium tetrachloride (TiCl 4 ) using a flame in a method of preparing ultrafine powder.

나노사이즈 초미분체란 일반적으로 입자크기가 50nm 이하의 분말을 말하며 단위무게 당의 높은 비표면적과 높은 활성으로 인해 신소재로서 많이 활용되고 있다.Nano-size ultra fine powder generally refers to a powder having a particle size of 50 nm or less, and is widely used as a new material due to the high specific surface area and high activity of sugar per unit weight.

나노사이즈 이산화티타늄 초미분체의 경우 고급 안료와 광촉매로서 사용되고 있으며, 또한 자외선 차단성이 우수하여 이를 이용한 화장품, 약품 및 투명방음판의 코팅재료로서도 사용되고 있는 것이다.Nano-size titanium dioxide ultrafine powder is used as a high-quality pigment and photocatalyst, and is also used as a coating material for cosmetics, drugs and transparent soundproof panels using the same because of its excellent UV-blocking properties.

나노사이즈 이산화티타늄(이하 "TiO2"라 한다) 초미분체의 제조 방법으로서는 금속을 가열하여 증발시킨 후 금속증기를 응축시켜 초미분체를 만드는 물리적 방법과 금속화합물을 화학반응에 의해 제조하는 화학적 방법이 사용되고있다.The nano-size titanium dioxide (hereinafter referred to as "TiO 2 ") ultrafine powder production method includes a physical method of producing ultrafine powders by heating and evaporating a metal, condensing the metal vapor, and a chemical method of preparing a metal compound by chemical reaction. Is being used.

상기의 물리적 방법에 의해 나노사이즈 TiO2초미분체를 제조하는 공정은 금속을 증발시키기 위해 많은 에너지를 필요로 하여서 제조비용이 높고 생산성이 낮은 반면 고순도의 분말을 제조할 수 있는 장점이 있고, 상기의 화학적 방법은 물리적인 방법보다 순도는 낮으나 제조비용이 낮고 생산성이 높은 장점이 있으며 화학적 방법 중 기상법, 액상법이 사용되고 있다.The process for producing nano-size TiO 2 ultrafine powder by the above physical method requires a lot of energy to evaporate the metal, which has the advantage of producing high purity powders with high production cost and low productivity. Chemical method has lower purity than physical method but low manufacturing cost and high productivity. Among chemical methods, gas phase method and liquid phase method are used.

이하에서는 상기 제조 방법 중 본 발명과 관련된 화학적 방법 중 기상법에의한 나노사이즈 TiO2초미분체의 제조 방법을 설명한다.Hereinafter, a manufacturing method of the nano-size TiO 2 ultrafine powder by the vapor phase method among the chemical methods related to the present invention among the above-described manufacturing methods will be described.

기상화학반응법에 의해 나노사이즈 TiO2초미분체 제조시에는 1000℃이상의 높은 온도와 가스유량이 요구되는데 이를 위해 화염(flame)을 이용하여 고온의 온도를 유지하면서 기상에서 반응조건을 형성시키는 기술이 공지되어 있으며, 초미분체 제조시 불꽃의 온도, 가스유량, 반응 물질의 농도, 첨가제 등이 일차입자(primary particle)의 크기 및 결정형을 제어하는 중요한 반응변수이다.When preparing nano-size TiO 2 ultra fine powder by the gas phase chemical reaction method, a high temperature and gas flow rate of 1000 ° C. or higher is required. For this purpose, a technique of forming reaction conditions in the gas phase while maintaining a high temperature using a flame is employed. Known, the temperature of the flame, the gas flow rate, the concentration of the reactants, the additives, etc. in the production of ultra-fine powders are important reaction variables that control the size and crystalline form of the primary particles.

화염을 사용한 기상화학반응에 의해 분말을 제조하는 기술에 대한 공지기술로서는 미국 특허 US 5,698,177(명칭 : Process for producing ceramic powders, especially titanium dioxide useful as a photocatalyst, 출원일 : 1995년 6월 8일) 및 US 5,861,132(명칭 : Vapor phase flame process for making ceramic particles using a corona discharge electric field, 출원일 : 1997년 9월 4일)가 공개되어 있다.Known techniques for the preparation of powders by gas phase chemical reactions using flames include US Pat. No. 5,698,177 (named Process for producing ceramic powders, especially titanium dioxide useful as a photocatalyst, filed June 8, 1995) and US. 5,861,132 (named Vapor phase flame process for making ceramic particles using a corona discharge electric field, filed September 4, 1997).

상기의 미국 특허 US 5,698,177은 TiCl4-공기-탄화수소계 연소가스 순으로 구성된 반응계에서 광촉매용 TiO2분말의 제조를 위해 반응변수의 조절, 첨가제의 주입 및 반응기 버너 상단에 형성된 코로나 전기장(corona electric field)의 영향 등에 대하여 여러 가지 방법들이 제시되어 있으며, 기상에서 TiCl4와 산소의 반응에 의해 TiO2분말을 제조하는 것과 이를 위해 사용된 화염반응기, 시료주입방법, 시료주입량, 공기주입량, 전기장의 전압 및 첨가제의 양 등에 대해 특허청구범위로 하고 있다.U.S. Patent No. 5,698,177 discloses a corona electric field formed on the top of the reactor burner by controlling reaction parameters, injecting additives and forming a reactor for the production of TiO 2 powder for photocatalysts in a reaction system consisting of TiCl 4 -air-hydrocarbon-based combustion gases. Various methods are proposed for the effect of TiO 2 powder by the reaction of TiCl 4 and oxygen in the gas phase, and flame reactor, sample injection method, sample injection amount, air injection amount, electric field voltage And amounts of additives and the like.

또한, 상기의 미국 특허 US 5,861,132은 반응기 상단에 코로나 전기장을 형성하여 여러 가지 화염반응기(pre-mixed flame reactor, turbulent flame reactor, larminar diffusion flame reactor)를 사용하여 이산화티타늄을 비롯한 여러 가지 금속산화물(실리카, 알루미나, 지르코니아 등)의 분말을 제조하는 방법이 공개되어 있다.In addition, the US patent US 5,861,132 forms a corona electric field on the top of the reactor, and uses various flame reactors (pre-mixed flame reactor, turbulent flame reactor, larminar diffusion flame reactor) to use various metal oxides (silica dioxide, including silica). , Alumina, zirconia, and the like) are disclosed.

기상화학반응에 의해 나노사이즈 초미분체를 제조하는 경우에는 반응가스중의 시료의 농도가 상당히 낮게 유지되어야 하므로 단위시간당 나노사이즈 분말의 생산량을 증가시키기 위해서는 반응물질 주입량의 증가와 함께 다량의 가스가 함께 반응영역(화염)으로 주입되어야 한다.In the case of preparing nano-sized ultrafine powders by gas phase chemical reaction, the concentration of the sample in the reaction gas should be kept very low. Therefore, in order to increase the production of nano-sized powder per unit time, a large amount of gas together with the increase of the reactant injection amount It must be injected into the reaction zone (flame).

그러나, 미국 특허 US 5,698,177에서 제안된 3중관으로 주입되는 TiCl4-공기-탄화수소계 연소가스 반응계에서는 다량의 공기와 연소가스가 주입시 다량의 공기주입으로 버너에서의 선속도 증가에 의한 반응물질의 체류시간 감소로 인한 미반응물질의 존재 및 연소가스의 불완전 연소 등의 문제점이 있다.However, in the TiCl 4 -air-hydrocarbon-based combustion gas reaction system introduced into the triple tube proposed in US Pat. No. 5,698,177, a large amount of air and combustion gas are injected into the air, thereby increasing the linear velocity in the burner. There are problems such as the presence of unreacted substances and incomplete combustion of the combustion gas due to the reduction of residence time.

본 발명에서는 상기 종래기술의 문제점 들을 해결하기 위하여 5중관으로 구성된 확산형 화염반응기를 사용하여 TiCl4-알곤-수소-산소-공기, TiCl4-알곤-수소-공기-공기 및 TiCl4-알곤-수소-산소/공기-공기의 반응계를 이용하여 TiCl4로부터 나노사이즈 TiO2초미분체를 제조함에 있어서 반응 가스 중의 시료의 농도를 낮게 유지하고 미 반응 물질이 적게 존재하도록 하며 연소가스가 완전연소 할 수 있도록 하여 단위시간당 나노사이즈 분말의 생산량을 증가시키는데 그 기술적과제가 있다.In the present invention, in order to solve the problems of the prior art, using a diffusion flame reactor composed of a five-pipe TiCl 4 -argon-hydrogen-oxygen-air, TiCl 4 -argon-hydrogen-air-air and TiCl 4 -argon- In preparing nano-size TiO 2 ultrafine powder from TiCl 4 using a hydrogen-oxygen / air-air reaction system, it is possible to keep the sample concentration in the reaction gas low, to make less unreacted substances, and to burn the combustion gas completely. There is a technical challenge to increase the production of nano-size powder per unit time.

도1은 본 발명에서 사용한 초미분체 제조장치 개략도1 is a schematic view of the ultra-fine powder production apparatus used in the present invention

도2는 반응가스 중의 TiCl4의 농도 변화에 따라 생성된 TiO2초미분체의 전자현미경 사진2 is an electron micrograph of the TiO 2 ultra fine powder produced according to the change in the concentration of TiCl 4 in the reaction gas

도3은 산소유량변화에 따라 생성된 TiO2초미분체의 결정형 분석결과Figure 3 is the crystallographic result of the TiO 2 ultra fine powder produced according to the change of oxygen flow rate

도4는 수소유량조절에 따라 생성된 TiO2초미분체의 평균입자크기 및 결정형 변화4 is the average particle size and crystalline change of the TiO 2 ultra fine powder produced according to the hydrogen flow rate control

※ 도면의 주요부분에 대한 부호의 설명 ※※ Explanation of code about main part of drawing ※

10 : 시료증발부 11 : 증발용기10: sample evaporation unit 11: evaporation vessel

12 : 시린지 펌프 13 : 증발조12 syringe pump 13: evaporator

14,15,16,17,18 : 제1관 내지 제5관14,15,16,17,18: Halls 1 to 5

30 : 입자포집부30: particle collecting unit

상기한 본 발명의 기술적과제는 액체상의 반응물질인 TiCl4를 증기화하여 TiCl4증기-알곤-수소-산소-공기, TiCl4증기-알곤-수소-공기-공기 및 TiCl4증기-알곤-수소-산소/공기-공기로 구성하여 상기의 기체상의 혼합가스를 연소 중인 고온의 화염을 통과시켜 산화반응에 의하여 나노사이즈 TiO2초미분체를 제조함으로써 달성할 수 있으며, 반응가스 중의 TiCl4의 농도, 가스유량, 가스조성 등이 주요 변수이므로 이들 변수를 변화시킴으로서 최적의 입자 크기와 결정형을 갖도록 하여 본 발명의 기술적과제를 달성할 수 있다.The technical task of the present invention described above is to vaporize the liquid reactant TiCl 4 to vaporize TiCl 4 vapor-argon-hydrogen-oxygen-air, TiCl 4 vapor-argon-hydrogen-air-air and TiCl 4 vapor-argon-hydrogen Composed of oxygen / air-air, the above gaseous mixed gas can be passed through a high temperature flame during combustion to produce nanosize TiO 2 ultra fine powder by oxidation, and the concentration of TiCl 4 in the reaction gas, Since gas flow rate, gas composition, etc. are the main variables, it is possible to achieve the technical task of the present invention by varying these parameters to have an optimal particle size and crystal form.

이하에서는 나노사이즈 TiO2초미분체를 제조함에 있어서 화염반응기에 주입되는 TiCl4증기, 수소, 산소, 공기 및 알곤의 양을 조절하여 TiO2초미분체를 제조하는 방법을 첨부한 도면에 의하여 상세히 설명하겠다.Hereinafter, a method of preparing TiO 2 ultrafine powder by controlling the amount of TiCl 4 vapor, hydrogen, oxygen, air, and argon injected into a flame reactor in preparing nanosize TiO 2 ultrafine powder will be described in detail with reference to the accompanying drawings. .

도1은 본 발명의 제조방법에 사용된 제조장치를 개략적으로 나타낸 것으로서, 반응물질인 액체상의 TiCl4를 시료증발부(10)에서 증기화하고, 5중관으로 구성된 버너(20)로 화염을 생성하고, 상기의 증기화된 TiCl4를 화염을 통과시키게 되면 산화반응에 의해 나노사이즈 이산화티타늄 초미분체가 형성된다. 상기의 생성된 이산화티타늄 초미분체는 입자포집부(30)에서 포집하여 TiO2초미분체를 회수하게 되는 것이다.Figure 1 schematically shows a manufacturing apparatus used in the manufacturing method of the present invention, vaporizing liquid TiCl 4 as a reactant in the sample evaporation unit 10, and generates a flame with a burner 20 consisting of a five-pipe When the vaporized TiCl 4 is passed through a flame, nanosize titanium dioxide ultrafine powder is formed by an oxidation reaction. The produced titanium dioxide ultrafine powder is collected in the particle collecting unit 30 to recover the TiO 2 ultrafine powder.

<실시예 1><Example 1>

본 실시예는 TiO2초미분체 제조시 가스 중의 TiCl4의 농도를 변화시켜 생성되는 분말의 입자크기를 조절하고자 하는 것이다.This embodiment is intended to control the particle size of the powder produced by changing the concentration of TiCl 4 in the gas during the production of TiO 2 ultra fine powder.

액체상태의 시료인 TiCl4(99.9%)를 도1에 나타난 증발부(10)의 증발용기(11)에 시린지(syringe) 펌프(12)로 주입한 후 증발조(13)의 온도를 180℃로 유지하여 증기화한 후 이송 기체인 알곤 가스와 더불어 버너(20)의 중심에 위치한 제1관(14)으로 주입하고, 알곤, 수소, 산소 및 공기는 제2관에서 제5관(15,16,17,18)의 순서로 하여 아래의 표1에서와 같은 속도로 확산형 버너(20)로 주입하여 화염을 발생시킨다.TiCl 4 (99.9%), which is a liquid sample, was injected into the evaporation vessel 11 of the evaporator 10 shown in FIG. 1 by a syringe pump 12, and then the temperature of the evaporator 13 was 180 ° C. After the vaporization and vaporization to the first gas pipe (14) located in the center of the burner 20 together with the argon gas, which is a transfer gas, argon, hydrogen, oxygen and air is the fifth pipe (15, 16, 17, 18 in the order of injection into the diffusion burner 20 at the same speed as in Table 1 below to generate a flame.

확산형 버너(20)로 주입되는 가스 중의 TiCl4의 농도는 1.13x10-5∼4.54x10-5mol/ℓ의 범위에서 조절하였으며, 5중 관의 버너로 주입되는 각각의 가스의 유량은 안정한 화염상태를 유지하는 조건을 육안으로 확인한 후 표 1에 나타낸 실험 조건과 같이 분배하여 주입하였다.The concentration of TiCl 4 in the gas injected into the diffusion burner 20 was adjusted in the range of 1.13x10 -5 to 4.44x10 -5 mol / l, and the flow rate of each gas injected into the burner of the five-pipe was stable flame. After confirming the conditions to maintain the state with the naked eye, it was dispensed and injected as shown in the experimental conditions shown in Table 1.

구 분division 가 스gas 유입량(Flow rate)(ℓ/min)Flow rate (ℓ / min) 제1관Article 1 알곤 및 기상 TiCl4 Argon and weather TiCl 4 22 제2관Article 2 알곤Algon 55 제3관Article 3 수소Hydrogen 66 제4관Article 4 산소Oxygen 1515 제5관Article 5 공기air 6060

이때 형성된 화염의 온도는 열전대로 그 분포를 측정한 결과, 버너의 중심에서 850℃ 정도의 온도가 일정하게 유지되었으며 중심으로부터 반경방향으로 7mm부근에서 최고온도(1700℃)를 나타내었다.The temperature of the flame formed was measured by thermocouples and the temperature was maintained at about 850 ℃ at the center of the burner and showed the highest temperature (1700 ℃) at 7mm in the radial direction from the center.

표 1의 연소조건에서 반응가스 중의 TiCl4의 농도를 변화시키며 이때 생성되는 입자크기 변화 및 결정형을 조사하였는 바, 생성된 입자의 평균크기는 입자들이 기공이 없는 구형의 입자라고 가정하여 단위무게 당 입자의 비표면적을 측정할 수 있는 BET 분석결과로부터 환산식을 사용하여 구하였다(dp= 6/(ρp·A), 여기서 ρp는 TiO2의 밀도(g/cm3), A는 비표면적(m2/g)).The concentration of TiCl 4 in the reaction gas was varied under the combustion conditions of Table 1, and the particle size change and crystal form produced were investigated. The average size of the particles produced was assumed to be spherical particles with no pores per unit weight. The specific surface area of the particles was obtained from the BET analysis results using the conversion equation (d p = 6 / (ρ p · A), where ρ p is the density of TiO 2 (g / cm 3 ) and A is Specific surface area (m 2 / g)).

TiO2미분체의 평균입자크기 변화를 환산식에 의해 구한 결과, 시료 농도 증가에 따라 19 nm에서 28 nm로 증가하였다.As a result of calculating the average particle size change of the TiO 2 fine powder by the conversion equation, it increased from 19 nm to 28 nm with increasing sample concentration.

도2에는 상기의 방법에 의하여 제조된 나노사이즈 TiO2초미분체의 전자현미경 사진(TiCl4초기농도: (a) 1.13x10-5, (b) 2.27x10-5, (c) 3.45x10-5, (d)4.54x10-5mol/l)을 나타내었는데 생성된 입자의 크기는 BET 분석 결과에서 구한 것과 거의 비슷한 것을 알 수 있었으며 반응물질의 농도 증가에 따라 증가함을 알 수 있었으며, 생성된 이산화티타늄분말의 결정형을 조사하기 위해 XRD분석을 수행한 결과 본 연구에서 실험한 조건에서는 아나타제 형이 45% 정도 함유된 분말이 제조되었다.Figure 2 is an electron micrograph of the nano-size TiO 2 ultra fine powder prepared by the above method (TiCl 4 initial concentration: (a) 1.13x10 -5 , (b) 2.27x10 -5 , (c) 3.45x10 -5 , (d) 4.54x10 -5 mol / l), the size of the particles produced was found to be almost the same as that obtained from the BET analysis, and it was found to increase with increasing concentration of reactants. As a result of XRD analysis to investigate the crystalline form of the powder, powder containing about 45% of anatase type was prepared under the conditions tested in this study.

<실시예 2><Example 2>

본 실시예는 반응기로 주입되는 산소의 유량을 줄여 화염의 온도를 낮추어 TiO2분말제조 실험을 수행한 것으로서, 실험 조건은 표 1에 나타낸 가스 주입 조건에서 제4관(17)으로 유입되는 산소의 유량을 15에서 10, 5(ℓ/min)로 감소시킨 후 전체 유량은 제5관(18)으로 주입되는 공기의 유량을 증가시켜 일정하게 유지하였는데 이는 가스 중의 TiCl4의 농도를 일정하게(2.27 x 10-5mol/l) 유지하기 위함이며, 이때 화염의 최고 온도는 1700에서 1400℃로 감소하였다.In this embodiment, the TiO 2 powder manufacturing experiment was performed by reducing the flow rate of oxygen injected into the reactor to reduce the temperature of the flame, and the experimental conditions were the oxygen flow into the fourth tube 17 under the gas injection conditions shown in Table 1. After reducing the flow rate from 15 to 10, 5 (l / min), the total flow rate was kept constant by increasing the flow rate of the air injected into the fifth tube 18, which kept the concentration of TiCl 4 in the gas constant (2.27). x 10 -5 mol / l), the maximum temperature of the flame decreased from 1700 to 1400 ° C.

상기의 조건에서 TiO2분말 제조 실험을 수행한 결과 산소 유량의 감소에 따라 TiO2미분체의 평균입자 크기의 변화는 23nm에서 14nm로 감소하였으며, 이와 같은 평균입자 크기의 감소는 화염의 최고 온도가 낮아짐에 따라 응집에 의한 입자의 성장속도가 낮아진 것 때문이다.As a result of the TiO 2 powder production experiment under the above conditions, the change of the average particle size of the TiO 2 fine powder decreased from 23 nm to 14 nm as the oxygen flow rate was decreased. This is because the lower the growth rate of the particles due to the aggregation.

상기의 방법에 의하여 생성된 TiO2분말의 결정형 분석 결과를 도3(산소유량: (a) 15, (b) 10, (c) 5 (ℓ/min))에 나타내었으며, 도3의 결과를 보면 산소의유량이 10 ℓ/min로 감소하였을 때는 큰 변화가 없으나 산소유량이 5 ℓ/min로 감소함에 따라 아나타제의 함량이 급격하게 증가하는 것을 알 수 있다.The result of crystalline analysis of the TiO 2 powder produced by the above method is shown in FIG. 3 (Oxygen flow rate: (a) 15, (b) 10, (c) 5 (l / min)), and the results of FIG. It can be seen that there is no significant change when the oxygen flow rate is reduced to 10 ℓ / min, but the content of anatase increases rapidly as the oxygen flow rate is reduced to 5 ℓ / min.

아나타제의 함량의 변화를 정량적으로 구한 결과 산소의 유량이 상기와 같이 감소 함에 따라 아나타제의 함량은 41, 45 및 80%이었다.The anatase content was 41, 45 and 80% as the flow rate of oxygen decreased as described above.

<실시예 3><Example 3>

본 실시예는 일정한 반응조건에서 반응기로 주입되는 수소의 유량을 4에서 8 ℓ/min까지 변화시키며 TiO2분말을 제조하여 생성되는 입자의 크기 및 결정형을 분석하였다.In this embodiment, the flow rate of hydrogen injected into the reactor under constant reaction conditions was varied from 4 to 8 l / min, and TiO 2 powder was prepared to analyze the size and crystal form of the particles produced.

실험 조건은 가스 중의 TiCl4의 농도를 2.27x10-5mol/l로 유지하였고, 수소를 제외한 가스 주입량은 알곤(제2관(15)) 5 ℓ/min, 공기(제4관(17)) 10 ℓ/min 및 공기(제5관(18)) 65 ℓ/min으로 유지하였다.Experimental conditions maintained the concentration of TiCl 4 in the gas to 2.27x10 -5 mol / l, and the gas injection amount excluding hydrogen was 5 l / min for argon (second tube (15)) and air (fourth tube (17)). 10 L / min and air (5th tube 18) were maintained at 65 L / min.

본 실시예서는 버너의 제4관(17)에 주입되는 가스를 산소에서 공기로 대체하였는데 이는 산소의 양을 최소화하기 위함이며, 이때 형성된 화염의 온도를 수소 유량의 변화에 따라 측정한 결과 최대온도가 1,300에서 1,000℃까지 변화하는 것이 관찰되었다.In the present embodiment, the gas injected into the fourth pipe 17 of the burner is replaced with oxygen from air. This is to minimize the amount of oxygen, and the maximum temperature is obtained by measuring the temperature of the flame formed according to the change of the hydrogen flow rate. Was observed to vary from 1,300 to 1,000 ° C.

이상의 조건에서 TiO2분말제조 실험 결과 수소의 유량이 8 에서 4 ℓ/min로 감소함에 따라 생성되는 평균입자의 크기가 29에서 12 nm로 작아졌는데 수소 유량이 5 ℓ/min이하에서는 그 값이 일정하였다.As a result of the TiO 2 powder manufacturing experiments under the above conditions, the average particle size decreased from 29 to 12 nm as the flow rate of hydrogen decreased from 8 to 4 l / min. It was.

또한, 수소유량이 8 에서 4 ℓ/min로 감소함에 따라 생성된 TiO2분말의 결정형의 변화는 아나타제 함량이 27에서 75%까지 증가하였다(도4).In addition, as the hydrogen flow rate decreased from 8 to 4 L / min, the change in the crystal form of the TiO 2 powder produced increased the anatase content from 27 to 75% (FIG. 4).

<실시예4>Example 4

본 실시예는 실시예 2의 조건에서 제4관(17)으로 주입되는 산소가스에 공기를 혼합하여 TiO2분말을 제조한 것으로서, 이때 실험조건은 실시예 2와 동일한 TiCl4의 농도와 전체유량을 유지하면서 제3관(16)의 수소의 유량을 5 ℓ/min로 유입시켰고, 제4관(17)으로는 산소 4 ℓ/min와 공기 6 ℓ/min를 혼합하여 주입하였다.In this embodiment, TiO 2 powder was prepared by mixing air with oxygen gas injected into the fourth tube 17 under the conditions of Example 2, wherein the experimental conditions were the same concentration and total flow rate of TiCl 4 as in Example 2. While maintaining the flow rate, the flow rate of hydrogen in the third pipe 16 was introduced at 5 L / min, and the fourth pipe 17 was injected by mixing 4 L / min of oxygen and 6 L / min of air.

이때 생성된 TiO2분말의 평균입자 크기가 15nm이었고 그 결정형은 아나타제 함량이 77%이었다.상기한 실시예들은 5중관에 유입되는 각 가스의 유량을 증감 조절하여 실시한 것으로서, 본 발명의 권리범위가 이러한 실시예들에 의하여 한정되는 것은 아니며, 각 유입관으로 유입되는 TiCl4와 각 가스의 유량은 본 발명의 기술이 속하는 당업자에 의하여 변형실시가 가능한 것으로서 당업자의 측면에서 보았을 때 본 발명의 기술적 사상의 동일성을 벗어나지 아니하는 변형된 실시는 본 발명의 권리범위를 벗어나지 못하는 것이다.At this time, the TiO 2 powder produced had an average particle size of 15 nm and a crystalline form of anatase content of 77%. The above-described examples were performed by increasing or decreasing the flow rate of each gas introduced into the fold pipe, and the scope of the present invention is The present invention is not limited to these embodiments, and the flow rates of TiCl 4 and each gas introduced into each inlet pipe can be modified by those skilled in the art to which the present invention belongs. Modified implementation without departing from the identity of the will not depart from the scope of the invention.

본 발명은 화염을 사용하고 기상화학반응에 의하여 나노사이즈 이산화티타늄 초미분체를 제조 함에 있어서 5중관으로 구성된 반응기를 사용하여 TiCl4-알곤-수소-산소-공기, TiCl4-알곤-수소-공기-공기 및 TiCl4-알곤-수소-산소/공기-공기의 반응계에서 TiO2초미분체를 제조하는 기술을 제공하고 이로부터 대량 생산을 위한 반응기 설계의 자료를 제공하는 효과가 있다.In the present invention, using a flame and using a reactor composed of five tubes in preparing nano-size titanium dioxide ultrafine powder by gas phase chemical reaction, TiCl 4 -argon-hydrogen-oxygen-air, TiCl 4 -argon-hydrogen-air- It has the effect of providing a technique for producing TiO 2 ultra fine powder in a reaction system of air and TiCl 4 -argon-hydrogen-oxygen / air-air and from this, providing data of reactor design for mass production.

Claims (7)

화염을 이용한 기상반응으로 나노사이즈 이산화티타늄 초미분체를 제조하는 방법에 있어서, 5중관으로 구성된 화염반응기에 제1관으로는 사염화티타늄(TiCl4) 증기를 주입하며 화염내의 초기 농도가 1.13x10-5∼ 4.54x10-5(mol/ℓ)로 유지하고 이때 증기의 유량은 전체 가스의 2부로 유입되게 하고, 제2관으로는 알곤가스가 6부로 유입되게 하고, 제3관으로는 수소가스가 7부로 유입되게 하며, 제4관으로는 산소가스가 17부로 유입되게 하고, 그리고 제5관으로는 공기를 68부로 동시에 유입시켜 1,000℃ 이상으로 화염을 생성시키며 이때 주입된 사염화티타늄 증기를 기상에서 산화반응시켜 평균입자 크기가 50 나노미터 이하인 나노사이즈의 이산화티타늄 초미분체를 제조하는 것을 특징으로 하는 기상화학 반응에 의한 나노사이즈 이산화티타늄 초미분체 제조방법.In the method for producing nano-size titanium dioxide ultrafine powder by a gas phase reaction using a flame, a titanium tetrachloride (TiCl 4 ) vapor is injected into a flame reactor consisting of a five-pipe and the initial concentration of the flame is 1.13x10 -5. ~ 4.54x10 -5 (mol / l), where the flow rate of steam is introduced into two parts of the total gas, argon gas is introduced into six parts into the second pipe, and hydrogen gas is introduced into the third pipe. The fourth pipe allows oxygen gas to flow into 17 parts, and the fifth pipe simultaneously introduces air into 68 parts to produce flames above 1,000 ° C. At this time, titanium tetrachloride vapor is oxidized in the gas phase. Reaction to produce nano-size titanium dioxide ultrafine powder by vapor-chemical reaction, characterized in that to produce a nano-size titanium dioxide ultrafine powder having an average particle size of 50 nanometer or less Law. 삭제delete 제1항에 있어서, 상기 화염반응기로 유입되는 가스 중 제2관으로 같은 유량의 질소가스를 유입하는 것을 특징으로 하는 기상화학 반응에 의한 나노사이즈 이산화티타늄 초미분체 제조방법.The method of claim 1, wherein nitrogen gas at the same flow rate is introduced into the second tube of the gas introduced into the flame reactor. 삭제delete 제1항에 있어서, 상기 화염반응기로 유입되는 가스의 조성 중 제4관으로 유입되는 산소가스의 유량을 전체 유량의 17부에서 6부까지 변화시키고 감소된 유량만큼을 제5관으로 유입되는 공기의 유량을 증가시켜 이루어지는 것을 특징으로 하는 기상화학 반응에 의한 나노사이즈 이산화티타늄 초미분체 제조방법.According to claim 1, wherein the flow rate of the oxygen gas flowing into the fourth pipe of the composition of the gas flowing into the flame reactor from 17 to 6 parts of the total flow rate and the air flow into the fifth pipe by the reduced flow rate Nano-size titanium dioxide ultra-fine powder production method by a gas phase chemical reaction, characterized by increasing the flow rate of. 제1항에 있어서, 상기 화염반응기로 유입되는 가스의 조성 중 제4관으로 주입되는 산소가스를 같은 유량의 공기로 대체하고 제3관으로 유입되는 수소가스의 유량을 전체 유량의 9부에서 4부까지 변화시키고 증감된 유량만큼을 제5관으로 유입되는 공기의 유량을 증감시켜 이루어지는 것을 특징으로 하는 기상화학 반응에 의한 나노사이즈 이산화티타늄 초미분체 제조방법.The method of claim 1, wherein the oxygen gas introduced into the fourth pipe of the composition of the gas flowing into the flame reactor is replaced with air of the same flow rate and the flow rate of hydrogen gas flowing into the third pipe is 9 to 4 parts of the total flow rate. A method for producing nano-size titanium dioxide fine powder by vapor phase chemical reaction, characterized by changing the flow rate and increasing and decreasing the flow rate of the air flowing into the fifth pipe by the increased and decreased flow rate. 제3항에 있어서, 화염반응기로 유입되는 가스의 조성 중 제4관으로 산소가스 (전체 유량 중 4부)와 공기의 유량(전체 유량중 7부)를 혼합하여 유입하고 제3관으로 유입되는 수소가스의 유량을 전체 유량의 6부로 유입하며 감소된 유량만큼을 제5관으로 유입되는 공기의 유량을 증가시키는 것을 특징으로 하는 기상화학 반응에 의한 나노사이즈 이산화티타늄 초미분체 제조방법.According to claim 3, the composition of the gas flowing into the flame reactor flows into the third pipe by mixing oxygen gas (4 parts of the total flow rate) and air flow rate (7 parts of the total flow rate) to the fourth tube and A method for producing nano-size titanium dioxide fine powder by vapor phase chemical reaction, characterized by increasing the flow rate of air flowing into the fifth pipe by reducing the flow rate of hydrogen gas into 6 parts of the total flow rate.
KR10-2000-0018311A 2000-04-07 2000-04-07 Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame KR100376247B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2000-0018311A KR100376247B1 (en) 2000-04-07 2000-04-07 Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame
US09/828,282 US6613301B2 (en) 2000-04-07 2001-04-05 Method for producing nanometer-sized ultrafine titanium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0018311A KR100376247B1 (en) 2000-04-07 2000-04-07 Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame

Publications (2)

Publication Number Publication Date
KR20010094903A KR20010094903A (en) 2001-11-03
KR100376247B1 true KR100376247B1 (en) 2003-03-15

Family

ID=19662639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0018311A KR100376247B1 (en) 2000-04-07 2000-04-07 Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame

Country Status (2)

Country Link
US (1) US6613301B2 (en)
KR (1) KR100376247B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613122B1 (en) 2005-06-03 2006-08-17 엄환섭 Synthesis of n-doped tio2 nano powder by microwave plasma torch

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355572B1 (en) * 2000-05-15 2002-10-11 주식회사 지투케이 a particle catalyst manufaction method
US7217407B2 (en) * 2003-09-11 2007-05-15 E. I. Du Pont De Nemours And Company Plasma synthesis of metal oxide nanoparticles
JP5067824B2 (en) * 2003-10-01 2012-11-07 東邦チタニウム株式会社 Titanium oxide powder
WO2005033009A1 (en) * 2003-10-01 2005-04-14 Toho Titanium Co., Ltd Titanium dioxide powder and method for production thereof
DE102004055165A1 (en) * 2003-12-03 2005-06-30 Degussa Ag Titanium dioxide powder produced by flame hydrolysis
UA83096C2 (en) * 2003-12-03 2008-06-10 Дегусса Аг Powdered titanium dioxide and process for its preparation by flame hydrolysis
CA2512317A1 (en) * 2004-07-20 2006-01-20 E.I. Dupont De Nemours And Company Process for making metal oxide nanoparticles
CA2512313A1 (en) * 2004-07-20 2006-01-20 E.I. Dupont De Nemours And Company Apparatus for making metal oxide nanopowder
US7214363B2 (en) * 2004-10-28 2007-05-08 Seoul National University Industry Foundation Method for preparing composite microparticles
US7326399B2 (en) * 2005-04-15 2008-02-05 Headwaters Technology Innovation, Llc Titanium dioxide nanoparticles and nanoparticle suspensions and methods of making the same
CN1302998C (en) * 2005-07-21 2007-03-07 华东理工大学 Preparation method of gas phase nano titanium dioxide with average grain size
WO2008002333A2 (en) 2006-01-12 2008-01-03 University Of Arkansas Technology Development Foundation Tio2 nanostructures, membranes and films, and methods of making same
CN101062780B (en) * 2006-04-26 2010-05-12 四川大学 Nano titanium oxide and mechanical force chemical reaction preparation method for its composite powder
CN103663551B (en) * 2013-12-09 2016-08-10 云南冶金新立钛业有限公司 The method preparing titanium dioxide
US9588034B1 (en) * 2014-03-04 2017-03-07 The United States Of America As Represented By The Secretary Of The Army Apparatus and method for automated permeation testing of vapor and liquid penetration
KR101526810B1 (en) * 2014-07-23 2015-06-08 주식회사 에이치에스파트너스 Enhanced visibility and a light emitting load lane regulation bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196181A (en) * 1989-11-13 1993-03-23 Kronos (Usa), Inc. Process for the production of titanium dioxide
EP0595078A2 (en) * 1992-10-24 1994-05-04 Degussa Aktiengesellschaft Titandioxide mixed oxide prepared by flame hydrolysis, process for its preparation and its use
US5508015A (en) * 1994-07-15 1996-04-16 E. I. Du Pont De Nemours And Company Process for controlling agglomeration in the manufacture of TiO2
JPH1059721A (en) * 1996-08-20 1998-03-03 Furukawa Electric Co Ltd:The Titanium oxide for water or air treatment and its production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618562A1 (en) * 1996-05-09 1997-11-13 Merck Patent Gmbh Platelet-shaped titanium dioxide reduction pigment
US5922120A (en) * 1997-12-23 1999-07-13 E. I. Du Pont De Nemours And Company Process for producing coated TiO2 pigment using cooxidation to provide hydrous oxide coatings

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196181A (en) * 1989-11-13 1993-03-23 Kronos (Usa), Inc. Process for the production of titanium dioxide
EP0595078A2 (en) * 1992-10-24 1994-05-04 Degussa Aktiengesellschaft Titandioxide mixed oxide prepared by flame hydrolysis, process for its preparation and its use
US5451390A (en) * 1992-10-24 1995-09-19 Degussa Aktiengesellschaft Flame-hydrolytically produced titanium dioxide mixed oxide, method of its production and its use
US5672330A (en) * 1992-10-24 1997-09-30 Degussa Aktiengesellschaft Flame-hydrolytically produced titanium dioxide mixed oxide method of its production and its use
US5508015A (en) * 1994-07-15 1996-04-16 E. I. Du Pont De Nemours And Company Process for controlling agglomeration in the manufacture of TiO2
JPH1059721A (en) * 1996-08-20 1998-03-03 Furukawa Electric Co Ltd:The Titanium oxide for water or air treatment and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613122B1 (en) 2005-06-03 2006-08-17 엄환섭 Synthesis of n-doped tio2 nano powder by microwave plasma torch

Also Published As

Publication number Publication date
US20020004029A1 (en) 2002-01-10
KR20010094903A (en) 2001-11-03
US6613301B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
KR100376247B1 (en) Producing method for nano-size ultra fine Titanium Dioxide by the chemical reaction using flame
US5861132A (en) Vapor phase flame process for making ceramic particles using a corona discharge electric field
Wegner et al. Scale-up of nanoparticle synthesis in diffusion flame reactors
Pratsinis et al. Particle formation in gases: a review
Wang et al. Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames
JP5489466B2 (en) Method for producing mixed metal oxide powder
Wegner et al. Gas-phase synthesis of nanoparticles: scale-up and design of flame reactors
Jang et al. Controlled synthesis of titanium dioxide nanoparticles in a modified diffusion flame reactor
US20050119398A1 (en) Plasma synthesis of metal oxide nanoparticles
Zhao et al. Ultrafine anatase TiO2 nanoparticles produced in premixed ethylene stagnation flame at 1 atm
JPH02289B2 (en)
Lee et al. Preparation and characterization of titanium (IV) oxide photocatalysts
CN101784342A (en) Production of SiO2-coated titanium dioxide particles with an adjustable coating
Hirano et al. Tubular flame combustion for nanoparticle production
Yeh et al. Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames
CA2385695C (en) Particulate titanium oxide and production process therefor
Chang et al. Synthetic routes for titania nanoparticles in the flame spray pyrolysis
CN1075791C (en) Process for preparing nm-class TiO2
Hong et al. Experimental investigation and particle dynamic simulation for synthesizing titania nanoparticles using diffusion flame
Ma et al. Combustion synthesis of titania nanoparticles in a premixed methane flame
Ifeacho et al. SnO2/TiO2 mixed oxide particles synthesized in doped premixed H2/O2/Ar flames
US6824758B2 (en) Particulate titanium oxide and production process therefor
Wang et al. Flame aerosol synthesis of WO3/CeO2 from aqueous solution: Two distinct pathways and structure design
US7449166B2 (en) Particulate titanium oxide and production process therefor
JPH0457602B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121231

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20131230

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20141229

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee