JPWO2018034196A1 - Wireless power transmission system - Google Patents

Wireless power transmission system Download PDF

Info

Publication number
JPWO2018034196A1
JPWO2018034196A1 JP2018534360A JP2018534360A JPWO2018034196A1 JP WO2018034196 A1 JPWO2018034196 A1 JP WO2018034196A1 JP 2018534360 A JP2018534360 A JP 2018534360A JP 2018534360 A JP2018534360 A JP 2018534360A JP WO2018034196 A1 JPWO2018034196 A1 JP WO2018034196A1
Authority
JP
Japan
Prior art keywords
circuit
power
power transmission
coil
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018534360A
Other languages
Japanese (ja)
Other versions
JP6819951B2 (en
Inventor
菊地 秀雄
秀雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2018034196A1 publication Critical patent/JPWO2018034196A1/en
Application granted granted Critical
Publication of JP6819951B2 publication Critical patent/JP6819951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

送電装置の交流電源回路から交流電力を供給した送電コイルから、空間を隔てた受電装置の受電コイルまで、電磁誘導により無線電力を伝送させ、前記受電コイルから交流電力を負荷回路に伝送して消費させる無線電力伝送システムであって、前記交流電源回路から前記送電コイルまでの間か、又は、前記受電コイルから前記負荷回路の間に中継電磁誘導回路を設け、劾中継電磁誘導回路は、1次側中継コイルを含む1次側共振回路と、2次側中継コイルを含む2次側共振回路と、前記1次側中継コイルと前記2次側中継コイルの相互インダクタンスを可変にする相互インダクタンス可変手段を有する無線電力伝送システムを用いることで、送電コイルと受電コイルの相互インダクタンスが変動する場合に負荷に安定して電力を供給する。Wireless power is transmitted by electromagnetic induction from the AC power supply circuit that supplies AC power from the AC power supply circuit of the power transmission device to the power reception coil of the power reception device that is separated by space, AC power is transmitted from the power reception coil to the load circuit, and consumed. In the wireless power transmission system, a relay electromagnetic induction circuit is provided between the AC power supply circuit and the power transmission coil or between the power reception coil and the load circuit, and the relay electromagnetic induction circuit is a primary Mutual inductance variable means for varying mutual inductance of a primary side resonance circuit including a side relay coil, a secondary side resonance circuit including a secondary side relay coil, and the primary side relay coil and the secondary side relay coil By using the wireless power transmission system having the above, when the mutual inductance of the transmitting coil and the receiving coil fluctuates, power is stably supplied to the load.

Description

本発明は、電源回路からの電力を空間を越えて負荷まで伝送し消費させる無線電力伝送システムに関する。   The present invention relates to a wireless power transmission system for transmitting and consuming power from a power supply circuit across a space to a load.

従来、電源コードや送電ケーブルを用いない非接触電力伝送装置として、例えば特許文献1のように、送電回路側の送電コイルの交流磁場と受電回路側の受電側共振回路の受電コイルの交流磁場を共鳴させて、送電回路の送電コイルから受電回路の受電コイルに無線で電力を伝送する無線電力伝送システムが提案されている。特許文献1では、受電回路を、受電コイルを含む受電側共振回路と整流回路と蓄電装置とで構成し、受電側共振回路の受電コイルが受電した交流電力を整流回路で直流電力に整流して蓄電装置に充電している。   Conventionally, as a non-contact power transmission device that does not use a power cord or a power transmission cable, for example, as disclosed in Patent Document 1, an AC magnetic field of a power transmission coil of a power transmission circuit and an AC magnetic field of a power receiving coil of a power receiving side resonant circuit of a power receiving circuit A wireless power transmission system has been proposed that resonates and wirelessly transmits power from a power transmission coil of a power transmission circuit to a power reception coil of a power reception circuit. In Patent Document 1, a power receiving circuit is configured by a power receiving side resonance circuit including a power receiving coil, a rectifier circuit, and a storage device, and alternating current power received by the power receiving coil of the power receiving side resonance circuit is rectified to DC power by the rectifier circuit. The storage device is being charged.

また、特許文献2では、受電回路の負荷のインピーダンスの変動による送電側と受電側のインピーダンスの不整合を改善するために、整流回路と蓄電装置の間に直流電圧変換回路を設置して回路のインピーダンスを整合する技術が提案されている。特許文献2では、その直流電圧変換回路として、チョッパ回路を用い、チョッパ回路のスイッチング素子のスイッチを開閉するスイッチングパルスの幅を変えることでインピーダンスの変換比を調整している。   Further, in Patent Document 2, in order to improve the impedance mismatch between the power transmission side and the power reception side due to the fluctuation of the impedance of the load of the power reception circuit, a DC voltage conversion circuit is installed between the rectifier circuit and the power storage device. Techniques for matching impedance have been proposed. In patent document 2, the conversion ratio of impedance is adjusted by changing the width | variety of the switching pulse which opens and closes the switch of the switching element of a chopper circuit, using a chopper circuit as the direct current voltage conversion circuit.

特開2009−106136号公報JP, 2009-106136, A 国際公開第2010/035321号公報International Publication No. 2010/035321

しかし、特許文献1の無線電力伝送システムでは、送電コイルと受電コイルが離れ両コイルの相互インダクタンスが小さくなると、受電側共振回路に流れる共振電流が小さくなり受電コイルが送電コイルから受け取る受電電力が少なくなり、受電回路が十分な大きさの無線電力を受電できなくなる問題があった。   However, in the wireless power transmission system of Patent Document 1, when the power transmission coil and the power reception coil are separated and the mutual inductance of both coils decreases, the resonance current flowing in the power reception side resonance circuit decreases and the received power received by the power reception coil from the power transmission coil is small. As a result, there has been a problem that the power receiving circuit can not receive a sufficient amount of wireless power.

特許文献2の無線電力伝送システムでは、整流回路と負荷の蓄電装置の間に直流電圧変換回路を挿入するので、その直流電圧変換回路のインピーダンスの変換比を調整して、受電コイルから負荷側を見た負荷のインピーダンスを小さくすることができる。それにより、受電側共振回路の共振のQ値を高くして受電側共振回路の共振電流を大きくすることができ、それにより受電回路が受電する無線電力を大きくできると考える。   In the wireless power transmission system of Patent Document 2, since the DC voltage conversion circuit is inserted between the rectifier circuit and the storage device of the load, the conversion ratio of the impedance of the DC voltage conversion circuit is adjusted, and the load side is The impedance of the seen load can be reduced. Thus, it is considered that the Q value of the resonance of the power reception side resonance circuit can be increased to increase the resonance current of the power reception side resonance circuit, whereby the wireless power received by the power reception circuit can be increased.

しかし、特許文献2のチョッパ回路を用いた直流電圧変換回路では、その出力端子に接続する負荷抵抗が大きい場合にチョッパ回路の出力電圧が異常になる等の問題がある。チョッパ回路では、負荷の状況によってそのような問題が生じた場合には受電側共振回路に流れる共振電流が安定しないという問題があった。   However, the DC voltage conversion circuit using the chopper circuit of Patent Document 2 has a problem that the output voltage of the chopper circuit becomes abnormal when the load resistance connected to the output terminal is large. In the chopper circuit, there is a problem that the resonance current flowing in the power receiving side resonance circuit is not stable when such a problem occurs depending on the condition of the load.

そのため、本発明の課題は、送電コイルと受電コイルの相互インダクタンスが変動する場合に、負荷に安定して電力を供給する無線電力伝送システムを提供することである。   Therefore, an object of the present invention is to provide a wireless power transmission system for stably supplying power to a load when the mutual inductance of the power transmission coil and the power reception coil fluctuates.

この課題を解決するために、本発明は、送電装置の交流電源回路から交流電力を供給した送電コイルから、空間を隔てた受電装置の受電コイルまで、電磁誘導により無線電力を伝送させ、前記受電コイルから交流電力を負荷回路に伝送して消費させる無線電力伝送システムであって、前記交流電源回路から前記送電コイルまでの間か、又は、前記受電コイルから前記負荷回路の間に中継電磁誘導回路を設け、劾中継電磁誘導回路は、1次側中継コイルを含む1次側共振回路と、2次側中継コイルを含む2次側共振回路と、前記1次側中継コイルと前記2次側中継コイルの相互インダクタンスを可変にする相互インダクタンス可変手段を有することを特徴とする無線電力伝送システムである。   In order to solve this problem, according to the present invention, wireless power is transmitted by electromagnetic induction from a power transmission coil supplying AC power from an AC power supply circuit of a power transmission apparatus to a power receiving coil of a power receiving apparatus separated by a space. A wireless power transmission system for transmitting AC power from a coil to a load circuit for consumption, comprising: a relay electromagnetic induction circuit between the AC power supply circuit and the power transmission coil or between the power receiving coil and the load circuit The relay electromagnetic induction circuit includes a primary resonance circuit including a primary relay coil, a secondary resonance circuit including a secondary relay coil, the primary relay coil, and the secondary relay. It is a wireless power transmission system characterized by having mutual inductance variable means for making the mutual inductance of coils variable.

本発明は、この構成により、送電コイルと受電コイルの相互インダクタンスの変動に対して、相互インダクタンス可変手段が、中継電磁誘導回路の1次側中継コイルと2次側中継コイルの相互インダクタンスを追従させて変化させることで、負荷に安定して電力を供給することができる効果がある。
According to this configuration, the mutual inductance varying means causes the mutual inductance of the primary side relay coil and the secondary side relay coil of the relay electromagnetic induction circuit to follow the variation in the mutual inductance of the power transmission coil and the power reception coil. By changing the voltage, it is possible to stably supply power to the load.

また、本発明は、上記の無線電力伝送システムであって、
前記受電装置が、前記受電コイルを含む受電共振回路と、前記負荷回路を有し、
前記送電装置が、前記交流電源回路と、前記中継電磁誘導回路と、前記送電コイルを含む送電共振回路を有し、
前記中継電磁誘導回路の前記1次側共振回路に前記交流電源回路が接続され、
前記2次側共振回路に前記送電共振回路が接続され、
前記交流電源回路の交流の周波数と、前記1次側共振回路の共振周波数と、前記2次側共振回路と前記送電共振回路と前記受電共振回路の回路全体の共振周波数を一致させたことを特徴とする無線電力伝送システムである。
The present invention is also the above wireless power transmission system, wherein
The power reception device includes a power reception resonance circuit including the power reception coil, and the load circuit.
The power transmission device includes a power transmission resonance circuit including the AC power supply circuit, the relay electromagnetic induction circuit, and the power transmission coil.
The AC power supply circuit is connected to the primary side resonance circuit of the relay electromagnetic induction circuit,
The power transmission resonant circuit is connected to the secondary side resonant circuit,
The alternating current frequency of the alternating current power supply circuit, the resonance frequency of the primary side resonance circuit, and the resonance frequency of the entire secondary side resonance circuit, the power transmission resonance circuit, and the power reception resonance circuit are matched. Wireless power transmission system.

また、本発明は、上記の無線電力伝送システムであって、
前記送電装置が、前記交流電源回路と、前記送電コイルを含む送電共振回路を有し、
前記受電装置が、前記受電コイルを含む受電共振回路と、前記中継電磁誘導回路と、前記負荷回路を有し、
前記中継電磁誘導回路の前記1次側共振回路に前記受電共振回路が接続され、
前記2次側共振回路に前記負荷回路が接続され、
前記交流電源回路の交流の周波数と、前記送電共振回路と前記受電共振回路と前記1次側共振回路の回路全体の共振周波数と、前記2次側共振回路の共振周波数を一致させたことを特徴とする無線電力伝送システムである。
The present invention is also the above wireless power transmission system, wherein
The power transmission device includes the AC power supply circuit, and a power transmission resonant circuit including the power transmission coil.
The power reception device includes a power reception resonance circuit including the power reception coil, the relay electromagnetic induction circuit, and the load circuit.
The power reception resonance circuit is connected to the primary side resonance circuit of the relay electromagnetic induction circuit,
The load circuit is connected to the secondary side resonance circuit,
The alternating current frequency of the alternating current power supply circuit, the resonance frequency of the entire power transmission resonance circuit, the power reception resonance circuit, and the entire primary side resonance circuit are matched with the resonance frequency of the secondary side resonance circuit. Wireless power transmission system.

本発明は、この構成により、送電コイルと受電コイルの相互インダクタンスの変動に対して、相互インダクタンス可変手段が、中継電磁誘導回路の1次側中継コイルと2次側中継コイルの相互インダクタンスを追従させて変化させることで、負荷に安定して電力を供給することができる効果がある。   According to this configuration, the mutual inductance varying means causes the mutual inductance of the primary side relay coil and the secondary side relay coil of the relay electromagnetic induction circuit to follow the variation in the mutual inductance of the power transmission coil and the power reception coil. By changing the voltage, it is possible to stably supply power to the load.

本発明の第1の実施形態の無線電力伝送システムの送電装置と受電装置の全体を表す回路図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a circuit diagram showing the whole power transmission apparatus of the wireless power transmission system of 1st Embodiment of this invention, and a power receiving apparatus. 本発明の第1の実施形態の送電装置側の相互インダクタンス可変手段の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the mutual inductance variable means by the side of the power transmission apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の無線電力伝送システムの送電装置と受電装置の全体を表す回路図である。It is a circuit diagram showing the whole power transmission device and power receiving device of a wireless power transmission system of a 2nd embodiment of the present invention. 本発明の第2の実施形態の送電装置側の相互インダクタンス可変手段の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the mutual inductance variable means by the side of the power transmission apparatus of the 2nd Embodiment of this invention. 本発明の第4の実施形態の無線電力伝送システムの送電装置と受電装置の全体を表す回路図である。It is a circuit diagram showing the whole power transmission device and power receiving device of a wireless power transmission system of a 4th embodiment of the present invention. 本発明の第4の実施形態の送電装置側の相互インダクタンス可変手段の構成を示す概略平面図である。It is a schematic plan view which shows the structure of the mutual inductance variable means by the side of the power transmission apparatus of the 4th Embodiment of this invention. 本発明の第5の実施形態の無線電力伝送システムの送電装置と受電装置の全体を表す回路図である。It is a circuit diagram showing the whole power transmission apparatus and power receiving apparatus of the wireless power transmission system of the 5th Embodiment of this invention. 本発明の第6の実施形態の無線電力伝送システムの送電装置と受電装置の全体を表す回路図である。It is a circuit diagram showing the whole power transmission device and power receiving device of a wireless power transmission system of a 6th embodiment of the present invention.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described based on the drawings.

<第1の実施形態>
図1と図2を参照して本発明の第1の実施形態を説明する。図1の回路図の様に、第1の実施形態の無線電力伝送システムは、送電装置10と受電装置20から成る。
First Embodiment
A first embodiment of the present invention will be described with reference to FIGS. 1 and 2. As in the circuit diagram of FIG. 1, the wireless power transmission system of the first embodiment includes a power transmission device 10 and a power reception device 20.

送電装置10の送電共振回路13の送電コイルL3と、受電装置20の受電共振回路21の受電コイルL4を接近させ相互インダクタンスMで電磁誘導させて、送電コイルL3から受電コイルL4に空間を隔てて無線電力を伝送させる。受電装置20の受電共振回路21には負荷回路30を接続し、その負荷回路30で電力を消費させる。   The power transmission coil L3 of the power transmission resonance circuit 13 of the power transmission device 10 and the power reception coil L4 of the power reception resonance circuit 21 of the power reception device 20 are approached to cause electromagnetic induction with mutual inductance M to separate a space from the power transmission coil L3 to the power reception coil L4. Transmit wireless power. A load circuit 30 is connected to the power reception resonance circuit 21 of the power reception device 20, and the load circuit 30 consumes power.

(送電装置10)
送電装置10は、周波数fの出力電圧Eの定電圧の交流を出力する交流電源回路11と、その周波数fで共振する送電装置用中継電磁誘導回路12と送電共振回路13で構成する。
(Power transmission device 10)
The power transmission device 10 includes an AC power supply circuit 11 that outputs an alternating current of a constant voltage of an output voltage E of a frequency f, a power transmission device relay electromagnetic induction circuit 12 that resonates at the frequency f, and a power transmission resonance circuit 13.

(交流電源回路11)
送電装置10の交流電源回路11は、周波数fの出力電流i1を定電圧で供給する。この交流電源回路11に、送電装置用中継電磁誘導回路12の1次側共振回路を直列に接続して、出力電流i1を流す。
(AC power supply circuit 11)
The AC power supply circuit 11 of the power transmission device 10 supplies an output current i1 of frequency f at a constant voltage. The primary side resonance circuit of the power transmission device relay electromagnetic induction circuit 12 is connected in series to the AC power supply circuit 11, and an output current i1 flows.

(送電装置用中継電磁誘導回路12)
送電装置10の送電装置用中継電磁誘導回路12は、1次側中継コイルL1を含む1次側共振回路と、2次側中継コイルL2を含む2次側共振回路と、1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を可変にする送電装置用相互インダクタンス可変手段12aを有する。
(Relay electromagnetic induction circuit 12 for power transmission equipment)
The power transmission device relay electromagnetic induction circuit 12 of the power transmission device 10 includes a primary side resonance circuit including the primary side relay coil L1, a secondary side resonance circuit including the secondary side relay coil L2, and a primary side relay coil L1. And a power transmission apparatus mutual inductance variable means 12a for making the mutual inductance M1 of the secondary side relay coil L2 variable.

1次側共振回路は、1次側共振用容量C1と1次側中継コイルL1で構成し、2次側共振回路は、2次側共振用容量C2と2次側中継コイルL2で構成する。1次側共振回路の1次側中継コイルL1と2次側共振回路の2次側中継コイルL2を相互インダクタンスM1で電磁誘導させる。1次側共振回路と2次側共振回路は各々、交流電源回路11の周波数fで共振させる。   The primary side resonance circuit is composed of a primary side resonance capacitor C1 and a primary side relay coil L1, and the secondary side resonance circuit is composed of a secondary side resonance capacitor C2 and a secondary side relay coil L2. The primary side relay coil L1 of the primary side resonant circuit and the secondary side relay coil L2 of the secondary side resonant circuit are electromagnetically induced by the mutual inductance M1. Each of the primary side resonant circuit and the secondary side resonant circuit resonates at the frequency f of the AC power supply circuit 11.

交流電源回路11を1次側共振回路に直列に接続して交流電源回路11の出力電流i1を流し、2次側共振回路に直列に送電共振回路13を接続して共振電流i2を流す。   The AC power supply circuit 11 is connected in series to the primary side resonance circuit to flow the output current i1 of the AC power supply circuit 11, and the power transmission resonance circuit 13 is connected in series to the secondary side resonance circuit to flow the resonance current i2.

ここで、送電装置用中継電磁誘導回路12の2次側中継コイルL2と2次側共振用容量C2を、送電共振回路13の送電共振用容量C3と送電コイルL3に直列に接続して、その全体を交流電源回路11の交流電力の周波数fで共振させる。   Here, the secondary relay coil L2 and the secondary resonance capacitor C2 of the relay electromagnetic induction circuit 12 for power transmission device are connected in series to the power transmission resonance capacitor C3 of the power transmission resonant circuit 13 and the power transmission coil L3, and The whole is resonated at the frequency f of the AC power of the AC power supply circuit 11.

(送電装置用相互インダクタンス可変手段12a)
送電装置用相互インダクタンス可変手段12aを用いて、1次側中継コイルL1と2次側中継コイルL2の電磁誘導の相互インダクタンスM1を可変にする。この送電装置用相互インダクタンス可変手段12aは、送電装置用中継電磁誘導回路12の1次側中継コイルL1又は2次側中継コイルコイルL2を機械的に動かして1次側中継コイルL1と2次側中継コイルコイルL2の相対位置を変えることで相互インダクタンスM1を変えられる様にすることができる。
(Mutual inductance variable means 12a for power transmission equipment)
The mutual inductance M1 of the electromagnetic induction of the primary side relay coil L1 and the secondary side relay coil L2 is made variable using the power transmission device mutual inductance variable means 12a. The power transmission device mutual inductance varying means 12a mechanically moves the primary side relay coil L1 or the secondary side relay coil coil L2 of the power transmission device relay electromagnetic induction circuit 12 to generate the primary side relay coil L1 and the secondary side. The mutual inductance M1 can be changed by changing the relative position of the relay coil L2.

例えば、1次側中継コイルL1と2次側中継コイルL2を対向させる間隔を自由に変える送電装置用相互インダクタンス可変手段12aを用いるか、あるいは、図2の平面図の様に1次側中継コイルL1と2次側中継コイルL2の軸を自由にずらす送電装置用相互インダクタンス可変手段12aを用いることで、両コイル間の相互インダクタンスM1を自由に調整できるようにする。   For example, the mutual inductance variable means 12a for a power transmission apparatus can be used to freely change the distance between the primary relay coil L1 and the secondary relay coil L2, or as shown in the plan view of FIG. The mutual inductance M1 between the two coils can be freely adjusted by using the mutual inductance variable means 12a for the power transmission device which freely shifts the axis of L1 and the secondary side relay coil L2.

(送電共振回路13)
送電装置10の送電共振回路13は、送電装置用中継電磁誘導回路12の2次側共振回路に直列に接続する。送電共振回路13は、送電共振用容量C3と送電コイルL3で構成する。送電共振回路13とそれに直列に接続した2次側共振回路から成る回路全体を、1次側共振回路の共振周波数fと同じ共振周波数fで共振させて共振電流i2を流す。
(Transmission resonance circuit 13)
The power transmission resonance circuit 13 of the power transmission device 10 is connected in series to the secondary side resonance circuit of the power transmission device relay electromagnetic induction circuit 12. The power transmission resonance circuit 13 includes a power transmission resonance capacitor C3 and a power transmission coil L3. The entire circuit consisting of the power transmission resonant circuit 13 and the secondary side resonant circuit connected in series is resonated at the same resonant frequency f as the resonant frequency f of the primary side resonant circuit to flow a resonant current i2.

(受電装置20)
受電装置20は、受電共振回路21に直列に負荷回路30を接続して構成する。受電共振回路21は、送電共振回路13の送電コイルL3に電磁誘導する受電コイルL4と、受電共振用容量C4を直列に接続して構成する。受電共振回路21を、送電共振回路13と同じ共振周波数fで共振させて共振電流i3を流し、負荷回路30に流し込む。
(Power receiving device 20)
The power reception device 20 is configured by connecting a load circuit 30 in series to the power reception resonance circuit 21. The power reception resonance circuit 21 is configured by connecting in series a power reception coil L4 that performs electromagnetic induction on the power transmission coil L3 of the power transmission resonance circuit 13 and a power reception resonance capacitor C4. The power reception resonance circuit 21 is caused to resonate at the same resonance frequency f as the power transmission resonance circuit 13 to flow the resonance current i3 and flow it into the load circuit 30.

(負荷回路30)
負荷回路30は、受電共振回路21に接続した整流回路31と、蓄電装置32と、負荷33で構成する。整流回路31は、受電共振回路21の共振電流i3を直流に整流する。その整流回路31の出力する直流の電力を、コンデンサや2次電池で構成する蓄電装置32に蓄電しつつ、発光素子やモータ等の負荷33で消費させる。
(Load circuit 30)
The load circuit 30 includes a rectifier circuit 31 connected to the power reception resonance circuit 21, a power storage device 32, and a load 33. The rectification circuit 31 rectifies the resonance current i3 of the power reception resonance circuit 21 into a direct current. The direct current power output from the rectifier circuit 31 is stored in the storage device 32 formed of a capacitor or a secondary battery and consumed by the load 33 such as a light emitting element or a motor.

(送電装置用中継電磁誘導回路12の2次側共振電流制限機能)
交流電源回路11の出力電圧をEとし、共振周波数fの角周波数をωとすると、1次側中継コイルL1に2次側中継コイルL2が相互インダクタンスM1で電磁結合している場合に、2次側中継コイルL2と送電共振回路13の送電コイルL3に流れる共振電流i2は次の式1で計算できる。
(式1) i2=E/(jωM1)
(Secondary resonance current limiting function of relay electromagnetic induction circuit 12 for power transmission equipment)
Assuming that the output voltage of the AC power supply circuit 11 is E and the angular frequency of the resonance frequency f is ω, when the secondary side relay coil L2 is electromagnetically coupled to the primary side relay coil L1 by mutual inductance M1, secondary The resonance current i2 flowing through the side relay coil L2 and the power transmission coil L3 of the power transmission resonance circuit 13 can be calculated by the following equation 1.
(Formula 1) i2 = E / (jωM1)

この式1は、2次側中継コイルL2と送電コイルL3に流れる共振電流i2が、受電装置20に影響されずに、1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1にのみ反比例することを意味する。   In Equation 1, the resonance current i2 flowing through the secondary relay coil L2 and the power transmission coil L3 is not influenced by the power receiving device 20, and only the mutual inductance M1 of the primary relay coil L1 and the secondary relay coil L2 is It means that it is inversely proportional.

この式1により、定電圧の交流電源回路11に接続した送電装置用中継電磁誘導回路12の送電装置用相互インダクタンス可変手段12aを固定することで1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を一定にする場合に、2次側共振回路と送電共振回路13に流す共振電流i2が一定値に維持され、2次側共振電流制限効果がある。すなわち、定電圧の交流電源回路11に接続した送電装置用中継電磁誘導回路12は、送電コイルL3と受電コイルL4の相互インダクタンスMに影響されずに、送電コイルL3に流す共振電流i2を一定値に制限することができる。   By fixing the mutual inductance variable means 12a for the power transmission device of the relay electromagnetic induction circuit 12 for the power transmission device connected to the AC power supply circuit 11 of constant voltage according to this equation 1, the primary side relay coil L1 and the secondary side relay coil L2 When the mutual inductance M1 is made constant, the resonance current i2 flowing through the secondary side resonance circuit and the power transmission resonance circuit 13 is maintained at a constant value, and there is a secondary side resonance current limiting effect. That is, the relay electromagnetic induction circuit 12 for power transmission device connected to the AC power supply circuit 11 of constant voltage is not influenced by the mutual inductance M of the power transmission coil L3 and the power reception coil L4, and the resonant current i2 to flow through the power transmission coil L3 is constant value Can be limited to

なお、送電装置用中継電磁誘導回路12の1次側中継コイルL1のコイルの巻き数と2次側中継コイルL2のコイルの巻き数を変えることで、2次側中継コイルL2と送電共振回路13の送電コイルL3に流れる共振電流i2を変えることができる。例えば、送電装置用中継電磁誘導回路12の1次側中継コイルL1のコイルの巻き数に対して、2次側中継コイルL2のコイルの巻き数を2分の1にすると、共振電流i2の出力電圧Eに対する比を2倍にすることができる。   The secondary relay coil L2 and the power transmission resonance circuit 13 can be obtained by changing the number of turns of the primary relay coil L1 and the number of turns of the secondary relay coil L2 in the power transmission device relay electromagnetic induction circuit 12. The resonant current i2 flowing to the power transmission coil L3 can be changed. For example, when the number of turns of the secondary relay coil L2 is halved with respect to the number of turns of the primary relay coil L1 of the power transmission device relay electromagnetic induction circuit 12, the output of the resonance current i2 The ratio to the voltage E can be doubled.

受電装置20の負荷回路30に流れる共振電流i3は、次の式2の関係で、交流電源回路11の出力電流i1に影響する。
(式2) i1=(M/M1)i3
The resonance current i3 flowing through the load circuit 30 of the power reception device 20 affects the output current i1 of the AC power supply circuit 11 according to the following equation (2).
(Expression 2) i1 = (M / M1) i3

式2は、負荷回路30に共振電流i3が流れる場合には、交流電源回路11から式2で表される出力電流i1が流れ出ることを意味している。そのことは、交流電源回路11の出力端子の位置での影像インピーダンスは、負荷回路30の入力インピーダンスの(M1/M)の二乗倍であることを意味する。そのため、送電コイルL3と受電コイルL4の相互インダクタンスMが小さくなると、その影像インピーダンスは大きくなり、交流電源回路11の出力電流i1が小さくなることを意味する。   Expression 2 means that when the resonance current i3 flows in the load circuit 30, the output current i1 represented by Expression 2 flows out from the AC power supply circuit 11. That means that the image impedance at the position of the output terminal of the AC power supply circuit 11 is a square multiple of (M1 / M) of the input impedance of the load circuit 30. Therefore, when the mutual inductance M of the power transmission coil L3 and the power reception coil L4 decreases, the image impedance increases, which means that the output current i1 of the AC power supply circuit 11 decreases.

従来は、定電圧の交流電源回路11に直列に送電共振回路13を接続した回路では、交流電源回路11の出力電流i1が送電共振回路13の送電コイルL3に流れ、送電コイルL3の共振電流i2=出力電流i1であるが、その送電コイルL3と受電コイルL4の間の距離が大きくなり相互インダクタンスMが小さくなると、その共振電流i2及び出力電流i1が無限に大きくなる問題があった。   Conventionally, in a circuit in which the power transmission resonance circuit 13 is connected in series to the AC power supply circuit 11 of constant voltage, the output current i1 of the AC power supply circuit 11 flows to the power transmission coil L3 of the power transmission resonance circuit 13 and the resonance current i2 of the power transmission coil L3 Although the output current i1 is large, when the distance between the power transmission coil L3 and the power reception coil L4 increases and the mutual inductance M decreases, there is a problem that the resonance current i2 and the output current i1 increase infinitely.

本発明では、送電装置用中継電磁誘導回路12を定電圧の交流電源回路11と送電共振回路13の間に設置することで、この問題が解消され、送電共振回路13の送電コイルL3に流れる共振電流i2を一定値に制限できる効果がある。   In the present invention, this problem is solved by installing the relay electromagnetic induction circuit 12 for power transmission between the AC power supply circuit 11 of constant voltage and the power transmission resonance circuit 13, and the resonance flowing in the power transmission coil L 3 of the power transmission resonance circuit 13. The current i2 can be limited to a constant value.

ここで、送電共振回路13の共振周波数fと同じ共振周波数fを持つ2次側共振回路と1次側共振回路を持つ送電装置用中継電磁誘導回路12を用い、その共振周波数fの交流電源回路11を1次側共振回路に直列に接続する事が重要である。   Here, using the relay electromagnetic induction circuit 12 for a power transmission device having a secondary side resonance circuit having the same resonance frequency f as the resonance frequency f of the power transmission resonance circuit 13 and a primary side resonance circuit, an AC power supply circuit of the resonance frequency f It is important to connect 11 in series to the primary side resonant circuit.

この交流電源回路11の交流の周波数が、送電共振回路13及び送電装置用中継電磁誘導回路12の共振周波数fから外れると、送電共振回路13の送電コイルL3に無限に大きな共振電流i2が流れる問題が生じ得るからである。   When the alternating current frequency of the alternating current power supply circuit 11 deviates from the resonant frequency f of the power transmission resonant circuit 13 and the relay electromagnetic induction circuit 12 for power transmission device, an infinitely large resonant current i2 flows in the power transmission coil L3 of the power transmission resonant circuit 13 Can occur.

そのため、交流電源回路11の周波数を、送電共振回路13及び送電装置用中継電磁誘導回路12の共振周波数fに常に一致させる周波数安定化回路を設けることが望ましい。また、交流電源回路11の周波数が送電共振回路13及び送電装置用中継電磁誘導回路12の共振周波数fから外れた場合に交流電源回路11から送電コイルL3に至る回路の途中の接続を切り離す、安全回路を設けることが望ましい。   Therefore, it is desirable to provide a frequency stabilization circuit that makes the frequency of the AC power supply circuit 11 always coincide with the resonant frequency f of the power transmission resonant circuit 13 and the relay electromagnetic induction circuit 12 for power transmission device. Also, when the frequency of the AC power supply circuit 11 deviates from the resonant frequency f of the power transmission resonance circuit 13 and the relay electromagnetic induction circuit 12 for power transmission device, the connection on the way from the AC power supply circuit 11 to the power transmission coil L3 is disconnected It is desirable to provide a circuit.

(負荷回路30に加わる電圧E4)
送電コイルL3に流れる共振電流i2が式1で表されるので、送電コイルL3に相互インダクタンスMで電磁誘導する受電コイルL4に、次の式3で表される誘導起電力E4が発生し、その誘導起電力E4が負荷回路30に加わる。
(式3) E4=jωM×i2=(M/M1)E
この式3は、負荷回路30に加わる、受電コイルL4に誘起される誘導起電力E4が、交流電源回路11の出力電圧Eの(M/M1)倍であることを示す。
(Voltage E4 applied to load circuit 30)
Since the resonance current i2 flowing through the power transmission coil L3 is expressed by the formula 1, an induced electromotive force E4 expressed by the following formula 3 is generated in the power receiving coil L4 electromagnetically induced by the mutual inductance M in the power transmission coil L3. The induced electromotive force E4 is applied to the load circuit 30.
(Equation 3) E4 = jωM × i2 = (M / M1) E
Equation 3 indicates that the induced electromotive force E4 induced in the power receiving coil L4 applied to the load circuit 30 is (M / M1) times the output voltage E of the AC power supply circuit 11.

(出力電力安定化制御手段40)
出力電力安定化制御手段40は、定電圧の交流電源回路11の出力電流i1を測定する電源電流測定手段41と出力電力制御演算手段42で構成する。出力電力安定化制御手段40の出力電力制御演算手段42が、電源電流測定手段41の測定した交流電源回路11の出力電流i1を一定値にするように送電装置用相互インダクタンス可変手段12aを動作させる制御をすることで、負荷回路30への電力の供給を安定化させることができる。
(Output power stabilization control means 40)
The output power stabilization control unit 40 includes a power supply current measurement unit 41 that measures the output current i 1 of the constant voltage AC power supply circuit 11 and an output power control calculation unit 42. The output power control calculation means 42 of the output power stabilization control means 40 operates the power transmission device mutual inductance variable means 12a so that the output current i1 of the AC power supply circuit 11 measured by the power supply current measurement means 41 has a constant value. By performing control, the supply of power to the load circuit 30 can be stabilized.

送電装置10の送電コイルL3と受電装置20の受電コイルL4の間の距離が変動すると、送電コイルL3と受電コイルL4の電磁誘導の相互インダクタンスMが変動する。その場合に、出力電力安定化制御手段40の電源電流測定手段41が交流電源回路11の出力電流i1の変動を測定し、その測定結果に基づき、送電装置用相互インダクタンス可変手段12aを動作させて、1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を相互インダクタンスMに比例させて変動させる。   When the distance between the power transmission coil L3 of the power transmission device 10 and the power reception coil L4 of the power reception device 20 changes, the mutual inductance M of the electromagnetic induction of the power transmission coil L3 and the power reception coil L4 changes. In that case, the power supply current measurement unit 41 of the output power stabilization control unit 40 measures the fluctuation of the output current i1 of the AC power supply circuit 11, and operates the power transmission device mutual inductance variable unit 12a based on the measurement result. The mutual inductance M1 of the primary side relay coil L1 and the secondary side relay coil L2 is varied in proportion to the mutual inductance M.

その制御により、式3に従って、受電共振回路21の受電コイルL4に誘導する誘導起電力E4が一定値に維持され、その誘導起電力E4を負荷回路30へ加えることで、負荷回路30へ安定した一定の電力を供給でき、負荷回路30へ流れる共振電流i3も安定化できる効果がある。そのとき、式2に従って交流電源回路11の出力電流i1も一定に安定化できる。   By the control, the induced electromotive force E4 induced to the power receiving coil L4 of the power receiving resonant circuit 21 is maintained at a constant value according to the equation 3, and the induced electromotive force E4 is added to the load circuit 30 to stabilize the load circuit 30. The constant power can be supplied, and the resonance current i3 flowing to the load circuit 30 can also be stabilized. At that time, the output current i1 of the AC power supply circuit 11 can also be stabilized in accordance with Equation 2.

また、出力電力制御演算手段42は、受電装置20が送電装置10の近くに無い場合には、受電装置20の受電コイルL4を電源電流測定手段41を用いて探索する。すなわち、電源電流測定手段41が交流電源回路11の出力電流i1の増加を測定することで、送電コイルL3への受電コイルL4の接近を検知する。ここで、受電コイルL4の検出の感度を高くするために、出力電力制御演算手段42が間欠的に相互インダクタンスM1を小さくして送電コイルL3に流す電流i2及び交流電源回路11の出力電流i1を大きくする制御を行なう。   Further, when the power receiving device 20 is not near the power transmission device 10, the output power control calculation means 42 searches for the power receiving coil L4 of the power receiving device 20 using the power supply current measurement means 41. That is, the power supply current measurement means 41 measures an increase in the output current i1 of the AC power supply circuit 11, thereby detecting the approach of the power receiving coil L4 to the power transmitting coil L3. Here, in order to increase the sensitivity of detection of the power receiving coil L4, the output power control calculation means 42 intermittently reduces the mutual inductance M1 to cause the current i2 to flow through the power transmission coil L3 and the output current i1 of the AC power supply circuit 11 Control to increase.

<第2の実施形態>
図3と図4を参照して本発明の第2の実施形態を説明する。第2の実施形態は、第1の実施形態と同様に、送電装置10と受電装置20から成る。第2の実施形態が第1の実施形態と相違する点は、図3の回路図の様に、送電共振回路13が送電装置用中継電磁誘導回路12の2次側共振回路を兼ねている事である。
Second Embodiment
A second embodiment of the present invention will be described with reference to FIGS. 3 and 4. The second embodiment includes the power transmission device 10 and the power reception device 20 as in the first embodiment. The second embodiment is different from the first embodiment in that the power transmission resonant circuit 13 doubles as the secondary side resonance circuit of the power transmission device relay electromagnetic induction circuit 12 as shown in the circuit diagram of FIG. It is.

すなわち、送電共振回路13の送電コイルL3が、送電装置用中継電磁誘導回路12の2次側中継コイルL2を含み、送電共振回路13の送電共振用容量C3が、送電装置用中継電磁誘導回路12の2次側共振用容量C2を含んでいることである。この送電コイルL3と送電共振用容量C3で構成した送電共振回路13が交流電源回路11の周波数fで共振する。   That is, the power transmission coil L3 of the power transmission resonance circuit 13 includes the secondary relay coil L2 of the power transmission device relay electromagnetic induction circuit 12, and the power transmission resonance capacity C3 of the power transmission resonance circuit 13 is the power transmission device relay electromagnetic induction circuit 12. The secondary side resonance capacitor C2 is included. The power transmission resonance circuit 13 configured by the power transmission coil L3 and the power transmission resonance capacitor C3 resonates at the frequency f of the AC power supply circuit 11.

(送電装置用中継電磁誘導回路12)
送電装置10の送電装置用中継電磁誘導回路12は、交流電源回路11に直列に接続した1次側共振回路を有する。1次側共振回路は、1次側共振用容量C1と1次側中継コイルL1で構成し、交流電源回路11周波数fで共振する。送電装置用中継電磁誘導回路12の1次側中継コイルL1が、送電共振回路13の送電コイルL3に相互インダクタンスM1で電磁誘導する。送電共振回路13の送電コイルL3には、更に、受電共振回路21の受電コイルL4が相互インダクタンスMで電磁誘導する。
(Relay electromagnetic induction circuit 12 for power transmission equipment)
The power transmission device relay electromagnetic induction circuit 12 of the power transmission device 10 has a primary side resonance circuit connected in series to the AC power supply circuit 11. The primary side resonance circuit is configured of a primary side resonance capacitor C1 and a primary side relay coil L1, and resonates at the frequency f of the AC power supply circuit 11. The primary side relay coil L1 of the power transmission device relay electromagnetic induction circuit 12 electromagnetically induces the power transmission coil L3 of the power transmission resonance circuit 13 with the mutual inductance M1. In the power transmission coil L3 of the power transmission resonance circuit 13, the power reception coil L4 of the power reception resonance circuit 21 further induces electromagnetic induction with the mutual inductance M.

(送電装置用相互インダクタンス可変手段12a)
送電装置用相互インダクタンス可変手段12aは、図4の平面図の様に、送電装置用中継電磁誘導回路12の1次側中継コイルL1と送電共振回路13の送電コイルL3の重なる面積を自由に変える送電装置用相互インダクタンス可変手段12aを用いることで、両コイル間の相互インダクタンスM1を自由に調整できるようにする。また、送電装置用相互インダクタンス可変手段12aは、送電装置用中継電磁誘導回路12の1次側中継コイルL1と送電共振回路13の送電コイルL3を対向させる間隔を自由に変える構成の送電装置用相互インダクタンス可変手段12aを用いることもできる。
(Mutual inductance variable means 12a for power transmission equipment)
The power transmission device mutual inductance variable means 12a freely changes the overlapping area of the primary side relay coil L1 of the power transmission device relay electromagnetic induction circuit 12 and the power transmission coil L3 of the power transmission resonance circuit 13 as shown in the plan view of FIG. By using the power transmission device mutual inductance variable means 12a, the mutual inductance M1 between both coils can be adjusted freely. In addition, the mutual inductance variable means 12a for the power transmission device is configured to freely change the interval in which the primary side relay coil L1 of the power transmission device relay electromagnetic induction circuit 12 and the power transmission coil L3 of the power transmission resonance circuit 13 are opposed. The inductance variable means 12a can also be used.

<第3の実施形態>
第3の実施形態は、第1の実施形態と同様に、送電装置10と受電装置20から成り、送電装置10が送電装置用中継電磁誘導回路12を持つ。ここで、送電装置10の送電共振回路13の送電コイルL3と受電装置20の受電共振回路21の受電コイルL4が相互インダクタンスMで結合して一体回路になって共振し、その一体回路の共振周波数は、送電共振回路13の単独での共振周波数や受電共振回路21の単独での共振周波数と異なる共振周波数を持つ。
Third Embodiment
Similar to the first embodiment, the third embodiment includes the power transmission device 10 and the power reception device 20, and the power transmission device 10 has the power transmission device relay electromagnetic induction circuit 12. Here, the power transmission coil L3 of the power transmission resonance circuit 13 of the power transmission device 10 and the power reception coil L4 of the power reception resonance circuit 21 of the power reception device 20 are coupled by mutual inductance M to form an integrated circuit and resonate, and the resonant frequency of the integrated circuit Has a resonance frequency different from the resonance frequency of the power transmission resonance circuit 13 alone or the resonance frequency of the power reception resonance circuit 21 alone.

第3の実施形態が第1及び第2の実施形態と相違する点は、この送電共振回路13の送電コイルL3と受電共振回路21の受電コイルL4が電磁結合した一体回路の共振周波数と、送電装置用中継電磁誘導回路12の共振周波数と交流電源回路11の周波数fを同じ周波数にして電力を送電する点である。また、送電共振回路13の単独での共振周波数及び受電共振回路21の単独での共振周波数が、交流電源回路11の周波数fと異なる事が第1及び第2の実施形態と相違する。   The third embodiment is different from the first and second embodiments in that the resonant frequency of the integrated circuit in which the power transmission coil L3 of the power transmission resonant circuit 13 and the power receiving coil L4 of the power receiving resonant circuit 21 are electromagnetically coupled The point is that power is transmitted by making the resonance frequency of the device relay electromagnetic induction circuit 12 and the frequency f of the AC power supply circuit 11 the same. Further, the resonant frequency of the power transmission resonant circuit 13 alone and the resonant frequency of the power reception resonant circuit 21 alone are different from the frequency f of the AC power supply circuit 11 from the first and second embodiments.

(2次側共振電流制限機能)
第3の実施形態においても、定電圧の交流電源回路11に接続した送電装置用中継電磁誘導回路12の送電装置用相互インダクタンス可変手段12aを固定することで1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を一定にすると、2次側共振回路と送電共振回路13の送電コイルL3に流す共振電流i2が式1であらわされる一定値に維持される、2次側共振電流制限効果がある。第3の実施形態では、一体回路の送電コイルL3に流す共振電流i2にリンクして、受電コイルL4に流れる共振電流i3が共振電流i2と同程度の一定値に維持される効果がある。
(Secondary resonance current limit function)
Also in the third embodiment, the primary relay coil L1 and the secondary side are fixed by fixing the mutual inductance variable means 12a for the power transmission device relay electromagnetic induction circuit 12 connected to the constant voltage AC power supply circuit 11. When the mutual inductance M1 of the relay coil L2 is made constant, the resonance current i2 flowing through the power transmission coil L3 of the secondary side resonance circuit and the power transmission resonance circuit 13 is maintained at a constant value expressed by Equation 1 effective. In the third embodiment, there is an effect that the resonance current i3 flowing through the power receiving coil L4 is maintained at a constant value similar to that of the resonance current i2 by linking to the resonance current i2 flowing through the power transmission coil L3 of the integrated circuit.

受電コイルL4に流れる共振電流i3の送電コイルL3に流れる共振電流i2に対する比は、送電コイルL3と受電コイルL4の自己インダクタンスにかかわる一定値になる。そのため、第3の実施形態では、共振電流i3の値を一定にするには、送電装置用相互インダクタンス可変手段12aを固定して送電装置用中継電磁誘導回路12の1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を一定値にするだけで良い。   The ratio of the resonant current i3 flowing through the power receiving coil L4 to the resonant current i2 flowing through the power transmitting coil L3 is a constant value related to the self inductance of the power transmitting coil L3 and the power receiving coil L4. Therefore, in the third embodiment, in order to make the value of the resonance current i3 constant, the power transmission device mutual inductance variable means 12a is fixed and the primary side relay coils L1 and L2 of the power transmission device relay electromagnetic induction circuit 12 are fixed. It is only necessary to set the mutual inductance M1 of the next relay coil L2 to a constant value.

<第4の実施形態>
図5と図6を参照して本発明の第4の実施形態を説明する。第4の実施形態が以上の実施形態と相違する点は、送電共振回路13と送電装置用中継電磁誘導回路12の2次側共振回路を、共振用容量を介して並列に接続する点である。すなわち、送電装置用中継電磁誘導回路12の2次側中継コイルL2に並列に共振用容量C5と送電コイルL3を接続した回路を構成し、交流電源回路11の周波数fで共振させる。
Fourth Embodiment
A fourth embodiment of the present invention will be described with reference to FIGS. 5 and 6. The fourth embodiment differs from the above embodiments in that the secondary resonance circuits of the power transmission resonant circuit 13 and the relay electromagnetic induction circuit 12 for power transmission device are connected in parallel via a resonance capacitor. . That is, a circuit in which the resonance capacitor C5 and the power transmission coil L3 are connected in parallel to the secondary relay coil L2 of the power transmission device relay electromagnetic induction circuit 12 is configured to resonate at the frequency f of the AC power supply circuit 11.

第4の実施形態は、第1の実施形態と同様に、送電装置10と受電装置20から成る。送電装置10は、周波数fの交流電源回路11と、その周波数fで共振する送電装置用中継電磁誘導回路12と送電共振回路13で構成する。その送電共振回路13の送電コイルL3に受電装置20の受電コイルL4を相互インダクタンスMで電磁誘導させて、交流電源回路11が供給する交流電力を、送電コイルL3から空間を隔てた受電コイルL4まで無線で電力を伝送させる。受電装置20の受電共振回路21には負荷回路30を接続し、その負荷回路30で電力を消費させる。   The fourth embodiment includes the power transmission device 10 and the power reception device 20 as in the first embodiment. The power transmission device 10 includes an AC power supply circuit 11 of frequency f, a power transmission device relay electromagnetic induction circuit 12 resonating at the frequency f, and a power transmission resonance circuit 13. The receiving coil L4 of the power receiving device 20 is electromagnetically induced by the mutual inductance M to the power transmission coil L3 of the power transmission resonance circuit 13 and the AC power supplied by the AC power supply circuit 11 up to the power receiving coil L4 separated from the power transmission coil L3 Transmit power wirelessly. A load circuit 30 is connected to the power reception resonance circuit 21 of the power reception device 20, and the load circuit 30 consumes power.

(送電装置用中継電磁誘導回路12)
送電装置10の交流電源回路11は、送電装置用中継電磁誘導回路12の1次側共振回路に直列に接続して、交流電源回路11の出力電流i1を流す。
(Relay electromagnetic induction circuit 12 for power transmission equipment)
The AC power supply circuit 11 of the power transmission device 10 is connected in series to the primary side resonance circuit of the power transmission device relay electromagnetic induction circuit 12 to flow the output current i1 of the AC power supply circuit 11.

送電装置用中継電磁誘導回路12の2次側中継コイルL2を共振用容量C5に接続し、その共振用容量C5に並列に送電共振回路13の送電コイルL3を接続することで、共振用容量C5を送電装置用中継電磁誘導回路12の2次側共振回路と送電共振回路13に共用させる。送電装置用中継電磁誘導回路12の1次側共振回路の1次側中継コイルL1と2次側中継コイルL2を相互インダクタンスM1で電磁誘導させる。1次側共振回路と2次側共振回路と送電共振回路13を交流電源回路11の出力電流i1の周波数fで共振させる。   By connecting the secondary relay coil L2 of the relay electromagnetic induction circuit 12 for power transmission device to the resonance capacitance C5 and connecting the power transmission coil L3 of the power transmission resonance circuit 13 in parallel to the resonance capacitance C5, the resonance capacitance C5 Are shared by the secondary side resonance circuit and the power transmission resonance circuit 13 of the power transmission device relay electromagnetic induction circuit 12. The primary side relay coil L1 and the secondary side relay coil L2 of the primary side resonance circuit of the power transmission device relay electromagnetic induction circuit 12 are electromagnetically induced by the mutual inductance M1. The primary side resonance circuit, the secondary side resonance circuit, and the power transmission resonance circuit 13 are resonated at the frequency f of the output current i1 of the AC power supply circuit 11.

(送電装置用相互インダクタンス可変手段12a)
図6の平面図の様な送電装置用相互インダクタンス可変手段12aを用いて、1次側中継コイルL1と2次側中継コイルL2の相対的位置を可変にすることで、1次側中継コイルL1と2次側中継コイルL2の電磁誘導の相互インダクタンスM1を可変にする。
(Mutual inductance variable means 12a for power transmission equipment)
By changing the relative position of the primary relay coil L1 and the secondary relay coil L2 using the power transmission device mutual inductance variable means 12a as shown in the plan view of FIG. 6, the primary relay coil L1 is made variable. And the mutual inductance M1 of the electromagnetic induction of the secondary side relay coil L2 is made variable.

(電流制限機能)
交流電源回路11を1次側共振回路に直列に接続して交流電源回路11の出力電流i1を流す。2次側共振回路の2次側中継コイルL2と送電共振回路13の送電コイルL3を並列に共振用容量C5に接続する。2次側中継コイルL2には共振電流i2を流す。送電共振回路13の送電コイルL3には共振電流i4を流す。このとき、2次側中継コイルL2に流れる共振電流i2は式1で計算できる。
(Current limit function)
The AC power supply circuit 11 is connected in series to the primary side resonance circuit to flow the output current i1 of the AC power supply circuit 11. The secondary relay coil L2 of the secondary resonance circuit and the power transmission coil L3 of the power transmission resonance circuit 13 are connected in parallel to the resonance capacitor C5. A resonant current i2 flows in the secondary relay coil L2. A resonant current i4 flows in the power transmission coil L3 of the power transmission resonant circuit 13. At this time, the resonance current i2 flowing through the secondary relay coil L2 can be calculated by Equation 1.

共振用容量C5に並列に2次側中継コイルL2と送電コイルL3が接続し、1次側中継コイルL1と2次側中継コイルL2が相互インダクタンスM1で電磁結合している場合に、回路シミュレーションにより、送電コイルL3の電圧E5を解析した結果、近似的に成り立つ次の式4を得た。
(式4) E5=E/k1
すなわち、送電コイルL3の電圧E5が、交流電源回路11の出力電圧Eを結合係数k1=(M1/L2)で割り算した値になる。
When the secondary relay coil L2 and the power transmission coil L3 are connected in parallel to the resonance capacitor C5, and the primary relay coil L1 and the secondary relay coil L2 are electromagnetically coupled by mutual inductance M1, circuit simulation shows As a result of analyzing the voltage E5 of the power transmission coil L3, the following equation 4 approximately obtained was obtained.
(Equation 4) E5 = E / k1
That is, the voltage E5 of the power transmission coil L3 becomes a value obtained by dividing the output voltage E of the AC power supply circuit 11 by the coupling coefficient k1 = (M1 / L2).

また送電コイルL3に流れる共振電流i4については、次の近似式5を得た。
(式5) i4=E5/(jωL3)=E/(jωL3×k1)
The following approximate equation 5 was obtained for the resonance current i4 flowing through the power transmission coil L3.
(Formula 5) i4 = E5 / (jωL3) = E / (jωL3 × k1)

第4の実施形態も第1の実施形態と同様に、定電圧の交流電源回路11に接続した送電装置用中継電磁誘導回路12の送電装置用相互インダクタンス可変手段12aを固定することで1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を一定にすると、送電コイルL3に流す共振電流i4を式5の値以下に制限する電流制限効果がある。すなわち、定電圧の交流電源回路11に接続した送電装置用中継電磁誘導回路12は、送電コイルL3と受電コイルL4の相互インダクタンスMに影響されずに、送電コイルL3に流す共振電流i4を一定値以下に制限することができる。   Similarly to the first embodiment, in the fourth embodiment, the power transmission device variable inductance means 12a of the power transmission device relay electromagnetic induction circuit 12 connected to the constant voltage AC power supply circuit 11 is fixed to the primary side. When the mutual inductance M1 of the relay coil L1 and the secondary side relay coil L2 is made constant, there is a current limiting effect of limiting the resonance current i4 flowing through the power transmission coil L3 to the value or less of Formula 5. That is, the relay electromagnetic induction circuit 12 for power transmission device connected to the AC power supply circuit 11 of constant voltage is not influenced by the mutual inductance M of the power transmission coil L3 and the power reception coil L4, and the resonant current i4 to flow through the power transmission coil L3 is constant value It can be limited to:

(受電装置20等)
第4の実施形態の受電装置20、及び、送電装置10の出力電力安定化制御手段40は第1の実施形態と同様に構成する。
(Power receiving device 20, etc.)
The power reception device 20 of the fourth embodiment and the output power stabilization control means 40 of the power transmission device 10 are configured in the same manner as in the first embodiment.

送電コイルL3に流れる共振電流i2が式5で表されるので、送電コイルL3との間で相互インダクタンスMを持つ受電コイルL4に発生する誘導起電力E4が次の近似式6で表され、この誘導起電力E4が負荷回路30に加わる。
(式6) E4=jωM×i4=(k/k1)E
Since the resonance current i2 flowing through the power transmission coil L3 is expressed by the equation 5, the induced electromotive force E4 generated in the power receiving coil L4 having the mutual inductance M with the power transmission coil L3 is expressed by the following approximate expression 6, The induced electromotive force E4 is applied to the load circuit 30.
(Equation 6) E4 = jωM × i4 = (k / k1) E

この式6は、負荷回路30に加わる誘導起電力E4が、送電コイルL3と受電コイルL4の結合係数k=(M/L3)を送電装置用中継電磁誘導回路12の1次側中継コイルL1と2次側中継コイルL2の結合係数k1=(M1/L2)で割り算した値に比例することを意味する。   Equation 6 shows that the induced electromotive force E4 applied to the load circuit 30 is the coupling coefficient k = (M / L3) of the power transmission coil L3 and the power reception coil L4 with the primary side relay coil L1 of the power transmission device relay electromagnetic induction circuit 12 It means that it is proportional to the value divided by the coupling coefficient k1 = (M1 / L2) of the secondary side relay coil L2.

一方、交流電源回路11の出力電流i1は、負荷回路30と受電コイルL4に流れる共振電流i3に関して次の式7で表される。
(式7) i1=(k/k1)i3
On the other hand, the output current i1 of the AC power supply circuit 11 is expressed by the following equation 7 with respect to the resonance current i3 flowing through the load circuit 30 and the power receiving coil L4.
(Equation 7) i1 = (k / k1) i3

式7は、負荷回路30に共振電流i3が流れる場合には、交流電源回路11から式7で表される出力電流i1が流れ出ることを意味している。そのことは、交流電源回路11の出力端子の位置での影像インピーダンスが負荷回路30の入力インピーダンスの(k1/k)の二乗倍であることを意味する。そのため、送電コイルL3と受電コイルL4の結合係数k(あるいは相互インダクタンスM)が小さくなると、交流電源回路11の出力端子の位置での影像インピーダンスは大きくなり、交流電源回路11の出力電流i1が小さくなることを意味する。   Expression 7 means that when the resonance current i3 flows in the load circuit 30, the output current i1 represented by Expression 7 flows out of the AC power supply circuit 11. That means that the image impedance at the position of the output terminal of the AC power supply circuit 11 is a square multiple of (k1 / k) of the input impedance of the load circuit 30. Therefore, when the coupling coefficient k (or mutual inductance M) of the power transmission coil L3 and the power reception coil L4 decreases, the image impedance at the position of the output terminal of the AC power circuit 11 increases and the output current i1 of the AC power circuit 11 decreases. It means to become.

送電装置10の送電コイルL3と受電装置20の受電コイルL4の間の距離が変動し送電コイルL3と受電コイルL4の相互インダクタンスMが変動する場合に、出力電力安定化制御手段40の電源電流測定手段41が交流電源回路11の出力電流i1を検出することでその変動を検出する。   When the distance between the power transmission coil L3 of the power transmission device 10 and the power reception coil L4 of the power reception device 20 fluctuates and the mutual inductance M of the power transmission coil L3 and power reception coil L4 fluctuates, the power supply current measurement of the output power stabilization control means 40 The means 41 detects the output current i1 of the AC power supply circuit 11 to detect the fluctuation.

そして、出力電力制御演算手段42が送電装置用中継電磁誘導回路12の送電装置用相互インダクタンス可変手段12aを制御して、1次側中継コイルL1と2次側中継コイルL2の相互インダクタンスM1を相互インダクタンスMに比例させて変える。この制御により、受電共振回路21の受電コイルL4に誘導する誘導起電力E4を一定値に維持して負荷回路30へ加えることができ、負荷回路30へ安定した電力供給を行なえる効果がある。   Then, the output power control calculation means 42 controls the power transmission device mutual inductance variable means 12a of the power transmission device relay electromagnetic induction circuit 12 to make the mutual inductance M1 of the primary side relay coil L1 and the secondary side relay coil L2 mutual. Change in proportion to the inductance M. By this control, the induced electromotive force E4 induced to the power receiving coil L4 of the power receiving resonant circuit 21 can be maintained at a constant value and added to the load circuit 30, and there is an effect that stable power supply to the load circuit 30 can be performed.

<第5の実施形態>
図7を参照して本発明の第5の実施形態を説明する。第5の実施形態が以上の実施形態と相違する点は、受電装置20の受電共振回路21と負荷回路30の間に受電装置用中継電磁誘導回路22を設置することである。
Fifth Embodiment
A fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment is different from the above embodiments in that the power reception device relay electromagnetic induction circuit 22 is installed between the power reception resonance circuit 21 of the power reception device 20 and the load circuit 30.

第5の実施形態も、第1の実施形態と同様に、送電装置10の送電コイルL3と、受電装置20の受電共振回路21の受電コイルL4を相互インダクタンスMで電磁誘導させて、送電コイルL3から空間を隔てた受電コイルL4に無線電力を伝送させる。   In the fifth embodiment, as in the first embodiment, the power transmission coil L3 of the power transmission device 10 and the power reception coil L4 of the power reception resonance circuit 21 of the power reception device 20 are electromagnetically induced by mutual inductance M The wireless power is transmitted to the power receiving coil L4 separated from the space.

(送電装置10)
第5の実施形態の送電装置10には、送電装置用中継電磁誘導回路12を持たない従来の送電装置10を用いることができる。あるいは、送電装置10に、本発明の第1の実施形態から第4の実施形態の何れかの回路の送電装置を用いることもできる。その送電装置10の送電コイルL3に共振電流i5を流す。
(Power transmission device 10)
As the power transmission device 10 of the fifth embodiment, the conventional power transmission device 10 without the power transmission device relay electromagnetic induction circuit 12 can be used. Alternatively, for the power transmission device 10, the power transmission device of any of the circuits of the first to fourth embodiments of the present invention can be used. A resonant current i5 is supplied to the power transmission coil L3 of the power transmission device 10.

(受電装置20)
受電装置20は、受電コイルL4と受電共振用容量C4で構成した受電共振回路21と、負荷回路30の間に受電装置用中継電磁誘導回路22を設置する。
(Power receiving device 20)
The power reception device 20 installs the power reception device relay electromagnetic induction circuit 22 between the load circuit 30 and the power reception resonance circuit 21 configured by the power reception coil L4 and the power reception resonance capacitance C4.

(受電装置用中継電磁誘導回路22)
受電装置20の受電装置用中継電磁誘導回路22は、1次側中継コイルL6を含む1次側共振回路と、2次側中継コイルL7を含む2次側共振回路と、1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2を可変にする受電装置用相互インダクタンス可変手段22aを有する。
(Relay electromagnetic induction circuit 22 for power receiving device)
The power receiving device relay electromagnetic induction circuit 22 of the power receiving device 20 includes a primary side resonance circuit including a primary side relay coil L6, a secondary side resonance circuit including a secondary side relay coil L7, and a primary side relay coil L6. And a mutual inductance variable means 22a for power reception device which makes the mutual inductance M2 of the secondary side relay coil L7 variable.

1次側共振回路は、1次側共振用容量C6と1次側中継コイルL6で構成し、2次側共振回路は、2次側共振用容量C7と2次側中継コイルL7で構成する。1次側共振回路の1次側中継コイルL6と2次側共振回路の2次側中継コイルL7を相互インダクタンスM2で電磁誘導させる。   The primary side resonance circuit is composed of a primary side resonance capacitor C6 and a primary side relay coil L6, and the secondary side resonance circuit is composed of a secondary side resonance capacitor C7 and a secondary side relay coil L7. The primary side relay coil L6 of the primary side resonant circuit and the secondary side relay coil L7 of the secondary side resonant circuit are electromagnetically induced by the mutual inductance M2.

本実施形態では、1次側共振回路を受電共振回路21に直列に接続し、1次側共振回路に受電共振回路21の共振電流i3を流し、2次側共振回路とそれに直列に接続した負荷回路30に共振電流i6を流す。   In this embodiment, the primary side resonance circuit is connected in series to the power reception resonance circuit 21, and the resonance current i3 of the power reception resonance circuit 21 is supplied to the primary side resonance circuit, and the secondary side resonance circuit and the load connected in series thereto. A resonant current i6 is supplied to the circuit 30.

直列に接続した受電共振回路21と1次側共振回路全体を共振周波数fで共振させる。その共振周波数fと2次側共振回路の共振周波数fを一致させる。また、送電装置10の送電コイルL3には、その周波数fの交流を流す。   The power reception resonance circuit 21 connected in series and the entire primary side resonance circuit resonate at a resonance frequency f. The resonance frequency f is made to coincide with the resonance frequency f of the secondary side resonance circuit. In addition, an alternating current of the frequency f is supplied to the power transmission coil L3 of the power transmission device 10.

(受電装置用相互インダクタンス可変手段22a)
受電装置用相互インダクタンス可変手段22aを用いて、1次側中継コイルL6と2次側中継コイルL7の電磁誘導の相互インダクタンスM2を可変にし、自由に調整できるようにする。この受電装置用相互インダクタンス可変手段22aは、第1の実施形態の送電装置用相互インダクタンス可変手段12aと同様に構成し、受電装置用中継電磁誘導回路22の1次側中継コイルL6又は2次側中継コイルコイルL7を機械的に動かして1次側中継コイルL6と2次側中継コイルコイルL7の相対位置を変えて相互インダクタンスM2を変える手段を用いることができる。
(Mutual inductance variable means 22 a for power receiving device)
The mutual inductance M2 of the electromagnetic induction of the primary side relay coil L6 and the secondary side relay coil L7 is made variable by using the power receiving device mutual inductance changing means 22a, and can be freely adjusted. The power receiving device mutual inductance changing means 22a is configured in the same manner as the power transmitting device mutual inductance changing means 12a of the first embodiment, and the primary side relay coil L6 or the secondary side of the power receiving device relay electromagnetic induction circuit 22. It is possible to use means for mechanically moving the relay coil L7 to change the relative position of the primary relay coil L6 and the secondary relay coil L7 to change the mutual inductance M2.

(負荷回路30)
受電装置用中継電磁誘導回路22の2次側共振回路に直列に負荷回路30を接続し、その負荷回路30で電力を消費させる。負荷回路30は、2次側共振回路に接続した整流回路31と、蓄電装置32と、負荷33で構成する。整流回路31は、2次側共振回路の共振電流i6を直流に整流する。その整流回路31の出力する直流の電力を、コンデンサや2次電池で構成する蓄電装置32に蓄電しつつ、発光素子やモータ等の負荷33で消費させる。この負荷回路30に流し込む共振電流i6は、受電装置用相互インダクタンス可変手段22aを調整することで可変にできる。
(Load circuit 30)
A load circuit 30 is connected in series to the secondary side resonance circuit of the power receiving device relay electromagnetic induction circuit 22, and power is consumed by the load circuit 30. The load circuit 30 includes a rectifier circuit 31 connected to the secondary side resonance circuit, a power storage device 32, and a load 33. The rectifier circuit 31 rectifies the resonance current i6 of the secondary side resonance circuit into a direct current. The direct current power output from the rectifier circuit 31 is stored in the storage device 32 formed of a capacitor or a secondary battery and consumed by the load 33 such as a light emitting element or a motor. The resonance current i6 to be supplied to the load circuit 30 can be varied by adjusting the power receiving device mutual inductance varying means 22a.

(2次側共振電流調整機能)
回路シミュレーションにより、受電装置用相互インダクタンス可変手段22aを用いて1次側中継コイルL6と2次側中継コイルL7の電磁誘導の相互インダクタンスM2を調整する場合の、2次側中継コイルL7とそれに直列に接続した負荷回路30に流れる共振電流i6を解析した結果、次の近似式8の関係があった。
(式8) i6=(M/M2)i5
(Secondary resonance current adjustment function)
In the circuit simulation, the secondary relay coil L7 and the series thereof are adjusted in the case of adjusting the mutual inductance M2 of the electromagnetic induction of the primary relay coil L6 and the secondary relay coil L7 using the power receiving device mutual inductance varying means 22a. As a result of analyzing the resonance current i6 flowing through the load circuit 30 connected to the circuit, there is a relation of the following approximate expression 8.
(Expression 8) i6 = (M / M2) i5

この式8は、送電コイルL3の共振電流i5が一定の場合に、負荷回路30に流れる共振電流i6が、負荷回路30の入力インピーダンスに影響されずに式8の値の電流が流れることを意味する。その共振電流i6は、受電装置用中継電磁誘導回路22の1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2に反比例する。   This equation 8 means that, when the resonance current i5 of the power transmission coil L3 is constant, the current of the value of equation 8 flows without being influenced by the input impedance of the load circuit 30, the resonance current i6 flowing through the load circuit 30. Do. The resonance current i6 is inversely proportional to the mutual inductance M2 of the primary side relay coil L6 and the secondary side relay coil L7 of the power receiving device relay electromagnetic induction circuit 22.

ここで、負荷回路30の入力インピーダンスが大きい場合に、負荷回路30に加わる電圧E4が大きくなる。その場合には、受電コイルL4に流れる共振電流i3が大きくなる。その大きな共振電流i3が1次側中継コイルL6に流れて電磁誘導することで大きな誘導起電力E4を2次側中継コイルL7に誘起し、その誘導起電力E4が負荷回路30に加わる。   Here, when the input impedance of the load circuit 30 is large, the voltage E4 applied to the load circuit 30 becomes large. In that case, the resonance current i3 flowing through the power receiving coil L4 is increased. The large resonance current i3 flows to the primary relay coil L6 to cause electromagnetic induction, thereby inducing a large induced electromotive force E4 to the secondary relay coil L7, and the induced electromotive force E4 is added to the load circuit 30.

一方で、受電コイルL4が送電コイルL3から受電する電力は、送電コイルL3から電磁誘導で受電コイルL4に発生する誘導起電力と、受電コイルL4に流れる共振電流i3の積になり大きな電力になる。そのため、負荷回路30の入力インピーダンスが大きい場合には、大きな電力が送電コイルL3から受電コイルL4と1次側中継コイルL6と2次側中継コイルL7を経由して負荷回路30に伝送されて消費される。   On the other hand, the power received by the receiving coil L4 from the transmitting coil L3 is a product of the induced electromotive force generated in the receiving coil L4 by electromagnetic induction from the transmitting coil L3 and the resonant current i3 flowing in the receiving coil L4, and becomes large power . Therefore, when the input impedance of the load circuit 30 is large, large power is transmitted from the power transmission coil L3 to the load circuit 30 via the power receiving coil L4, the primary relay coil L6, and the secondary relay coil L7 for consumption. Be done.

受電装置用中継電磁誘導回路22の1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2を一定値に固定すると、送電コイルL3と受電コイルL4の相互インダクタンスMが小さくなるのに伴い、2次側中継コイルL7に流れる共振電流i6が小さくなる。受電装置用相互インダクタンス可変手段22aを用いて受電装置用中継電磁誘導回路22の相互インダクタンスM2を送電コイルL3と受電コイルL4の相互インダクタンスMに比例させて変化させることで、2次側中継コイルL7に流れる共振電流i6を一定値に安定化させることができる。   When the mutual inductance M2 of the primary side relay coil L6 and the secondary side relay coil L7 of the power receiving device relay electromagnetic induction circuit 22 is fixed to a fixed value, the mutual inductance M of the power transmitting coil L3 and the power receiving coil L4 decreases. The resonance current i6 flowing through the secondary relay coil L7 decreases. By changing the mutual inductance M2 of the power reception device relay electromagnetic induction circuit 22 in proportion to the mutual inductance M of the power transmission coil L3 and the power reception coil L4 using the power reception device mutual inductance variable means 22a, the secondary side relay coil L7 Can be stabilized to a constant value.

(受電電力安定化制御手段50)
受電電力安定化制御手段50は、負荷回路30に流れる共振電流i6あるいは負荷33に流れる電流を測定する負荷電流測定手段51と、受電電力制御演算手段52で構成する。受電電力安定化制御手段50の受電電力制御演算手段52は、負荷電流測定手段51の測定する電流値を一定値にするべく受電装置用相互インダクタンス可変手段22aを制御して、送電コイルL3から電力を安定的に受電する。
(Received power stabilization control means 50)
The received power stabilization control means 50 includes a load current measuring means 51 for measuring the resonance current i6 flowing in the load circuit 30 or the current flowing in the load 33, and the received power control calculation means 52. The received power control calculation means 52 of the received power stabilization control means 50 controls the power receiving device mutual inductance varying means 22a so as to make the current value measured by the load current measuring means 51 a constant value, and the power from the power transmission coil L3. Stably receive power.

送電装置10の送電コイルL3と受電装置20の受電コイルL4の間の距離が変動すると、送電コイルL3と受電コイルL4の電磁誘導の相互インダクタンスMが変動する。その場合に、受電電力安定化制御手段50の負荷電流測定手段51が負荷回路30に流れる共振電流i6の変動を測定し、その測定結果に基づき、受電装置用相互インダクタンス可変手段22aを動作させて、1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2を相互インダクタンスMに比例させて変動させる。その制御により、負荷回路30に流し込む共振電流i6を一定に安定化できる効果がある。
When the distance between the power transmission coil L3 of the power transmission device 10 and the power reception coil L4 of the power reception device 20 changes, the mutual inductance M of the electromagnetic induction of the power transmission coil L3 and the power reception coil L4 changes. In that case, the load current measurement means 51 of the received power stabilization control means 50 measures the fluctuation of the resonant current i6 flowing in the load circuit 30, and operates the power reception device mutual inductance variable means 22a based on the measurement result. The mutual inductance M2 of the primary side relay coil L6 and the secondary side relay coil L7 is varied in proportion to the mutual inductance M. By the control, there is an effect that the resonance current i6 to be flowed into the load circuit 30 can be stabilized at a constant level.

また、受電電力制御演算手段52は、受電装置20が、送電装置10から離れている位置から送電装置10に近づく際に、送電装置10の送電コイルL3を負荷電流測定手段51を用いて探索する。すなわち、負荷電流測定手段51が負荷回路30に流れる共振電流i6の増加を測定することで、送電コイルL3への受電コイルL4の接近を検知する。ここで、送電コイルL3の検出の感度を高くするために、受電電力制御演算手段52が間欠的に相互インダクタンスM2を小さくして負荷回路30に流れる共振電流i6を大きくする制御を行なう。   Also, when the power receiving device 20 approaches the power transmission device 10 from a position away from the power transmission device 10, the received power control calculation unit 52 searches for the power transmission coil L3 of the power transmission device 10 using the load current measurement device 51. . That is, the load current measurement unit 51 measures an increase in the resonance current i6 flowing through the load circuit 30, thereby detecting the approach of the power receiving coil L4 to the power transmitting coil L3. Here, in order to increase the detection sensitivity of the power transmission coil L3, the received power control calculation means 52 performs control to intermittently decrease the mutual inductance M2 and increase the resonance current i6 flowing through the load circuit 30.

なお、送電装置10が、第1の実施形態の様に出力電力安定化制御手段40を備えている場合は、送電装置10の出力電力安定化制御手段40と、受電装置20の受電電力安定化制御手段50が競合することになる。その場合は、送電装置10の出力電力安定化制御手段40と受電装置20の受電電力安定化制御手段50が無線通信することで、どちらの電力安定化制御手段を用いて無線電力の送電を安定化させるかを決定して制御する事が望ましい。   When the power transmission device 10 includes the output power stabilization control unit 40 as in the first embodiment, the output power stabilization control unit 40 of the power transmission device 10 and the received power stabilization of the power reception device 20 are provided. The control means 50 will compete. In that case, since the output power stabilization control means 40 of the power transmission device 10 and the received power stabilization control means 50 of the power reception device 20 wirelessly communicate, the transmission of wireless power is stabilized using either of the power stabilization control means It is desirable to determine and control whether to

(変形例1)
第5の実施形態の受電共振回路21は、第2の実施形態の送電共振回路13と同様に、受電共振回路21に受電装置用中継電磁誘導回路22の1次側共振回路を兼ねさせた回路を構成できる。すなわち、受電共振回路21の受電コイルL4に、受電装置用中継電磁誘導回路22の1次側中継コイルL6を含ませ、受電共振回路21の受電共振用容量C4に、送電装置用中継電磁誘導回路12の1次側共振用容量C6を含ませることができる。この受電共振回路21の受電コイルL4と受電共振用容量C4を交流電源回路11の周波数fで共振させることで、上記と同様にして、交流電源回路11から、送電コイルL3と空間を隔てた受電コイルL4を介して負荷回路30に電力を伝送することができる。
(Modification 1)
Like the power transmission resonant circuit 13 of the second embodiment, the power reception resonant circuit 21 of the fifth embodiment is a circuit in which the power reception resonant circuit 21 doubles as the primary side resonance circuit of the power receiving device relay electromagnetic induction circuit 22. Can be configured. That is, the receiving coil L4 of the power receiving resonance circuit 21 includes the primary side relay coil L6 of the power receiving device relay electromagnetic induction circuit 22, and the power receiving resonance capacitance C4 of the power receiving resonance circuit 21 includes the power transmission device relay electromagnetic induction circuit. The twelve primary side resonance capacitors C6 can be included. By resonating the power reception coil L4 and the power reception resonance capacitance C4 of the power reception resonance circuit 21 at the frequency f of the AC power supply circuit 11, the power reception coil separated from the power transmission coil L3 from the AC power supply circuit 11 is similarly to the above. Power can be transmitted to the load circuit 30 via the coil L4.

<第6の実施形態>
図8を参照して本発明の第6の実施形態を説明する。第6の実施形態は、第5の実施形態と同様に、送電コイルL3に共振電流i5を流し、受電装置20の受電共振回路21と負荷回路30の間に受電装置用中継電磁誘導回路22を設置する。第6の実施形態が第5の実施形態と相違する点は、受電共振回路21と受電装置用中継電磁誘導回路22の1次側共振回路を、共振用容量を介して並列に接続する点である。すなわち、受電コイルL4に並列に共振用容量C8と受電装置用中継電磁誘導回路22の1次側中継コイルL6を接続した回路にすることで受電共振回路21と1次側共振回路を共振用容量C8を介して並列に接続し、その回路全体を交流電源回路11の周波数fで共振させる。
Sixth Embodiment
A sixth embodiment of the present invention will be described with reference to FIG. In the sixth embodiment, as in the fifth embodiment, the resonance current i5 is supplied to the power transmission coil L3 and the relay electromagnetic induction circuit 22 for power reception is interposed between the power reception resonance circuit 21 of the power reception device 20 and the load circuit 30. Install. The sixth embodiment differs from the fifth embodiment in that the primary side resonance circuits of the power reception resonance circuit 21 and the relay electromagnetic induction circuit 22 for power reception device are connected in parallel via a resonance capacitor. is there. That is, by making the circuit in which the resonance capacitor C8 and the primary relay coil L6 of the relay electromagnetic induction circuit 22 for the power receiving device are connected in parallel to the power receiving coil L4, the power reception resonance circuit 21 and the primary side resonance circuit are resonant capacitors. Connected in parallel via C8, the entire circuit is resonated at the frequency f of the AC power supply circuit 11.

すなわち、共振用容量C8に並列に、受電共振回路21の受電コイルL4と、受電装置用中継電磁誘導回路22の1次側共振回路の1次側中継コイルL6を接続することで、共振用容量C8を受電共振回路21と受電装置用中継電磁誘導回路22の1次側共振回路に共用させる。   That is, by connecting the power receiving coil L4 of the power receiving resonance circuit 21 and the primary side relay coil L6 of the primary side resonance circuit of the power receiving apparatus relay electromagnetic induction circuit 22 in parallel to the resonance capacity C8, the resonance capacity C8 is shared by the primary resonance circuit of the power reception resonance circuit 21 and the relay electromagnetic induction circuit 22 for power reception device.

共振用容量C8に並列に接続した受電コイルL4に共振電流i3を流し、1次側中継コイルL6に共振電流i7を流す。受電装置用中継電磁誘導回路22では、1次側中継コイルL6と2次側中継コイルL7を相互インダクタンスM2で電磁誘導させる。2次側共振回路の2次側中継コイルL7に直列に負荷回路30を接続し、共振電流i6を流す。そして、受電共振回路21と1次側共振回路と2次側共振回路を交流電源回路11の周波数fで共振させる。   A resonant current i3 is supplied to the power receiving coil L4 connected in parallel to the resonant capacitor C8, and a resonant current i7 is supplied to the primary relay coil L6. In the power receiving apparatus relay electromagnetic induction circuit 22, the primary side relay coil L6 and the secondary side relay coil L7 are electromagnetically induced by the mutual inductance M2. The load circuit 30 is connected in series to the secondary side relay coil L7 of the secondary side resonant circuit, and a resonance current i6 flows. Then, the power reception resonance circuit 21, the primary side resonance circuit, and the secondary side resonance circuit are resonated at the frequency f of the AC power supply circuit 11.

回路シミュレーションにより、受電装置用相互インダクタンス可変手段22aを用いて1次側中継コイルL6と2次側中継コイルL7の電磁誘導の相互インダクタンスM2を調整する場合の、2次側中継コイルL7とそれに直列に接続した負荷回路30に流れる共振電流i6を解析した結果、次の近似式9の関係があった。
(式9) i6=(M/M2)(L6/L4)i5=(k/k2)i5
In the circuit simulation, the secondary relay coil L7 and the series thereof are adjusted in the case of adjusting the mutual inductance M2 of the electromagnetic induction of the primary relay coil L6 and the secondary relay coil L7 using the power receiving device mutual inductance varying means 22a. As a result of analyzing the resonance current i6 flowing through the load circuit 30 connected to the circuit, there is a relation of the following approximate expression 9.
(Equation 9) i6 = (M / M2) (L6 / L4) i5 = (k / k2) i5

この式9は、送電コイルL3の共振電流i5が一定の場合に、負荷回路30に流れる共振電流i6が、負荷回路30の入力インピーダンスに影響されずに式9の値の電流が流れることを意味する。その共振電流i6は、受電装置用中継電磁誘導回路22の1次側中継コイルL6と2次側中継コイルL7の結合係数k2=(M2/L6)に反比例する。   This equation 9 means that when the resonance current i5 of the power transmission coil L3 is constant, the current of the value of equation 9 flows without being influenced by the input impedance of the load circuit 30, the resonance current i6 flowing through the load circuit 30. Do. The resonant current i6 is inversely proportional to the coupling coefficient k2 = (M2 / L6) of the primary side relay coil L6 and the secondary side relay coil L7 of the power receiving device relay electromagnetic induction circuit 22.

受電装置用中継電磁誘導回路22の1次側中継コイルL6と2次側中継コイルL7の電磁誘導の相互インダクタンスM2及び結合係数k2を一定値に固定した場合に、送電コイルL3と受電コイルL4の相互インダクタンスMが小さくなると2次側中継コイルL7に流れる共振電流i6が小さくなる。受電装置用相互インダクタンス可変手段22aを使って、受電装置用中継電磁誘導回路22の相互インダクタンスM2を、送電コイルL3と受電コイルL4の相互インダクタンスMに追従させて変化させることで、2次側中継コイルL7に流れる共振電流i6を一定値に安定化させることができる。   When the mutual inductance M2 and coupling coefficient k2 of the electromagnetic induction of the primary side relay coil L6 and the secondary side relay coil L7 of the relay electromagnetic induction circuit 22 for power reception device are fixed to a fixed value, the power transmission coil L3 and the power reception coil L4 As the mutual inductance M decreases, the resonance current i6 flowing through the secondary relay coil L7 decreases. By changing the mutual inductance M2 of the power reception device relay electromagnetic induction circuit 22 following the mutual inductance M of the power transmission coil L3 and the power reception coil L4 using the power reception device mutual inductance variable means 22a, the secondary side relay The resonant current i6 flowing through the coil L7 can be stabilized to a constant value.

(実施例1)
本発明の第5の実施形態の回路構成において、回路シミュレーションで、送電装置10の送電コイルL3を1.1μHにし、その送電コイルL3に、周波数fが1.7MHzで振幅が1Aの共振電流i5を流した。受電装置20の受電コイルL4と1次側中継コイルL6と2次側中継コイルL7を1.1μHにし、受電共振用容量C4と1次側共振用容量C6と2次側共振用容量C7を8nFにした。送電コイルL3と受電コイルL4の相互インダクタンスMと、1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2を0.1μHにした。
Example 1
In the circuit configuration of the fifth embodiment of the present invention, in the circuit simulation, the power transmission coil L3 of the power transmission device 10 is 1.1 μH, and the power transmission coil L3 has a resonant current i5 with a frequency f of 1.7 MHz and an amplitude of 1 A. Flowed out. The receiving coil L4 and the primary relay coil L6 and the secondary relay coil L7 of the power receiving apparatus 20 are 1.1 μH, and the receiving resonance capacitor C4, the primary resonance capacitor C6 and the secondary resonance capacitor C7 are 8 nF. I made it. The mutual inductance M of the power transmission coil L3 and the power reception coil L4 and the mutual inductance M2 of the primary relay coil L6 and the secondary relay coil L7 were set to 0.1 μH.

ここで、負荷回路30の入力インピーダンスを1Ωから32Ωまで変えて回路シミュレーションを行なった結果、負荷回路30に流れる共振電流i6の振幅は以下の表1のようになった。
(表1)
負荷回路30の入力インピーダンス, 共振電流i6の振幅
1Ω 1A
2Ω 1A
4Ω 0.9A
8Ω 0.8A
16Ω 0.6A
32Ω 0.35A
Here, as a result of performing circuit simulation by changing the input impedance of the load circuit 30 from 1Ω to 32Ω, the amplitude of the resonance current i6 flowing through the load circuit 30 is as shown in Table 1 below.
(Table 1)
Input impedance of load circuit 30, amplitude of resonant current i6 1Ω 1A
2Ω 1A
4Ω 0.9A
8Ω 0.8A
16 Ω 0.6 A
32 Ω 0.35 A

すなわち、負荷回路30の入力インピーダンスが2Ω以下の場合は、式8に従って、共振電流i6の振幅が1Aになった。それ以上に負荷回路30の入力インピーダンスが大きくなると共振電流i6が小さくなった。   That is, when the input impedance of the load circuit 30 is 2 Ω or less, the amplitude of the resonance current i6 becomes 1 A according to the equation 8. When the input impedance of the load circuit 30 becomes larger than that, the resonance current i6 becomes smaller.

(実施例2)
本発明の第5の実施形態の回路構成において、回路シミュレーションで、送電装置10の送電コイルL3を2.2μHにし、その送電コイルL3に、周波数fが1.7MHzで振幅が1Aの共振電流i5を流した。受電装置20の受電コイルL4と1次側中継コイルL6と2次側中継コイルL7を2.2μHにし、受電共振用容量C4と1次側共振用容量C6と2次側共振用容量C7を4nFにした。送電コイルL3と受電コイルL4の相互インダクタンスMと、1次側中継コイルL6と2次側中継コイルL7の相互インダクタンスM2を0.2μHにした。
(Example 2)
In the circuit configuration of the fifth embodiment of the present invention, in the circuit simulation, the power transmission coil L3 of the power transmission device 10 is 2.2 μH, and the power transmission coil L3 has a resonant current i5 with a frequency f of 1.7 MHz and an amplitude of 1 A. Flowed out. The receiving coil L4 and the primary relay coil L6 and the secondary relay coil L7 of the power receiving apparatus 20 are 2.2 μH, and the receiving resonance capacitor C4, the primary resonance capacitor C6 and the secondary resonance capacitor C7 are 4 nF. I made it. The mutual inductance M of the power transmission coil L3 and the power reception coil L4 and the mutual inductance M2 of the primary relay coil L6 and the secondary relay coil L7 are 0.2 μH.

ここで、負荷回路30の入力インピーダンスを1Ωから64Ωまで変えて回路シミュレーションを行なった結果、負荷回路30に流れる共振電流i6の振幅は以下の表2のようになった。
(表2)
負荷回路30の入力インピーダンス, 共振電流i6の振幅
1Ω 1A
2Ω 1A
4Ω 1A
8Ω 0.9A
16Ω 0.8A
32Ω 0.6A
64Ω 0.35A
Here, as a result of performing circuit simulation by changing the input impedance of the load circuit 30 from 1Ω to 64Ω, the amplitude of the resonant current i6 flowing through the load circuit 30 is as shown in Table 2 below.
(Table 2)
Input impedance of load circuit 30, amplitude of resonant current i6 1Ω 1A
2Ω 1A
4Ω 1A
8Ω 0.9A
16Ω 0.8A
32Ω 0.6A
64 Ω 0.35 A

すなわち、負荷回路30の入力インピーダンスが4Ω以下の場合は、式8に従って、共振電流i6の振幅が1Aになった。それ以上に負荷回路30の入力インピーダンスが大きくなると共振電流i6が小さくなった。   That is, when the input impedance of the load circuit 30 is 4 Ω or less, the amplitude of the resonance current i6 becomes 1 A according to the equation 8. When the input impedance of the load circuit 30 becomes larger than that, the resonance current i6 becomes smaller.

実施例1と実施例2で、負荷回路30の入力インピーダンスが所定の値よりも大きくなると共振電流i6が1Aよりも小さくなった現象は、共振電流i3の周波数が、回路の最適な共振周波数から僅かにずれていたことが以下の様に影響した現象だと考える。   The phenomenon that the resonance current i6 becomes smaller than 1A when the input impedance of the load circuit 30 becomes larger than a predetermined value in the first embodiment and the second embodiment is that the frequency of the resonance current i3 is from the optimum resonance frequency of the circuit. I think that it was a phenomenon that affected slightly as follows.

負荷回路30の入力インピーダンスを大きくしていくと、受電装置用中継電磁誘導回路22が負荷回路30に無線電力を中継できる共振電流i3の最適な共振周波数の許容範囲が狭くなり、最適な共振周波数から僅かにずれていた周波数のずれが許容されなくなったため、共振電流i6の値が最適な共振周波数での値の1Aよりも小さくなったと考える。   As the input impedance of the load circuit 30 is increased, the tolerance range of the optimum resonance frequency of the resonance current i3 at which the power reception device relay electromagnetic induction circuit 22 can relay the wireless power to the load circuit 30 narrows, and the optimum resonance frequency It is considered that the value of the resonance current i6 is smaller than the value 1A at the optimum resonance frequency because the frequency shift slightly deviated from the above is not acceptable.

なお、本発明は、以上の実施形態に限定されず、送電装置用相互インダクタンス可変手段12a又は受電装置用相互インダクタンス可変手段22aにおいて、1次側中継コイルと2次側中継コイルコイルの相互インダクタンスを変える手段は、機械的に中継電磁誘導回路の1次側中継コイル又は2次側中継コイルコイルを動かして相互インダクタンスを変える手段以外の手段も用いることもできる。   The present invention is not limited to the embodiments described above, and in the mutual inductance variable means 12a for power transmission device or the mutual inductance variable means 22a for power reception device, the mutual inductance of the primary side relay coil and the secondary side relay coil coil The means for changing may be other means than mechanically moving the primary side relay coil or the secondary side relay coil coil of the relay electromagnetic induction circuit to change the mutual inductance.

例えば、相互インダクタンスを変える手段として、中継コイルの配線をスイッチで切り替えて相互インダクタンスを切り替える相互インダクタンス可変手段を用いることもできる。   For example, as means for changing the mutual inductance, mutual inductance variable means for switching the mutual inductance by switching the wiring of the relay coil with a switch can be used.

他の相互インダクタンスを変える手段として、異なる相互インダクタンスを有する複数の中継電磁誘導回路をスイッチで切り替えて用いることで相互インダクタンスを切り替える相互インダクタンス可変手段を用いることもできる。   As another means for changing mutual inductance, mutual inductance variable means for switching mutual inductance can be used by switching and using a plurality of relay electromagnetic induction circuits having different mutual inductances.

本発明は、電気自動車や飛行体等の移動体へ非接触で電力を給電する用途や、机の上に設置した電子装置に机の板を隔てて電力を給電する用途や、生体内に設置した装置に皮膚を隔てて電力を給電する用途に適用できる。また、半導体集積回路内で集積回路の配線層間で非接触で電力を伝送する用途に適用できる。   The present invention is used in non-contact power supply to moving objects such as electric vehicles and flying objects, in applications where power is supplied to an electronic device installed on a desk by separating a desk plate, and installed in a living body It can be applied to the application of supplying power by separating the skin of the device. Further, the present invention can be applied to an application of transmitting power without contact between wiring layers of an integrated circuit in a semiconductor integrated circuit.

10送電装置、11交流電源回路、12送電装置用中継電磁誘導回路、12a送電装置用相互インダクタンス可変手段、13送電共振回路、20受電装置、21受電共振回路、22受電装置用中継電磁誘導回路、22a受電装置用相互インダクタンス可変手段、30負荷回路、31整流回路、32蓄電装置、33負荷、40出力電力安定化制御手段、41電源電流測定手段、42出力電力制御演算手段、50受電電力安定化制御手段、51負荷電流測定手段、52受電電力制御演算手段、C1(送電装置用)1次側共振用容量、C2(送電装置用)2次側共振用容量、C3送電共振用容量、C4受電共振用容量、C5(送電装置用)共振用容量、C6(受電装置用)1次側共振用容量、C7(受電装置用)2次側共振用容量、C8(受電装置用)共振用容量、E交流電源回路の出力電圧、E4負荷回路に加わる電圧、E5送電コイルの電圧、i1交流電源回路の出力電流、i2、i3、i4、i5、i6、i7共振電流、L1(送電装置用)1次側中継コイル、L2(送電装置用)2次側中継コイル、L3送電コイル、L4受電コイル、L6(受電装置用)1次側中継コイル、L7(受電装置用)2次側中継コイル、M送電コイルと受電コイルの相互インダクタンス、M1送電装置用中継電磁誘導回路の相互インダクタンス、M2受電装置用中継電磁誘導回路の相互インダクタンス 10 power transmission device, 11 AC power supply circuit, 12 power transmission device relay electromagnetic induction circuit, 12a power transmission device mutual inductance variable means, 13 power transmission resonance circuit, 20 power reception device, 21 power reception resonance circuit, 22 power reception device relay electromagnetic induction circuit, 22a Power receiving device mutual inductance variable means, 30 load circuit, 31 rectification circuit, 32 storage device, 33 load, 40 output power stabilization control means, 41 power source current measurement means, 42 output power control arithmetic means, 50 received power stabilization Control means, 51 load current measuring means, 52 received power control computing means, C1 (for power transmission device) primary side resonance capacity, C2 (for power transmission device) secondary side resonance capacity, C3 power transmission resonance capacity, C4 received power Capacitance for resonance, C5 (for power transmission device) capacitance for resonance, C6 (for power reception device) capacitance for primary side resonance, C7 (for power reception device) capacitance for secondary side resonance, C8 (power reception device) ) Capacitance for resonance, output voltage of E AC power supply circuit, voltage applied to E4 load circuit, voltage of E5 power transmission coil, output current of i1 AC power supply circuit, i2, i3, i4, i5, i6, i7 resonance current, L1 ( For power transmission device) Primary side relay coil, L2 (for power transmission device) secondary side relay coil, L3 power transmission coil, L4 power receiving coil, L6 (for power reception device) Primary side relay coil, L7 (for power reception device) secondary Mutual inductance of the side relay coil, M power transmission coil and receiving coil, mutual inductance of the relay electromagnetic induction circuit for M1 power transmission device, mutual inductance of the relay electromagnetic induction circuit for M2 power reception device

Claims (3)

送電装置の交流電源回路から交流電力を供給した送電コイルから、空間を隔てた受電装置の受電コイルまで、電磁誘導により無線電力を伝送させ、前記受電コイルから交流電力を負荷回路に伝送して消費させる無線電力伝送システムであって、
前記交流電源回路から前記送電コイルまでの間か、又は、前記受電コイルから前記負荷回路の間に中継電磁誘導回路を設け、劾中継電磁誘導回路は、1次側中継コイルを含む1次側共振回路と、2次側中継コイルを含む2次側共振回路と、前記1次側中継コイルと前記2次側中継コイルの相互インダクタンスを可変にする相互インダクタンス可変手段を有することを特徴とする無線電力伝送システム。
Wireless power is transmitted by electromagnetic induction from the AC power supply circuit that supplies AC power from the AC power supply circuit of the power transmission device to the power reception coil of the power reception device that is separated by space, AC power is transmitted from the power reception coil to the load circuit, and consumed. Wireless power transmission system,
A relay electromagnetic induction circuit is provided between the AC power supply circuit and the power transmission coil or between the power reception coil and the load circuit, and the relay electromagnetic induction circuit includes a primary side resonance including a primary side relay coil. A wireless power supply comprising: a circuit; a secondary side resonance circuit including a secondary side relay coil; and mutual inductance variable means for making the mutual inductance of the primary side relay coil and the secondary side relay coil variable. Transmission system.
請求項1記載の無線電力伝送システムであって、
前記受電装置が、前記受電コイルを含む受電共振回路と、前記負荷回路を有し、
前記送電装置が、前記交流電源回路と、前記中継電磁誘導回路と、前記送電コイルを含む送電共振回路を有し、
前記中継電磁誘導回路の前記1次側共振回路に前記交流電源回路が接続され、
前記2次側共振回路に前記送電共振回路が接続され、
前記交流電源回路の交流の周波数と、前記1次側共振回路の共振周波数と、前記2次側共振回路と前記送電共振回路と前記受電共振回路の回路全体の共振周波数を一致させたことを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 1,
The power reception device includes a power reception resonance circuit including the power reception coil, and the load circuit.
The power transmission device includes a power transmission resonance circuit including the AC power supply circuit, the relay electromagnetic induction circuit, and the power transmission coil.
The AC power supply circuit is connected to the primary side resonance circuit of the relay electromagnetic induction circuit,
The power transmission resonant circuit is connected to the secondary side resonant circuit,
The alternating current frequency of the alternating current power supply circuit, the resonance frequency of the primary side resonance circuit, and the resonance frequency of the entire secondary side resonance circuit, the power transmission resonance circuit, and the power reception resonance circuit are matched. Wireless power transmission system.
請求項1記載の無線電力伝送システムであって、
前記送電装置が、前記交流電源回路と、前記送電コイルを含む送電共振回路を有し、
前記受電装置が、前記受電コイルを含む受電共振回路と、前記中継電磁誘導回路と、前記負荷回路を有し、
前記中継電磁誘導回路の前記1次側共振回路に前記受電共振回路が接続され、
前記2次側共振回路に前記負荷回路が接続され、
前記交流電源回路の交流の周波数と、前記送電共振回路と前記受電共振回路と前記1次側共振回路の回路全体の共振周波数と、前記2次側共振回路の共振周波数を一致させたことを特徴とする無線電力伝送システム。
The wireless power transmission system according to claim 1,
The power transmission device includes the AC power supply circuit, and a power transmission resonant circuit including the power transmission coil.
The power reception device includes a power reception resonance circuit including the power reception coil, the relay electromagnetic induction circuit, and the load circuit.
The power reception resonance circuit is connected to the primary side resonance circuit of the relay electromagnetic induction circuit,
The load circuit is connected to the secondary side resonance circuit,
The alternating current frequency of the alternating current power supply circuit, the resonance frequency of the entire power transmission resonance circuit, the power reception resonance circuit, and the entire primary side resonance circuit are matched with the resonance frequency of the secondary side resonance circuit. Wireless power transmission system.
JP2018534360A 2016-08-15 2017-08-07 Wireless power transfer system Active JP6819951B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016159394 2016-08-15
JP2016159394 2016-08-15
PCT/JP2017/028655 WO2018034196A1 (en) 2016-08-15 2017-08-07 Wireless power transmission system

Publications (2)

Publication Number Publication Date
JPWO2018034196A1 true JPWO2018034196A1 (en) 2019-06-13
JP6819951B2 JP6819951B2 (en) 2021-01-27

Family

ID=61196531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534360A Active JP6819951B2 (en) 2016-08-15 2017-08-07 Wireless power transfer system

Country Status (2)

Country Link
JP (1) JP6819951B2 (en)
WO (1) WO2018034196A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431297A (en) * 2020-04-25 2020-07-17 哈尔滨工业大学 Multi-relay multi-load bidirectional wireless power transmission system with strong anti-offset performance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172900B2 (en) * 2019-07-26 2022-11-16 株式会社デンソー Power supply system while driving

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842180B1 (en) * 2010-12-24 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power feeding device and contactless power feeding system provided with power feeding device
JP2014209813A (en) * 2013-04-16 2014-11-06 日東電工株式会社 Wireless power transmission device, heating control method of wireless power transmission device, and method of manufacturing wireless power transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431297A (en) * 2020-04-25 2020-07-17 哈尔滨工业大学 Multi-relay multi-load bidirectional wireless power transmission system with strong anti-offset performance
CN111431297B (en) * 2020-04-25 2023-09-08 哈尔滨工业大学 Multi-relay multi-load bidirectional wireless power transmission system with strong anti-offset performance

Also Published As

Publication number Publication date
WO2018034196A1 (en) 2018-02-22
JP6819951B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
EP2950417B1 (en) Wireless power transmission system and power transmission device
CN105162261B (en) Wireless power transmitter and its power transmission method
JP6418308B2 (en) Detection device, power transmission device, power supply system, detection method, and detection program
US10250079B2 (en) Method and apparatus for wirelessly transmitting power and power transmission information
AU2016241101B2 (en) Inductive power transmitter
US8575782B2 (en) Power transmission apparatus, power transmission/reception apparatus, and method of transmitting power
CN104104155B (en) Feed element and feed system
US20180138756A1 (en) Wireless power transmission system and method for driving same
US20180254668A1 (en) Resonant contactless power supply equipment, electrical transmitter and contactless power supply method
US20170179772A1 (en) Foreign object detector, power transmitting device and power receiving device for wireless power transmission, and wireless power transmission system
JP5516824B2 (en) Power transmission system
JP6178107B2 (en) Power feeding system and resonant circuit
WO2016019159A1 (en) Adaptive and multi-transmitter wireless power for robots
US20170302086A1 (en) Inductive power transfer system
JP5602069B2 (en) Power receiving device and contactless power transmission device
JP6094204B2 (en) Wireless power transmission system
WO2013183700A1 (en) Power reception device and contactless power transmission system
JP6819951B2 (en) Wireless power transfer system
JP5612956B2 (en) Non-contact power transmission device
WO2014054397A1 (en) Power receiving apparatus and non-contact power transmission apparatus
KR101822213B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201220

R150 Certificate of patent or registration of utility model

Ref document number: 6819951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250