JPWO2018211779A1 - Oil tempered wire - Google Patents

Oil tempered wire Download PDF

Info

Publication number
JPWO2018211779A1
JPWO2018211779A1 JP2019519073A JP2019519073A JPWO2018211779A1 JP WO2018211779 A1 JPWO2018211779 A1 JP WO2018211779A1 JP 2019519073 A JP2019519073 A JP 2019519073A JP 2019519073 A JP2019519073 A JP 2019519073A JP WO2018211779 A1 JPWO2018211779 A1 JP WO2018211779A1
Authority
JP
Japan
Prior art keywords
mass
oil
carbide
less
tempered wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519073A
Other languages
Japanese (ja)
Other versions
JP7044109B2 (en
Inventor
文徳 岡田
文徳 岡田
寛之 荻原
寛之 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Publication of JPWO2018211779A1 publication Critical patent/JPWO2018211779A1/en
Application granted granted Critical
Publication of JP7044109B2 publication Critical patent/JP7044109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Cを0.50質量%以上0.90質量%以下と、0.02質量%以上0.50質量%以下のV、0.01質量%以上0.50質量%以下のTa、0.01質量%以上0.50質量%以下のNb、0.02質量%以上0.50質量%以下のMo、及び0.02質量%以上1.00質量%以下のWから選択される1種以上の強化用元素と、Siを0.80質量%以上3.00質量%以下と、Mnを0.40質量%以上1.00質量%以下と、Crを0.40質量%以上2.00質量%以下とを含有し、残部がFe及び不純物である組成を有し、前記強化用元素を含む炭化物を備え、前記強化用元素を含む炭化物中の前記強化用元素の合計含有量が前記強化用元素全量に対して質量割合で10%以上であり、前記強化用元素を含む炭化物の平均粒径が30nm以下であるオイルテンパー線。C is 0.50% to 0.90% by mass, V is 0.02% to 0.50% by mass, Ta is 0.01% to 0.50% by mass, and 0.01% by mass. % To 0.50% by mass of Nb, 0.02% to 0.50% by mass of Mo, and 0.02% to 1.00% by mass of W. Element, Si is 0.80% to 3.00% by mass, Mn is 0.40% to 1.00% by mass, and Cr is 0.40% to 2.00% by mass. Having a composition in which the balance is Fe and impurities, and includes a carbide containing the reinforcing element, and the total content of the reinforcing element in the carbide containing the reinforcing element is the total amount of the reinforcing element. Is 10% or more by mass with respect to the average particle size of the carbide containing the reinforcing element. Oil-tempered wire is 30nm or less.

Description

本発明は、オイルテンパー線に関する。
本出願は、2017年5月19日出願の日本出願第2017−100377号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present invention relates to an oil-tempered wire.
This application claims priority based on Japanese Patent Application No. 2017-100377 filed on May 19, 2017, and incorporates all the contents described in the Japanese Application.

自動車のエンジンやトランスミッションなどの構成部材の一つに、ばねがある。これらのばね材料には、オイルテンパー線が汎用されている。   One of the components such as an engine and a transmission of an automobile is a spring. Oil tempered wires are widely used for these spring materials.

オイルテンパー線は、代表的には、鋼を伸線後、焼入れ焼戻しを行うことで製造される。疲労限が高い鋼種として、炭素(C),珪素(Si),マンガン(Mn),クロム(Cr)を含むSWOSC−V(JIS G 3561、1994年)が知られている。SWOSC−Vにバナジウム(V)を含む鋼種や、Vとコバルト(Co)とを含む鋼種は、疲労限が更に高く、弁ばねなどに利用されている。   The oil-tempered wire is typically manufactured by drawing steel, followed by quenching and tempering. As a steel type having a high fatigue limit, SWOSC-V (JIS G 3561, 1994) containing carbon (C), silicon (Si), manganese (Mn), and chromium (Cr) is known. Steel types containing vanadium (V) in SWOSC-V and steel types containing V and cobalt (Co) have higher fatigue limits and are used for valve springs and the like.

特許文献1は、SWOSC−V相当の鋼からなり、直径0.2μm以上の球状炭化物が存在せず、結晶子の平均面積が特定の大きさであるオイルテンパー線を開示する。特許文献1では、直径0.2μm未満であれば球状炭化物が破壊の起点として作用し難く、結晶子が特定の大きさであるため靭性を向上できるとする。   Patent Literature 1 discloses an oil-tempered wire made of steel equivalent to SWOSC-V, having no spherical carbide having a diameter of 0.2 μm or more, and having an average crystallite area of a specific size. According to Patent Document 1, if the diameter is less than 0.2 μm, the spherical carbide hardly acts as a starting point of fracture, and the toughness can be improved because the crystallite has a specific size.

特開2002−180195号公報JP 2002-180195 A

本開示のオイルテンパー線は、
Cを0.50質量%以上0.90質量%以下と、
0.02質量%以上0.50質量%以下のV、0.01質量%以上0.50質量%以下のTa、0.01質量%以上0.50質量%以下のNb、0.02質量%以上0.50質量%以下のMo、及び0.02質量%以上1.00質量%以下のWから選択される1種以上の強化用元素と、
Siを0.80質量%以上3.00質量%以下と、
Mnを0.40質量%以上1.00質量%以下と、
Crを0.40質量%以上2.00質量%以下とを含有し、残部がFe及び不純物である組成を有し、
前記強化用元素を含む炭化物を備え、
前記強化用元素を含む炭化物中の前記強化用元素の合計含有量が前記強化用元素全量に対して質量割合で10%以上であり、
前記強化用元素を含む炭化物の平均粒径が30nm以下である。
Oil tempered wire of the present disclosure,
C is 0.50% by mass or more and 0.90% by mass or less,
V of 0.02% by mass to 0.50% by mass, Ta of 0.01% by mass to 0.50% by mass, Nb of 0.01% by mass to 0.50% by mass, 0.02% by mass At least 0.50% by mass of Mo and at least 0.02% by mass and at least 1.00% by mass of W;
0.80 mass% or more and 3.00 mass% or less of Si;
Mn is 0.40% by mass or more and 1.00% by mass or less;
Cr has a composition of not less than 0.40% by mass and not more than 2.00% by mass, with the balance being Fe and impurities,
Comprising a carbide containing the reinforcing element,
The total content of the reinforcing element in the carbide containing the reinforcing element is at least 10% by mass relative to the total amount of the reinforcing element,
The carbide containing the reinforcing element has an average particle size of 30 nm or less.

図1は、試料No.4のオイルテンパー線の顕微鏡写真である。FIG. 4 is a micrograph of an oil-tempered wire of No. 4. 図2は、試料No.1のオイルテンパー線の顕微鏡写真である。FIG. 1 is a photomicrograph of an oil-tempered wire of No. 1. 図3は、試料No.4のオイルテンパー線に模擬処理を施した後の顕微鏡写真であり、左から順に、透過電子顕微鏡(TEM)による原子番号コントラスト像(Zコントラスト像)、TEMに付属されるエネルギー分散型X線分析(EDX)装置を用いて分析したFeの元素マッピング像、Vの元素マッピング像である。FIG. 4 is a photomicrograph of the oil-tempered wire No. 4 after a simulation process, and in order from the left, an atomic number contrast image (Z contrast image) by a transmission electron microscope (TEM), and an energy dispersive X-ray analysis attached to the TEM. FIG. 2 is an element mapping image of Fe and an element mapping image of V analyzed using an (EDX) apparatus. FIG. 図4は、試料No.1のオイルテンパー線に模擬処理を施した後の顕微鏡写真であり、左から順に、TEMによるZコントラスト像、TEM−EDX装置を用いて分析したFeの元素マッピング像、Vの元素マッピング像である。FIG. 1 is a photomicrograph of the oil-tempered wire 1 after a simulation process, in which, from left to right, a Z-contrast image by TEM, an element mapping image of Fe analyzed using a TEM-EDX device, and an element mapping image of V. .

[本開示が解決しようとする課題] [Problems to be solved by the present disclosure]

近年、自動車の低燃費化の要求などに対応して、エンジンやトランスミッションなどの小型・軽量化が益々進められており、これらに用いられるばねに負荷される応力が増大している。そのため、繰り返し応力を受けても破断し難く、疲労特性により優れるオイルテンパー線が望まれている。   In recent years, in response to demands for low fuel consumption of automobiles, downsizing and weight reduction of engines, transmissions, and the like have been increasingly promoted, and the stress applied to springs used for these engines has been increasing. Therefore, there is a demand for an oil-tempered wire that hardly breaks even when repeatedly subjected to stress and has more excellent fatigue characteristics.

そこで、疲労特性に優れるオイルテンパー線を提供することを目的の一つとする。
[本開示の効果]
Therefore, it is an object to provide an oil-tempered wire having excellent fatigue characteristics.
[Effects of the present disclosure]

上記のオイルテンパー線は、疲労特性に優れる。   The above-mentioned oil-tempered wire has excellent fatigue characteristics.

[本発明の実施形態の説明]
本発明者らは、疲労特性向上に効果がある添加元素を制御し、特に結晶粒内の析出物の分散強化による疲労限の向上を検討した。
[Description of Embodiment of the Present Invention]
The inventors of the present invention have controlled addition elements that are effective in improving fatigue characteristics, and have studied, in particular, an improvement in fatigue limit by strengthening dispersion of precipitates in crystal grains.

オイルテンパー線をばねに用いて、このばねが使用時に繰り返し応力を受けた際に降伏して破壊の起点となり得る箇所は、結晶粒界よりも結晶粒内と考えられる。オイルテンパー線では結晶粒界に主としてセメンタイト(FeC)が析出しており、このセメンタイトによって結晶粒界は強化されると考えられるからである。そこで、特に、結晶粒内の析出強化を検討した。その結果、Vなどの特定の強化用元素を特定の範囲で含み、その含有量のうち、少なくとも一部を炭化物として結晶粒内に含むと共に、この炭化物が非常に微細であれば、この炭化物による結晶粒内の分散強化によって、疲労限を向上できるとの知見を得た。本発明は、上記の知見に基づくものである。
最初に本発明の実施態様を列記して説明する。
When an oil-tempered wire is used as a spring, a portion where the spring yields when the spring is repeatedly subjected to stress during use and may become a starting point of fracture is considered to be within a crystal grain rather than a crystal grain boundary. This is because in the oil-tempered wire, cementite (Fe 3 C) is mainly precipitated at the crystal grain boundaries, and it is considered that the crystal grain boundaries are strengthened by the cementite. Therefore, particularly, precipitation strengthening in crystal grains was studied. As a result, a specific strengthening element such as V is included in a specific range, and at least a part of the content is included in the crystal grains as carbide, and if the carbide is very fine, the It has been found that the fatigue limit can be improved by strengthening the dispersion in the crystal grains. The present invention is based on the above findings.
First, embodiments of the present invention will be listed and described.

(1)本発明の一態様に係るオイルテンパー線は、
Cを0.50質量%以上0.90質量%以下と、
0.02質量%以上0.50質量%以下のV、0.01質量%以上0.50質量%以下のTa、0.01質量%以上0.50質量%以下のNb、0.02質量%以上0.50質量%以下のMo、及び0.02質量%以上1.00質量%以下のWから選択される1種以上の強化用元素と、
Siを0.80質量%以上3.00質量%以下と、
Mnを0.40質量%以上1.00質量%以下と、
Crを0.40質量%以上2.00質量%以下とを含有し、残部がFe及び不純物である組成を有し、
前記強化用元素を含む炭化物を備え、
前記強化用元素を含む炭化物中の前記強化用元素の合計含有量が前記強化用元素全量に対して質量割合で10%以上であり、
前記強化用元素を含む炭化物の平均粒径が30nm以下である。
(1) The oil-tempered wire according to one embodiment of the present invention is:
C is 0.50% by mass or more and 0.90% by mass or less,
V of 0.02% by mass to 0.50% by mass, Ta of 0.01% by mass to 0.50% by mass, Nb of 0.01% by mass to 0.50% by mass, 0.02% by mass At least 0.50% by mass of Mo and at least 0.02% by mass and at least 1.00% by mass of W;
0.80 mass% or more and 3.00 mass% or less of Si;
Mn is 0.40% by mass or more and 1.00% by mass or less;
Cr has a composition of not less than 0.40% by mass and not more than 2.00% by mass, with the balance being Fe and impurities,
Comprising a carbide containing the reinforcing element,
The total content of the reinforcing element in the carbide containing the reinforcing element is at least 10% by mass relative to the total amount of the reinforcing element,
The carbide containing the reinforcing element has an average particle size of 30 nm or less.

上記のオイルテンパー線では、上記強化用元素を含む炭化物(以下、分散炭化物と呼ぶことがある)の平均粒径が30nm以下であり、分散炭化物が非常に微細である。そのため、分散炭化物は、例えばCrを含む炭化物に比較して硬い傾向にあるものの、上記のオイルテンパー線が繰り返し応力を受けた場合に破壊の起点になり難い。また、上記のオイルテンパー線は、上記強化用元素全量に対して質量割合で10%以上の量を分散炭化物として含むと共に、この分散炭化物を主として結晶粒内に含んでおり、微細な分散炭化物によって結晶粒内が分散強化された組織を有するといえる。このような特定の強化組織を有する上記のオイルテンパー線は、疲労限が高く、疲労特性に優れて、各種のばね材料に好適に利用できる。   In the above-mentioned oil-tempered wire, the average particle diameter of the carbide containing the reinforcing element (hereinafter sometimes referred to as dispersed carbide) is 30 nm or less, and the dispersed carbide is very fine. Therefore, the dispersed carbide tends to be harder than a carbide containing Cr, for example, but hardly becomes a starting point of destruction when the oil-tempered wire is repeatedly subjected to stress. In addition, the oil-tempered wire contains, as a dispersed carbide, an amount of 10% or more by mass with respect to the total amount of the reinforcing element, and the dispersed carbide is mainly contained in crystal grains. It can be said that the inside of the crystal grain has a dispersion strengthened structure. The above-mentioned oil-tempered wire having such a specific strengthened structure has a high fatigue limit, is excellent in fatigue characteristics, and can be suitably used for various spring materials.

また、上記のオイルテンパー線は、セメンタイトといったFe系炭化物が主として結晶粒界に析出しており、このFe系炭化物によって粒界強化がなされる。この点からも、上記のオイルテンパー線は、疲労限が高められ、疲労特性に優れる。   In the above-mentioned oil-tempered wire, Fe-based carbides such as cementite are mainly precipitated at crystal grain boundaries, and grain boundaries are strengthened by the Fe-based carbides. From this point as well, the oil-tempered wire has a high fatigue limit and is excellent in fatigue characteristics.

上記のオイルテンパー線は、金属組織中に存在する炭化物を、主として結晶粒内を強化する上述の分散炭化物と、主として結晶粒界を強化するFe系炭化物とに区別し、特に結晶粒内の降伏応力の向上に寄与する炭化物として、分散炭化物の大きさ及び含有量を上述の特定の範囲とする。このような上記のオイルテンパー線は、炭化物を区別せず最大径のみを制御する場合などに比較して、疲労特性に優れる。   The above-mentioned oil-tempered wire distinguishes the carbide present in the metal structure into the above-mentioned dispersed carbide which mainly strengthens the inside of the crystal grain and the Fe-based carbide which mainly strengthens the crystal grain boundary. As the carbide that contributes to the improvement of the stress, the size and content of the dispersed carbide are set to the above specific ranges. Such an oil-tempered wire is superior in fatigue characteristics as compared with a case where only the maximum diameter is controlled without distinguishing carbides.

(2)上記のオイルテンパー線の一例として、
結晶粒度が10以上14.5以下である形態が挙げられる。
(2) As an example of the above oil tempered wire,
An embodiment in which the crystal grain size is 10 or more and 14.5 or less is given.

上記形態は、微細な分散炭化物による結晶粒内の強化効果に加えて、結晶粒径が小さ過ぎないことで靭性に優れ、結晶粒径が大き過ぎないことで結晶粒界にセメンタイトが適切に存在してセメンタイトによる結晶粒界の強化効果を良好に得られる。そのため、上記形態は、疲労特性により優れる。   In the above embodiment, in addition to the strengthening effect in the crystal grains due to the fine dispersed carbides, the toughness is excellent because the crystal grain size is not too small, and the cementite is appropriately present in the crystal grain boundaries when the crystal grain size is not too large. Thus, the effect of strengthening the crystal grain boundaries by cementite can be obtained favorably. Therefore, the above embodiment is more excellent in fatigue characteristics.

(3)上記のオイルテンパー線の一例として、
前記組成は、0.10質量%以上0.30質量%以下のV、0.10質量%以上0.35質量%以下のTa、及び0.10質量%以上0.35質量%以下のNbから選択される1種以上の前記強化用元素を含む形態が挙げられる。
(3) As an example of the above-mentioned oil-tempered wire,
The composition is from 0.10% to 0.30% by mass of V, 0.10% to 0.35% by mass of Ta, and 0.10% to 0.35% by mass of Nb. A form including one or more selected strengthening elements may be mentioned.

上記形態は、V,Ta,及びNbの少なくとも1種の強化用元素を上述の特定の範囲で含む。そのため、上記形態は、上記強化用元素が分散炭化物として存在しつつ、過剰分がセメンタイトに固溶することによる靭性の低下を防止し易く、疲労特性により優れる。   The above embodiment includes at least one strengthening element of V, Ta, and Nb in the above-described specific range. Therefore, in the above embodiment, while the reinforcing element is present as a dispersed carbide, it is easy to prevent a decrease in toughness due to the solid solution of the excess in cementite, and is excellent in fatigue characteristics.

(4)上記のオイルテンパー線の一例として、
炭化物の合計含有量が1質量%以上3質量%以下である形態が挙げられる。上記の炭化物の合計含有量とは、オイルテンパー線に含まれる分散炭化物、Fe系炭化物、その他Crを含む炭化物などの合計量である。
(4) As an example of the above oil tempered wire,
A form in which the total content of carbides is 1% by mass or more and 3% by mass or less is given. The total content of the above carbides is the total amount of dispersed carbides, Fe-based carbides, and other Cr-containing carbides contained in the oil-tempered wire.

上記形態は、炭化物を上述の特定の範囲で含むため、分散炭化物による結晶粒内の析出強化とFe系炭化物による結晶粒界の析出強化との双方の効果を適切に得られ、過剰な炭化物による靭性の低下を招き難く、疲労特性に優れる。   In the above-described embodiment, since the carbide is contained in the above-described specific range, both effects of precipitation strengthening in the crystal grain by the dispersed carbide and precipitation strengthening of the crystal grain boundary by the Fe-based carbide are appropriately obtained, and the excess carbide Low toughness and excellent fatigue properties.

(5)上記のオイルテンパー線の一例として、
窒化処理相当の熱処理、ショットピーニング、低温焼鈍相当の熱処理を順に施した後における前記炭化物の合計含有量が2質量%以上4質量%以下となる形態が挙げられる。
窒化処理相当の熱処理は、400℃で4時間保持するものとする。
ショットピーニングは、直径0.7mmφのカットワイヤをショット材とする処理と、直径0.3mmφのスチールボールをショット材とする処理とをそれぞれ30分間(合計1時間)行うものとする。
低温焼鈍相当の熱処理は、230℃で30分間保持するものとする。
(5) As an example of the above oil tempered wire,
An embodiment in which the total content of the carbide is 2% by mass or more and 4% by mass or less after heat treatment equivalent to nitriding treatment, shot peening, and heat treatment equivalent to low-temperature annealing is sequentially performed.
The heat treatment equivalent to the nitriding treatment is performed at 400 ° C. for 4 hours.
In the shot peening, a process of using a cut wire having a diameter of 0.7 mmφ as a shot material and a process of using a steel ball having a diameter of 0.3 mmφ as a shot material are each performed for 30 minutes (a total of 1 hour).
The heat treatment corresponding to low-temperature annealing is performed at 230 ° C. for 30 minutes.

上述の処理は、ばねの製造過程を模擬した処理(以下、模擬処理と呼ぶことがある)である。模擬処理後では、セメンタイトといったFe系炭化物が増加する傾向にある。そのため、上記形態における炭化物の合計含有量は、上記(4)で規定する量よりも増加する傾向にあるものの、上記の範囲であれば、上記(4)で説明した分散炭化物とFe系炭化物との双方を含むことによる効果を適切に得られて、疲労特性に優れる。Fe系炭化物の増加に伴って結晶粒界がより強化された場合には、疲労特性により優れる場合がある。上記形態は、上述の模擬処理後の疲労特性に優れることから、ばね材料に好適に利用でき、疲労特性に優れるばねを形成できる。   The above-described process is a process that simulates a spring manufacturing process (hereinafter, may be referred to as a simulation process). After the simulated treatment, Fe-based carbides such as cementite tend to increase. Therefore, the total content of carbides in the above-described embodiment tends to increase from the amount specified in (4) above, but within the above range, the dispersed carbide and the Fe-based carbide described in (4) above can be used. The effect obtained by including both of them is appropriately obtained, and the fatigue characteristics are excellent. When the grain boundaries are further strengthened with an increase in Fe-based carbides, the fatigue characteristics may be more excellent. The above-described embodiment is excellent in fatigue characteristics after the above-described simulation processing, and thus can be suitably used as a spring material, and can form a spring having excellent fatigue characteristics.

(6)上記のオイルテンパー線の一例として、
前記組成は、Cを0.63質量%以上0.68質量%以下含有する形態が挙げられる。
(6) As an example of the above oil tempered wire,
Examples of the composition include a form containing 0.63% by mass or more and 0.68% by mass or less of C.

上記形態は、Cの含有量が上述の特定の範囲であるため、分散炭化物とFe系炭化物との双方をより適切に含有し易く、疲労特性に優れる。   In the above embodiment, since the content of C is within the above-described specific range, both the dispersed carbide and the Fe-based carbide are more appropriately contained, and the fatigue characteristics are excellent.

[本発明の実施形態の詳細]
以下、本発明の実施形態を具体的に説明する。添加元素の含有量は、オイルテンパー線の組成を100%とした質量割合(質量%)である。含有量や大きさなどの測定条件は、後述の試験例で説明する。
[Details of Embodiment of the Present Invention]
Hereinafter, embodiments of the present invention will be specifically described. The content of the additional element is a mass ratio (mass%) with the composition of the oil-tempered wire being 100%. The measurement conditions such as the content and the size will be described in Test Examples described later.

[オイルテンパー線]
(組成)
実施形態のオイルテンパー線は、C,Si,Mn,Cr及び特定の強化用元素を特定の範囲で含有し、残部がFe及び不純物である鋼によって構成される。不純物は、リン(P)、硫黄(S)などが挙げられる。以下、各元素の含有量、各元素の効果を説明する。
[Oil tempered wire]
(composition)
The oil-tempered wire of the embodiment contains C, Si, Mn, Cr and a specific strengthening element in a specific range, and the balance is composed of steel that is Fe and impurities. Examples of the impurities include phosphorus (P) and sulfur (S). Hereinafter, the content of each element and the effect of each element will be described.

<C>
Cは、鋼の強化元素である。Cの含有量が0.50質量%以上であることで、高強度な鋼とすることができる。Cの含有量が多いほど鋼の強度を高められ、0.60質量%以上、更に0.63質量%以上であると、強度により優れて疲労限が高い鋼とすることができる。Cの含有量が0.90質量%以下であることで、セメンタイトなどのFe系析出物が過剰に結晶粒界に析出することによる靭性の低下を抑制できる。Cの含有量が0.80質量%以下、0.70質量%以下、更に0.68質量%以下であると、靭性により優れるオイルテンパー線とすることができる。
<C>
C is a steel strengthening element. When the content of C is 0.50% by mass or more, high strength steel can be obtained. The greater the content of C, the higher the strength of the steel. When the content of C is 0.60% by mass or more, and more preferably 0.63% by mass or more, the steel can have higher strength and a higher fatigue limit. When the C content is 0.90% by mass or less, a decrease in toughness caused by excessive precipitation of Fe-based precipitates such as cementite at crystal grain boundaries can be suppressed. When the content of C is 0.80% by mass or less, 0.70% by mass or less, further 0.68% by mass or less, an oil-tempered wire having more excellent toughness can be obtained.

<Si>
Siは、鋼の固溶強化、鋼の耐熱性の向上に寄与する元素である。また、Siは、溶解精錬時の脱酸剤に利用される。Siの含有量が0.80質量%以上であることで、上記の効果を良好に得られる。Siの含有量が多いほど、強度や耐熱性により優れるため、Siの含有量を0.90質量%以上、1.00質量%以上、1.20質量%以上、1.30質量%以上とすることができる。Siの含有量が1.80質量%以上、1.90質量%以上、更に2.00質量%以上であると強度に更に優れて、疲労限が高い鋼としたり、耐熱性に更に優れる鋼としたりすることができる。耐熱性に優れることで、オイルテンパー線の製造時の熱処理(特に焼戻し)や、オイルテンパー線を用いてばねを製造するときの熱処理(窒化処理、焼鈍など)の加熱による鋼の軟化を防止できる。Siの含有量が3.00質量%以下であることで固溶強化の効果を良好に得られる上に、Siの過剰析出による靭性の低下を防止したり、伸線などの冷間加工性の低下を抑制して製造性に優れたりする。
この点から、Siの含有量を2.50質量%以下、更に2.40質量%以下とすることができる。
<Si>
Si is an element that contributes to solid solution strengthening of steel and improvement in heat resistance of steel. Further, Si is used as a deoxidizing agent at the time of refining. When the content of Si is 0.80% by mass or more, the above effects can be obtained favorably. Since the higher the Si content, the more excellent the strength and heat resistance, the Si content is set to 0.90 mass% or more, 1.00 mass% or more, 1.20 mass% or more, and 1.30 mass% or more. be able to. When the content of Si is 1.80% by mass or more, 1.90% by mass or more, and more preferably 2.00% by mass or more, the steel is more excellent in strength and has a higher fatigue limit, or the steel is more excellent in heat resistance. Or you can. Excellent heat resistance can prevent the steel from softening due to the heat treatment during the production of oil-tempered wires (particularly tempering) and the heat treatment during the production of springs using oil-tempered wires (nitriding, annealing, etc.). . When the content of Si is 3.00% by mass or less, the effect of solid solution strengthening can be favorably obtained. In addition, a decrease in toughness due to excessive precipitation of Si can be prevented, and cold workability such as wire drawing can be prevented. The decrease is suppressed and the productivity is excellent.
From this point, the content of Si can be set to 2.50% by mass or less, and further 2.40% by mass or less.

<Mn>
Mnは鋼の焼入れ性を向上させる。また、Mnは、鋼の強度の向上効果もある。更に、MnはSiと同様に溶解精錬時の脱酸剤として利用される。Mnの含有量が0.40質量%以上であることで、上記の効果を良好に得られる。Mnの含有量が多いほど、上記の効果が高められ、Mnの含有量を0.45質量%以上、更に0.50質量%以上とすることができる。Mnの含有量が1.00質量%以下であることで靭性の低下を抑制できる。Mnの含有量が0.90質量%以下、0.80質量%以下、更に0.70質量%以下であれば、靭性の低下をより抑制し易い。
<Mn>
Mn improves the hardenability of steel. Mn also has the effect of improving the strength of steel. Further, Mn is used as a deoxidizing agent at the time of melting and refining, like Si. When the content of Mn is 0.40% by mass or more, the above effect can be obtained favorably. The above effect is enhanced as the Mn content increases, and the Mn content can be set to 0.45% by mass or more, and further 0.50% by mass or more. When the Mn content is 1.00% by mass or less, a decrease in toughness can be suppressed. When the content of Mn is 0.90% by mass or less, 0.80% by mass or less, and further 0.70% by mass or less, the decrease in toughness is more easily suppressed.

<Cr>
Crは鋼の焼入れ性を向上させ、焼入れ焼戻し後の鋼の軟化抵抗を増加させる。軟化抵抗の増大によって、上述のようにオイルテンパー線の製造時の熱処理やばねの製造時の熱処理での鋼の軟化を防止でき、高強度化に寄与する。Crの含有量が0.40質量%以上であることで、上記の効果を良好に得られる。Crの含有量が多いほど、上記の効果が高められ、Crの含有量を0.60質量%以上、0.80質量%以上、0.90質量%以上とすることができる。Crの含有量が2.00質量%以下であることで靭性の低下を抑制できる。Crの含有量が1.90質量%以下、更に1.80質量%以下であれば、靭性の低下をより抑制し易い。
<Cr>
Cr improves the hardenability of the steel and increases the softening resistance of the steel after quenching and tempering. Due to the increase in softening resistance, as described above, it is possible to prevent the steel from being softened by the heat treatment during the production of the oil-tempered wire or the heat treatment during the production of the spring, thereby contributing to higher strength. When the content of Cr is 0.40% by mass or more, the above effects can be obtained favorably. The above effect is enhanced as the Cr content increases, and the Cr content can be adjusted to 0.60% by mass or more, 0.80% by mass or more, and 0.90% by mass or more. When the content of Cr is 2.00% by mass or less, a decrease in toughness can be suppressed. When the content of Cr is 1.90% by mass or less, and more preferably 1.80% by mass or less, a decrease in toughness can be more easily suppressed.

<強化用元素>
実施形態のオイルテンパー線は、V,Ta,Nb,Mo,及びWから選択される1種以上の強化用元素を以下の範囲で含む。また、実施形態のオイルテンパー線では、強化用元素の少なくとも一部を炭化物として含むと共に、この炭化物が非常に微細であり、結晶粒内に分散して存在することで疲労特性の向上を図る。強化用元素は、上記に列挙する5種のうちの1種のみを含む場合でも、その元素の含有量の少なくとも一部が微細な分散炭化物として存在することで疲労特性に優れる。上記の5種のうち2種以上を含み、これらの元素の合計含有量の少なくとも一部が微細な分散炭化物として存在すれば、疲労特性により一層優れると期待される。
V:0.02質量%以上0.50質量%以下
Ta:0.01質量%以上0.50質量%以下
Nb:0.01質量%以上0.50質量%以下
Mo:0.02質量%以上0.50質量%以下
W:0.02質量%以上1.00質量%以下
<Strengthening element>
The oil tempered wire of the embodiment contains one or more types of strengthening elements selected from V, Ta, Nb, Mo, and W in the following range. In the oil-tempered wire of the embodiment, at least a part of the strengthening element is contained as a carbide, and the carbide is very fine and dispersed in the crystal grains to improve the fatigue properties. Even when the reinforcing element contains only one of the five types listed above, at least a part of the content of the element is excellent in fatigue properties because it exists as a fine dispersed carbide. If two or more of the above five elements are contained and at least a part of the total content of these elements is present as fine dispersed carbides, it is expected that fatigue properties will be further improved.
V: 0.02% to 0.50% by mass Ta: 0.01% to 0.50% by mass Nb: 0.01% to 0.50% by mass Mo: 0.02% by mass or more 0.50% by mass or less W: 0.02% by mass or more and 1.00% by mass or less

強化用元素の含有量が上述の下限値を満たすことで、強化用元素を含む炭化物(分散炭化物)を形成でき、分散強化による疲労特性の向上効果を得られる。強化用元素の含有量が多いほど、分散炭化物の析出量を多くし易いため、上述の分散強化による疲労特性の向上効果を得易い。強化用元素の含有量が上述の上限値を満たすことで、分散炭化物を含みつつ、過剰分がセメンタイトに固溶することを防止でき、良好な靭性を有することができる。強化用元素の含有量は、更に以下の範囲とすることができる。
V:0.05質量%以上0.35質量%以下、更に0.10質量%以上0.30質量%以下
Ta,Nb,Moのそれぞれ:0.05質量%以上0.35質量%以下、更に0.10質量%以上0.35質量%以下
W:0.05質量%以上0.90質量%以下、更に0.10質量%以上0.80質量%以下
When the content of the reinforcing element satisfies the lower limit described above, a carbide (dispersed carbide) containing the reinforcing element can be formed, and the effect of improving the fatigue properties by dispersion strengthening can be obtained. As the content of the strengthening element increases, the precipitation amount of the dispersed carbides is easily increased, so that the effect of improving the fatigue properties by the above-described dispersion strengthening is easily obtained. When the content of the reinforcing element satisfies the upper limit described above, it is possible to prevent the excess from being solid-dissolved in cementite while containing dispersed carbides, and to have good toughness. The content of the reinforcing element can be further in the following range.
V: 0.05% by mass or more and 0.35% by mass or less, further 0.10% by mass or more and 0.30% by mass or less Ta, Nb, Mo: 0.05% by mass or more and 0.35% by mass or less 0.10% by mass to 0.35% by mass W: 0.05% by mass to 0.90% by mass, further 0.10% by mass to 0.80% by mass

強化用元素のうち、特に、0.10質量%以上0.30質量%以下のV、0.10質量%以上0.35質量%以下のTa、及び0.10質量%以上0.35質量%以下のNbから選択される1種以上の元素を含むと、疲労特性により優れる。原子量が比較的小さいVを含む場合には、微細な分散炭化物を比較的多めに含むと分散強化効果を得易い。原子量がVよりも大きいTaやNbを含む場合には、分散炭化物の含有量が比較的少なめでも、分散強化効果を得易い。   Among the strengthening elements, in particular, V of 0.10% to 0.30% by mass, Ta of 0.10% to 0.35% by mass, and 0.10% to 0.35% by mass. When one or more elements selected from the following Nb are included, the fatigue characteristics are more excellent. In the case where V having a relatively small atomic weight is contained, the dispersion strengthening effect is easily obtained when a relatively large amount of fine dispersed carbide is contained. When Ta or Nb having an atomic weight larger than V is contained, the dispersion strengthening effect is easily obtained even if the content of the dispersed carbide is relatively small.

(組織)
<結晶粒径>
実施形態のオイルテンパー線は結晶組織を有する。特に結晶粒度が10以上であれば、結晶粒(旧オーステナイト結晶粒)が微細なため、単位体積当たりの結晶粒界量が多く、結晶粒界にセメンタイトといったFe系炭化物が適切に存在できる。その結果、Fe系炭化物による粒界強化を良好に行えて、疲労特性に優れる。結晶粒度が大きいほど結晶が微細となり、上記の効果を得易くなることから、結晶粒度を10.5以上、11以上、更に12以上とすることができる。結晶粒度が14.5以下であれば、結晶が小さ過ぎず、良好な靭性を有することができる。結晶粒度が14以下、更に13.8以下であれば、上述の粒界強化による疲労特性の向上効果と適切な靭性とを有することができる。結晶粒度が10以上14.5以下は、平均結晶粒径でいうと2.32μm以上10.0μm以下に相当する。
(Organization)
<Crystal size>
The oil tempered wire of the embodiment has a crystal structure. In particular, when the crystal grain size is 10 or more, since the crystal grains (former austenite crystal grains) are fine, the amount of crystal boundaries per unit volume is large, and Fe-based carbides such as cementite can be appropriately present at the crystal boundaries. As a result, the grain boundary strengthening by the Fe-based carbide can be favorably performed, and the fatigue characteristics are excellent. Since the larger the crystal grain size is, the finer the crystal is and the easier the above-mentioned effect is to be obtained, the crystal grain size can be 10.5 or more, 11 or more, and further 12 or more. When the crystal grain size is 14.5 or less, the crystals are not too small and can have good toughness. When the crystal grain size is 14 or less, and more preferably 13.8 or less, it is possible to have the effect of improving the fatigue properties and the appropriate toughness by the grain boundary strengthening described above. A crystal grain size of 10 or more and 14.5 or less corresponds to an average crystal grain size of 2.32 μm or more and 10.0 μm or less.

<析出物>
・分散炭化物
実施形態のオイルテンパー線は、析出物の一つとして上述の強化用元素を含む炭化物(分散炭化物)を備える。実施形態のオイルテンパー線では、分散炭化物が非常に微細であり、結晶粒内に分散して存在する組織、いわば析出物による分散強化組織を有する。分散炭化物は、例えばV,TaC,NbCなどが挙げられる。
<Precipitate>
-Dispersion carbide The oil tempered wire of the embodiment includes a carbide (dispersion carbide) containing the above-described reinforcing element as one of the precipitates. In the oil-tempered wire of the embodiment, the dispersed carbides are very fine, and have a structure dispersed and present in the crystal grains, that is, a dispersion strengthened structure by precipitates. Examples of the dispersed carbide include V 4 C 3 , TaC, and NbC.

・・粒径
実施形態のオイルテンパー線では、分散炭化物の平均粒径が30nm以下である。分散炭化物がこのように非常に微細であれば、結晶粒内に均一的に分散して存在し易く、分散強化効果を良好に得られる。上記平均粒径が小さいほど、分散炭化物がより均一的に分散して分散強化効果を得易い上に、分散炭化物が破壊の起点になり難い。そのため、上記平均粒径は28nm以下、更に25nm以下、20nm以下、18nm以下がより好ましい。分散炭化物を小さくするには、例えば、製造過程で後述するようにオーステナイト化温度からの降温過程で所定の温度に保持する際に、この保持温度をより低くすることが挙げられる。上記平均粒径を1nm以上、更に2nm以上とすると、上述の製造過程での熱処理温度を過度に低くせずに製造可能であり、製造性に優れる。
··· Particle size In the oil tempered wire of the embodiment, the average particle size of the dispersed carbide is 30 nm or less. If the dispersed carbide is very fine as described above, it is easy to uniformly disperse and exist in the crystal grains, and a good dispersion strengthening effect can be obtained. As the average particle size is smaller, the dispersed carbides are more uniformly dispersed to easily obtain a dispersion strengthening effect, and the dispersed carbides are less likely to be a starting point of destruction. Therefore, the average particle size is preferably 28 nm or less, more preferably 25 nm or less, 20 nm or less, and 18 nm or less. In order to reduce the dispersed carbides, for example, as described later in the manufacturing process, when the temperature is kept at a predetermined temperature in the process of lowering the temperature from the austenitizing temperature, the holding temperature is made lower. When the average particle size is 1 nm or more, and more preferably 2 nm or more, it is possible to manufacture without excessively lowering the heat treatment temperature in the above-described manufacturing process, and the productivity is excellent.

分散炭化物の最大径も小さいほど好ましい。実施形態のオイルテンパー線やこのオイルテンパー線を用いたばねが繰り返し応力を受けた場合に、炭化物粒子が微細であれば破壊の起点になり難く、疲労限を高められるからである。上記最大径は、100nm以下、更に80nm以下、70nm以下、50nm以下がより好ましい。   The smaller the maximum diameter of the dispersed carbide, the better. This is because, when the oil-tempered wire of the embodiment or the spring using the oil-tempered wire is repeatedly subjected to stress, if the carbide particles are fine, it is difficult to become a starting point of fracture and the fatigue limit can be increased. The maximum diameter is preferably 100 nm or less, more preferably 80 nm or less, 70 nm or less, and 50 nm or less.

・・含有量
実施形態のオイルテンパー線では、分散炭化物中の強化用元素の合計含有量がオイルテンパー線の組成中の強化用元素全量を100%として、質量割合で10%以上である。以下、分散炭化物中の強化用元素の合計含有量を強化用元素の析出量(質量%)、強化用元素全量に対する強化用元素の析出量を析出割合と呼ぶことがある。上記析出割合が大きいほど、強化用元素が分散炭化物として存在する量が多いため、上述の結晶粒内の分散強化による疲労特性の向上効果を得易い。上記析出割合の理想の上限は100%、即ち強化用元素全量が炭化物として存在することである。上記析出割合を大きくするには、例えば、製造過程で析出時間を長く確保することが挙げられる。但し、製造時間の長大化により、製造性の低下を招く。上記析出割合が70%以下、更に60%以下であれば、製造時間を過度に長くせずに製造可能であり、製造性に優れる。なお、強化用元素のうち、一部がマトリクスに固溶していることを許容する。
··· Content In the oil-tempered wire of the embodiment, the total content of the reinforcing elements in the dispersed carbide is 10% or more by mass, with the total amount of the reinforcing elements in the composition of the oil-tempered wire being 100%. Hereinafter, the total content of the strengthening elements in the dispersed carbide may be referred to as the precipitation amount (% by mass) of the strengthening elements, and the precipitation amount of the strengthening elements with respect to the total amount of the strengthening elements may be referred to as the precipitation ratio. As the precipitation ratio increases, the amount of the strengthening element present as the dispersed carbide increases, so that the effect of improving the fatigue characteristics by the dispersion strengthening in the crystal grains is easily obtained. The ideal upper limit of the precipitation ratio is 100%, that is, the total amount of the strengthening element is present as carbide. In order to increase the deposition rate, for example, it is necessary to secure a long deposition time in the manufacturing process. However, the prolongation of the manufacturing time causes a decrease in productivity. When the precipitation ratio is 70% or less, and more preferably 60% or less, the production can be performed without excessively increasing the production time, and the productivity is excellent. In addition, it is allowed that some of the strengthening elements are dissolved in the matrix.

本発明者らは、強化用元素のうち、原子量が比較的小さいVを含む場合には上記析出割合がより大きいことが好ましく、原子量が比較的大きいTa,Nb,Mo,Wを含む場合には析出割合が10%程度であっても疲労特性の向上効果が得られる、との知見を得た。
従って、Vを含む場合には、上記析出割合が20%以上、更に25%以上、30%以上であることが好ましい。Ta,Nb,Mo,Wを含む場合には、上記析出割合が11%以上、更に12%以上であると、疲労特性の向上効果をより得易い。
The present inventors prefer that the precipitation ratio is higher when the reinforcing element contains V having a relatively small atomic weight, and when the element contains Ta, Nb, Mo, and W having a relatively large atomic weight. It has been found that even if the precipitation ratio is about 10%, the effect of improving the fatigue properties can be obtained.
Therefore, when V is contained, the precipitation ratio is preferably 20% or more, more preferably 25% or more, and 30% or more. In the case where Ta, Nb, Mo, and W are contained, when the precipitation ratio is 11% or more, and more preferably 12% or more, the effect of improving the fatigue characteristics is more easily obtained.

上述の強化用元素の析出量を、オイルテンパー線の組成を100質量%としていうと、強化用元素の含有量の下限が0.01質量%であるため、0.001質量%以上である。
強化用元素の析出量が多いほど上述の結晶粒内の分散強化による疲労特性の向上効果を得易く、オイルテンパー線の組成に対して強化用元素の析出量を0.01質量%以上、更に0.02質量%以上とすることができる。Vを含む場合、Vの含有量の下限が0.02質量%であるため、オイルテンパー線の組成に対してVの析出量を0.006質量%以上、更に0.01質量%以上、0.03質量%以上、0.05質量%以上とすることができる。
The amount of precipitation of the above-mentioned strengthening element is 0.001% by mass or more, assuming that the composition of the oil-tempered wire is 100% by mass, since the lower limit of the content of the strengthening element is 0.01% by mass.
As the precipitation amount of the strengthening element is larger, the effect of improving the fatigue characteristics by the dispersion strengthening in the crystal grains is more easily obtained, and the precipitation amount of the strengthening element is 0.01% by mass or more with respect to the composition of the oil-tempered wire, and It can be 0.02% by mass or more. When V is contained, the lower limit of the V content is 0.02% by mass. Therefore, the amount of V deposited is 0.006% by mass or more, more preferably 0.01% by mass or more, with respect to the composition of the oil-tempered wire. 0.03% by mass or more and 0.05% by mass or more.

分散炭化物の大きさ、強化用元素の析出量、析出割合は、オイルテンパー線における強化用元素全量、製造条件(後述参照)などによって調整することが挙げられる。強化用元素全量が多いほど、強化用元素の析出量や析出割合を多くし易い。   The size of the dispersed carbide, the precipitation amount of the reinforcing element, and the precipitation ratio can be adjusted by the total amount of the reinforcing element in the oil-tempered wire, production conditions (see below), and the like. The larger the total amount of the strengthening element, the easier it is to increase the amount and ratio of the precipitation of the strengthening element.

・その他の炭化物
実施形態のオイルテンパー線は、代表的には、結晶粒界にFeを含む炭化物(Fe系炭化物)が存在し、このFe系炭化物によって結晶粒界が強化される。Fe系炭化物は、代表的には、FeCが挙げられる。その他、実施形態のオイルテンパー線は、代表的には結晶粒内にCrを含む炭化物((Fe,Cr)Cなど)を含む。
-Other carbides In the oil tempered wire of the embodiment, typically, a carbide containing Fe (Fe-based carbide) exists at the crystal grain boundary, and the crystal grain boundary is strengthened by the Fe-based carbide. Typically, the Fe-based carbide includes Fe 3 C. In addition, the oil tempered wire of the embodiment typically includes a carbide containing Cr (such as (Fe, Cr) 3 C) in the crystal grains.

・炭化物量
実施形態のオイルテンパー線は、上述のように結晶粒内及び結晶粒界の双方に炭化物を含有する。オイルテンパー線の組成を100質量%として、これらの炭化物の合計含有量が1質量%以上であると、分散炭化物による結晶粒内の分散強化効果とFe系炭化物による結晶粒界の強化効果とを良好に得られて好ましい。上記合計含有量が多いほど、上述の結晶粒内の分散強化効果及び結晶粒界の強化効果を得易く、疲労特性を向上し易いことから、上記合計含有量を1.2質量%以上、1.4質量%以上、更に1.5質量%以上とすることができる。上記合計含有量が3質量%以下であると、炭化物が多過ぎず、特にFe系化合物が多過ぎることによる靭性の低下を招き難い。上記合計含有量が2.8質量%以下、2.6質量%以下、更に2.5質量%以下であると、上述の結晶粒内の分散強化効果及び結晶粒界の強化効果を良好に得つつ、靭性の低下を抑制できて、疲労特性により優れる。上述の分散炭化物の含有量が0.01質量%以上を満たし、かつ炭化物の合計含有量が1質量%以上3質量%以下を満たすことがより好ましい。
-Carbide amount The oil tempered wire of the embodiment contains carbide in both the crystal grains and the crystal grain boundaries as described above. When the composition of the oil-tempered wire is 100% by mass and the total content of these carbides is 1% by mass or more, the dispersion strengthening effect in the crystal grains by the dispersed carbides and the grain boundary strengthening effect by the Fe-based carbides are reduced. It is preferable because it can be obtained well. The larger the total content is, the more easily the above-described dispersion strengthening effect in the crystal grains and the strengthening effect of the crystal grain boundaries are obtained, and the fatigue characteristics are easily improved. 0.4 mass% or more, and further 1.5 mass% or more. When the total content is 3% by mass or less, there is not too much carbide, and in particular, it is difficult to cause a decrease in toughness due to too much Fe-based compound. When the total content is 2.8% by mass or less, 2.6% by mass or less, and more preferably 2.5% by mass or less, the above-described dispersion strengthening effect in crystal grains and the effect of strengthening crystal grain boundaries can be obtained favorably. In addition, the toughness can be suppressed from being reduced, and the fatigue characteristics are more excellent. More preferably, the content of the above-mentioned dispersed carbide satisfies 0.01% by mass or more, and the total content of carbides satisfies 1% by mass or more and 3% by mass or less.

実施形態のオイルテンパー線にばねの製造工程を模擬した模擬処理を施した場合、セメンタイトといったFe系炭化物が増加する傾向にあるものの、模擬処理の前後で分散炭化物量が実質的に変化しないことを確認している。但し、模擬処理前後で分散炭化物の大きさが変化すること、主として大きくなることがある。しかし、模擬処理前の分散炭化物の平均粒径が30nm以下と小さければ、模擬処理後の分散炭化物の平均粒径も30nm以下を満たす傾向にある。つまり、模擬処理後のオイルテンパー線は、結晶粒内に微細な分散炭化物が均一的に分散して存在し、結晶粒界にFe系炭化物が存在する組織を維持する傾向にある。   When the oil tempered wire of the embodiment is subjected to a simulation process simulating the manufacturing process of the spring, the Fe-based carbide such as cementite tends to increase, but the amount of the dispersed carbide before and after the simulation process does not substantially change. I have confirmed. However, the size of the dispersed carbide before and after the simulation processing may change, or may increase mainly. However, if the average particle size of the dispersed carbide before the simulation treatment is as small as 30 nm or less, the average particle size of the dispersed carbide after the simulation treatment tends to satisfy 30 nm or less. In other words, the oil-tempered wire after the simulated treatment tends to maintain a structure in which fine dispersed carbides are uniformly dispersed in the crystal grains and Fe-based carbides exist in the crystal grain boundaries.

例えば、オイルテンパー線に窒化処理相当の熱処理、ショットピーニング、低温焼鈍相当の熱処理を順に施した後における炭化物の合計含有量が2質量%以上であれば、分散炭化物による結晶粒内の分散強化効果と、Fe系炭化物による結晶粒界の強化効果とを良好に得られる。上記合計含有量が4質量%以下であれば、特にFe系化合物が多過ぎることによる靭性の低下を招き難い。上記合計含有量が3.8質量%以下、更に3.6質量%以下、3.5質量%以下、3質量%以下であると、上述の結晶粒内の分散強化効果及び結晶粒界の強化効果を良好に得つつ、靭性の低下を抑制できて、疲労特性に優れる。このようなオイルテンパー線をばねに用いた場合、このばねは、上記の模擬処理後の組織に類似する組織を有すると考えられ、疲労限が高く、疲労特性に優れる。   For example, if the total content of carbides after heat treatment equivalent to nitriding treatment, shot peening, and heat treatment corresponding to low-temperature annealing is sequentially performed on the oil-tempered wire is 2% by mass or more, the dispersion strengthening effect in the crystal grains by the dispersed carbides is obtained. And the effect of strengthening the crystal grain boundaries by the Fe-based carbide can be favorably obtained. When the total content is 4% by mass or less, the toughness is hardly reduced particularly due to too much Fe-based compound. When the total content is 3.8% by mass or less, further 3.6% by mass or less, 3.5% by mass or less, and 3% by mass or less, the dispersion strengthening effect in the crystal grains and the strengthening of the crystal grain boundaries described above are made. It is possible to suppress the decrease in toughness while obtaining good effects, and it is excellent in fatigue characteristics. When such an oil-tempered wire is used for a spring, this spring is considered to have a structure similar to the structure after the above-described simulation processing, and has a high fatigue limit and excellent fatigue characteristics.

上述の模擬処理後のオイルテンパー線における炭化物の合計含有量が2質量%以上4質量%以下を満たすものは、代表的には、模擬処理前における炭化物の合計含有量が1質量%以上3質量%以下を満たす。   Those whose total content of carbides in the oil-tempered wire after the above-mentioned simulation treatment satisfies 2% by mass or more and 4% by mass or less typically have a total content of carbides of 1% by mass or more and 3% by mass before the simulation treatment. % Or less.

(機械的特性)
実施形態のオイルテンパー線が疲労特性に優れることを示す一つの指標として、オイルテンパー線に窒化処理相当の熱処理、ショットピーニング、低温焼鈍相当の熱処理を順に施した後に疲労試験を行ったときの疲労限が1045MPa以上を満たすことが挙げられる。上述の模擬処理後の疲労限が高いほど、このオイルテンパー線を用いたばねは、繰り返し応力を受けても破断し難く、疲労特性に優れるといえる。従って、上記疲労限は、1050MPa以上、更に1055MPa以上が好ましい。上記疲労限は高いほど好ましいため上限を設けない。
(Mechanical properties)
As one index indicating that the oil-tempered wire of the embodiment has excellent fatigue properties, the fatigue when performing a fatigue test after sequentially performing heat treatment equivalent to nitriding treatment, shot peening, and heat treatment equivalent to low-temperature annealing on the oil-tempered wire. Satisfies 1045 MPa or more. It can be said that the higher the fatigue limit after the above-described simulation processing, the more the spring using the oil-tempered wire is less likely to break even when subjected to repeated stress, and is more excellent in fatigue characteristics. Therefore, the fatigue limit is preferably 1050 MPa or more, more preferably 1055 MPa or more. The upper limit is not set because the higher the fatigue limit is, the better.

(形状、大きさ)
実施形態のオイルテンパー線は、種々の形状を取り得る。代表的には、横断面形状が円形の丸線が挙げられる。その他、横断面形状が矩形状の平角線、台形状などの多角形状や楕円状などの種々の異形線とすることができる。
(Shape, size)
The oil tempered wire of the embodiment can take various shapes. Typically, a round wire having a circular cross section is used. In addition, various deformed lines such as a polygonal shape such as a rectangular flat wire, a trapezoidal shape, or an elliptical cross section can be used.

実施形態のオイルテンパー線は、種々の大きさ(断面積、線径など)を取り得る。例えば、丸線では、線径が0.7mm以上6.0mm以下程度のものが挙げられる。断面積や線径は、伸線加工の加工度によって変化できる。   The oil-tempered wire of the embodiment can take various sizes (cross-sectional area, wire diameter, etc.). For example, a round wire having a wire diameter of about 0.7 mm or more and about 6.0 mm or less may be used. The cross-sectional area and wire diameter can be changed depending on the degree of wire drawing.

(用途)
実施形態のオイルテンパー線は、各種のばね材料に利用できる。より具体的には、実施形態のオイルテンパー線は、エンジンの弁ばね、トランスミッション用ばねといった自動車用の各種のばね材料に好適に利用できる。
(Application)
The oil-tempered wire of the embodiment can be used for various spring materials. More specifically, the oil-tempered wire of the embodiment can be suitably used for various spring materials for automobiles, such as an engine valve spring and a transmission spring.

[オイルテンパー線の製造方法]
実施形態のオイルテンパー線は、代表的には、原料鋼の溶製→熱間鍛造→熱間圧延→パテンチング→皮剥ぎ→焼鈍→伸線加工→焼入れ焼戻し、という工程を経て製造できる。
[Method of manufacturing oil-tempered wire]
Typically, the oil-tempered wire of the embodiment can be manufactured through a process of melting raw steel → hot forging → hot rolling → patenting → peeling → annealing → drawing → hardening and tempering.

特に、強化用元素の少なくとも一部を炭化物として析出させると共に、微細な炭化物とする熱処理を行う。
例えば、焼入れ工程において、オーステナイト化(γ化)温度に加熱してからの降温過程で、過冷却状態でAC3点以下の所定の温度に保持した後、急冷することが挙げられる。具体的には、オーステナイト化工程と、γ化温度から600℃以上800℃以下の温度域から選択した所定の温度に20℃/sec以上の速度で降温し、この所定の温度に保持する析出工程と、析出工程後に急冷する急冷工程とを備える。
上記の特定の焼入れ後に焼き戻しを行う。
In particular, a heat treatment for precipitating at least a part of the strengthening element as carbides and forming fine carbides is performed.
For example, in a quenching step, in a temperature lowering process after heating to an austenitizing (γ-forming) temperature, the temperature may be rapidly cooled after being maintained in a supercooled state at a predetermined temperature of AC3 point or less. Specifically, an austenitizing step and a precipitation step of lowering the temperature from a gamma temperature to a predetermined temperature selected from a temperature range of 600 ° C. to 800 ° C. at a rate of 20 ° C./sec or more and maintaining the predetermined temperature And a quenching step of quenching after the precipitation step.
Tempering is performed after the above specific quenching.

上記の熱処理は、以下の知見に基づくものである。
本発明者らは、γ化温度からの降温過程の各温度について、分散炭化物の析出状態を調べた。その結果、γ化によってマトリクスを面心立方構造(fcc)に変態させ、γ化温度からの降温過程で、マトリクスがfccを維持する温度域では分散炭化物が安定して析出し易いことから、面心立方構造(bcc)に変態しないように過冷却状態でAC3点以下の温度に保持することが好ましい、との知見を得た。マトリクスがfccを維持してパーライト変態しない温度に保持することで分散炭化物を析出させられる。また、この保持温度から急冷することで、マトリクスをマルテンサイト組織とすることができると共に、析出した分散炭化物が成長し難く、微細な状態を維持でき、微細な分散炭化物が結晶粒内に分散して存在する組織が得られるとの知見を得た。更に、上記の特定の焼入れ後に焼戻しを行うと、焼戻しマルテンサイト組織となって靭性を高められる上に、微細な分散炭化物がある程度成長するものの、平均粒径が30nm以下を満たす微細な状態を維持できるとの知見を得た。
以下、熱処理を詳細に説明する。以下の焼入れの条件、焼戻しの条件以外については、公知の条件を利用できる。
The above heat treatment is based on the following findings.
The present inventors examined the precipitation state of the dispersed carbide at each temperature in the process of decreasing the temperature from the γ-forming temperature. As a result, the matrix is transformed into a face-centered cubic structure (fcc) by the γ-formation, and in the temperature decreasing process from the γ-formation temperature, in the temperature range where the matrix maintains the fcc, the dispersed carbide easily precipitates stably. It has been found that it is preferable to maintain the temperature below the AC3 point in a supercooled state so as not to transform into a centered cubic structure (bcc). By maintaining the matrix at a temperature that does not cause pearlite transformation while maintaining fcc, dispersed carbides can be precipitated. In addition, by rapidly cooling from this holding temperature, the matrix can have a martensitic structure, and the dispersed dispersed carbide is difficult to grow, can maintain a fine state, and the fine dispersed carbide is dispersed in the crystal grains. That the existing tissue can be obtained. Further, when tempering is performed after the above specific quenching, a tempered martensite structure is obtained, and toughness is enhanced. In addition, fine dispersed carbides grow to some extent, but a fine state in which the average particle size satisfies 30 nm or less is maintained. I got the knowledge that I can do it.
Hereinafter, the heat treatment will be described in detail. Known conditions other than the following quenching conditions and tempering conditions can be used.

γ化温度は、例えば850℃以上1000℃以下が挙げられる。850℃以上であれば、添加元素を十分に固溶でき、結果として析出物を均一的に析出し易い。1000℃以下であれば、結晶粒や析出物の成長を抑制して微細な結晶組織とし易く、例えば、平均粒度を10以上とすることができる。γ化温度を980℃以下、更に900℃以上950℃以下と比較的低めにすると、微細な結晶組織としつつ、良好に固溶を行える。上述の範囲でγ化温度を低めに、かつ析出工程の保持温度も低めにすると、平均粒度が11以上、更に12以上、13以上である微細な結晶組織を得易い。   The γ-forming temperature is, for example, 850 ° C. or more and 1000 ° C. or less. When the temperature is 850 ° C. or higher, the added element can be sufficiently dissolved in solid solution, and as a result, precipitates are easily deposited uniformly. When the temperature is 1000 ° C. or lower, the growth of crystal grains and precipitates is suppressed and a fine crystal structure is easily formed. For example, the average particle size can be 10 or more. When the gamma-forming temperature is 980 ° C. or lower, and more preferably 900 ° C. or higher and 950 ° C. or lower, a good solid solution can be obtained while having a fine crystal structure. If the γ-formation temperature is lower and the holding temperature in the precipitation step is lower in the above range, a fine crystal structure having an average particle size of 11 or more, further 12 or more, and 13 or more can be easily obtained.

上述のγ化温度から降温過程において、過冷却状態で600℃以上800℃以下の温度域から選択した所定の温度に保持して、分散炭化物を析出させる。過冷却状態にするには、例えば、上記の所定の温度までの降温速度を20℃/sec以上と比較的大きくすることが挙げられる。上記温度域から選択される所定の温度が低いほど、分散炭化物が成長し難く、より微細な分散炭化物とし易い。   In the process of lowering the temperature from the above-mentioned γ-forming temperature, the dispersed carbide is deposited while maintaining the supercooled state at a predetermined temperature selected from a temperature range of 600 ° C. or more and 800 ° C. or less. For example, the supercooling state may be achieved by increasing the temperature decreasing rate to the above-mentioned predetermined temperature to a relatively high value of 20 ° C./sec or more. The lower the predetermined temperature selected from the above temperature range, the more difficult it is for the dispersed carbide to grow, and the more easily the dispersed carbide becomes finer.

上述のγ化温度の保持時間及び分散炭化物の析出のための保持時間は、例えば、合計で1秒以上1分(60秒)未満とすることが挙げられる。上記合計時間が短いほど、結晶粒の粗大化及び分散炭化物の粗大化を抑制できるため、上記合計時間を30秒以下、更に、20秒以下、15秒以下とすることができる。上記合計時間を1秒以上、更に3秒以上、5秒以上とすることで、γ化を適切に行えると共に、分散炭化物を析出し易い。上記の範囲で上記合計時間を長めにすると、析出量を多くし易い。   The holding time of the above-mentioned γ-forming temperature and the holding time for the precipitation of the dispersed carbide are, for example, 1 second or more and less than 1 minute (60 seconds). As the total time is shorter, coarsening of the crystal grains and coarsening of the dispersed carbide can be suppressed, so that the total time can be 30 seconds or less, further 20 seconds or less, and 15 seconds or less. When the total time is at least 1 second, more preferably at least 3 seconds, and at least 5 seconds, gamma can be appropriately performed, and dispersed carbides can be easily precipitated. If the total time is set longer in the above range, the amount of precipitation is easily increased.

上述のような短時間の焼入れには、高周波加熱炉を好適に利用できる。高周波加熱炉は、雰囲気炉に比較して昇温速度や降温速度を大きくし易い。そのため、高周波加熱炉を利用すると、γ化の保持時間を短くし易い上に、降温過程では降温速度を大きくして、高速降温によって過冷却状態を形成できる。   For quenching in a short time as described above, a high-frequency heating furnace can be suitably used. The high-frequency heating furnace can easily increase the rate of temperature rise and the rate of temperature decrease as compared with the atmosphere furnace. Therefore, when a high-frequency heating furnace is used, the holding time of the γ-formation can be easily shortened, and the cooling rate can be increased in the cooling process, and a supercooled state can be formed by rapid cooling.

焼戻しの条件は、例えば、保持温度を400℃以上650℃以下、保持時間を60秒以下とすることが挙げられる。焼戻しの保持温度を低めにし、保持時間を短めにすると、分散炭化物の粗大化を抑制できて好ましい。   Tempering conditions include, for example, a holding temperature of 400 ° C. or more and 650 ° C. or less, and a holding time of 60 seconds or less. It is preferable to lower the tempering holding temperature and shorten the holding time, because the coarsening of the dispersed carbide can be suppressed.

[ばね]
実施形態のオイルテンパー線にばね加工を施すことで、ばねが得られる。ばね加工後に、公知の条件にて、歪取り焼鈍、窒化処理、ショットピーニング、低温焼鈍などを適宜行うことができる。
[Spring]
A spring is obtained by subjecting the oil-tempered wire of the embodiment to spring processing. After the spring working, under known conditions, strain relief annealing, nitriding treatment, shot peening, low-temperature annealing and the like can be appropriately performed.

[試験例1]
オイルテンパー線を種々の条件で作製して、組織、疲労特性を調べた。
[Test Example 1]
Oil-tempered wires were prepared under various conditions, and the structure and fatigue characteristics were examined.

原料鋼を真空溶解炉で溶製し、熱間鍛造、熱間圧延を順に行って、線径φ6.5mmの圧延材を作製する。この圧延材に順に、パテンチング→皮剥ぎ→焼鈍→伸線加工→焼入れ焼戻しを施して、線径φ3.0mmのオイルテンパー線を得る。
試験に用いた鋼の成分は、C:0.63質量%、表1に示す強化用元素:0.15質量%、Si:2.20質量%、Mn:0.51質量%、Cr:1.18質量%であり、残部はFe及び不可避不純物である。
作製した各試料について、以下の条件で焼入れを行う。焼戻しは保持温度を500℃、保持時間を2秒とする。
A raw steel is melted in a vacuum melting furnace, and hot forging and hot rolling are sequentially performed to produce a rolled material having a wire diameter of 6.5 mm. The rolled material is sequentially subjected to patenting, peeling, annealing, wire drawing, and quenching and tempering to obtain an oil-tempered wire having a wire diameter of 3.0 mm.
The components of the steel used in the test were: C: 0.63% by mass, strengthening elements shown in Table 1: 0.15% by mass, Si: 2.20% by mass, Mn: 0.51% by mass, Cr: 1 .18% by mass, with the balance being Fe and unavoidable impurities.
Quenching is performed on each of the prepared samples under the following conditions. Tempering is performed at a holding temperature of 500 ° C. and a holding time of 2 seconds.

(焼入れ条件)
〈試料No.1〉 雰囲気炉使用
γ化温度を950℃、保持時間を約55秒とするγ化を行った後、後述の析出工程を行わず、γ化温度から室温まで急冷する。
〈試料No.2〉 高周波加熱炉使用
γ化温度を950℃、保持時間を10秒以内とするγ化を行った後、後述の析出工程を行わず、γ化温度から室温まで急冷する。
(Hardening conditions)
<Sample No. 1> Using an atmosphere furnace After performing γ-forming at a γ-forming temperature of 950 ° C. and a holding time of about 55 seconds, a rapid cooling from the γ-forming temperature to room temperature is performed without performing a later-described precipitation step.
<Sample No. 2> Using a high-frequency heating furnace After performing γ-forming at a γ-forming temperature of 950 ° C. and a holding time of 10 seconds or less, a rapid cooling from the γ-forming temperature to room temperature is performed without performing a precipitation step described below.

〈試料No.3〜No.7〉 高周波加熱炉使用
γ化温度を950℃とするγ化工程と、γ化温度から降温速度20℃/秒以上で、表1の焼入れ条件に示す温度(℃)まで降温し、この温度(℃)に保持する析出工程と、この保持温度から急冷する急冷工程とを備える。γ化温度の保持時間と析出工程における表1の焼入れ条件に示す温度(℃)の保持時間との合計時間を10秒以内とする。
いずれの試料も、急冷は、マルテンサイト組織が得られるように降温速度を調整する。
<Sample No. 3-No. 7> Using a high-frequency heating furnace A gamma-forming step in which the gamma-forming temperature is set to 950 ° C, and the temperature is lowered from the gamma-forming temperature to the temperature (° C) shown in the quenching conditions in Table 1 at a rate of temperature reduction of 20 ° C / sec or more. (° C.) and a quenching step of rapidly cooling from this holding temperature. The total time of the holding time of the γ-forming temperature and the holding time of the temperature (° C.) shown in the quenching conditions in Table 1 in the precipitation step is set to be 10 seconds or less.
In all samples, the quenching adjusts the cooling rate so as to obtain a martensitic structure.

上述の焼入れ焼戻しを施した各試料のオイルテンパー線の断面をとり、断面を顕微鏡で観察した。図1は、試料No.4の光学顕微鏡写真であり、図2は、試料No.1の光学顕微鏡写真である。図1,図2において、黒い筋は結晶粒界であり、黒い筋で囲まれる各領域が結晶粒である。   A cross section of the oil-tempered wire of each sample subjected to the above-described quenching and tempering was taken, and the cross section was observed with a microscope. FIG. 4 is an optical micrograph of Sample No. 4, and FIG. 1 is an optical micrograph of FIG. 1 and 2, black streaks are crystal grain boundaries, and each area surrounded by the black streaks is a crystal grain.

図1,図2に示すように、いずれの試料も、結晶粒が微細であり、結晶粒界に筋状のものが存在するという同様な結晶組織を有しており、結晶粒界が筋状のものによって強化されていることが分かる。結晶粒界の筋状のものについて、透過電子顕微鏡(TEM)に付属されるエネルギー分散型X線分析(EDX)装置を用いて点分析によって成分分析を行ったところ、FeとCとの化合物、代表的にはFeCといったFe系炭化物を主体とすることを確認している。As shown in FIGS. 1 and 2, each sample has a similar crystal structure in which the crystal grains are fine and streaks exist at the crystal grain boundaries. You can see that it is fortified by The streaks of the grain boundaries were subjected to component analysis by point analysis using an energy dispersive X-ray analyzer (EDX) attached to a transmission electron microscope (TEM). Typically, it has been confirmed that Fe-based carbide such as Fe 3 C is mainly used.

各試料のオイルテンパー線について、以下の各項目を調べた。
(炭化物の含有量)
各試料のオイルテンパー線に含まれる炭化物の合計含有量を調べた。
ここでは、定電位電解法によって得られる残渣を成分分析し、オイルテンパー線を100質量%としたときの残渣の質量割合(質量%)を求める。
詳しくは、各試料のオイルテンパー線から試験片をとり、適宜な電解液を用いて試験片を溶解して残渣を抽出し、メンブレンフィルタなどの濾材によってろ過して、残渣を分離する。分離した残渣の成分を誘導結合高周波プラズマ(ICP)発光分光分析法によって分析して、成分を定量する。また、分離した残渣の結晶構造をX線回折法によって解析する。試験片の質量を予め測定しておく。
残渣の成分分析と結晶構造の解析とから、残渣が炭化物(Vといった分散炭化物、FeCといったFe系炭化物、その他(Fe,Cr)C)であることを確認し、残渣の質量を測定する。残渣のうち、炭化物以外の不純物などは除去する。
残渣の質量を炭化物の合計含有量とし、試験片の質量に対する炭化物の合計含有量の質量割合(以下の式1)、即ちオイルテンパー線の組成を100質量%とした炭化物の合計含有量(質量%)を求める。
(式1)[(炭化物の合計含有量)/(試験片の質量)]×100
後述するばねの製造過程を模擬した処理(窒化処理、ショットピーニング、低温焼鈍)を行った後のオイルテンパー線について、同様にして、オイルテンパー線の組成を100質量%とした炭化物の合計含有量の質量割合を求める。
模擬処理を行っていないオイルテンパー線の炭化物の合計含有量を模擬処理前の合計量(質量%)とし、模擬処理を行った後におけるオイルテンパー線の炭化物の合計含有量を模擬処理後の合計量(質量%)とし、結果を表1に示す。
The following items were examined for the oil tempered wire of each sample.
(Carbide content)
The total content of carbide contained in the oil temper wire of each sample was examined.
Here, the residue obtained by the potentiostatic electrolysis method is subjected to component analysis, and the mass ratio (mass%) of the residue when the oil temper line is set to 100 mass% is determined.
Specifically, a test piece is taken from the oil-tempered wire of each sample, the test piece is dissolved using an appropriate electrolytic solution to extract a residue, and the residue is separated by filtering through a filter medium such as a membrane filter. The components of the separated residue are analyzed by inductively coupled radio frequency plasma (ICP) emission spectroscopy to quantify the components. The crystal structure of the separated residue is analyzed by an X-ray diffraction method. The mass of the test piece is measured in advance.
From the component analysis and the crystal structure analysis of the residue, it was confirmed that the residue was a carbide (a dispersed carbide such as V 4 C 3, an Fe-based carbide such as Fe 3 C, and other (Fe, Cr) 3 C). Measure the mass. Of the residue, impurities other than carbides are removed.
The mass of the residue is defined as the total content of the carbide, and the mass ratio of the total content of the carbide to the mass of the test piece (formula 1 below), that is, the total content of the carbide with the composition of the oil-tempered wire being 100% by mass (mass) %).
(Equation 1) [(total content of carbide) / (mass of test piece)] × 100
Similarly, regarding the oil-tempered wire after performing a process (nitriding, shot peening, low-temperature annealing) simulating the manufacturing process of a spring described later, similarly, the total content of carbides with the composition of the oil-tempered wire being 100% by mass. Is determined.
The total content of carbides in the oil-tempered wire not subjected to the simulated treatment is defined as the total amount (% by mass) before the simulated treatment, and the total content of the carbides in the oil-tempered wire after the simulated treatment is calculated as the total amount after the simulated treatment. And the results are shown in Table 1.

(強化用元素の析出量、析出割合)
上述の残渣の成分分析と結晶構造解析とから、強化用元素を含む炭化物(分散炭化物)を抽出する。抽出した分散炭化物中の強化用元素の合計含有量を、上述の成分分析値を用いて求める。試験片の質量に対する分散炭化物中の強化用元素の合計含有量(以下の式2)を求める。即ちオイルテンパー線の組成を100質量%としたときの強化用元素の析出量(質量%)を求め、結果を表1に示す。
(式2)[(分散炭化物中の強化用元素の合計含有量)/(試験片の質量)]×100
また、分散炭化物中の強化用元素の合計含有量について、オイルテンパー線の組成中の強化用元素全量(ここではいずれの試料も0.15質量%)に対する質量割合(%)を求め、即ち析出割合を求め、結果を表1に示す。
(Precipitation amount and precipitation ratio of strengthening element)
From the component analysis and the crystal structure analysis of the residue, a carbide (dispersed carbide) containing a reinforcing element is extracted. The total content of the strengthening elements in the extracted dispersed carbide is determined using the above-described component analysis values. The total content of the reinforcing elements in the dispersed carbide with respect to the mass of the test piece (formula 2 below) is determined. That is, the precipitation amount (% by mass) of the reinforcing element when the composition of the oil-tempered wire was 100% by mass was determined. The results are shown in Table 1.
(Equation 2) [(total content of reinforcing elements in dispersed carbide) / (mass of test piece)] × 100
With respect to the total content of the reinforcing elements in the dispersed carbide, the mass ratio (%) to the total amount of the reinforcing elements in the composition of the oil-tempered wire (here, 0.15% by mass in all samples) was determined, that is, The ratio was determined, and the results are shown in Table 1.

(分散炭化物の平均粒径)
分散炭化物の平均粒径の測定は、抽出レプリカ法を用いて行う。具体的には、オイルテンパー線の断面をとり、断面を鏡面研磨した後、定電位電解腐食法によって断面を腐食させて析出物を現出させ、更に炭素を蒸着する。蒸着によって形成された炭素膜(レプリカ膜)を分離して、析出物(粒子)を抽出する。
抽出した析出物について、TEM−EDXを用いて元素分析を行って、析出物の組成を調べる。また、電子線回折法によって析出物の結晶構造を解析して析出物の構造を調べる。析出物の組成及び構造に基づいて、(Fe,Cr)Cなどを排除し、V,TaC,NbCいった分散炭化物のみを抽出する。
抽出した分散炭化物のTEM観察像を用いて、分散炭化物の大きさを測定する。ここでは、上述の断面のTEM観察像における各粒子の等価面積円の直径を各粒子の直径とし、100個以上の粒子の平均を平均粒径(nm)とし、表1に示す。また、平均をとった複数の粒子のうち、最大のものを最大径(nm)とし、表1に示す。
(Average particle size of dispersed carbide)
The measurement of the average particle size of the dispersed carbide is performed using the extraction replica method. Specifically, a cross section of the oil-tempered wire is taken, and after mirror-polishing the cross section, the cross section is corroded by a potentiostatic electrolytic corrosion method to make a precipitate appear, and carbon is further deposited. A carbon film (replica film) formed by vapor deposition is separated, and a precipitate (particle) is extracted.
The extracted precipitate is subjected to elemental analysis using TEM-EDX to examine the composition of the precipitate. In addition, the crystal structure of the precipitate is analyzed by electron beam diffraction to examine the structure of the precipitate. Based on the composition and structure of the precipitate, (Fe, Cr) 3 C and the like are excluded, and only dispersed carbides such as V 4 C 3 , TaC, and NbC are extracted.
Using the TEM observation image of the extracted dispersed carbide, the size of the dispersed carbide is measured. Here, Table 1 shows the diameter of the equivalent area circle of each particle in the TEM observation image of the above-mentioned cross section as the diameter of each particle, and the average of 100 or more particles as the average particle diameter (nm). Table 1 shows the largest particle among the averaged particles as the maximum diameter (nm).

(結晶の平均粒度)
上述の光学顕微鏡写真を用いて、JIS G 0551(2013年)「鋼―結晶粒度の顕微鏡試験方法」に準拠して結晶粒度を測定する。ここでの撮影倍率は1000倍である。
(Average grain size of crystal)
Using the above-mentioned optical micrograph, the crystal grain size is measured in accordance with JIS G 0551 (2013) “Steel—Microscopic Test Method for Grain Size”. The photographing magnification here is 1000 times.

(特性)
各試料のオイルテンパー線に、ばねの製造過程を模擬した以下の模擬処理(窒化処理、ショットピーニング、低温焼鈍)を順に行った後、疲労試験を行い、疲労限(MPa)を求める。試料ごとに10本の試験片を用意して疲労限を調べ、10本の平均値を表1に示す。上記疲労試験は、中村式回転曲げ疲労試験を行った。
[模擬処理]
窒化処理:400℃×4時間、窒素雰囲気
ショットピーニング:0.7mmφのワイヤカット×30分⇒0.3mmφスチールボール×30分
低温焼鈍:230℃×30分
(Characteristic)
The following simulating processes (nitriding, shot peening, low-temperature annealing) simulating the spring manufacturing process are sequentially performed on the oil-tempered wire of each sample, and then a fatigue test is performed to determine a fatigue limit (MPa). Ten test pieces were prepared for each sample to examine the fatigue limit, and the average value of the ten test pieces is shown in Table 1. In the fatigue test, a Nakamura-type rotary bending fatigue test was performed.
[Simulation processing]
Nitriding treatment: 400 ° C × 4 hours, nitrogen atmosphere Shot peening: 0.7mmφ wire cut × 30 minutes → 0.3mmφ steel ball × 30 minutes Low temperature annealing: 230 ° C × 30 minutes

Figure 2018211779
Figure 2018211779

表1に示すように試料No.3〜No.7のオイルテンパー線は、上述の模擬試験後の疲労限が試料No.1,No.2と比較して高く、疲労特性に優れる。この試験では、試料No.3〜No.7の疲労限は、試料No.1に対して2.5%程度以上向上している。特に、試料No.5〜No.7の疲労限は、試料No.1に対して5.5%以上向上している。   As shown in Table 1, the sample No. 3-No. In the oil tempered wire of Sample No. 7, the fatigue limit after the above-described simulation test was Sample No. 7. 1, No. Higher than No. 2 and excellent in fatigue properties. In this test, sample no. 3-No. The fatigue limit of Sample No. 7 was as follows. It is improved by about 2.5% or more with respect to 1. In particular, the sample No. 5-No. The fatigue limit of Sample No. 7 was as follows. It is improved by 5.5% or more with respect to 1.

このような結果が得られた理由として、以下のように考えられる。
試料No.3〜No.7のオイルテンパー線は、表1に示すように、強化用元素を含む炭化物(分散炭化物)の平均粒径が38nm未満、更に30nm以下であり、非常に微細である。また、分散炭化物中の強化用元素の合計含有量が強化用元素全量に対して質量割合で10%以上である(析出割合が10%以上である)。即ち、強化用元素のうち、ある程度の量が分散炭化物として結晶粒内に存在する。そして、試料No.3〜No.7のオイルテンパー線は、非常に微細な分散炭化物が結晶粒内に分散して存在する組織を有する上に、後述するように模擬試験後も微細な結晶粒内に微細な分散炭化物が存在する組織を有する。このように強化用元素の少なくとも一部を炭化物として備えると共に、この炭化物が非常に微細であり、結晶粒内に分散して存在することで、分散強化効果によって降伏応力を向上でき、繰り返し曲げを受けた場合に破断し難く、疲労限を向上できた、と考えられる。
The reason that such a result was obtained is considered as follows.
Sample No. 3-No. As shown in Table 1, the oil temper wire of No. 7 has an average particle size of a carbide (dispersed carbide) containing a reinforcing element of less than 38 nm, and is further less than 30 nm, and is very fine. Further, the total content of the reinforcing elements in the dispersed carbide is at least 10% by mass relative to the total amount of the reinforcing elements (the precipitation ratio is at least 10%). That is, a certain amount of the strengthening element exists in the crystal grains as a dispersed carbide. Then, the sample No. 3-No. The oil-tempered wire of No. 7 has a structure in which very fine dispersed carbides are dispersed in the crystal grains, and fine dispersed carbides exist in the fine crystal grains even after the simulation test as described later. Have an organization. As described above, at least a part of the strengthening element is provided as a carbide, and since the carbide is very fine and is dispersed and present in the crystal grains, the yield stress can be improved by the dispersion strengthening effect, and the repeated bending can be performed. It is considered that it was difficult to break when it was subjected, and the fatigue limit was improved.

更に、この試験では、試料No.3〜No.7のオイルテンパー線における結晶粒内の分散炭化物の最大径が100nm未満であり、更に90nm未満、80nm以下、50nm以下と非常に小さい。そのため、結晶粒内の分散炭化物が破壊の起点になり難く、より破断し難くなった、と考えられる。また、この試験では、試料No.3〜No.7のオイルテンパー線における結晶粒度が10以上、更に12以上と大きく、結晶が微細である。
このように微細な結晶組織を有することで、結晶粒界が適量存在して、セメンタイトといったFe系炭化物による結晶粒界の強化効果によっても破断し難くなった、と考えられる。上記結晶粒度が14.5以下であり、結晶が小さ過ぎないことで靭性にも優れることからも破断し難くなった、と考えられる。加えて、この試験では、試料No.3〜No.7のオイルテンパー線の模擬処理前における炭化物の合計含有量が1質量%以上3質量%以下の範囲である。炭化物の合計含有量が適切であることからも、分散炭化物による結晶粒内の析出強化とFe系炭化物による結晶粒界の析出強化との双方の効果を良好に得られた、と考えられる。また、過剰な炭化物による靭性の低下も招き難かった、と考えられる。
Further, in this test, the sample No. 3-No. The maximum diameter of the dispersed carbide in the crystal grains in the oil temper wire of No. 7 is less than 100 nm, and is very small, less than 90 nm, 80 nm or less, and 50 nm or less. Therefore, it is considered that the dispersed carbides in the crystal grains did not easily become the starting point of the fracture, and the fracture became more difficult. In this test, the sample No. 3-No. The crystal grain size in the oil temper wire of No. 7 is as large as 10 or more, further 12 or more, and the crystal is fine.
It is considered that by having such a fine crystal structure, an appropriate amount of crystal grain boundaries was present, and it became difficult to break even by the effect of strengthening the crystal grain boundaries by Fe-based carbide such as cementite. It is considered that the crystal grain size was 14.5 or less, and the crystal was not too small, so that it was excellent in toughness. In addition, in this test, sample no. 3-No. The total content of carbides before the simulated treatment of the oil tempered wire of No. 7 is in the range of 1% by mass to 3% by mass. From the fact that the total content of the carbides is appropriate, it is considered that both the effect of strengthening the precipitation in the crystal grains by the dispersed carbide and the effect of strengthening the precipitation of the crystal grain boundaries by the Fe-based carbide were favorably obtained. It is also considered that the toughness was hardly reduced by excessive carbides.

更に、模擬処理を施すと、分散炭化物の量は実質的に変化せず、Fe系炭化物が増加する傾向にあるため、模擬処理後における炭化物の合計含有量は増加する。しかしながら、試料No.3〜No.7のオイルテンパー線の模擬処理後における炭化物の合計含有量は2.3質量%程度であり、上述の模擬試験前における炭化物の合計含有量(1.7質量%程度)と比較して模擬処理後における炭化物の合計含有量の増加が少ない。試料No.3〜No.7のオイルテンパー線は、模擬処理後における炭化物の合計含有量が、上述のように模擬処理前よりも増加したが、2質量%以上4質量%以下を満たす範囲であり、この範囲であることで、Fe系炭化物の増大による結晶粒界の強化効果を得つつ、Fe系炭化物の過剰析出による靭性の低下を招き難かった、と考えられる。   Furthermore, when the simulation treatment is performed, the amount of the dispersed carbides does not substantially change, and the amount of Fe-based carbides tends to increase, so that the total content of carbides after the simulation treatment increases. However, sample no. 3-No. The total content of carbides after the simulated treatment of the oil tempered wire of No. 7 was about 2.3% by mass, and the simulated treatment was compared with the total content of carbides (about 1.7% by mass) before the above-described simulation test. The increase in the total carbide content later is small. Sample No. 3-No. The oil-tempered wire of No. 7 has a range in which the total content of carbides after the simulating treatment is higher than that before the simulating treatment as described above, but satisfies 2% by mass or more and 4% by mass or less. It is considered that, while obtaining the effect of strengthening the crystal grain boundaries by increasing the amount of Fe-based carbide, it was difficult to cause a decrease in toughness due to excessive precipitation of Fe-based carbide.

一方、試料No.1,No.2では、結晶粒内に強化用元素を含む炭化物が存在するものの、これらの炭化物の平均粒径が大きく、最大径も大きい。結晶粒内にこのような粗大な炭化物が存在することで、繰り返し曲げを受けた場合に粗大な炭化物粒が破壊の起点になるなどして破断し易くなり、疲労限が低い、と考えられる。   On the other hand, sample No. 1, No. In No. 2, although the carbide containing the reinforcing element is present in the crystal grains, the average particle size of these carbides is large and the maximum diameter is also large. It is considered that the presence of such coarse carbides in the crystal grains makes it easy for the coarse carbide grains to be broken and becomes a starting point of fracture when repeatedly bent, thereby lowering the fatigue limit.

各試料の組織について、より詳細に説明する。
図3及び図4は、上述の模擬試験後の線材について断面をとり、この断面をTEM観察した観察像であり、左から順にZコントラスト像、TEM−EDX装置を用いて分析したFeの元素マッピング像、Vの元素マッピング像を示す。この例ではレプリカ膜として炭素を用いており、TEM−EDX装置による元素マッピング像は、炭素よりも原子番号が大きいほどコントラスト比が大きく白く見える。鉄(Fe)やバナジウム(V)は炭素(C)よりも原子番号が十分に大きいため、白く見える。図3は、試料No.4の模擬試験後の観察像である。図4は、試料No.1の模擬試験後の観察像である。上述の成分分析(点分析)などによって、Feの元素マッピング像に示すFeは、FeCといったFe系炭化物であること、Vの元素マッピング像に示すVは、VといったV系炭化物であることを確認している。
The structure of each sample will be described in more detail.
3 and 4 are cross-sectional images of the wire after the above-described simulation test, and are TEM observation images of the cross-section. From the left, a Z-contrast image and an Fe element mapping analyzed using a TEM-EDX device are shown. 1 shows an image and an element mapping image of V. In this example, carbon is used as the replica film, and in the element mapping image by the TEM-EDX apparatus, the contrast ratio looks larger and white as the atomic number is larger than carbon. Iron (Fe) and vanadium (V) appear white because their atomic numbers are sufficiently higher than carbon (C). FIG. 4 is an observation image after the simulation test. FIG. 1 is an observation image after a simulation test. By the component analysis (point analysis) described above, Fe shown in the element mapping image of Fe is Fe-based carbide such as Fe 3 C, and V shown in the element mapping image of V is V-based carbide such as V 4 C 3 Make sure that

図3及び図4のFeの元素マッピング像に示すように、いずれの試料も、Fe系炭化物が結晶粒を囲むように点在すること、即ちFeの存在状態が同様であることが分かる。一方、図3のVの元素マッピング像に示すように試料No.4のV系炭化物は、非常に微細であり、かつ上述のFe系炭化物で囲まれる結晶粒内に分散していることが分かる。この例では、模擬試験後であっても、V系炭化物の平均粒径が15nm程度、最大径が50nm未満程度である。これに対し、図4のVの元素マッピング像に示すように試料No.1では、非常に大きなV系炭化物が局所的に存在することが分かる。この例では、試料No.1のV系炭化物は、試料No.4の2倍程度の大きさである。このことから、微細な結晶粒内に微細な分散炭化物が分散して存在する組織を有するオイルテンパー線は、ばねの製造過程を経ても、この特定の組織を維持し易く、疲労限に優れることが裏付けられる。   As shown in the element mapping images of Fe in FIGS. 3 and 4, it can be seen that Fe-based carbides are scattered around the crystal grains in all the samples, that is, the existing state of Fe is the same. On the other hand, as shown in the element mapping image of V in FIG. It can be seen that the V-based carbide of No. 4 is very fine and is dispersed in crystal grains surrounded by the above-mentioned Fe-based carbide. In this example, even after the simulation test, the V-based carbide has an average particle size of about 15 nm and a maximum diameter of less than 50 nm. On the other hand, as shown in the element mapping image of V in FIG. 1, it is understood that a very large V-based carbide exists locally. In this example, the sample No. V-based carbide of Sample No. 1 It is about twice as large as 4. From this, oil-tempered wire having a structure in which fine dispersed carbides are dispersed in fine crystal grains is easy to maintain this specific structure even after the spring manufacturing process, and is excellent in fatigue limit. Is supported.

その他、この試験から以下のことがいえる。
(1)同じ強化用元素を含む場合、分散炭化物の平均粒径が小さいほど、疲労限を向上できる。また、分散炭化物の最大径が小さいほど、疲労限を向上できる。(試料No.3〜No.5を比較参照)
(2)Vを含む場合には、分散炭化物の平均粒径が30nm以下であると共に、強化用元素の析出割合が多め(好ましくは質量割合で30%以上)であると、疲労限を向上し易い。(試料No.3〜No.5を参照)
(3)Ta,Nbのような原子量が比較的大きい強化用元素を含む場合には、強化用元素の析出割合が少なめ(質量割合で10%程度)でも疲労限を向上できる。(試料No.6,No.7を参照)
(4)結晶粒内に微細な分散炭化物が適量存在して、疲労特性に優れるオイルテンパー線は、γ化工程、析出工程、急冷工程を備える特定の条件の焼入れを行うことで製造できる。
(5)製造条件(特に析出工程の温度)を異ならせることで、分散炭化物の平均粒径や最大径、結晶粒度を変化させられる。析出工程の温度を低くするほど、分散炭化物の平均粒径や最大径を小さくし易く、結晶粒度を大きくして結晶を微細にし易い(試料No.3〜No.5を比較参照)。
In addition, the following can be said from this test.
(1) When the same strengthening element is included, the smaller the average particle size of the dispersed carbide, the higher the fatigue limit. Further, the smaller the maximum diameter of the dispersed carbide, the higher the fatigue limit. (Refer to samples No. 3 to No. 5 for comparison)
(2) In the case where V is contained, when the average particle size of the dispersed carbide is 30 nm or less and the precipitation ratio of the reinforcing element is relatively large (preferably 30% or more in mass ratio), the fatigue limit is improved. easy. (See Sample Nos. 3 to 5)
(3) When a reinforcing element having a relatively large atomic weight, such as Ta or Nb, is included, the fatigue limit can be improved even when the precipitation rate of the reinforcing element is small (about 10% by mass). (Refer to sample Nos. 6 and 7)
(4) An oil-tempered wire having an appropriate amount of fine dispersed carbides in crystal grains and excellent in fatigue properties can be produced by quenching under specific conditions including a gamma-forming step, a precipitation step, and a quenching step.
(5) The average particle size, the maximum particle size, and the crystal particle size of the dispersed carbide can be changed by changing the manufacturing conditions (particularly, the temperature in the precipitation step). As the temperature in the precipitation step is lowered, the average particle size and the maximum particle size of the dispersed carbide are easily reduced, and the crystal grain size is increased to make the crystal finer (see Comparative Examples 3 to 5).

本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、上述の試験例において、線材の組成、線径、製造条件の少なくとも一つの変更が可能である。例えば、C,Si,Mn,及びCrから選択される1種以上の元素の含有量を変更したり、V,Ta,Nb,Mo,及びWから選択される2種以上の元素を特定の範囲で含んだりすることが挙げられる。
The present invention is not limited to these examples, but is indicated by the appended claims, and is intended to include any modifications within the scope and meaning equivalent to the appended claims.
For example, in the above-described test examples, at least one of the composition of the wire, the wire diameter, and the manufacturing conditions can be changed. For example, the content of one or more elements selected from C, Si, Mn, and Cr is changed, or two or more elements selected from V, Ta, Nb, Mo, and W are set in a specific range. To be included.

Claims (6)

Cを0.50質量%以上0.90質量%以下と、
0.02質量%以上0.50質量%以下のV、0.01質量%以上0.50質量%以下のTa、0.01質量%以上0.50質量%以下のNb、0.02質量%以上0.50質量%以下のMo、及び0.02質量%以上1.00質量%以下のWから選択される1種以上の強化用元素と、
Siを0.80質量%以上3.00質量%以下と、
Mnを0.40質量%以上1.00質量%以下と、
Crを0.40質量%以上2.00質量%以下とを含有し、残部がFe及び不純物である組成を有し、
前記強化用元素を含む炭化物を備え、
前記強化用元素を含む炭化物中の前記強化用元素の合計含有量が前記強化用元素全量に対して質量割合で10%以上であり、
前記強化用元素を含む炭化物の平均粒径が30nm以下であるオイルテンパー線。
C is 0.50% by mass or more and 0.90% by mass or less,
V of 0.02% by mass to 0.50% by mass, Ta of 0.01% by mass to 0.50% by mass, Nb of 0.01% by mass to 0.50% by mass, 0.02% by mass At least 0.50% by mass of Mo and at least 0.02% by mass and at least 1.00% by mass of W;
0.80 mass% or more and 3.00 mass% or less of Si;
Mn is 0.40% by mass or more and 1.00% by mass or less;
Cr has a composition of not less than 0.40% by mass and not more than 2.00% by mass, with the balance being Fe and impurities,
Comprising a carbide containing the reinforcing element,
The total content of the reinforcing element in the carbide containing the reinforcing element is at least 10% by mass relative to the total amount of the reinforcing element,
An oil-tempered wire in which the carbide containing the reinforcing element has an average particle size of 30 nm or less.
結晶粒度が10以上14.5以下である請求項1に記載のオイルテンパー線。   The oil tempered wire according to claim 1, wherein the crystal grain size is 10 or more and 14.5 or less. 前記組成は、0.10質量%以上0.30質量%以下のV、0.10質量%以上0.35質量%以下のTa、及び0.10質量%以上0.35質量%以下のNbから選択される1種以上の前記強化用元素を含む請求項1又は請求項2に記載のオイルテンパー線。   The composition is from 0.10% to 0.30% by mass of V, 0.10% to 0.35% by mass of Ta, and 0.10% to 0.35% by mass of Nb. The oil-tempered wire according to claim 1, comprising one or more selected reinforcing elements. 炭化物の合計含有量が1質量%以上3質量%以下である請求項1から請求項3のいずれか1項に記載のオイルテンパー線。   The oil-tempered wire according to any one of claims 1 to 3, wherein a total content of the carbides is 1% by mass or more and 3% by mass or less. 窒化処理相当の熱処理、ショットピーニング、低温焼鈍相当の熱処理を順に施した後における前記炭化物の合計含有量が2質量%以上4質量%以下となる請求項4に記載のオイルテンパー線。   5. The oil-tempered wire according to claim 4, wherein a total content of the carbide becomes 2% by mass or more and 4% by mass or less after heat treatment corresponding to nitriding treatment, shot peening, and heat treatment corresponding to low-temperature annealing are sequentially performed. 前記組成は、Cを0.63質量%以上0.68質量%以下含有する請求項1から請求項5のいずれか1項に記載のオイルテンパー線。   The oil-tempered wire according to any one of claims 1 to 5, wherein the composition contains 0.63% by mass or more and 0.68% by mass or less of C.
JP2019519073A 2017-05-19 2018-03-05 Oil temper wire Active JP7044109B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017100377 2017-05-19
JP2017100377 2017-05-19
PCT/JP2018/008217 WO2018211779A1 (en) 2017-05-19 2018-03-05 Oil tempered wire

Publications (2)

Publication Number Publication Date
JPWO2018211779A1 true JPWO2018211779A1 (en) 2020-03-26
JP7044109B2 JP7044109B2 (en) 2022-03-30

Family

ID=64274382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519073A Active JP7044109B2 (en) 2017-05-19 2018-03-05 Oil temper wire

Country Status (2)

Country Link
JP (1) JP7044109B2 (en)
WO (1) WO2018211779A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7012194B2 (en) * 2019-10-16 2022-02-10 日本製鉄株式会社 Damper spring
DE112020005011T5 (en) * 2019-10-16 2022-07-07 Nhk Spring Co., Ltd. VALVE SPRING
DE112021001187T5 (en) * 2020-02-21 2022-12-15 Nippon Steel Corporation DAMPER SPRING
US20230087453A1 (en) * 2020-02-21 2023-03-23 Nippon Steel Corporation Valve spring
MX2022010291A (en) * 2020-02-21 2022-10-13 Nippon Steel Corp Steel wire.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246941A (en) * 1998-02-27 1999-09-14 Chuo Spring Co Ltd High strength valve spring and its manufacture
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP2008266725A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Oil-tempered wire, and method for manufacturing oil-tempered wire
WO2012005373A1 (en) * 2010-07-06 2012-01-12 新日本製鐵株式会社 Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same
US20150259771A1 (en) * 2013-11-15 2015-09-17 Gregory Vartanov High Strength Low Alloy Steel and Method of Manufacturing
JP2016191099A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Heat treated steel wire excellent in fatigue characteristics

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246941A (en) * 1998-02-27 1999-09-14 Chuo Spring Co Ltd High strength valve spring and its manufacture
JP2007063584A (en) * 2005-08-05 2007-03-15 Sumitomo Electric Ind Ltd Oil tempered wire and manufacturing method therefor
JP2008266725A (en) * 2007-04-20 2008-11-06 Sumitomo Electric Ind Ltd Oil-tempered wire, and method for manufacturing oil-tempered wire
WO2012005373A1 (en) * 2010-07-06 2012-01-12 新日本製鐵株式会社 Drawn and heat-treated steel wire for high-strength spring, and undrawn steel wire for high-strength spring
JP2012117092A (en) * 2010-11-29 2012-06-21 Sumitomo Denko Steel Wire Kk Spring having excellent settling resistance and durability, and method for manufacturing the same
US20150259771A1 (en) * 2013-11-15 2015-09-17 Gregory Vartanov High Strength Low Alloy Steel and Method of Manufacturing
JP2016191099A (en) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 Heat treated steel wire excellent in fatigue characteristics

Also Published As

Publication number Publication date
JP7044109B2 (en) 2022-03-30
WO2018211779A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP7044109B2 (en) Oil temper wire
US8845825B2 (en) High strength spring-use heat treated steel
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP5114665B2 (en) Heat-treated steel for high-strength springs
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
JP4478072B2 (en) High strength spring steel
EP2058411A1 (en) Steel for high-strength spring and heat-treated steel wire for high-strength spring
US20100028196A1 (en) High Strength Spring Steel and High Strength Heat Treated Steel Wire for Spring
JPWO2018230717A1 (en) Rolling wire for spring steel
JP4486040B2 (en) Steel wire for cold forming springs with excellent cold cutability and fatigue characteristics and manufacturing method thereof
JPWO2017039012A1 (en) Spring steel wire and spring
JP2010163689A (en) Oil-tempered wire, method for manufacturing the same, and spring
JP3851095B2 (en) Heat-treated steel wire for high-strength springs
JP2007063584A (en) Oil tempered wire and manufacturing method therefor
JP2007302950A (en) High-strength spring steel wire superior in setting resistance
CN108138292A (en) The method for manufacturing carburizing forging steel
JP2013007089A (en) Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
JP6436232B2 (en) Spring steel
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
US10533235B2 (en) Hot-working tool material, method for manufacturing hot-working tool, and hot-working tool
JP6356309B1 (en) High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
JP6420656B2 (en) Spring steel, spring and method for producing them
JP2004190116A (en) Steel wire for spring
WO2020245285A1 (en) A martensitic stainless alloy
WO2018074003A1 (en) High-strength spring, method for producing same, steel for high-strength spring, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220228

R150 Certificate of patent or registration of utility model

Ref document number: 7044109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150