KR100256803B1 - Method for forming shallow junction in semiconductor device - Google Patents

Method for forming shallow junction in semiconductor device Download PDF

Info

Publication number
KR100256803B1
KR100256803B1 KR1019930012708A KR930012708A KR100256803B1 KR 100256803 B1 KR100256803 B1 KR 100256803B1 KR 1019930012708 A KR1019930012708 A KR 1019930012708A KR 930012708 A KR930012708 A KR 930012708A KR 100256803 B1 KR100256803 B1 KR 100256803B1
Authority
KR
South Korea
Prior art keywords
film
junction
polycrystalline silicon
titanium
diffusion
Prior art date
Application number
KR1019930012708A
Other languages
Korean (ko)
Other versions
KR950004400A (en
Inventor
김상영
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019930012708A priority Critical patent/KR100256803B1/en
Publication of KR950004400A publication Critical patent/KR950004400A/en
Application granted granted Critical
Publication of KR100256803B1 publication Critical patent/KR100256803B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: A method for forming a shallow junction is to form a Ti silicide layer by reacting a polycrystalline or amorphous silicon as a diffusion source with Ti in forming a shallow junction, thereby preventing junction consumption in the formation of Ti silicide and reducing surface resistance of the junction as well. CONSTITUTION: A diffusion layer is formed on a portion to be formed of a junction region using a polysilicon as a diffusion source. Ti is deposited on the polysilicon layer after the diffusion. The polysilicon remaining on the diffusion layer after diffusion is formed of a Ti silicide layer(11) with an annealing, thereby preventing consumption of the diffusion layer and reducing surface resistance of the diffusion layer as well. The diffusion is carried out by implanting an impurity ion into the polysilicon layer so that the implanted impurity ion is diffused into the layer to form an N+ or P+ diffusion layer. A shallow junction consists of an N+ or P+ diffusion layer and Ti silicide.

Description

반도체 소자의 얇은 접합 형성방법Thin junction formation method of semiconductor device

제1a도 내지 제1e도는 본 발명의 티타늄 실리사이드를 이용한 얇은 접합 형성방법을 도시한 단면도.1a to 1e are cross-sectional views showing a method of forming a thin junction using the titanium silicide of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘 기판 2 : 필드 산화막1: silicon substrate 2: field oxide film

3 : 게이트 산화막 4 : 다결정 실리콘 게이트3: gate oxide film 4: polycrystalline silicon gate

5 : 마스크 산화막 6 : 산화막 스페이서5: mask oxide film 6: oxide film spacer

7 : 다결정 실리콘막 9 : N+또는 P+확산층7: polycrystalline silicon film 9: N + or P + diffusion layer

10 : 티타늄막 11 : 티타늄 실리사이드막10 titanium film 11: titanium silicide film

본 발명은 고집적 반도체 소자의 제조공정에서 필수적인 얇은 접합(Shallow Junction) 형성방법에 관한 것으로, 특히 다결정 또는 비정질 실리콘을 확산원으로 사용하여 얇은 접합을 형성할 때에 다결정 실리콘을 티타늄과 반응시켜 티타늄 실리사이드막을 형성함으로써, 티타늄 실리사이드막 형성시의 접합 소모를 방지하고 접합의 면저항도 감소시키는 얇은 접합 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin junction, which is essential in the fabrication of highly integrated semiconductor devices. In particular, when a thin junction is formed using polycrystalline or amorphous silicon as a diffusion source, polysilicon is reacted with titanium to form a titanium silicide film. The present invention relates to a thin junction formation method that prevents the consumption of the junction in forming the titanium silicide film and also reduces the sheet resistance of the junction.

일반적으로, 반도체 소자의 성능을 저하시키지 않고 집적도를 증가시키기 위해서는 얇은 접합을 형성하는 것이 중요하며, 얇은 접합을 형성하기 위한 고체 확산원(Solid Diffusion Source) 방법 중에서 다결정 실리콘을 이용한 얇은 접합 형성방법이 많이 사용되고 있다.In general, it is important to form a thin junction in order to increase the degree of integration without degrading the performance of a semiconductor device, and a thin junction formation method using polycrystalline silicon is one of the solid diffusion source methods for forming a thin junction. It is used a lot.

한편, 집적도의 증가에 따라 접합의 저항이 증가함에 따라, 이를 감소시키기 위하여 티타늄 실리사이드를 이용한 접합의 금속화 연구가 진행되고는 있으나, 티타늄 실리사이드막 형성시 접합의 실리콘이 소모되어 접합 누설 전류가 증가하게 되는 문제점이 있다.On the other hand, as the resistance of the junction increases as the degree of integration increases, the metallization of the junction using titanium silicide has been conducted to reduce this, but the junction leakage current increases because the silicon of the junction is consumed when forming the titanium silicide layer. There is a problem.

따라서, 본 발명에서는 다결정 실리콘을 이용하여 접합 부분에 확산층을 형성하고, 확산이 완료된 후에 다결정 실리콘 상부에 티타늄을 증착하고 열처리 공정을 실시하여 확산층 위에 남아 있는 다결정 실리콘을 티타늄 실리사이드화하여, 확산층이 소모도 방지하고, 확산층의 면저항도 작은 얇은 접합을 형성시키는데 그 목적이 있다.Therefore, in the present invention, a diffusion layer is formed on the junction portion using polycrystalline silicon, and after diffusion is completed, titanium is deposited on the polycrystalline silicon and a heat treatment is performed to titanium silicide the polycrystalline silicon remaining on the diffusion layer, thereby consuming the diffusion layer. The purpose is to prevent thin films and to form thin junctions with small sheet resistance of the diffusion layer.

이하, 첨부된 도면을 참조하여 본 발명의 얇은 접합 형성방법을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a thin junction formation method of the present invention.

제1a도 내지 제1e도는 본 발명의 티타늄 실리사이드를 이용한 얇은 접합 형성방법을 도시한 단면도이다.1A to 1E are cross-sectional views showing a method of forming a thin junction using the titanium silicide of the present invention.

제1a도는 실리콘 기판(1) 상부에 소자 분리를 위한 필드 산화막(2)을 형성한 후, 소자가 형성될 영역에 게이트 산화막(3)과 다결정 실리콘 게이트(4)를 증착하고, 후속 공정에서 접합 부분과 게이트가 단락되는 것을 방지하기 위해 마스크 산화막(5)을 다결정 실리콘 게이트(4) 상부에 증착한 다음, 사진 식각 공정으로 게이트를 형성하고, 그 상부 표면을 따라 산화막을 증착한 후에 에치백(Etch Back)공정을 실시하여 게이트의 측면에 산화막 스페이서(6)를 형성한 단면도이다.FIG. 1A illustrates forming a field oxide film 2 for device isolation on a silicon substrate 1, depositing a gate oxide film 3 and a polycrystalline silicon gate 4 in a region where the device is to be formed, and bonding in a subsequent process. A mask oxide film 5 is deposited on top of the polycrystalline silicon gate 4 to prevent a short circuit between the portion and the gate, and then a gate is formed by a photolithography process, and an oxide film is deposited along the upper surface thereof. It is sectional drawing in which the oxide film spacer 6 was formed in the side surface of the gate by performing an etching back process.

상기의 마스크 산화막(5)이 없다면 게이트 상부에 형성된 다결정 실리콘막을 제거하기 위한 후속공정에서 마스크 작업을 할때에 공정 여유가 산화막 스페이서 (6)의 폭 정도밖에 되지 않아 후속 공정인 실리사이드막 형성 공정에서 게이트와 접합 간에 단락이 발생하게 된다.If the mask oxide film 5 is not present, the process margin is only about the width of the oxide spacer 6 in the subsequent process for removing the polycrystalline silicon film formed on the gate. There will be a short circuit between the gate and the junction.

제1b도는 제1a도의 공정 후에 확산층을 형성하기 위한 확산원으로 상부 표면을 따라 다결정 실리콘막(7)을 증착한 단면도이다.FIG. 1B is a cross-sectional view of depositing the polycrystalline silicon film 7 along the upper surface as a diffusion source for forming the diffusion layer after the process of FIG. 1A.

제1c도는 사진 식각공정을 실시하여 접합이 형성된 영역의 상부에 형성된 다결정 실리콘막(7)을 제외한 나머지 부분의 다결정 실리콘막(7)을 제거한 다음, 접합이 형성될 영역에 불순물 이온 주입공정을 실시한 단면도이다.FIG. 1C is a photolithography process to remove the polycrystalline silicon film 7 except for the polycrystalline silicon film 7 formed on the region where the junction is formed, and then perform an impurity ion implantation process on the region where the junction is to be formed. It is a cross section.

제1d도는 제1c도의 공정에서 다결정 실리콘막(7)에 주입된 불순물 이온을 일정 온도 및 시간하에서 확산공정을 실시하여 N+또는 P+확산층(9)을 형성하고, N+또는 P+확산층(9) 상부에 남아 있는 다결정 실리콘막(7)을 실리사이드화하기 위하여 전체 표면을 따라 티타늄막(10)을 증착한 단면도이다.FIG. 1D illustrates a process of diffusing impurity ions implanted into the polycrystalline silicon film 7 in the process of FIG. 1C under a constant temperature and time to form an N + or P + diffusion layer 9, and an N + or P + diffusion layer ( 9) A cross-sectional view of the titanium film 10 deposited along the entire surface in order to silicide the polycrystalline silicon film 7 remaining thereon.

제1e도는 제1d도의 공정에서 증착된 티타늄막(10)을 일정 온도 및 시간하에서 열처리함으로써, 티타늄막(10)과 N+또는 P+확산층(9) 상부에 남아 있는 다결정 실리콘막(7)을 반응시켜 티타늄 실리사이드막(11)을 형성하고, 산화막 상부에 있는 미반응 티타늄은 암모니아수, 과산화수소수, 증류수가 1 : 1 : 5의 비율로 혼합된 용액을 사용하여 제거한 후에 다시 한번 열처리 공정을 실시하여 비저항이 낮은 최종의 티타늄 실리사이드막(11)을 형성함으로써, 티타늄 실리사이드막(11)과 N+또는 P+확산층(9)으로 구성되며 낮은 면저항을 갖는 얇은 접합을 완성한 단면도이다.FIG. 1e shows the polycrystalline silicon film 7 remaining on the titanium film 10 and the N + or P + diffusion layer 9 by heat-treating the titanium film 10 deposited in the process of FIG. 1d at a constant temperature and time. React to form a titanium silicide film 11, and remove the unreacted titanium on the oxide film by using a mixed solution of ammonia water, hydrogen peroxide water, and distilled water in a ratio of 1: 1: 5 and then heat treatment again. By forming the final titanium silicide film 11 having a low specific resistance, it is a cross-sectional view of a thin junction composed of the titanium silicide film 11 and the N + or P + diffusion layer 9 and having a low sheet resistance.

상기 제1a도 내지 제1e도에서 설명한 본 발명의 얇은 접합 형성방법을 사용하게 되면, 다결정 실리콘을 확산원으로 확산층을 형성하고, 이때 남겨진 다결정 실리콘을 티타늄과 반응시켜 티타늄 실리사이드막을 형성시켜 얇은 접합을 완성함으로써, 접합의 소모가 없고, 얇은 접합의 면저항이 낮아지는 효과를 얻게 된다.When the thin junction formation method of the present invention described in FIGS. 1A to 1E is used, a diffusion layer is formed using polycrystalline silicon as a diffusion source, and at this time, the remaining polycrystalline silicon is reacted with titanium to form a titanium silicide film to form a thin junction. By the completion, there is no consumption of the bonding and the sheet resistance of the thin bonding is lowered.

Claims (2)

반도체 소자의 얇은 접합(Shallow Junction)을 형성하는데 있어서, 실리콘 기판 상부에 필드 산화막을 형성한 후, 소자가 형성될 영역에 게이트 산화막과 다결정 실리콘 게이트를 증착하고, 상기 다결정 실리콘 게이트 상부에 마스크 산화막을 증착한 다음, 사진 식각공정으로 게이트를 형성하고, 그 상부 표면을 따라 산화막을 증착한 후에 에치 백(Etch Back)공정을 실시하여 게이트의 측면에 산화막 스페이서를 형성하는 단계와, 상부 표면을 따라 다결정 실리콘막을 증착한 후에 사진 식각공정을 실시하여, 접합이 형성될 영역의 상부에 형성된 다결정 실리콘막을 제외한 나머지 부분의 다결정 실리콘막을 제거한 다음, 접합이 형성될 영역에 불순물 이온 주입 공정을 실시하는 단계와, 다결정 실리콘막에 주입된 불순물 이온을 일정 온도 및 시간하에서 확산공정을 실시하여 N+또는 P+확산층을 형성하고, 전체 상부 표면을 따라 티타늄막을 증착하는 단계와, 상기 증착된 티타늄막을 일정 온도 및 시간하에서 열처리함으로써, 티타늄막과 N+또는 P+확산층 상부에 남아 있는 다결정 실리콘막을 반응시켜 티타늄 실리사이드막을 형성하고, 산화막 상부에 있는 미반응 티타늄은 습식식각 공정으로 제거한 후에 다시 한번 열처리 공정을 실시하여 비저항이 낮은 최종의 티타늄 실리사이드막을 형성함으로써, 티타늄 실리사이드막과 N+또는 P+확산층으로 구성되며 낮은 면저항을 갖는 얇은 접합을 완성하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 얇은 접합 형성방법.In forming a thin junction of a semiconductor device, after forming a field oxide film on a silicon substrate, a gate oxide film and a polycrystalline silicon gate are deposited on a region where the device is to be formed, and a mask oxide film is formed on the polycrystalline silicon gate. After the deposition, a gate is formed by a photolithography process, and an oxide film is deposited along the upper surface thereof, followed by an etch back process to form an oxide spacer on the side of the gate, and a polycrystal along the upper surface. Performing a photolithography process after depositing the silicon film to remove the polycrystalline silicon film except for the polycrystalline silicon film formed on the region where the junction is to be formed, and then performing an impurity ion implantation process on the region where the junction is to be formed; Diffusion of impurity ions implanted into the polycrystalline silicon film at a constant temperature and time Subjected to positive form a N + or P + diffusion layer, and depositing a film of titanium along the entire upper surface and, by heat-treating the deposited titanium film under a predetermined temperature and time, the titanium film and the N + or P + diffusion layer upper The remaining polycrystalline silicon film is reacted to form a titanium silicide film, and the unreacted titanium on the oxide film is removed by a wet etching process, followed by a heat treatment process to form a final titanium silicide film having a low specific resistance, thereby forming a titanium silicide film and N And forming a thin junction having a low sheet resistance, comprising a + or P + diffusion layer. 제1항에 있어서, 미반응 티타늄을 제거하는 습식식각 공정시에 사용하는 혼합 용액은 암모니아수, 과산화수소수, 증류수를 1 : 1 : 5의 비율로 혼합한 것을 특징으로 하는 반도체 소자의 얇은 접합 형성방법.The method of claim 1, wherein the mixed solution used in the wet etching process of removing unreacted titanium is mixed with ammonia water, hydrogen peroxide water, and distilled water in a ratio of 1: 1: 1. .
KR1019930012708A 1993-07-07 1993-07-07 Method for forming shallow junction in semiconductor device KR100256803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930012708A KR100256803B1 (en) 1993-07-07 1993-07-07 Method for forming shallow junction in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930012708A KR100256803B1 (en) 1993-07-07 1993-07-07 Method for forming shallow junction in semiconductor device

Publications (2)

Publication Number Publication Date
KR950004400A KR950004400A (en) 1995-02-18
KR100256803B1 true KR100256803B1 (en) 2000-05-15

Family

ID=19358852

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930012708A KR100256803B1 (en) 1993-07-07 1993-07-07 Method for forming shallow junction in semiconductor device

Country Status (1)

Country Link
KR (1) KR100256803B1 (en)

Also Published As

Publication number Publication date
KR950004400A (en) 1995-02-18

Similar Documents

Publication Publication Date Title
US4272880A (en) MOS/SOS Process
EP0137645B1 (en) Method of forming a shallow n-type region
JP2987297B2 (en) Method for controlling defect formation in silicon integrated circuit fabrication, method for controlling oxide film quality and defect formation, double diffusion integrated circuit device cell, and method for forming integrated circuit MOSFET cell
US5677213A (en) Method for forming a semiconductor device having a shallow junction and a low sheet resistance
GB2037073A (en) Method of producing a metal-semiconductor fieldeffect transistor
US6228766B1 (en) Process for fabricating semiconductor device without separation between silicide layer and insulating layer
EP0023528A1 (en) Double diffused transistor structure and method of making same
KR100256803B1 (en) Method for forming shallow junction in semiconductor device
JP3371875B2 (en) Method for manufacturing semiconductor device
KR0156156B1 (en) Method of fabricating semiconductor device
JPH10125919A (en) Method for forming electrode of semiconductor element
JP2931243B2 (en) Method for manufacturing semiconductor device
KR100190367B1 (en) Method of forming an element isolation film in a semiconductor device
JPH06196687A (en) Manufacture of semiconductor device
JP3110054B2 (en) Semiconductor device and manufacturing method thereof
JPS55166958A (en) Manufacture of semiconductor device
KR0167667B1 (en) Method of fabricating semiconductor
KR100503743B1 (en) Method For Manufacturing Semiconductor Devices
KR100204014B1 (en) Mos transistor and manufacturing method thereof
JP3108927B2 (en) Method for manufacturing semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
KR100309137B1 (en) Method for manufacturing semiconductor device
KR920009894B1 (en) Manufacturing method of high-voltage semiconductor device
KR920000634B1 (en) Manufacturing method of mosfet
KR0129234B1 (en) Fabrication method of polysilicon tft

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090121

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee