JPWO2014192368A1 - VEHICLE CONTROL DEVICE AND VEHICLE TRAVEL CONTROL SYSTEM - Google Patents

VEHICLE CONTROL DEVICE AND VEHICLE TRAVEL CONTROL SYSTEM Download PDF

Info

Publication number
JPWO2014192368A1
JPWO2014192368A1 JP2015519701A JP2015519701A JPWO2014192368A1 JP WO2014192368 A1 JPWO2014192368 A1 JP WO2014192368A1 JP 2015519701 A JP2015519701 A JP 2015519701A JP 2015519701 A JP2015519701 A JP 2015519701A JP WO2014192368 A1 JPWO2014192368 A1 JP WO2014192368A1
Authority
JP
Japan
Prior art keywords
vehicle
collision risk
control
collision
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015519701A
Other languages
Japanese (ja)
Inventor
敬一郎 長塚
敬一郎 長塚
黒田 浩司
浩司 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of JPWO2014192368A1 publication Critical patent/JPWO2014192368A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)
  • Traffic Control Systems (AREA)

Abstract

ドライバに違和感を与えることなく、より安全性の高い走行制御が可能な車両の制御装置を得ること。本発明の制御装置101は、外界認識装置の外界認識情報に基づいて車両201が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、衝突危険度に応じて駆動装置102の駆動特性を変更する駆動特性変更手段と、を有する。To obtain a vehicle control device that can perform safer driving control without giving a driver a sense of incongruity. The control device 101 according to the present invention includes a collision risk calculation unit that calculates a collision risk level in which the vehicle 201 collides with an obstacle based on the external field recognition information of the external field recognition device, and drives the drive device 102 in accordance with the collision risk level. Drive characteristic changing means for changing the characteristics.

Description

本発明は、車両の制御装置及び車両の走行制御システムに関する。   The present invention relates to a vehicle control device and a vehicle travel control system.

従来から、ステレオカメラなどの外界認識装置によって自車両前方の障害物を認識し、自車両に衝突すると判断した場合に、制動アクチュエータを操作して衝突を回避するシステムの開発が進んでいる。そして、特許文献1には、他車両の予測進路と自車両の実現進路とから実現進路衝突確率を求め、実現進路衝突確率に基づいて運転者の危険度を算出する技術が示されている。   2. Description of the Related Art Conventionally, development of a system that avoids a collision by operating a braking actuator when an obstacle in front of the host vehicle is recognized by an external environment recognition device such as a stereo camera and it is determined that the vehicle collides with the host vehicle. Patent Document 1 discloses a technique for obtaining an actual course collision probability from a predicted course of another vehicle and an actual course of the host vehicle, and calculating a driver's risk based on the actual course collision probability.

特開2008−250492号公報JP 2008-250492 A

例えば、自車両の進行路に歩行者や他車両などの障害物が飛び込んできた場合は、衝突を十分手前で検出することが困難であり、障害物の動きから未来の位置を推定して衝突の可能性を予測している。しかしながら、あくまでも予測であるので、予測情報に基づいて制動制御を実施した場合に、実際には直前で停止するなどして障害物が自車進行路上に到達しないにもかかわらず制動制御が実行されることがあり、このような動作が頻繁に繰り返されると、ドライバに違和感を与えるおそれがある。一方、ドライバに違和感を与えないために、制動制御の開始タイミングを遅らせたり、制動制御の開始判断基準を変更したりすると、制動制御が真に必要なときにも効果が低くなるおそれがある。   For example, if an obstacle such as a pedestrian or another vehicle jumps into the traveling path of the host vehicle, it is difficult to detect the collision sufficiently in front of it, and the future position is estimated from the movement of the obstacle. Predict the possibility of However, since this is only a prediction, when the braking control is performed based on the prediction information, the braking control is executed even if the obstacle does not reach the own vehicle traveling path by actually stopping immediately before. If such an operation is repeated frequently, the driver may feel uncomfortable. On the other hand, in order not to give the driver a sense of incongruity, if the start timing of the brake control is delayed or the start judgment criterion for the brake control is changed, the effect may be reduced even when the brake control is truly necessary.

本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、ドライバに違和感を与えることなく、より安全性の高い走行制御が可能な車両の制御装置を得ることである。   The present invention has been made in view of the above points, and an object of the present invention is to obtain a vehicle control device capable of more safe traveling control without giving a driver a sense of incongruity. .

上記課題を解決する本発明の車両の制御装置は、外界認識装置の外界認識情報に基づいて前記車両が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、該衝突危険度に応じて駆動装置の駆動特性を変更する駆動特性変更手段とを有することを特徴とする。   The vehicle control apparatus of the present invention that solves the above-described problems includes a collision risk calculation means for calculating a collision risk that the vehicle collides with an obstacle based on the external recognition information of the external recognition device, and the collision risk. And a drive characteristic changing means for changing the drive characteristic of the drive device accordingly.

本発明によれば、衝突危険度が高い場合に駆動装置の駆動特性を変更するので、例えば、衝突の危険があるにも関わらず、ドライバがアクセルを踏み込んでいる場合には、駆動力を低下させることで、車両を安全方向に制御できる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, the driving characteristics of the driving device are changed when the risk of collision is high. For example, the driving force is reduced when the driver depresses the accelerator despite the danger of collision. By doing so, the vehicle can be controlled in a safe direction. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

走行制御システムの機能ブロック図。The functional block diagram of a traveling control system. 制御装置の構成の一例を示す図。The figure which shows an example of a structure of a control apparatus. 制御装置の構成の一例を示す図。The figure which shows an example of a structure of a control apparatus. 制御装置の機能ブロック図。The functional block diagram of a control apparatus. 走行制御方法の一例を説明するフローチャート。The flowchart explaining an example of a traveling control method. 衝突危険度の時間変化に応じて実行される制御内容を示す図。The figure which shows the control content performed according to the time change of a collision risk. 駆動特性変更制御による車速の変化を示す図。The figure which shows the change of the vehicle speed by drive characteristic change control. 衝突危険度とトルク指令値のゲインとの関係を示す図。The figure which shows the relationship between a collision risk and the gain of a torque command value. あるモータ回転数におけるアクセル開度とトルク指令値との関係の一例を示す図。The figure which shows an example of the relationship between the accelerator opening and torque command value in a certain motor rotation speed. あるモータ回転数におけるアクセル開度とトルク指令値との関係の一例を示す図。The figure which shows an example of the relationship between the accelerator opening and torque command value in a certain motor rotation speed. アクセル開度毎のモータ回転数とトルク指令値との関係を説明する図。The figure explaining the relationship between the motor rotation speed and torque command value for every accelerator opening. 障害物(歩行者)が自車の進行路上に存在する存在確率分布を示す図。The figure which shows the presence probability distribution in which an obstruction (pedestrian) exists on the advancing path of the own vehicle. 障害物の一定時間経過後の位置を算出する方法を説明するフローチャート。The flowchart explaining the method of calculating the position after the fixed time progress of an obstruction. 自車両の前方に歩行者と他車両が存在する場合の模式図。The schematic diagram in case a pedestrian and another vehicle exist ahead of the own vehicle.

次に、本発明の実施の形態について図面を用いて詳細に説明する。
本実施形態の走行制御システム1は、例えば図14に示すように、歩行者301bや他車両301aなどの障害物301が自車両201の予測進行路202に飛び出して自車両201に衝突することが予測される状況において、外界認識センサからの外界認識情報に基づき障害物301との衝突危険度を算出する。そして、第1閾値及び第2閾値と比較し、衝突危険度が第1閾値よりも大きいときは駆動特性変更制御を行い、衝突危険度が第2閾値以上の場合には制動制御を行う。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
In the travel control system 1 of the present embodiment, for example, as shown in FIG. 14, an obstacle 301 such as a pedestrian 301 b or another vehicle 301 a may jump out of the predicted traveling path 202 of the own vehicle 201 and collide with the own vehicle 201. In the predicted situation, the risk of collision with the obstacle 301 is calculated based on the external recognition information from the external recognition sensor. Then, when compared with the first threshold value and the second threshold value, when the risk of collision is greater than the first threshold value, drive characteristic change control is performed, and when the risk of collision is equal to or greater than the second threshold value, braking control is performed.

図1は、走行制御システムの機能ブロック図である。
走行制御システム1は、自車両201(図14を参照)の走行を制御するシステムであり、制御装置101と、駆動装置102と、制動装置103を有している。自車両201は、電気自動車である。制御装置101は、モータコントローラを有し、駆動装置102は、車両走行用のモータを有している。制動装置103は、制動アクチュエータを有している。
FIG. 1 is a functional block diagram of the travel control system.
The travel control system 1 is a system that controls the travel of the host vehicle 201 (see FIG. 14), and includes a control device 101, a drive device 102, and a braking device 103. The own vehicle 201 is an electric vehicle. The control device 101 has a motor controller, and the drive device 102 has a vehicle driving motor. The braking device 103 has a braking actuator.

制御装置101は、車速、アクセル開度、外界認識情報等に基づいて駆動装置102と制動装置103を制御する。車速情報は、車速センサから取得し、アクセル開度の情報は、アクセルペダルに設けられたアクセル開度センサから取得する。外界認識情報は、自車両201に搭載された外界認識センサや、例えばワイパー装置、前照灯などの車載装置の動作状態などから取得する。外界認識情報には、自車両201の前方に位置する障害物301との相対位置と、相対速度ベクトルが含まれており、さらに車両周囲の明暗、天候、路面状況などの情報が含まれていてもよい。   The control device 101 controls the driving device 102 and the braking device 103 based on the vehicle speed, the accelerator opening, the external environment recognition information, and the like. The vehicle speed information is acquired from a vehicle speed sensor, and the accelerator opening information is acquired from an accelerator opening sensor provided on the accelerator pedal. The outside world recognition information is acquired from an outside world recognition sensor mounted on the host vehicle 201 or an operating state of an in-vehicle device such as a wiper device or a headlamp. The external world recognition information includes a relative position with respect to the obstacle 301 located in front of the host vehicle 201 and a relative speed vector, and further includes information such as light and darkness around the vehicle, weather, and road surface conditions. Also good.

外界認識センサは、ステレオカメラを有している。ステレオカメラは、左右のカメラで自車両201の前方を撮像し、左右の画像の視差から障害物301の相対位置と、相対速度ベクトルを算出し、外界認識情報として制御装置101に出力する。外界認識センサとして、ステレオカメラを用いることによって、簡単な構成で正確な外界認識情報を取得することができる。なお、ステレオカメラの代わりに、単眼カメラとミリ波レーダとを組み合わせたものを用いてもよい。   The external world recognition sensor has a stereo camera. The stereo camera captures the front of the host vehicle 201 with the left and right cameras, calculates the relative position and relative velocity vector of the obstacle 301 from the parallax of the left and right images, and outputs them to the control device 101 as external world recognition information. By using a stereo camera as the external recognition sensor, accurate external recognition information can be acquired with a simple configuration. A combination of a monocular camera and a millimeter wave radar may be used instead of the stereo camera.

図2及び図3は、制御装置の構成の一例を示す図、図4は、制御装置の機能ブロック図である。   2 and 3 are diagrams illustrating an example of the configuration of the control device, and FIG. 4 is a functional block diagram of the control device.

制御装置101は、図2に示すように、ADAS(Advanced Driver Assistance System)111と、VCM(Vehicle Control Module)121の2つのモジュールによって構成されていてもよく、また、図3に示すように、VCM121の1つのモジュールによって構成されていてもよい。ADAS111は、トルク指令値算出手段112と、衝突危険度算出手段113を有しており、VCM121は、モータ制御手段122を有している。   As shown in FIG. 2, the control apparatus 101 may be composed of two modules, an ADAS (Advanced Driver Assistance System) 111 and a VCM (Vehicle Control Module) 121. As shown in FIG. A single module of the VCM 121 may be used. The ADAS 111 includes a torque command value calculation unit 112 and a collision risk calculation unit 113, and the VCM 121 includes a motor control unit 122.

トルク指令値算出手段112は、図4に示すように、車速とアクセル開度の情報に基づいてトルク指令値(要求駆動力)を算出する。衝突危険度算出手段113は、衝突危険度を算出し、その衝突危険度に応じたゲインを出力する。そして、トルク指令値とゲインを用いて算出された最終トルク指令値(目標駆動力)がモータ制御手段122に出力される。モータ制御手段122は、最終トルク指令値に応じた電流指令値を駆動装置102に出力する。駆動装置102は、電流指令値によってモータを駆動させる。   As shown in FIG. 4, the torque command value calculation unit 112 calculates a torque command value (required driving force) based on information on the vehicle speed and the accelerator opening. The collision risk calculation means 113 calculates the collision risk and outputs a gain corresponding to the collision risk. Then, the final torque command value (target driving force) calculated using the torque command value and the gain is output to the motor control unit 122. The motor control unit 122 outputs a current command value corresponding to the final torque command value to the drive device 102. The driving device 102 drives the motor with the current command value.

図5は、走行制御システムによる走行制御方法を説明するフローチャートである。
まず、ステップS101で外界認識情報を取得する処理が行われ、次いで、ステップS102で衝突危険度を算出する処理が行われる。衝突危険度(%)は、障害物301が自車両201に衝突する可能性を示す値であり、自車両201の予測進行路202と外界認識情報に基づいて算出され、明暗状態、天候状態、路面状態などの車外環境に応じて補正してもよい。衝突危険度は、例えば特開2010−250501号公報に記載された公知の方法を用いて算出することができる。本実施の形態における衝突危険度の具体的な算出方法については後述する。
FIG. 5 is a flowchart for explaining a travel control method by the travel control system.
First, in step S101, processing for acquiring external world recognition information is performed, and then, in step S102, processing for calculating a collision risk is performed. The collision risk (%) is a value indicating the possibility that the obstacle 301 will collide with the host vehicle 201, and is calculated based on the predicted traveling path 202 of the host vehicle 201 and the external environment recognition information. You may correct | amend according to exterior environment, such as a road surface state. The collision risk can be calculated using a known method described in, for example, Japanese Patent Application Laid-Open No. 2010-250501. A specific method for calculating the collision risk in the present embodiment will be described later.

そして、ステップS103で衝突危険度が予め設定された第1閾値(D1)よりも大きいか否かが判断され、第1閾値(D1)以下(no)の場合には、障害物301が自車両201に衝突する危険性は低いと判断して、そのまま処理を終了する(End)。したがって、駆動特性変更制御は行われず、通常制御が行われる。通常制御では、トルク指令値を調整するゲインの値は、1.0とされ、トルク指令値算出手段112で算出されたトルク指令値が、そのまま最終トルク指令値としてモータ制御手段122に出力される。これにより、アクセル開度に応じたトルクがモータから出力される。   In step S103, it is determined whether or not the collision risk is greater than a preset first threshold (D1). If the collision threshold is equal to or less than the first threshold (D1) (no), the obstacle 301 is detected by the host vehicle. It is determined that the risk of collision with 201 is low, and the process is terminated as it is (End). Accordingly, the drive characteristic change control is not performed and normal control is performed. In the normal control, the gain value for adjusting the torque command value is set to 1.0, and the torque command value calculated by the torque command value calculation unit 112 is output to the motor control unit 122 as the final torque command value as it is. . Thereby, the torque according to the accelerator opening is output from the motor.

一方、衝突危険度が第1閾値(D1)よりも大きい(Yes)場合には、障害物301が自車両201に衝突する危険性は高いと判断してステップS104に移行する。ステップS104では、衝突危険度に応じて制動制御と駆動特性変更制御のいずれを行うのかを選択するために、衝突危険度が予め設定された第2閾値(D2)よりも大きいか否かが判断される。第2閾値(D2)は、第1閾値(D1)よりも大きい値を有している(D2>D1)。   On the other hand, when the collision risk is greater than the first threshold (D1) (Yes), it is determined that the risk of the obstacle 301 colliding with the host vehicle 201 is high, and the process proceeds to step S104. In step S104, it is determined whether or not the collision risk is greater than a preset second threshold (D2) in order to select whether to perform braking control or drive characteristic change control according to the collision risk. Is done. The second threshold (D2) has a larger value than the first threshold (D1) (D2> D1).

衝突危険度が第2閾値(D2)よりも小さい(no)場合には、駆動特性変更制御を行うべく、ステップS105に移行する。駆動特性変更制御では、駆動装置102へ送信する目標駆動力を変更することにより駆動特性を変更する処理が行われる(駆動特性変更手段)。具体的には、通常時よりもアクセル開度に応じた最終トルク指令値(目標駆動力)を低減させて加速応答を弱める制御が行われる。   When the collision risk is smaller (no) than the second threshold (D2), the process proceeds to step S105 to perform drive characteristic change control. In the drive characteristic change control, a process for changing the drive characteristic by changing the target drive force transmitted to the drive device 102 is performed (drive characteristic change means). Specifically, control is performed to weaken the acceleration response by reducing the final torque command value (target driving force) corresponding to the accelerator opening than normal.

したがって、例えば衝突危険度が第1閾値(D1)と第2閾値(D2)との間にある状況ではドライバがアクセルペダルを踏み続けても駆動力は低下し、自車両201の加速を抑制することで、この後さらに衝突危険度が増して、第2閾値(D2)を超えて制動制御が実施される場合には、(車速が低く抑えられるため)衝突回避や衝突被害軽減の効果が得やすくなる。   Therefore, for example, in a situation where the collision risk is between the first threshold value (D1) and the second threshold value (D2), the driving force decreases even if the driver continues to step on the accelerator pedal, and the acceleration of the host vehicle 201 is suppressed. Thus, when the risk of collision further increases and braking control is performed exceeding the second threshold (D2), the effect of avoiding collision and reducing collision damage is obtained (because the vehicle speed is kept low). It becomes easy.

また、この後、衝突危険度が低下した場合でも、この段階で制動制御を実施する場合と比較すると、ドライバに違和感を与えにくい。特に、本実施形態で自車両201の駆動装置102に用いられているモータは、内燃機関と比較して出力トルクをリニアに調整することができるので、アクセル開度に応じた最終トルク指令(目標駆動力)を滑らかに低減させて加速応答を円滑に弱める制御が可能であり、ドライバに違和感を与えることなく安全方向に制御することができる。   After that, even if the collision risk level decreases, the driver is less likely to feel uncomfortable compared to the case where the braking control is performed at this stage. In particular, since the motor used in the driving device 102 of the host vehicle 201 in this embodiment can adjust the output torque linearly compared to the internal combustion engine, a final torque command (target) corresponding to the accelerator opening is set. The driving force) can be smoothly reduced to smoothly weaken the acceleration response, and the driver can be controlled in a safe direction without giving the driver a sense of incongruity.

一方、ステップS104で衝突危険度が第2閾値(D2)よりも大きい(Yes)場合には、衝突危険度が特に高いと判断して、制動制御を行うべく、ステップS106に移行する。制動制御は、従来と同様の方法で行うことができ、まず車室内にアラーム等を吹鳴させてドライバに対する警報を行い(警報吹鳴)、次いで、制動装置103の制動アクチュエータを動作させる制御が行われる。   On the other hand, if the collision risk is greater than the second threshold (D2) in step S104 (Yes), it is determined that the collision risk is particularly high, and the process proceeds to step S106 to perform braking control. The braking control can be performed by a method similar to the conventional method. First, an alarm or the like is blown into the vehicle interior to give a warning to the driver (alarm blowing), and then a control for operating the braking actuator of the braking device 103 is performed. .

図6は、衝突危険度の時間変化に応じて実行される制御内容を示す図、図7は、駆動特性変更制御が行われた場合と行われない場合における車速の変化を示す図である。   FIG. 6 is a diagram showing the control contents executed in accordance with the time change of the collision risk, and FIG. 7 is a diagram showing the change in the vehicle speed when the drive characteristic change control is performed and when it is not performed.

例えば、ドライバがアクセルペダルを踏むことにより車速が一定の傾きで上昇し、図14に示すように、自車両201の前方に他車両301aが割り込んできており、図6に示すように、衝突危険度が時間経過と共に上昇している場合に、従来は、図7に二点差線で示すように、そのままの傾きで車速が上昇する。一方、本発明の車両走行制御システムによれば、衝突危険度が第1閾値(D1)を超えることにより駆動特性変更制御が実行され、図7に実線で示すように、車速の上昇の傾きが緩くなる(加速しにくくなる)。そして、衝突危険度が第2閾値(D2)を超えることにより制動制御が実行され、所定の減速度で減速が行われる。したがって、衝突被害を軽減することができ、安全方向に制御することができる。   For example, when the driver depresses the accelerator pedal, the vehicle speed increases with a certain inclination, and as shown in FIG. 14, the other vehicle 301a is interrupted in front of the host vehicle 201. As shown in FIG. When the degree increases with the passage of time, conventionally, as indicated by a two-dot chain line in FIG. 7, the vehicle speed increases with the same inclination. On the other hand, according to the vehicle travel control system of the present invention, the drive characteristic change control is executed when the collision risk exceeds the first threshold (D1), and as shown by the solid line in FIG. It becomes loose (it becomes difficult to accelerate). Then, when the collision risk exceeds the second threshold value (D2), the braking control is executed, and the vehicle is decelerated at a predetermined deceleration. Therefore, collision damage can be reduced and control can be performed in a safe direction.

図8は、衝突危険度とトルク指令値のゲインとの関係を示す図である。
衝突危険度とゲインは、図8に破線L1で示すように、第1閾値(D1)と第2閾値(D2)の間で衝突危険度が高くなるのに応じてゲインが一定の傾きで漸次減少するように設定してもよく、また、図8に実線L2で示すように、衝突危険度が低いときはゲインの減少度合いは小さいが、衝突危険度が高くなるに応じてゲインの減少度合いが急激に大きくなるように、指数関数的に減少するように設定してもよい。
FIG. 8 is a diagram illustrating the relationship between the collision risk and the gain of the torque command value.
As shown by the broken line L1 in FIG. 8, the collision risk and the gain gradually increase with a constant slope as the collision risk increases between the first threshold (D1) and the second threshold (D2). As shown by a solid line L2 in FIG. 8, the gain decrease degree is small when the collision risk is low, but the gain decrease degree is increased as the collision risk becomes high. It may be set so as to decrease exponentially so that increases rapidly.

ゲインが一定の傾きで漸次減少する設定の場合(L1)、トルク指令値がリニアに減少されるので、より安全に車両を制御することが可能となる。一方、ゲインが二次曲線的な傾きで減少する設定の場合(L2)には、衝突危険度が第1閾値(D1)に近いときは、衝突の可能性もそれほど高くないので、トルク指令値のゲインによる調整量は極めて小さく、通常時とほぼ同じトルクが出力される。したがって、トルク指令が大幅に減少されてドライバに違和感を与えるのを防ぐことができる。そして、衝突危険度が第2閾値(D2)に近いときは、衝突の可能性が高いので、トルク指令値のゲインによる調整量を極めて大きくし、アクセル開度に応じた最終トルク指令値(目標駆動力)を大幅に低減させて加速応答を弱める。   When the gain is set to gradually decrease with a constant inclination (L1), the torque command value is linearly decreased, so that the vehicle can be controlled more safely. On the other hand, when the gain is set to decrease with a quadratic slope (L2), when the collision risk is close to the first threshold (D1), the possibility of a collision is not so high, so the torque command value The amount of adjustment by the gain is extremely small, and almost the same torque as that in the normal time is output. Therefore, it is possible to prevent the torque command from being greatly reduced and giving the driver a sense of incongruity. When the collision risk is close to the second threshold value (D2), the possibility of a collision is high. Therefore, the amount of adjustment based on the gain of the torque command value is extremely increased, and the final torque command value (target) corresponding to the accelerator opening is set. The acceleration response is weakened by greatly reducing the driving force.

図9及び図10は、あるモータ回転数におけるトルク指令値とアクセル開度との関係を示す図、図11は、アクセル開度毎のモータトルクとモータ回転数との関係を示す図である。   9 and 10 are diagrams showing the relationship between the torque command value and the accelerator opening at a certain motor speed, and FIG. 11 is a diagram showing the relationship between the motor torque and the motor speed for each accelerator opening.

本実施の形態における駆動特性変更制御では、図9及び図10に示すように、あるモータ回転数で同一のアクセル開度P1において、前述のように、トルク指令のゲインを調整することにより衝突危険度が大きい方が小さい方よりも最終トルク指令値(目標駆動力)を減少させるように駆動特性を変更させている。   In the drive characteristic change control in the present embodiment, as shown in FIGS. 9 and 10, as described above, by adjusting the gain of the torque command at the same accelerator opening P <b> 1 at a certain motor speed, the collision risk can be increased. The drive characteristic is changed so that the final torque command value (target drive force) is decreased when the degree is larger than when the degree is smaller.

衝突危険度は、その大きさに応じて複数の段階に分けられており、本実施の形態では、小、中、大に分けられている。駆動特性は、衝突危険度が大きくなるに応じてトルク指令値を低減させる量が漸次増大するように変更させてもよく、また、二次関数的に増大するように変更させてもよい。   The risk of collision is divided into a plurality of stages according to the magnitude, and in this embodiment, it is divided into small, medium and large. The drive characteristics may be changed so that the amount by which the torque command value is reduced gradually increases as the collision risk increases, or may be changed so as to increase in a quadratic function.

トルク指令値は、図11に示すように、例えば、アクセル開度P1、モータ回転数ω1の場合でみると、通常時はToとなるが、本実施形態では、衝突危険度に応じて異なる値になり、危険度が小のときはTs、中のときはTm、大のときはTbに調整される(但し、Ts>Tm>Tb)。   As shown in FIG. 11, for example, when the accelerator opening P1 and the motor rotational speed ω1 are used, the torque command value is normally To, but in the present embodiment, the torque command value varies depending on the collision risk. When the degree of risk is small, it is adjusted to Ts, when it is medium, it is adjusted to Tm, and when it is large, it is adjusted to Tb (however, Ts> Tm> Tb).

なお、図9に示すように、各衝突危険度が小から大の順番で等間隔に最終トルク指令を調整する場合、ゲインは、図8に破線L1で示すように設定する。また、図10に示すように、各衝突危険度を小から大の順番で間隔が漸次大きくなるように最終トルク指令を調整する場合、ゲインは、図8に実線L2で示すように設定する。   As shown in FIG. 9, when the final torque command is adjusted at equal intervals in the order of the risk of collision from small to large, the gain is set as shown by a broken line L1 in FIG. Further, as shown in FIG. 10, when adjusting the final torque command so that the intervals are gradually increased in the order from small to large as shown in FIG. 10, the gain is set as indicated by a solid line L2 in FIG.

次に、本実施形態における衝突危険度を算出する具体例について説明する。
衝突危険度は、例えば自車両201の予測進行路と、障害物の現在の位置と、障害物の一定時間経過後の位置に基づいて算出することができる。本実施の形態では、障害物の現在の位置と一定時間経過後の位置に基づいて障害物の行動予測を行い、その行動予測と自車両201の予測進行路から、障害物存在確率を算出する。そして、TTC(衝突予測時間)を障害物存在確率で割ることによって衝突危険度を算出している。
Next, a specific example of calculating the collision risk in this embodiment will be described.
The collision risk can be calculated based on, for example, the predicted traveling path of the host vehicle 201, the current position of the obstacle, and the position of the obstacle after a predetermined time has elapsed. In the present embodiment, the behavior prediction of the obstacle is performed based on the current position of the obstacle and the position after a certain period of time, and the obstacle existence probability is calculated from the behavior prediction and the predicted traveling path of the own vehicle 201. . The collision risk is calculated by dividing TTC (collision prediction time) by the obstacle existence probability.

衝突危険度算出手段113は、自車両201の予測進行路を算出する手段と、歩行者や他車両等の障害物の現在位置を検出する手段と、障害物の一定時間経過後の位置を算出する手段を有している。   The collision risk calculating means 113 calculates means for calculating the predicted traveling path of the host vehicle 201, means for detecting the current position of an obstacle such as a pedestrian or another vehicle, and calculates the position of the obstacle after a predetermined time has elapsed. Means to do.

自車両201の予測進行路は、外界認識センサであるステレオカメラによって予測することができる。ステレオカメラは、自車両201の前方を撮像した画像に基づき、走行レーンの白線を認識することができる。したがって、通常は、走行レーンに沿った軌跡を予測し、その軌跡に基づいて進行路を予測する。また、走行レーンの白線がない場合、あるいは、自車両201が明らかにレーンから逸脱する場合には、自車両201の車速、ヨーレート、舵角から自車両の挙動を計算して軌跡を予測し、その軌跡に基づいて進行路を予測する。   The predicted traveling path of the host vehicle 201 can be predicted by a stereo camera that is an external recognition sensor. The stereo camera can recognize the white line of the travel lane based on an image obtained by capturing the front of the host vehicle 201. Therefore, normally, a trajectory along the traveling lane is predicted, and a traveling path is predicted based on the trajectory. Further, when there is no white line on the driving lane, or when the own vehicle 201 clearly deviates from the lane, the trajectory is predicted by calculating the behavior of the own vehicle from the vehicle speed, yaw rate, and steering angle of the own vehicle 201, A traveling path is predicted based on the trajectory.

障害物の現在位置や、障害物が歩行者なのか、車両なのか等の種別の判定は、外界認識センサであるステレオカメラによって検出することができる。検出方法は種々の技術が公知となっており、これらの技術を用いることができる。   The determination of the current position of the obstacle and the type such as whether the obstacle is a pedestrian or a vehicle can be detected by a stereo camera which is an external recognition sensor. Various techniques are known as detection methods, and these techniques can be used.

図12は、障害物(歩行者)が自車の進行路上に存在する存在確率分布を示す図である。
ドライバは、図12に示すように、横方向から自車両201の進行路に向かって移動している歩行者301bの速度が速ければ進行路上に飛び出してくるかもしれないと判断し、遅ければ進行路の手前で止まるだろうと判断する行動予測を行っている(認知判断)。衝突危険度算出手段113は、ドライバの行動予測と同様の処理を、障害物がt秒後に存在していると推定される存在確率を求めることによって行う。
FIG. 12 is a diagram showing an existence probability distribution in which an obstacle (pedestrian) exists on the traveling path of the own vehicle.
As shown in FIG. 12, the driver determines that the pedestrian 301b moving from the lateral direction toward the traveling path of the host vehicle 201 may jump out on the traveling path if the speed of the pedestrian 301b is fast. Behavior prediction is performed to determine that it will stop before the road (cognitive judgment). The collision risk degree calculation means 113 performs the same processing as the driver's behavior prediction by obtaining the existence probability that the obstacle is estimated to exist after t seconds.

ドライバは、上記した認知判断の結果、衝突危険度がある程度以上と判断した場合に、まず、アクセルを緩める、あるいはアクセルペダルから足を離してブレーキペダルに足を載せる。そして、障害物が本当に飛び出してきた場合にはブレーキペダルを踏み込んで制動を行う。すなわち、衝突危険度に応じてアクセル応答を変化させて状態を観察し、その後、ブレーキ操作を行っている。走行制御システム1は、駆動特性変更制御及び制動制御によってドライバの動作と同様の処理を行っている。   As a result of the above-described recognition determination, when it is determined that the degree of collision is more than a certain level, the driver first loosens the accelerator or places his / her foot on the brake pedal away from the accelerator pedal. And when an obstacle really jumps out, it brakes by depressing a brake pedal. That is, the accelerator response is changed according to the collision risk level, the state is observed, and then the brake operation is performed. The travel control system 1 performs the same processing as the operation of the driver by drive characteristic change control and braking control.

図13は、障害物の一定時間経過後の位置を算出する方法を説明するフローチャート、図14は、状態量を算出する方法を説明する図である。   FIG. 13 is a flowchart for explaining a method for calculating the position of an obstacle after a predetermined time has elapsed, and FIG. 14 is a diagram for explaining a method for calculating a state quantity.

ステップS121では、まず撮像した画像の中から制御対象とするべき、障害物の検出が行われ、障害物の相対的な位置、速度、加速度が算出される。   In step S121, an obstacle to be controlled is first detected from the captured image, and the relative position, velocity, and acceleration of the obstacle are calculated.

ステップS122では、カルマンフィルタによる現在状態量の推定処理が行われる。これにより、検知結果の誤差を考慮した上での歩行者や他車両(障害物)の現在状態量の推定が可能となる。状態量には、障害物の相対的な位置、速度、加速度が含まれている。   In step S122, the current state quantity is estimated by the Kalman filter. Thereby, it is possible to estimate the current state quantity of the pedestrian and other vehicle (obstacle) in consideration of the error of the detection result. The state quantity includes the relative position, speed, and acceleration of the obstacle.

ステップS123では、障害物の移動は運動方程式(加速度考慮)に従うものとして、TTC後の位置を予測する処理が行われる。現在状態量をカルマンフィルタで安定させているので、より安定した未来状態量の推定が可能である。   In step S123, the process of predicting the position after TTC is performed on the assumption that the movement of the obstacle follows the motion equation (acceleration consideration). Since the current state quantity is stabilized by the Kalman filter, it is possible to estimate the future state quantity more stably.

そして、ステップS124では、過去nフレームの位置情報が保存され、ステップS125では、過去の未来位置推定情報からTTC後の存在確率分布を生成する処理が行われる。   In step S124, the position information of the past n frames is stored, and in step S125, a process of generating an existence probability distribution after TTC from the past future position estimation information is performed.

そして、ステップS126では、過去の未来位置推定位置の分散を持つ正規分布として表現する処理が行われる。存在確率を求めることによってより柔軟な制御が可能になる。そして、各種条件を用いた誤推定抑制処理が行われる。例えば、車との間にガードレールがあれば、歩行者が車道に飛び出し難いという条件や、前後方向(自車進行方向)に大きな速度を持っていると、左右方向(車幅方向)への急な移動をし難いという条件を用いて、誤推定を抑制する処理が行われる。   In step S126, a process of expressing as a normal distribution having a variance of past future position estimation positions is performed. By obtaining the existence probability, more flexible control is possible. Then, erroneous estimation suppression processing using various conditions is performed. For example, if there is a guardrail between the vehicle and the pedestrian, it is difficult for the pedestrian to jump out onto the roadway, or if the vehicle has a large speed in the front-rear direction (traveling direction of the host vehicle), Using the condition that difficult movement is difficult, processing for suppressing erroneous estimation is performed.

本発明の走行制御システム1は、衝突危険度が第1閾値(D1)よりも大きく第2閾値よりも小さいときには、駆動装置の応答性を変更する駆動特性変更制御を実行し、アクセル開度に応じたトルク指令(要求駆動力)を低減させる。そして、衝突危険度が第2閾値(D2)よりも大きいときには制動制御を行う。したがって、まず最初に加速応答が弱められ、次いで、制動制御が実行されるので、図14に示すように、自車両201の前方に歩行者301bが飛び出してきた場合や、他車両301aが急に割り込んできた場合に、衝突被害を軽減し、より安全方向に制御することができる。   The traveling control system 1 according to the present invention executes drive characteristic change control for changing the responsiveness of the drive device when the collision risk is larger than the first threshold value (D1) and smaller than the second threshold value. The corresponding torque command (required driving force) is reduced. When the collision risk is greater than the second threshold (D2), braking control is performed. Accordingly, the acceleration response is first weakened, and then the braking control is executed. Therefore, as shown in FIG. 14, when the pedestrian 301b jumps out in front of the host vehicle 201 or when the other vehicle 301a suddenly When interrupted, collision damage can be reduced and control can be performed in a safer direction.

上記した実施形態では、衝突危険度という同一の基準を用いて駆動特性変更制御と、制動制御を行う場合について説明したが、例えば、駆動特性変更制御については衝突危険度を判断基準として用い、制動制御については従来のTTCを判断基準として用いてもよい。かかる構成とした場合、制動制御を行う既存の構成に、駆動特性変更制御を追加するだけでよく、容易に導入することができる。   In the above-described embodiment, the case where the driving characteristic change control and the braking control are performed using the same criterion of the collision risk level has been described. For example, for the driving characteristic change control, the collision risk level is used as the determination criterion, and the braking is performed. For control, a conventional TTC may be used as a criterion. In such a configuration, it is only necessary to add the drive characteristic change control to the existing configuration that performs the braking control, and it can be easily introduced.

また、上記した実施形態では、自車両201が電気自動車であり、モータの駆動特性を変更する制御の場合を例に説明したが、自車両201が内燃機関を備えた自動車であり、その内燃機関の駆動特性を変更するものにも適用することができる。   Further, in the above-described embodiment, the case where the own vehicle 201 is an electric vehicle and control is performed to change the drive characteristics of the motor has been described as an example. However, the own vehicle 201 is an automobile including an internal combustion engine, and the internal combustion engine The present invention can also be applied to those that change the drive characteristics.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 走行制御システム
101 制御装置
102 駆動装置
112 トルク指令値算出手段
113 衝突危険度算出手段
122 モータ制御手段
201 自車両
202 予測進行路
301 障害物
301a 他車両
301b 歩行者
DESCRIPTION OF SYMBOLS 1 Travel control system 101 Control apparatus 102 Drive apparatus 112 Torque command value calculation means 113 Collision risk degree calculation means 122 Motor control means 201 Own vehicle 202 Predicted traveling path 301 Obstacle 301a Other vehicle 301b Pedestrian

Claims (9)

外界認識装置から取得した外界認識情報に基づいて自車両が障害物と衝突する衝突危険度を算出する衝突危険度算出手段と、
該衝突危険度に応じて駆動装置の駆動特性を変更する駆動特性変更手段と、を有することを特徴とする車両の制御装置。
A collision risk calculating means for calculating a collision risk that the own vehicle collides with an obstacle based on the external recognition information acquired from the external recognition device;
A vehicle control device comprising: drive characteristic changing means for changing the drive characteristic of the drive device in accordance with the collision risk.
前記駆動特性変更手段は、前記衝突危険度が予め設定された第1閾値よりも大きい場合に、アクセル開度に応じた目標駆動力を低減させることを特徴とする請求項1に記載の車両の制御装置。   2. The vehicle according to claim 1, wherein the driving characteristic changing unit reduces a target driving force according to an accelerator opening when the collision risk is greater than a preset first threshold value. Control device. 前記駆動特性は、前記衝突危険度の大きい方が小さい方よりも前記目標駆動力を低減させる量が大きくなるように変更されることを特徴とする請求項2に記載の車両の制御装置。   The vehicle control device according to claim 2, wherein the driving characteristic is changed so that an amount of reducing the target driving force is larger when the risk of collision is larger than when the risk of collision is small. 前記駆動特性は、前記衝突危険度が大きくなるに応じて前記目標駆動力を低減させる量が漸次増大するように変更されることを特徴とする請求項3に記載の車両の制御装置。   The vehicle control device according to claim 3, wherein the drive characteristic is changed so that an amount by which the target driving force is reduced gradually increases as the collision risk increases. 前記駆動特性は、前記衝突危険度が大きくなるに応じて前記目標駆動力を低減させる量が二次関数的に増大するように変更されることを特徴とする請求項3に記載の車両の制御装置。   4. The vehicle control according to claim 3, wherein the drive characteristic is changed so that an amount by which the target driving force is reduced increases in a quadratic function as the collision risk increases. 5. apparatus. 前記制御装置によりアクセル開度に応じて制御され、且つ、車両走行用のモータを有する駆動装置と、
外界を認識する外界認識装置と、を有し、
請求項1記載の前記制御装置は、前記モータを制御するモータ制御手段を有することを特徴とする車両の走行制御システム。
A drive device controlled by the control device according to the accelerator opening, and having a vehicle running motor;
An external recognition device for recognizing the external world,
The vehicle control system according to claim 1, further comprising motor control means for controlling the motor.
前記駆動特性変更手段は、車速とアクセル開度に基づいて前記モータのトルク指令値を算出するトルク指令値算出手段を有し、前記トルク指令値と前記衝突危険度を用いて最終トルク指令値を算出して前記モータ制御手段に出力し、
前記モータ制御手段は、前記最終トルク指令値に応じた電流指令値を前記モータに出力することを特徴とする請求項6に記載の車両の走行制御システム。
The drive characteristic changing means includes torque command value calculation means for calculating a torque command value of the motor based on a vehicle speed and an accelerator opening, and a final torque command value is calculated using the torque command value and the collision risk. Calculate and output to the motor control means,
The vehicle travel control system according to claim 6, wherein the motor control unit outputs a current command value corresponding to the final torque command value to the motor.
前記外界認識装置は、ステレオカメラを有することを特徴とする請求項6に記載の車両の走行制御システム。   The vehicle exterior control system according to claim 6, wherein the external environment recognition device includes a stereo camera. 前記車両を制動させる制動装置を有し、
前記制御装置の前記駆動特性変更手段は、前記衝突危険度が予め設定された第1閾値よりも大きい場合に、アクセル開度に応じた目標駆動力を低減させ、
前記制御装置は、前記衝突危険度が予め設定された第2閾値よりも高い場合に前記制動装置の制動制御を行うことを特徴とする請求項6に記載の走行制御システム。
A braking device for braking the vehicle;
The drive characteristic changing means of the control device reduces the target drive force according to the accelerator opening when the collision risk is greater than a preset first threshold,
The travel control system according to claim 6, wherein the control device performs braking control of the braking device when the collision risk is higher than a preset second threshold value.
JP2015519701A 2013-05-31 2014-03-14 VEHICLE CONTROL DEVICE AND VEHICLE TRAVEL CONTROL SYSTEM Pending JPWO2014192368A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013115603 2013-05-31
JP2013115603 2013-05-31
PCT/JP2014/056819 WO2014192368A1 (en) 2013-05-31 2014-03-14 Vehicle control device and vehicle travel control system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017123832A Division JP6539307B2 (en) 2013-05-31 2017-06-26 Vehicle control device

Publications (1)

Publication Number Publication Date
JPWO2014192368A1 true JPWO2014192368A1 (en) 2017-02-23

Family

ID=51988412

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015519701A Pending JPWO2014192368A1 (en) 2013-05-31 2014-03-14 VEHICLE CONTROL DEVICE AND VEHICLE TRAVEL CONTROL SYSTEM
JP2017123832A Active JP6539307B2 (en) 2013-05-31 2017-06-26 Vehicle control device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017123832A Active JP6539307B2 (en) 2013-05-31 2017-06-26 Vehicle control device

Country Status (2)

Country Link
JP (2) JPWO2014192368A1 (en)
WO (1) WO2014192368A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015201569A1 (en) * 2015-01-29 2016-08-04 Continental Teves Ag & Co. Ohg VEHICLE CONTROL DEVICE AND METHOD
JP6090381B2 (en) 2015-07-29 2017-03-08 横浜ゴム株式会社 Collision prevention system
US20190016339A1 (en) * 2016-02-16 2019-01-17 Honda Motor Co., Ltd. Vehicle control device, vehicle control method, and vehicle control program
JP6770393B2 (en) * 2016-10-04 2020-10-14 株式会社豊田中央研究所 Tracking device and program
CN110366513B (en) * 2017-03-01 2022-09-13 本田技研工业株式会社 Vehicle control system, vehicle control method, and storage medium
CN109733391A (en) * 2018-12-10 2019-05-10 北京百度网讯科技有限公司 Control method, device, equipment, vehicle and the storage medium of vehicle
WO2022208675A1 (en) * 2021-03-30 2022-10-06 三菱電機株式会社 Driving assistance device, driving assistance system, driving assistance method, and driving assistance program
JP7094418B1 (en) 2021-04-16 2022-07-01 三菱電機株式会社 Traffic control equipment and traffic control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052809A (en) * 1998-08-13 2000-02-22 Mitsubishi Electric Corp Abnormal approach preventing device
JP2006195623A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Vehicle and vehicle-driving force control method
JP2007129827A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Intelligent brake assist system of hybrid vehicle
JP2010282350A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Collision safety system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3882797B2 (en) * 2003-08-08 2007-02-21 日産自動車株式会社 VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP4532181B2 (en) * 2004-06-24 2010-08-25 日産自動車株式会社 VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING VEHICLE DRIVE OPERATION ASSISTANCE DEVICE
JP4980076B2 (en) * 2007-01-11 2012-07-18 富士重工業株式会社 Vehicle driving support device
JP5655497B2 (en) * 2010-10-22 2015-01-21 トヨタ自動車株式会社 Obstacle recognition device and obstacle recognition method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052809A (en) * 1998-08-13 2000-02-22 Mitsubishi Electric Corp Abnormal approach preventing device
JP2006195623A (en) * 2005-01-12 2006-07-27 Toyota Motor Corp Vehicle and vehicle-driving force control method
JP2007129827A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Intelligent brake assist system of hybrid vehicle
JP2010282350A (en) * 2009-06-03 2010-12-16 Toyota Motor Corp Collision safety system

Also Published As

Publication number Publication date
JP6539307B2 (en) 2019-07-03
WO2014192368A1 (en) 2014-12-04
JP2017186011A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6539307B2 (en) Vehicle control device
JP6226896B2 (en) A method for minimizing brake intervention based on collision certainty
JP6158523B2 (en) Inter-vehicle distance control device
US10000208B2 (en) Vehicle control apparatus
JP5915152B2 (en) Driving support device and driving support method
JP6319192B2 (en) Vehicle speed limiter
US20120226423A1 (en) Vehicle driving support apparatus
US10597013B2 (en) Driving assist device and driving assist method
US11667282B2 (en) Driving assistance system
JP6376055B2 (en) Lane departure control system
JP5417832B2 (en) Vehicle driving support device
JP2008307951A (en) Driving support apparatus of vehicle
US10946860B2 (en) Vehicle control apparatus
JP2019151185A (en) Driving support device
JP2007062604A (en) Automatic brake for vehicle
JP2019043290A (en) Vehicle control device
JP2011221654A (en) Preceding vehicle detection device, and collision warning apparatus and collision avoidance device using the same
JP4999762B2 (en) Vehicle contact avoidance support device
CN108944949B (en) Method for operating a congestion assistance system for a vehicle
JP5147511B2 (en) Vehicle contact avoidance support device
JP2016011088A (en) Vehicle control device, vehicle control method, and program for vehicle control
JP2019038363A (en) Vehicular travelling control device
US20200172094A1 (en) Driving assistance apparatus
JP5118468B2 (en) Vehicle travel control device.
JP2020050010A (en) Vehicle control device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170405