JPWO2020131837A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2020131837A5
JPWO2020131837A5 JP2021535048A JP2021535048A JPWO2020131837A5 JP WO2020131837 A5 JPWO2020131837 A5 JP WO2020131837A5 JP 2021535048 A JP2021535048 A JP 2021535048A JP 2021535048 A JP2021535048 A JP 2021535048A JP WO2020131837 A5 JPWO2020131837 A5 JP WO2020131837A5
Authority
JP
Japan
Prior art keywords
carbon
product
containing material
cathode
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021535048A
Other languages
Japanese (ja)
Other versions
JP2022514852A (en
Publication date
Priority claimed from US16/503,165 external-priority patent/US10590548B1/en
Application filed filed Critical
Publication of JP2022514852A publication Critical patent/JP2022514852A/en
Publication of JPWO2020131837A5 publication Critical patent/JPWO2020131837A5/ja
Pending legal-status Critical Current

Links

Claims (23)

炭素含有材料を使用して、1つ以上の炭素原子を含む炭素生成物(C1+生成物)を生成するための方法であって、
(a)前記炭素含有材料を含む電解質溶液を(i)アノード、(ii)触媒を含むカソード、および(iii)細孔を備える膜を備える電気化学的システムに導いて、前記電解質溶液を前記カソードと接触させること、ここで、前記アノードと前記カソードとは、前記電解質溶液を介して互いに電気的に連通しており、
(b)前記カソードを使用して、前記電解質溶液中の前記炭素含有材料を還元して、前記C1+生成物を生成すること、
(c)前記C1+生成物を前記膜を通して導くこと、ならびに
(d)前記電気化学的システムから前記C1+生成物を回収すること、
を含む方法。
A method for using a carbon-containing material to produce a carbon product containing one or more carbon atoms (the C1+ product), comprising:
(a) directing an electrolyte solution comprising said carbon-containing material through an electrochemical system comprising (i) an anode, (ii) a cathode comprising a catalyst, and (iii) a membrane comprising pores to convert said electrolyte solution to said cathode; wherein the anode and the cathode are in electrical communication with each other through the electrolyte solution;
(b) using the cathode to reduce the carbon-containing material in the electrolyte solution to produce the C1+ product;
(c) directing the C1+ product through the membrane; and (d) recovering the C1+ product from the electrochemical system;
method including.
前記炭素含有材料が、一酸化炭素(CO)および/または二酸化炭素(CO2)を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the carbon-containing material comprises carbon monoxide (CO) and/or carbon dioxide (CO2). 前記アノードが前記(1または複数の)触媒を含む、請求項1に記載の方法。 2. The method of claim 1, wherein said anode comprises said catalyst(s). 前記電解質溶液が、前記炭素含有材料と水との相互作用から生じる水性種を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the electrolyte solution comprises aqueous species resulting from interaction of the carbon-containing material with water. 前記水性種が、重炭酸イオン、炭酸イオンおよびギ酸イオンからなる群から選択される1種以上を含む、請求項4に記載の方法。 5. The method of claim 4, wherein said aqueous species comprises one or more selected from the group consisting of bicarbonate, carbonate and formate ions. (a)の前に、気体接触器を使用して前記炭素含有材料を水に導入することをさらに含む、請求項1に記載の方法。 2. The method of claim 1, further comprising, prior to (a), introducing the carbon-containing material into water using a gas contactor. 前記気体接触器がカーボンナノチューブ、カーボンナノスフェア、カーボンナノオニオン、グラフェンおよび多孔質熱分解カーボンからなる群から選択される1つ以上のナノ材料を備える、請求項6に記載の方法。 7. The method of claim 6, wherein the gas contactor comprises one or more nanomaterials selected from the group consisting of carbon nanotubes, carbon nanospheres, carbon nano-onions, graphene and porous pyrolytic carbon. 前記膜が、カーボンナノチューブ、カーボンナノスフェア、カーボンナノオニオン、グラフェンおよび多孔質熱分解カーボンからなる群から選択される1つ以上の材料を含む、請求項1に記載の方法。 2. The method of claim 1, wherein the film comprises one or more materials selected from the group consisting of carbon nanotubes, carbon nanospheres, carbon nano-onions, graphene and porous pyrolytic carbon. 前記膜が触媒をさらに含む、請求項8に記載の方法。 9. The method of claim 8, wherein said membrane further comprises a catalyst. 前記触媒が金属ナノ粒子を含む、請求項9に記載の方法。 10. The method of claim 9, wherein the catalyst comprises metal nanoparticles. 前記金属ナノ粒子が、銅、ニッケル、白金、イリジウム、ルテニウム、パラジウム、スズ、銀および金からなる群から選択される金属を含む、請求項10に記載の方法。 11. The method of claim 10, wherein said metal nanoparticles comprise metals selected from the group consisting of copper, nickel, platinum, iridium, ruthenium, palladium, tin, silver and gold. 前記(1または複数の)触媒がNドープされている、請求項1に記載の方法。 2. The method of claim 1, wherein said catalyst(s) is/are N-doped. 前記アノードおよび前記カソードが前記電解質溶液を介して電圧源に電気的に連通しており、前記電圧源が再生可能電源を備える、請求項1に記載の方法。 2. The method of claim 1, wherein said anode and said cathode are in electrical communication through said electrolyte solution to a voltage source, said voltage source comprising a renewable power source. 前記再生可能電源が、光起電力、風力電力、地熱電力、水力電力、潮力電力および原子力からなる群から選択される1種以上を備える、請求項13に記載の方法。 14. The method of claim 13, wherein the renewable power source comprises one or more selected from the group consisting of photovoltaic, wind power, geothermal power, hydropower, tidal power and nuclear power. 電気化学的に生成された水酸化物を使用することによって、前記炭素含有材料を前記電気化学的システムに導入することをさらに含む、請求項1に記載の方法。 2. The method of claim 1, further comprising introducing the carbon-containing material into the electrochemical system by using an electrochemically generated hydroxide. (d)において前記C1+生成物を前記回収することが、蒸留ユニットの非存在下で行われる、請求項1に記載の方法。 2. The process of claim 1, wherein said recovering said C1+ product in (d) is performed in the absence of a distillation unit. 前記電気化学的システムが、前記カソードと前記アノードとの間の距離を最小限に抑えるように構成されたイオン交換膜をさらに備える、請求項1に記載の方法。 2. The method of claim 1, wherein said electrochemical system further comprises an ion exchange membrane configured to minimize the distance between said cathode and said anode. 前記C1+生成物が、少なくとも約70%の1回通過選択性で前記電気化学的還元システムから回収される、請求項1に記載の方法。 2. The method of claim 1, wherein the C1+ product is recovered from the electrochemical reduction system with a one-pass selectivity of at least about 70%. 前記C1+生成物が、メタノール、エタノール、プロパノールおよびブタノールからなる群から選択される1種以上を含む、請求項1に記載の方法。 2. The method of claim 1, wherein said C1+ product comprises one or more selected from the group consisting of methanol, ethanol, propanol and butanol. 前記細孔が、約5ミクロン以下の直径を有する、請求項1に記載の方法。 2. The method of claim 1, wherein the pores have diameters of about 5 microns or less. 電気化学的システムは、第1の区画と第2の区画とを分離し、前記第1の区画は、前記膜の前記細孔を介して前記第2の区画と流体連通している、請求項1に記載の方法。 11. The electrochemical system separates a first compartment and a second compartment, said first compartment being in fluid communication with said second compartment via said pores of said membrane. 1. The method according to 1. (b)は、前記第1のチャンバ内で起こり、(d)は、前記第2のチャンバ内で起こる、請求項21に記載の方法。 22. The method of claim 21, wherein (b) occurs within the first chamber and (d) occurs within the second chamber. 前記C1+生成物が前記膜の前記細孔を通して前記第1の区画から前記第2の区画に導かれる、請求項22に記載の方法。 23. The method of claim 22, wherein said C1+ product is directed from said first compartment to said second compartment through said pores of said membrane.
JP2021535048A 2018-12-18 2019-12-17 Methods and systems for fuel production Pending JP2022514852A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862781149P 2018-12-18 2018-12-18
US62/781,149 2018-12-18
US16/503,165 US10590548B1 (en) 2018-12-18 2019-07-03 Methods and systems for fuel production
US16/503,165 2019-07-03
PCT/US2019/066787 WO2020131837A1 (en) 2018-12-18 2019-12-17 Methods and systems for fuel production

Publications (2)

Publication Number Publication Date
JP2022514852A JP2022514852A (en) 2022-02-16
JPWO2020131837A5 true JPWO2020131837A5 (en) 2022-12-22

Family

ID=69778951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021535048A Pending JP2022514852A (en) 2018-12-18 2019-12-17 Methods and systems for fuel production

Country Status (6)

Country Link
US (2) US10590548B1 (en)
EP (1) EP3897969A4 (en)
JP (1) JP2022514852A (en)
KR (1) KR20210103515A (en)
CN (1) CN113195094A (en)
WO (1) WO2020131837A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590548B1 (en) * 2018-12-18 2020-03-17 Prometheus Fuels, Inc Methods and systems for fuel production
US11920248B2 (en) 2018-12-18 2024-03-05 Prometheus Fuels, Inc Methods and systems for fuel production
US11447887B2 (en) 2020-12-10 2022-09-20 Saudi Arabian Oil Company Surface smoothing of copper by electropolishing
US11512400B2 (en) * 2020-12-10 2022-11-29 Saudi Arabian Oil Company Electrochemical reduction of carbon dioxide
CN112877720B (en) * 2021-02-02 2022-06-14 浙江工商大学 S-doped Sn oxide catalytic electrode and preparation and application thereof
KR20230148199A (en) * 2021-02-19 2023-10-24 프로메테우스 퓨얼즈, 인크. Integrated direct air capture and electrochemical reduction of carbon dioxide
WO2023042043A1 (en) * 2021-09-15 2023-03-23 King Abdullah University Of Science And Technology Electrocatalytic upcycling of pressurized captured co 2 system and method
US20230126907A1 (en) * 2021-10-26 2023-04-27 Skyre, Inc. Biopolar membrane cell for the capture of carbon dioxide
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
WO2023225027A1 (en) * 2022-05-17 2023-11-23 Prometheus Fuels, Inc. Electrochemical upgrading of reduced carbon products

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4273628A (en) * 1979-05-29 1981-06-16 Diamond Shamrock Corp. Production of chromic acid using two-compartment and three-compartment cells
US4717480A (en) * 1985-05-31 1988-01-05 Agency Of Industrial Science And Technology Method for separation of liquid mixture
US8196756B2 (en) 2010-04-02 2012-06-12 NanOasis Asymmetric nanotube containing membranes
US10047446B2 (en) * 2010-07-04 2018-08-14 Dioxide Materials, Inc. Method and system for electrochemical production of formic acid from carbon dioxide
US9095821B1 (en) 2010-10-26 2015-08-04 Nagare Membranes, Llc Non-reactive process for fixing nanotubes in a membrane in through-passage orientation
US8961774B2 (en) * 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
CN103160851B (en) * 2011-12-12 2015-11-25 清华大学 Membrane reactor
CA2883127C (en) * 2012-09-14 2021-04-27 Liquid Light, Inc. Process and high surface area electrodes for the electrochemical reduction of carbon dioxide
WO2014047661A2 (en) * 2012-09-24 2014-03-27 Dioxide Materials, Inc. Devices and processes for carbon dioxide conversion into useful fuels and chemicals
CN105764838B (en) * 2013-11-20 2019-03-01 佛罗里达大学研究基金会有限公司 Carbon dioxide reduction on carbonaceous material
WO2015161310A2 (en) 2014-04-18 2015-10-22 The University Of North Carolina At Chapel Hill Doped nanocarbon catalysts
WO2017197167A1 (en) 2016-05-11 2017-11-16 William Marsh Rice University Metal-free catalysts for converting carbon dioxide into hydrocarbons and oxygenates
WO2018071818A1 (en) * 2016-10-14 2018-04-19 Stafford Wheeler Sheehan Systems and methods for variable pressure electrochemical carbon dioxide reduction
CN107447229B (en) * 2017-07-14 2019-01-25 中国科学院长春应用化学研究所 A kind of method that electro-catalysis reduction carbon dioxide generates ethyl alcohol
CN108295668B (en) * 2018-02-28 2020-03-27 长沙理工大学 Graphene composite alumina ceramic nano-filtration membrane, filter, preparation method and application thereof
EP3536823A1 (en) * 2018-03-05 2019-09-11 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method for electrochemically reducing carbon dioxide
JP6997376B2 (en) * 2018-05-22 2022-01-17 日本電信電話株式会社 Carbon dioxide reduction device
US10590548B1 (en) * 2018-12-18 2020-03-17 Prometheus Fuels, Inc Methods and systems for fuel production

Similar Documents

Publication Publication Date Title
EP3358042B1 (en) Electrolysis cell and electrolytic device for carbon dioxide
US9217202B2 (en) Membrane reactor
US9518329B2 (en) Method for electrochemically converting carbon dioxide
CN113493917B (en) Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis
KR101451630B1 (en) Method for reducing carbon dioxide and reductor of carbon dioxide using the same
CN103464189B (en) The H of the coated titanium carbide Supported Co of carbon and cobaltosic oxide 2o 2the preparation method of electroreduction catalysis material
JP6788378B2 (en) Water electrolysis cell and multi-pole water electrolysis tank
JP6567584B2 (en) Electrochemical reactor
US9145614B2 (en) Membrane reactor
KR101468782B1 (en) Method for reducing carbon dioxide and non-diaphragm reductor of carbon dioxide using the same
JP2019163520A (en) Electrochemical reaction apparatus
JPWO2020131837A5 (en)
JP6649307B2 (en) Electrochemical reactor
He et al. Advances in electrolyzer design and development for electrochemical CO2 reduction
KR102154198B1 (en) Method of preparing metal alloy catalysts, method of reducing carbon dioxide using metal alloy catalysts, and reduction system of carbon dioxide
Zhang et al. Hydrogen production by traditional and novel alkaline water electrolysis on nickel or iron based electrocatalysts
JP2007284705A (en) Electrolytic hydrogen-generating device, method for generating hydrogen gas, and fuel cell
CN114402095B (en) Cross-flow water electrolysis
JP6948393B2 (en) Microelectrode fiber optics, optical cables, and hydrogen production equipment for hydrogen production by opto-electrical water splitting
JP7145264B1 (en) Carbon dioxide treatment device, carbon dioxide treatment method, and method for producing carbon compound
CN213570766U (en) Water decomposition hydrogen production device based on lead net
CN114457351A (en) Method and device for producing hydrogen by electrolyzing water step by step based on single-electrolytic-tank double-electrode two-step method
Kim et al. Carbon-Neutralized Direct Methanol Fuel Cell Using Bifunctional (Methanol Oxidation/CO 2 Reduction) Electrodes
JP2022049861A (en) Chemical reaction system, chemical reaction method, and valuable material manufacturing system
US20230366112A1 (en) Method of preparing metal oxide catalysts for oxygen evolution