JPWO2013039112A1 - Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof - Google Patents

Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof Download PDF

Info

Publication number
JPWO2013039112A1
JPWO2013039112A1 JP2013533691A JP2013533691A JPWO2013039112A1 JP WO2013039112 A1 JPWO2013039112 A1 JP WO2013039112A1 JP 2013533691 A JP2013533691 A JP 2013533691A JP 2013533691 A JP2013533691 A JP 2013533691A JP WO2013039112 A1 JPWO2013039112 A1 JP WO2013039112A1
Authority
JP
Japan
Prior art keywords
cell
cells
change
substrate
stimulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013533691A
Other languages
Japanese (ja)
Inventor
俊博 小名
俊博 小名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Priority to JP2013533691A priority Critical patent/JPWO2013039112A1/en
Publication of JPWO2013039112A1 publication Critical patent/JPWO2013039112A1/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

抗がん剤の評価に際しては、従来法では比較的長い判定期間を必要とするという問題がある。実際には三次元培養することなく、非分裂条件下で三次元培養(又は生体内)と同等に活性化することができれば、少なくとも三次元培養のための期間は不要となり、迅速かつ簡便に対象物質を評価しうる。また、そのような三次元培養の模倣方法は、抗がん剤の評価のみならず、種々の刺激の生理活性の評価・判定への応用が期待できる。基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;活性化した細胞へ刺激を供与する工程;及び刺激を供与した後に生じる、細胞の変化を検出する工程を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した刺激を評価する方法。When evaluating anticancer agents, there is a problem that the conventional method requires a relatively long determination period. If it can be activated in the same way as three-dimensional culture (or in vivo) under non-dividing conditions without actually performing three-dimensional culture, at least the period for three-dimensional culture is unnecessary, and the target can be quickly and easily The substance can be evaluated. Such a three-dimensional culture imitation method is expected to be applied not only to evaluation of anticancer agents but also to evaluation and determination of physiological activities of various stimuli. Covering a portion of a monolayer animal-derived cell maintained on a substrate with a composition comprising an extracellular matrix component and activating the cell under non-dividing conditions; providing a stimulus to the activated cell; and A method for evaluating a stimulus applied to a cell, which includes the step of detecting a change in the cell that occurs after the stimulus is provided, and using the presence or degree of the change of the cell as an index.

Description

本発明は、細胞を用いた評価方法(セルベースアッセイ)に関する。本発明は、医薬候補化合物等のハイスループットスクリーニングのために用いることができる。本発明は、患者の薬剤感受性試験に用いることができる。本発明は、創薬(特に抗がん剤)、機能性食品、又は機能性化粧品の研究開発のために有用である。本発明は、患者の投与薬剤の決定のために有用である。   The present invention relates to an evaluation method (cell-based assay) using cells. The present invention can be used for high-throughput screening of drug candidate compounds and the like. The present invention can be used in patient drug susceptibility testing. The present invention is useful for research and development of drug discovery (particularly anticancer agents), functional foods, or functional cosmetics. The present invention is useful for determining the drug to be administered to a patient.

抗がん剤感受性試験や腫瘍の基礎研究、また腫瘍に限らず毒性を含む各種の生体反応の研究並びに試験などにおいて、ヒトの細胞を用いて評価を行うセルベースアッセイが良く用いられる。セルベースアッセイは、典型的には、ヒト細胞を培養器で単層培養し、評価対象物質を加えて一定時間経過後、生存細胞数をカウントすることにより行われる。このような方法は、低コストであり、簡便であることから頻繁に用いられるが、間質細胞等の細胞が取り除かれ、成体とは異なる特殊な環境下で行われ、かつ細胞は単層状に増殖しており、三次元構造を採ってはいない。   Cell-based assays that use human cells are often used in anticancer drug susceptibility tests, basic tumor research, and various biological reaction studies and tests including toxicity, not limited to tumors. The cell-based assay is typically performed by culturing human cells in a monolayer with an incubator, adding a substance to be evaluated, and counting the number of viable cells after a certain period of time. Such a method is frequently used because of its low cost and simplicity, but it is performed in a special environment different from adults, in which cells such as stromal cells are removed, and the cells are monolayered. It is proliferating and does not adopt a three-dimensional structure.

単層培養に関しては、本来の組織特異的な遺伝子発現の消失、細胞周期、代謝、及び巨大分子の変換に関わる遺伝子発現の上昇、並びに成長や細胞接着に関わる遺伝子発現の抑制や細胞間のシグナル伝達の欠如などが報告されている(非特許文献1〜6)。このため、単層培養を用いては、現実に生体内ではあり得ない検討がなされていることが多い(非特許文献7)。例えば、抗がん剤は、生体内の血液中濃度(生理的濃度)の10〜100倍でないと効果が判定できない(非特許文献8及び9)。したがって、生体内では優れた抗がん作用を発揮しうる薬剤について低い評価しか得られず、臨床応用に結び付かないという問題が生じている(非特許文献10)。   For monolayer cultures, loss of original tissue-specific gene expression, increase in gene expression related to cell cycle, metabolism, and macromolecule conversion, suppression of gene expression related to growth and cell adhesion, and signal between cells Lack of communication has been reported (Non-Patent Documents 1 to 6). For this reason, in many cases, studies that cannot actually be performed in vivo using monolayer culture have been made (Non-patent Document 7). For example, the effect of an anticancer agent cannot be determined unless it is 10 to 100 times the blood concentration (physiological concentration) in the living body (Non-patent Documents 8 and 9). Therefore, there is a problem that only a low evaluation can be obtained for a drug that can exhibit an excellent anticancer effect in vivo, and it is not linked to clinical application (Non-patent Document 10).

薬剤の評価にあたっては、生体内に近い微小環境を維持している系を用いることが望ましいが、系の維持の問題等がある。そこで、In vitroにおいて細胞を三次元培養し、生体内に近い構造を再構築した系が検討されつつある。   In evaluating drugs, it is desirable to use a system that maintains a microenvironment close to that in the living body, but there are problems in maintaining the system. Therefore, a system in which cells are three-dimensionally cultured in vitro and a structure close to that in vivo is reconstructed is being studied.

三次元培養には、1)自発的細胞凝集である多細胞も含めたスフェロイド培養、2)細胞外基質成分包埋培養(特許文献1〜3)、3)多孔質足場(スキャホールド)培養などがある(非特許文献11〜14)。単純なスフェロイド培養では、微小環境の一部しか再現できないため、スフェロイドを細胞外基質成分で包埋する細胞外基質成分包埋培養も開発されている。細胞外基質成分としてはコラーゲンが良く用いられ、抗がん剤の場合では臨床結果との相関も高い(非特許文献15〜18)。しかしながら、細胞を三次元培養し、試験に供するまでには通常、数日〜14日もかかることから、三次元培養する限り、ハイスループット化する際にこの点が問題になることが指摘されている(非特許文献19及び20)。これに加え、標準的な三次元培養による抗がん剤感受性試験として、CD-DST(Collagen Gel Droplet Embedded Culture Drug Sensitivity Test)法が開発されているが、この方法でも、判定は薬剤を添加してから7日後〜14日後に行われることが多い(前掲非特許文献10)。   Three-dimensional culture includes 1) spheroid culture including multiple cells that are spontaneous cell aggregation, 2) extracellular matrix component-embedded culture (Patent Documents 1 to 3), 3) porous scaffold (scaffold) culture, etc. (Non-Patent Documents 11 to 14). Since simple spheroid culture can reproduce only a part of the microenvironment, an extracellular matrix component-embedded culture in which spheroids are embedded with an extracellular matrix component has also been developed. Collagen is often used as an extracellular matrix component, and in the case of an anticancer agent, the correlation with clinical results is high (Non-patent Documents 15 to 18). However, since it usually takes several days to 14 days for cells to be three-dimensionally cultured and used for testing, it has been pointed out that this will be a problem when high throughput is achieved as long as three-dimensional culture is performed. (Non-Patent Documents 19 and 20). In addition to this, the CD-DST (Collagen Gel Droplet Embedded Culture Drug Sensitivity Test) method has been developed as a standard anti-cancer drug susceptibility test by three-dimensional culture. It is often performed 7 to 14 days later (Non-Patent Document 10).

一方、装置による三次元培養細胞を用いた試験での判定及び予測は、主にイメージングの手法により行われている。装置としては、位相差顕微鏡、蛍光顕微鏡、共焦点レーザー顕微鏡、二光子(多光子)顕微鏡、核磁気共鳴(NMR)顕微鏡、光干渉断層法(OCT)、ポジトロン断層法(PET)などが用いられる(非特許文献21〜25)。また、細胞外に排出される酸素濃度をモニターした走査電気化学顕微鏡を用いた方法、インピーダンスによる細胞直径の測定(非特許文献26)、マイクロキャビティーアレイ上でのインピーダンスのリアルタイム測定(非特許文献27)、が報告されている。   On the other hand, determination and prediction in a test using a three-dimensional cultured cell by an apparatus is mainly performed by an imaging technique. As the apparatus, a phase contrast microscope, a fluorescence microscope, a confocal laser microscope, a two-photon (multiphoton) microscope, a nuclear magnetic resonance (NMR) microscope, an optical coherence tomography (OCT), a positron tomography (PET), etc. are used. (Non-patent documents 21 to 25). In addition, a method using a scanning electrochemical microscope that monitors the oxygen concentration discharged outside the cell, measurement of cell diameter by impedance (Non-patent Document 26), real-time measurement of impedance on a microcavity array (Non-patent Document) 27), has been reported.

しかしながら、すべての方法が、少なくとも7日間か、又はこの半分程度の判定期間を要し、判定までの間には、培地の定期的な交換等の手技が必要で、煩雑であり、自動化することも困難である(前掲非特許文献10)。このため、各種薬剤試験のハイスループットスクリーニング方法としては、広く用いられていない(前掲非特許文献10)。   However, all methods require at least 7 days or half of this judgment period, and until the judgment, procedures such as periodic replacement of the medium are necessary, complicated, and automated. Is also difficult (Non-Patent Document 10). For this reason, it has not been widely used as a high-throughput screening method for various drug tests (Non-Patent Document 10).

他方、本発明者らは、表面プラズモン共鳴装置を用いて、抗がん物質のスクリーニングや、ミトコンドリアの分極状態をモニタリングする方法を検討してきた(特許文献4〜6)。   On the other hand, the present inventors have studied methods for screening anticancer substances and monitoring the mitochondrial polarization state using a surface plasmon resonance apparatus (Patent Documents 4 to 6).

WO95/18216(特許第2879978号)WO95 / 18216 (Patent No. 2879978) 特開2003-9853JP2003-9853 特開2008-11797JP2008-11797 特開2005-85089JP2005-85089 WO2007/069692WO2007 / 069692 特開2009-122016JP2009-122016

Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem. 398(6):2505-2533 (2010).Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy.Analy Bioanal Chem. 398 (6): 2505-2533 (2010). Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol. 15(5):405-412 (2005).Birgersdotter A, Sandberg R, Ernberg I. Gene expression perturbation in vitro--a growing case for three-dimensional (3D) culture systems.Semin Cancer Biol. 15 (5): 405-412 (2005). Kim JB. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 15(5):365-377 (2005).Kim JB. Three-dimensional tissue culture models in cancer biology.Semin Cancer Biol. 15 (5): 365-377 (2005). Ng KW, Leong DT, Hutmacher DW. The challenge to measure cell proliferation in two and three dimensions. Tissue Eng. 11(1-2):182-191 (2005).Ng KW, Leong DT, Hutmacher DW.The challenge to measure cell proliferation in two and three dimensions.Tissue Eng. 11 (1-2): 182-191 (2005). Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 130(4):601-610 (2007).Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 130 (4): 601-610 (2007). Garamszegi N, Garamszegi SP, Shehadeh LA, Scully SP. Extracellular matrix-induced gene expression in human breast cancer cells. Mol Cancer Res. 7(3):319-329 (2009).Garamszegi N, Garamszegi SP, Shehadeh LA, Scully SP.Extracellular matrix-induced gene expression in human breast cancer cells.Mole Cancer Res. 7 (3): 319-329 (2009). Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene. 28(3):461-468 (2009).Pickl M, Ries CH. Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab.Oncogene. 28 (3): 461-468 (2009). Weigelt B, Bissell MJ. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol. 18(5):311-321 (2008).Weigelt B, Bissell MJ. Unraveling the microenvironmental influences on the normal mammary gland and breast cancer.Semin Cancer Biol. 18 (5): 311-321 (2008). Yasuda H, Takada T, Wada K, Amano H, Isaka T, Yoshida M, Uchida T, Toyota N. A new in-vitro drug sensitivity test (collagen-gel droplet embedded-culture drug sensitivity test) in carcinomas of pancreas and biliary tract: possible clinical utility. J Hepatobiliary Pancreat Surg. 5(3):261-268 (1998).Yasuda H, Takada T, Wada K, Amano H, Isaka T, Yoshida M, Uchida T, Toyota N. A new in-vitro drug sensitivity test (collagen-gel droplet embedded-culture drug sensitivity test) in carcinomas of pancreas and biliary tract: possible clinical utility. J Hepatobiliary Pancreat Surg. 5 (3): 261-268 (1998). Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 5(5):849-862 (2008).Horning JL, Sahoo SK, Vijayaraghavalu S, Dimitrijevic S, Vasir JK, Jain TK, Panda AK, Labhasetwar V. 3-D tumor model for in vitro evaluation of anticancer drugs. Mol Pharm. 5 (5): 849-862 (2008 ). Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J. 3(9-10):1172-1184 (2008).Lin RZ, Chang HY. Recent advances in three-dimensional multicellular spheroid culture for biomedical research.Biotechnol J. 3 (9-10): 1172-1184 (2008). Burdett E, Kasper FK, Mikos AG, Ludwig JA. Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev. 16(3):351-359 (2010).Burdett E, Kasper FK, Mikos AG, Ludwig JA.Engineering tumors: a tissue engineering perspective in cancer biology.Tissue Eng Part B Rev. 16 (3): 351-359 (2010). Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 148(1):3-15 (2010).Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA.Multicellular tumor spheroids: an underestimated tool is catching up again.J Biotechnol. 148 (1): 3-15 (2010). Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat Rev Cancer. 10(4):241-253 (2010).Sharma SV, Haber DA, Settleman J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents.Nat Rev Cancer. 10 (4): 241-253 (2010). Vescio RA, Connors KM, Kubota T, Hoffman RM. Correlation of histology and drug response of human tumors grown in native-state three-dimensional histoculture and in nude mice. Proc Natl Acad Sci U S A. 88(12): 5163-5166 (1991).Vescio RA, Connors KM, Kubota T, Hoffman RM. Correlation of histology and drug response of human tumors grown in native-state three-dimensional histoculture and in nude mice.Proc Natl Acad Sci US A. 88 (12): 5163-5166 (1991). Kubota T, Sasano N, Abe O, Nakao I, Kawamura E, Saito T, Endo M, Kimura K, Demura H, Sasano H, Nagura H, Ogawa N, Hoffman RM. Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin Cancer Res. 1(12):1537-1543 (1995).Kubota T, Sasano N, Abe O, Nakao I, Kawamura E, Saito T, Endo M, Kimura K, Demura H, Sasano H, Nagura H, Ogawa N, Hoffman RM. Potential of the histoculture drug-response assay to contribute to cancer patient survival. Clin Cancer Res. 1 (12): 1537-1543 (1995). Takamura Y, Kobayashi H, Taguchi T, Motomura K, Inaji H, Noguchi S. Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers. Int J Cancer. 98(3):450-455 (2002).Takamura Y, Kobayashi H, Taguchi T, Motomura K, Inaji H, Noguchi S. Prediction of chemotherapeutic response by collagen gel droplet embedded culture-drug sensitivity test in human breast cancers.Int J Cancer. 98 (3): 450-455 ( 2002). Kawamura M, Gika M, Abiko T, Inoue Y, Oyama T, Izumi Y, Kobayashi H, Kobayashi K. Clinical evaluation of chemosensitivity testing for patients with unresectable non-small cell lung cancer (NSCLC) using collagen gel droplet embedded culture drug sensitivity test (CD-DST). Cancer Chemother Pharmacol. 59(4):507-513 (2007).Kawamura M, Gika M, Abiko T, Inoue Y, Oyama T, Izumi Y, Kobayashi H, Kobayashi K. Clinical evaluation of chemosensitivity testing for patients with unresectable non-small cell lung cancer (NSCLC) using collagen gel droplet embedded culture drug sensitivity test (CD-DST). Cancer Chemother Pharmacol. 59 (4): 507-513 (2007). Cheng K, Lai Y, Kisaalita WS. Three-dimensional polymer scaffolds for high throughput cell-based assay systems. Biomaterials. 29(18):2802-2812 (2008).Cheng K, Lai Y, Kisaalita WS.Three-dimensional polymer scaffolds for high throughput cell-based assay systems.Biomaterials. 29 (18): 2802-2812 (2008). Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst. 136(3):473-478 (2011).Tung YC, Hsiao AY, Allen SG, Torisawa YS, Ho M, Takayama S. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.Analyst. 136 (3): 473-478 (2011). Smith LE, Smallwood R, Macneil S. A comparison of imaging methodologies for 3D tissue engineering. Microsc Res Tech. 73(12):1123-1133 (2010).Smith LE, Smallwood R, Macneil S. A comparison of imaging methodologies for 3D tissue engineering.Microsc Res Tech. 73 (12): 1123-1133 (2010). Indovina P, Collini M, Chirico G, Santini MT. Three-dimensional cell organization leads to almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using two-photon excitation microscopy. FEBS Lett. 581(4):719-726 (2007).Indovina P, Collini M, Chirico G, Santini MT.Three-dimensional cell organization leads to almost immediate HRE activity as demonstrated by molecular imaging of MG-63 spheroids using two-photon excitation microscopy.FEBS Lett. 581 (4): 719- 726 (2007). Huang S, Vader D, Wang Z, Stemmer-Rachamimov A, Weitz DA, Dai G, Rosen BR, Deisboeck TS. Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: A case study. BMC Med Imaging. 29;8:3 (2008).Huang S, Vader D, Wang Z, Stemmer-Rachamimov A, Weitz DA, Dai G, Rosen BR, Deisboeck TS.Using magnetic resonance microscopy to study the growth dynamics of a glioma spheroid in collagen I: A case study.BMC Med Imaging 29; 8: 3 (2008). Sharma M, Verma Y, Rao KD, Nair R, Gupta PK. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol Lett. 29(2):273-278 (2007).Sharma M, Verma Y, Rao KD, Nair R, Gupta PK. Imaging growth dynamics of tumour spheroids using optical coherence tomography. Biotechnol Lett. 29 (2): 273-278 (2007). Monazzam A, Josephsson R, Blomqvist C, Carlsson J, Langstrom B, Bergstrom M. Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer. Breast Cancer Res. 9(4):R45 (2007).Monazzam A, Josephsson R, Blomqvist C, Carlsson J, Langstrom B, Bergstrom M. Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer.Breast Cancer Res. 9 (4): R45 (2007). Thielecke H, Mack A, Robitzki A. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosens Bioelectron. 16(4-5):261-269 (2001).Thielecke H, Mack A, Robitzki A. A multicellular spheroid-based sensor for anti-cancer therapeutics. Biosens Bioelectron. 16 (4-5): 261-269 (2001). Kloβ D, Kurz R, Jahnke HG, Fischer M, Rothermel A, Anderegg U, Simon JC, Robitzki AA. Microcavity array (MCA)-based biosensor chip for functional drug screening of 3D tissue models. Biosens Bioelectron. 23(10):1473-1480 (2008).Kloβ D, Kurz R, Jahnke HG, Fischer M, Rothermel A, Anderegg U, Simon JC, Robitzki AA. Microcavity array (MCA) -based biosensor chip for functional drug screening of 3D tissue models. Biosens Bioelectron. 23 (10): 1473-1480 (2008).

抗がん剤の評価に際しては、従来法では比較的長い判定期間を必要とするという問題がある。実際には三次元培養することなく、非分裂条件下で三次元培養(又は生体内)と同等に活性化することができれば、少なくとも三次元培養のための期間は不要となり、迅速かつ簡便に対象物質を評価しうる。また、そのような三次元培養の模倣方法は、抗がん剤の評価のみならず、種々の刺激の生理活性の評価・判定への応用が期待できる。   When evaluating anticancer agents, there is a problem that the conventional method requires a relatively long determination period. If it can be activated in the same way as three-dimensional culture (or in vivo) under non-dividing conditions without actually performing three-dimensional culture, at least the period for three-dimensional culture is unnecessary, and the target can be quickly and easily The substance can be evaluated. Such a three-dimensional culture imitation method is expected to be applied not only to evaluation of anticancer agents but also to evaluation and determination of physiological activities of various stimuli.

本発明は以下を提供する:
[1] 基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;
活性化した細胞へ刺激を供与する工程;及び
刺激を供与した後に生じる、細胞の変化を検出する工程
を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した刺激を評価する方法。
[2] 細胞の変化を検出する工程が、細胞非分裂条件下で、表面プラズモン共鳴装置を用い、細胞及び/又はミトコンドリアの分極状態の変化、又は細胞及び/又はミトコンドリアの誘電率の変化に起因する表面プラズモン共鳴角の変化を測定することにより実施される、[1]に記載の方法。
[3] 細胞ががん細胞であり、刺激を供与する工程が、一又は二以上の抗がん剤を供与することにより行われる、抗がん剤の薬効を評価するための、[2]に記載の方法。
[4] 基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;
活性化した細胞へ試験化合物を供与する工程;及び
試験化合物を供与した後に生じる、細胞の変化を検出する工程
を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した試験化合物を抗がん剤候補化合物として選択する、抗がん剤候補化合物のスクリーニングのための方法。
[5] 基板に維持した単層状の動物細胞の一部を、細胞外基質成分を含む組成物で覆うことにより、細胞の外来刺激に対する感受性を高める、方法。
[6] 基板に維持した単層状の動物細胞の一部を、細胞外基質成分を含む組成物で覆うことによる、三次元培養環境を模倣する方法。
The present invention provides the following:
[1] A step of covering a part of a cell derived from a monolayer animal maintained on a substrate with a composition containing an extracellular matrix component and activating the cell under non-dividing conditions;
A method of evaluating a stimulus provided to a cell, using a step of providing a stimulus to an activated cell; and a step of detecting a change in the cell that occurs after the stimulus is provided, and using the presence or degree of the change of the cell as an index.
[2] The process of detecting cell changes is caused by changes in the polarization state of cells and / or mitochondria, or changes in the dielectric constant of cells and / or mitochondria using surface plasmon resonance devices under non-dividing conditions. The method according to [1], wherein the method is performed by measuring a change in surface plasmon resonance angle.
[3] For evaluating the efficacy of an anticancer agent, wherein the cell is a cancer cell, and the step of providing stimulation is performed by supplying one or more anticancer agents. [2] The method described in 1.
[4] A step of covering a part of a cell derived from a monolayer animal maintained on a substrate with a composition containing an extracellular matrix component and activating the cell under non-dividing conditions;
A step of supplying a test compound to activated cells; and a step of detecting a change in the cell that occurs after the test compound is supplied, and the test compound supplied to the cell is treated with the presence or degree of the change of the cell as an index. A method for screening an anticancer drug candidate compound selected as a cancer drug candidate compound.
[5] A method of increasing sensitivity of a cell to an external stimulus by covering a part of a monolayer animal cell maintained on a substrate with a composition containing an extracellular matrix component.
[6] A method for imitating a three-dimensional culture environment by covering a part of a monolayer animal cell maintained on a substrate with a composition containing an extracellular matrix component.

本発明の方法によれば、基板に維持した単層状の動物細胞の一部分を、細胞外基質成分を含む組成物で覆うことにより、非分裂条件下で三次元培養(又は生体内)と同等に活性化することができる。   According to the method of the present invention, by covering a part of a monolayer animal cell maintained on a substrate with a composition containing an extracellular matrix component, it is equivalent to three-dimensional culture (or in vivo) under non-dividing conditions. Can be activated.

上述の三次元培養を模倣した系を、細胞の変化を迅速に検出するための測定方法、例えばSPR装置によるミトコンドリアの分極状態の変化を検出する方法と組み合わせることにより、従来の試験法に比べて、下記のような利点がある:
(1) 従来法が105〜106程度の細胞を必要とするのに対し、少量の細胞、例えば1000個程度の細胞で実施しうる。
(2) 物質投与後、1時間以内に判定しうる。
(3) 生理的濃度で実施しうる。
Compared with the conventional test method by combining the above-mentioned system that mimics the three-dimensional culture with a measurement method for rapidly detecting cell changes, for example, a method for detecting changes in the mitochondrial polarization state using an SPR device. Have the following advantages:
(1) Whereas the conventional method requires about 10 5 to 10 6 cells, it can be carried out with a small amount of cells, for example, about 1000 cells.
(2) Can be determined within 1 hour after substance administration.
(3) Can be performed at physiological concentrations.

本発明は、物質のスクリーニングを目的として実施できるのみならず、投薬前の効果予測を目的としても、有用であろう。   The present invention can be implemented not only for the purpose of screening for substances, but also for the purpose of predicting effects before administration.

図1は、本発明の一態様の模式図である。FIG. 1 is a schematic diagram of one embodiment of the present invention. 図2は、CD-DST法による細胞生存率の測定結果を示したグラフである。FIG. 2 is a graph showing the measurement results of cell viability by the CD-DST method. 図3は、高精度表面プラズモン共鳴装置(HP-SPR)を用い、本発明の三次元培養模倣法測定結果を示したグラフである。FIG. 3 is a graph showing the measurement results of the three-dimensional culture imitation method of the present invention using a high-precision surface plasmon resonance apparatus (HP-SPR). 図4は、CD-DST法による細胞生存率とHP-SPRシグナルの変化率との相関を示したグラフである。FIG. 4 is a graph showing the correlation between the cell viability by the CD-DST method and the rate of change of the HP-SPR signal. 図5は、高精度表面プラズモン共鳴装置(HP-SPR)を用い、本発明の三次元培養模倣法測定結果を、二次元培養状態と比較して示したグラフである。FIG. 5 is a graph showing the results of measuring the three-dimensional culture imitation method of the present invention using a high-precision surface plasmon resonance apparatus (HP-SPR) in comparison with the two-dimensional culture state.

本発明の細胞の変化の有無又は程度を指標に、細胞へ供与した刺激を評価する方法は、
(1)基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;
(2)活性化した細胞へ刺激を供与する工程;及び
(3)刺激を供与した後に生じる、細胞の変化を検出する工程
を含む。
Using the presence or absence or degree of change of the cells of the present invention as an indicator, the method for evaluating the stimulus provided to the cells,
(1) covering a part of a cell derived from a monolayer animal maintained on a substrate with a composition containing an extracellular matrix component and activating the cell under non-dividing conditions;
(2) providing a stimulus to the activated cell; and (3) detecting a cell change that occurs after the stimulus is provided.

(1)細胞を活性化する工程:
本発明においては、基板上に動物細胞が維持される。
(1) Step of activating cells:
In the present invention, animal cells are maintained on the substrate.

本発明で「細胞」というときは、特に記載した場合を除き、生細胞を意味する。   In the present invention, the term “cell” means a living cell unless otherwise specified.

本発明には、目的に応じ、種々の細胞を用いることができる。用いることのできる細胞の例は、正常細胞、がん細胞、初代培養細胞、株化細胞、受精卵、幹細胞、胚性幹細胞(ES細胞)、ES細胞に由来する分化細胞、間葉系幹細胞(脂肪幹細胞、血液幹細胞)、組織分化能を有する未分化細胞、多分化機能を保持する細胞などであってもよい。また、これらの培養細胞であってもよい。   Various cells can be used in the present invention depending on the purpose. Examples of cells that can be used include normal cells, cancer cells, primary cultured cells, cell lines, fertilized eggs, stem cells, embryonic stem cells (ES cells), differentiated cells derived from ES cells, mesenchymal stem cells ( Adipose stem cells, blood stem cells), undifferentiated cells having tissue differentiation ability, cells having multi-differentiation function, and the like. These cultured cells may also be used.

後述するように、細胞維持方法とSPR装置とを組み合わせた態様では、細胞はセンサー基板に接触していることは必要であるが、接着していることまでは要しない。したがって、この態様においても、細胞として、接着性のもののみならず、非接着性(浮遊性)のものも用いることができる。   As will be described later, in the embodiment in which the cell maintenance method and the SPR device are combined, the cells need to be in contact with the sensor substrate, but do not need to be adhered. Therefore, in this embodiment, not only adhesive cells but also non-adhesive (floating) cells can be used.

本発明において細胞の培養形態に関し「単層状」というときは、特に記載した場合を除き、細胞が、複層状又は三次元状でなくてもよいことを意味する。基板上に「単層状」に維持された細胞は、連なった層を形成していることを要さず、また、基板上でコンフルエントな状態であることも要さない。   In the present invention, when referring to the cell culture form, “monolayer” means that the cell may not be multilayered or three-dimensional unless otherwise specified. Cells maintained in a “monolayer” on the substrate do not need to form a continuous layer, nor do they need to be confluent on the substrate.

細胞は、通常のセルベースアッセイと同様、対数増殖期にあるものを用いることが好ましい場合がある。当業者であれば、前培養を行う等して、細胞を適切な状態とすることができる。   It may be preferable to use cells that are in the logarithmic growth phase, as in normal cell-based assays. If it is an expert, a cell can be made into an appropriate state by performing preculture.

本発明で「非分裂条件下で」というときは、特に記載した場合を除き、刺激を供与した後に刺激に応じて生じる細胞の変化が、細胞が分裂する際に生じうる元来の細胞の変化により検出不能とならないような条件下での実施を意味し、典型的には、細胞周期のうちで核分裂から細胞質分裂までの分裂期(M期)を避けた時期の実施を意味する。一般に動物細胞は、ある程度の大きさになると、成長を止めるか分裂をする。神経、骨格筋、赤血球などの細胞は、一度、成熟すると通常分裂しない。分裂から次の分裂までを細胞周期(cell cycle)と呼び、それを一回行うのにかかる時間を世代時間という。世代時間は、細胞の種類によって元来異なっており、また細胞の置かれる環境によっても異なる場合がある。当業者であれば、用いる細胞に応じた世代時間を考慮し、また後述する活性化の際の条件(例えば、細胞を覆う組成物の組成)を適切に設計することにより、非分裂条件を適宜定めることができる。   The term “under non-dividing conditions” in the present invention, unless otherwise specified, is a change in cells that occurs in response to a stimulus after the stimulus is applied. This means the operation under conditions that do not become undetectable by, and typically means the operation in the cell cycle that avoids the division period (M phase) from nuclear fission to cytokinesis. In general, animal cells stop growing or divide when they reach a certain size. Cells such as nerves, skeletal muscle, and red blood cells do not normally divide once they mature. The period from division to the next division is called the cell cycle, and the time taken to do it once is called the generation time. The generation time originally differs depending on the cell type, and may vary depending on the environment in which the cell is placed. A person skilled in the art appropriately determines the non-dividing condition by considering the generation time according to the cell to be used and appropriately designing the conditions for activation described below (for example, the composition of the composition covering the cells). Can be determined.

細胞は、適切な密度となるように、例えば0.5〜5×106cells/mlとなるように、培地や緩衝液に細胞を懸濁される。そして懸濁液を基板へ播種され、必要であれば、基板ごと恒温・恒湿の培養装置内で、数分間〜半日程度インキュベートすることにより、基板に接触したまま維持される。The cells are suspended in a medium or a buffer so that the cells have an appropriate density, for example, 0.5 to 5 × 10 6 cells / ml. Then, the suspension is seeded on the substrate, and if necessary, the whole substrate is kept in contact with the substrate by incubating for several minutes to half a day in a constant temperature / humidity culture apparatus.

基板は、用いる細胞を維持できる表面を備えていれば、その材料や構造は限定されないが、測定装置によって、制約を受ける場合がある。場合により、例えば、ガラス基板、プラスチックス薄片、いわゆるカバースリップあるいはセルディスクと呼ばれるような培養プレートを用いることもできる。基板の表面は、平滑な平面とすることができるが、播種する細胞懸濁液の滴の拡がりを抑制するために、細胞培養上許容される素材で枠を設置することができ、また突起を設けたり、溝からなる画線を設けたりしておくこともできる。   The material and structure of the substrate are not limited as long as the substrate has a surface capable of maintaining the cells to be used, but may be restricted by the measurement apparatus. In some cases, for example, a culture plate such as a glass substrate, plastic flakes, so-called cover slips or cell disks can be used. The surface of the substrate can be a smooth plane, but in order to suppress the spread of drops of the cell suspension to be seeded, a frame can be placed with a material that is acceptable for cell culture, and a protrusion can be formed. It can also be provided, or an image line composed of grooves can be provided.

本発明においては、基板に維持された細胞は、細胞外基質を含む組成物で覆われる。組成物は、少なくとも細胞外基質成分と細胞培養上許容される一又はそれ以上の成分とを含む。組成物はまた、含有成分を水に溶解又は分散させたものであり、その形態は、溶液状又はゲル状であり得る。   In the present invention, cells maintained on a substrate are covered with a composition comprising an extracellular matrix. The composition comprises at least an extracellular matrix component and one or more components that are acceptable for cell culture. The composition is also one in which the components are dissolved or dispersed in water, and the form thereof may be a solution or a gel.

本発明において組成物は、細胞外基質成分を含む。本発明において「細胞外基質成分」というときは、特に記載した場合を除き、コラーゲン、フィブロネクチン、ラミニン、ビトロネクチン、カドヘリン、ゼラチン、インテグリン、コンドロイチン硫酸やヒアルロン酸等のムコ多糖類を主成分とするタンパク質多糖類(プロテオグリカン)、ポリ-D-リジン、及びポリ-L-リジン等に代表される、生体組織内にある細胞の間を満たしている物質、又はそれと同様の働きを有する物質をいう。細胞外基質は、細胞間基質と表現されることもある。本発明には、細胞外基質成分として、複数の物質の混合物を用いてもよい。   In the present invention, the composition contains an extracellular matrix component. In the present invention, the term “extracellular matrix component” refers to a protein mainly composed of mucopolysaccharides such as collagen, fibronectin, laminin, vitronectin, cadherin, gelatin, integrin, chondroitin sulfate and hyaluronic acid, unless otherwise specified. It refers to a substance that fills between cells in living tissue, or a substance that has a similar function, such as polysaccharides (proteoglycans), poly-D-lysine, and poly-L-lysine. Extracellular matrix is sometimes expressed as intercellular matrix. In the present invention, a mixture of a plurality of substances may be used as the extracellular matrix component.

組成物による被覆は、溶解した細胞外基質を含む液を、基板に維持された細胞に供与し、そして、必要に応じゲル化させることにより行うことができる。細胞への組成物の供与の際、必要に応じ、細胞の周囲にある培地を除去してもよい。   The coating with the composition can be performed by supplying a solution containing the lysed extracellular matrix to the cells maintained on the substrate and, if necessary, allowing it to gel. When the composition is supplied to the cells, if necessary, the medium around the cells may be removed.

本発明の好ましい態様においては、細胞外基質を含む組成物の状態は、ゲルである。ゲルは、細胞外基質成分等を含有する液を調製し、ゲル化させることにより形成することができ、典型的には、ゲル化する条件の液を使用直前に調製し、細胞に供与した後、必要に応じゲル化が進行するための環境に置くか、又はそのまま置くことにより、ゲル化を進行させることができる。細胞培養に関連した培地等のゲル化のための手段は、当業者にはよく知られており、本発明にも適用可能である。   In a preferred embodiment of the present invention, the state of the composition containing the extracellular matrix is a gel. A gel can be formed by preparing a solution containing extracellular matrix components and the like and allowing it to gel. Typically, after preparing a solution under gelling conditions just before use and supplying it to cells The gelation can be allowed to proceed by placing it in an environment for allowing the gelation to proceed as needed, or by placing it as it is. Means for gelation of media and the like related to cell culture are well known to those skilled in the art and are applicable to the present invention.

本発明に用いられる細胞外基質成分の典型例は、コラーゲンである。細胞培養のためのコラーゲンを含むゲル(コラーゲンゲル)の調製方法は、当業者によく知られているが、本発明にも、従来法(例えば、前掲特許文献1〜3)を応用することができる。   A typical example of the extracellular matrix component used in the present invention is collagen. Methods for preparing gels containing collagen for cell culture (collagen gels) are well known to those skilled in the art, but conventional methods (for example, the above-mentioned patent documents 1 to 3) can also be applied to the present invention. it can.

コラーゲンゲルは、コラーゲン溶液から調製する。コラーゲン溶液は、従来の細胞包埋培養方法等で使用されている市販のコラーゲンを用いることができる。コラーゲンとして、酸可溶性タイプIコラーゲンを用いることができる。   A collagen gel is prepared from a collagen solution. As the collagen solution, commercially available collagen used in conventional cell embedding culture methods and the like can be used. As the collagen, acid-soluble type I collagen can be used.

コラーゲン溶液には、コラーゲン以外にも、培養に必要な各種成分例えば、培地成分、栄養成分、抗生物質、カルシウム、リン酸カルシウムなどの無機塩類、脂質、糖質、蛋白質を添加してもよい。コラーゲン溶液は、用いる細胞の生理的条件と同一又は近似した環境pHを提供し得る緩衝液の組成を含んでいてもよい。例えば、がん細胞を用いる場合、コラーゲン溶液は、pH 6.2〜7.6、好ましくはpH 6.8〜7.4に保つことができる緩衝能を有することが好ましい。   In addition to collagen, the collagen solution may contain various components necessary for culture, such as medium components, nutrient components, antibiotics, inorganic salts such as calcium and calcium phosphate, lipids, carbohydrates, and proteins. The collagen solution may comprise a buffer composition that can provide an environmental pH that is the same or close to the physiological conditions of the cells used. For example, when using cancer cells, the collagen solution preferably has a buffering capacity that can be maintained at pH 6.2 to 7.6, preferably pH 6.8 to 7.4.

生理的条件に合わせて、コラーゲン溶液の塩濃度を調節することもできる。塩強度は、100〜180mmolに設定しておくのが好ましく、140〜160mmolがより好ましい。   The salt concentration of the collagen solution can also be adjusted according to physiological conditions. The salt strength is preferably set to 100 to 180 mmol, and more preferably 140 to 160 mmol.

コラーゲン溶液のコラーゲン濃度や粘度は、当業者であれば適宜設定できる。従来の包埋法の場合と同様の濃度・粘度とすることもできるが、本発明においては、基板に維持された細胞の上にコラーゲン溶液を積層し、ゲルを形成させることができればよく、したがって、包埋法より、より低い濃度・粘度でも実施可能であろう。   Those skilled in the art can appropriately set the collagen concentration and viscosity of the collagen solution. The concentration and viscosity can be the same as in the conventional embedding method. However, in the present invention, it is only necessary to form a gel by laminating the collagen solution on the cells maintained on the substrate. It may be possible to carry out at a lower concentration and viscosity than the embedding method.

典型的には、コラーゲン濃度(細胞へ供与する際の終濃度)は、〜2.0重量%とすることができる。これより濃度が高すぎると粘度が高く、扱いづらく、また細胞の活性に影響を与えるかもしれない。   Typically, the collagen concentration (final concentration when donating to cells) can be ˜2.0% by weight. If the concentration is too high, the viscosity is high, it is difficult to handle, and it may affect the activity of the cells.

コラーゲン溶液は、基板に維持された細胞の一部を覆うように供与される。本発明でコラーゲン溶液又はコラーゲンゲルに関し、細胞の「一部分」を覆う、というときは、特に記載した場合を除き、細胞全体がコラーゲン溶液又はコラーゲンで覆われていないことを意味する。本発明においては、細胞は基板に維持されており、細胞の一部は基板に接触している。そのため細胞は、典型的には、基板に接触している部分以外が、コラーゲン溶液又はゲルで覆われることとなる。   The collagen solution is provided so as to cover a part of the cells maintained on the substrate. When referring to a collagen solution or a collagen gel in the present invention, “covering a portion” of a cell means that the whole cell is not covered with the collagen solution or collagen unless otherwise specified. In the present invention, the cells are maintained on the substrate, and some of the cells are in contact with the substrate. For this reason, cells are typically covered with a collagen solution or gel except for the portion in contact with the substrate.

細胞に対して供与されるコラーゲンゲル溶液の量は、当業者であれば適宜設計できる。コラーゲン溶液に対する細胞の密度は、典型的には、103〜106cells/mlとなるように、供与することができる。A person skilled in the art can appropriately design the amount of the collagen gel solution provided to the cells. The density of the cells relative to the collagen solution can be typically supplied to be 10 3 to 10 6 cells / ml.

コラーゲン溶液の、基板に維持された細胞の上への供与は、コラーゲン溶液の容器から直接に滴状にたらしたり、スポイドなどの器具を用いたりして行うことができる。表面張力などの作用で、基板上でコラーゲン溶液が水滴状又はドーム状の滴となることがある。場合により、基板上には一定の範囲を囲む枠や画線が設けられており、その内側に細胞が維持されているので、コラーゲンゲル溶液も、その枠内・画線内に供与する。   The supply of the collagen solution onto the cells maintained on the substrate can be performed by dropping the collagen solution directly from the container of the collagen solution or using an instrument such as a spoid. The collagen solution may form water droplets or dome-shaped droplets on the substrate due to an action such as surface tension. In some cases, a frame or a line surrounding a certain range is provided on the substrate, and the cells are maintained on the inside thereof. Therefore, the collagen gel solution is also provided in the frame / line.

当業者にはよく知られた手段により適切な成分比で調製されたコラーゲン溶液からは、通常、時間の経過とともにゲル化する。   A collagen solution prepared at an appropriate component ratio by means well known to those skilled in the art usually gels with time.

従来、顕微鏡観察や画像解析に用いるコラーゲンゲルは、透明度の高いものが必要であったが、この発明の方法では、透明度の低いものでも使用できる。   Conventionally, a collagen gel used for microscopic observation and image analysis has to have a high transparency, but even a low transparency can be used in the method of the present invention.

形成されたコラーゲンゲルは、評価のための測定が終了するまでは、ゲル状態を維持させておく必要がある。場合により、コラーゲンゲルが過度に乾燥しないように、培地等にゲルを含浸した状態に保っておいてもよい。   The formed collagen gel needs to be kept in a gel state until the measurement for evaluation is completed. In some cases, a medium or the like may be kept impregnated with the gel so that the collagen gel is not excessively dried.

細胞を培養するための培地、及び場合によりコラーゲン溶液に包含される培地としては、血清を含む血清培地、及び血清を含まない無血清培地のいずれかを、当業者であれば目的に応じ、適宜選択して使用することができる。   As a medium for culturing cells, and optionally a medium included in the collagen solution, a serum medium containing serum and a serum-free medium not containing serum can be appropriately selected by those skilled in the art according to the purpose. You can select and use.

用いることのできる血清の例として、FBS(牛胎児血清)、FCS(仔牛血清)、HS(馬血清)、又は非働化を行ったFBS等が好ましく挙げられるが、FBSがより好ましい。無血清培養液とは、通常の細胞培養に用いられる培養液が、その成分として血清を含むのに対し、血清を含有していないことに特徴があり、培養に必要な、血清以外の各種化学物質を組み合わせて構成される。   Examples of sera that can be used include FBS (fetal calf serum), FCS (calf serum), HS (horse serum), or inactivated FBS, but FBS is more preferred. A serum-free culture medium is characterized by the fact that the culture medium used for normal cell culture contains serum as its component, but does not contain serum. Composed of a combination of substances.

無血清培養液を用いることは、細胞の分裂を効果的に抑制することができ、コラーゲンゲルの収縮を防止することができる点で、好ましい場合がある。無血清培養液を用いた場合の、具体的な配合成分とその割合は、必要に応じて設定すればよいが、目的とする動物細胞(例えば、がん細胞など)の増殖性が良好で、その他の細胞の増殖を抑制するような配合が好ましい。   Use of a serum-free culture solution may be preferable in that cell division can be effectively suppressed and contraction of the collagen gel can be prevented. When using serum-free medium, the specific ingredients and proportions may be set as necessary, but the target animal cells (for example, cancer cells) have good growth properties, A formulation that suppresses the growth of other cells is preferred.

本発明の細胞維持方法(単層状+細胞外基質成分を含む組成物)によると、驚くべきことに、細胞を短時間、かつ細胞非分裂条件下で三次元培養の状態(Yamada & Cukierman Cell 130:601, 2007)にすることができる。すなわち、細胞の一部分を細胞外基質を含む組成物で覆うことにより、三次元に増殖させるための期間を要さず、単層状であるにもかかわらず、細胞を三次元に維持されているか又は生体内にあるのと同様の状態にすることができる。本発明で「活性化」というときは、特に記載した場合を除き、このように細胞を、三次元に維持されているか又は生体内にあるのと同様の状態にするとの意味で用いている。   Surprisingly, according to the cell maintenance method of the present invention (monolayer + composition containing an extracellular matrix component), cells are three-dimensionally cultured in a short time under non-dividing conditions (Yamada & Cukierman Cell 130). : 601, 2007). That is, by covering a part of a cell with a composition containing an extracellular matrix, a period for three-dimensional growth is not required, and the cell is maintained in three dimensions despite being monolayered or It can be in the same state as in a living body. In the present invention, “activation” is used to mean that the cells are maintained in three dimensions or are in the same state as in the living body, unless otherwise specified.

本発明は、細胞全体ではなく、一部分のみを細胞外基質成分を含む組成物で覆い、さらに、細胞を分裂させずに、つまり培養せずに、評価に用いる。これらの点において、本発明に係る細胞を三次元培養(又は生体内)と同等に活性化する原理は、細胞又は細胞塊全体がコラーゲンゲルで包埋され、培養される細胞外基質成分包埋法とは本質的に異なる。   The present invention covers not only the whole cells but only a part thereof with a composition containing an extracellular matrix component, and further uses the cells for evaluation without dividing the cells, that is, without culturing them. In these respects, the principle of activating cells according to the present invention in the same manner as three-dimensional culture (or in vivo) is that the entire cell or cell mass is embedded in a collagen gel, and the extracellular matrix component embedded is cultured. It is essentially different from the law.

(2)活性化した細胞へ刺激を供与する工程:
本発明においては、上述の細胞維持方法で維持されている細胞へ、種々の刺激を与える。
(2) Step of providing stimulation to activated cells:
In this invention, various irritation | stimulation is given to the cell currently maintained with the above-mentioned cell maintenance method.

本発明で「刺激」というときは、特に記載した場合を除き、細胞へ評価対象となる物質を供与する以外に、細胞に対して物理的な刺激を与える場合も含む。物理的な刺激とは、例えば、高い温度や低い温度、圧力、磁場、電流などがある(Chew SY, Low WC. J Biomed Mater Res A. 2011 97(3):355-74. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects.参照)。   The term “stimulation” in the present invention includes cases where physical stimulation is given to cells in addition to supplying a substance to be evaluated to cells, unless otherwise specified. Physical stimuli include, for example, high and low temperatures, pressure, magnetic field, and current (Chew SY, Low WC. J Biomed Mater Res A. 2011 97 (3): 355-74. Scaffold-based approach to direct stem cell neural and cardiovascular differentiation: an analysis of physical and biochemical effects.).

(3)刺激を供与した後に生じる、細胞の変化を検出する工程:
本発明によって提供される細胞維持方法においては、単層状態のまま、三次元状態の活性を細胞に発揮させている。本発明の方法を利用して、あらゆる細胞の変化を測定できる。本発明で「細胞の変化」というときは、特に記載した場合を除き、少なくとも細胞及び/又はミトコンドリアの分極状態の変化、細胞及び/又はミトコンドリアの誘電率の変化が含まれ、それ以外に遺伝子、タンパク、シグナル分子を含む代謝物等の増加又は減少等の種々の変化が含まれうる。すなわち、OMICS全般について、蛍光、発光などの標識により検出・評価が可能な変化、及びラマン分光などの非標識による検出・評価が可能な変化について、本発明の方法は適用可能であろう。
(3) Detecting cell changes that occur after the stimulus is applied:
In the cell maintenance method provided by the present invention, the cells are allowed to exhibit the activity of the three-dimensional state in the monolayer state. Any cell change can be measured using the method of the present invention. The term “cell change” in the present invention includes at least a change in the polarization state of cells and / or mitochondria, a change in dielectric constant of cells and / or mitochondria, unless otherwise specified, and a gene, Various changes such as increase or decrease of proteins, metabolites including signal molecules, and the like can be included. That is, for the OMICS in general, the method of the present invention will be applicable to changes that can be detected and evaluated by labels such as fluorescence and luminescence, and changes that can be detected and evaluated by non-labeling such as Raman spectroscopy.

本発明により提供される細胞維持方法は、細胞の変化を検出するための種々の測定方法と組み合わせることができる。   The cell maintenance method provided by the present invention can be combined with various measurement methods for detecting cell changes.

本発明においては、単層状態でなければ測定できない測定法と組み合わせることもできる。以下に本発明の実施態様の例を示す。   In this invention, it can also combine with the measuring method which can be measured only in a single layer state. Examples of embodiments of the present invention are shown below.

[表面プラズモン共鳴(SPR)装置との組み合わせ]
本発明においては、既存の表面プラズモン共鳴装置を用いることができる。例えば、前掲特許文献1及び特許文献2に開示された装置を用いてもよい。このための具体的な手順は、本明細書の実施例を参考にすることができる。
[Combination with surface plasmon resonance (SPR) equipment]
In the present invention, an existing surface plasmon resonance apparatus can be used. For example, the devices disclosed in Patent Document 1 and Patent Document 2 described above may be used. The specific procedure for this can be referred to the examples in this specification.

SPRでは、三次元に増殖した細胞を評価しようとすると、大部分がセンサー基板から遠く、原理的に測定が不可能である。そのため、二次元的にセンサー基板に接触させたままのまま、細胞の活性を三次元培養と同等にするしかない。本発明の細胞維持方法は、この目的によく合致している。   In SPR, when trying to evaluate three-dimensionally grown cells, most of them are far from the sensor substrate, and in principle they cannot be measured. Therefore, there is no choice but to make the cell activity equal to that of the three-dimensional culture while keeping the sensor substrate in two-dimensional contact. The cell maintenance method of the present invention is well suited for this purpose.

この態様においては、表面プラズモン共鳴センサーからのシグナルを経時的に記録した場合のグラフの傾き(時間当たりの表面プラズモン共鳴角変化量、すなわち変化率)を利用して、刺激(一又は複数)がミトコンドリアの分極状態の変化に与える影響を定量化する目的でも用いることができる。この場合、表面プラズモン共鳴角の変化が、実質的にミトコンドリアの分極状態の変化にのみに起因する時間帯であって、検出した表面プラズモン共鳴角の変化が一定である時間帯、すなわち表面プラズモン共鳴センサーからのシグナルを経時的に記録した場合のグラフの傾きがほぼ直線である時間帯を特定して、その時間帯におけるグラフの傾きを利用することができる。このような特定した時間帯の長さは、少なくとも1分間、好ましくは3分間以上、より好ましくは5分間以上、さらに好ましくは10分間以上である。より正確な定量を目的とする場合は、その時間帯における表面プラズモン共鳴角の変化率が、該時間帯を含みそれより10%以上長い時間帯における表面プラズモン共鳴角の変化率の±10%以内であるような時間帯の変化率を利用するとよい。   In this embodiment, the stimulus (one or more) is obtained using the slope of the graph (the amount of change in surface plasmon resonance angle per hour, that is, the rate of change) when the signal from the surface plasmon resonance sensor is recorded over time. It can also be used for the purpose of quantifying the effect on changes in the mitochondrial polarization state. In this case, the change in the surface plasmon resonance angle is a time zone that is substantially caused only by the change in the mitochondrial polarization state, and the change in the detected surface plasmon resonance angle is constant, that is, the surface plasmon resonance. It is possible to specify a time zone in which the slope of the graph when the signal from the sensor is recorded with time is almost linear, and use the slope of the graph in that time zone. The length of the specified time period is at least 1 minute, preferably 3 minutes or more, more preferably 5 minutes or more, and even more preferably 10 minutes or more. For the purpose of more accurate quantification, the rate of change of the surface plasmon resonance angle in that time zone is within ± 10% of the rate of change of the surface plasmon resonance angle in a time zone that includes the time zone and is 10% or longer than that. It is better to use the rate of change of the time zone that

具体的には、35〜40分の5分間の場合にはそれより10%以上長い時間、すなわち5分30秒間以上(例えば、30〜45分の10分間)、35〜45分の10分間の場合にはそれより10%以上長い時間、すなわち11分間以上(例えば、30〜50分の15分間)の時間帯における変化率を算出しても、その変化率が、35〜40分の5分間又は35〜45分の10分間の時間帯における変化率に対し、それぞれ±10%以内に収まっている場合、その35〜40分の5分間又は35〜45分の10分間が選択可能となる。このように、従来の方法よりも短時間(1時間以内)で、生細胞内のミトコンドリアの分極状態の変化を検出できることが本発明の1つの特徴であるが、例えばpH変化速度が遅い場合等、ミトコンドリアの分極状態の変化が遅く検出されると考えられる場合には、本明細書中の記載を参照して、当業者であれば、適宜検出の時間帯を決定することが出来るであろう(前掲特許文献6)。   Specifically, in the case of 5 minutes for 35 to 40 minutes, it is 10% longer than that, that is, 5 minutes and 30 seconds or more (for example, 10 minutes for 30 to 45 minutes), 10 minutes for 35 to 45 minutes In some cases, even if the rate of change is calculated for a time period that is 10% longer than that, that is, 11 minutes or more (for example, 15 to 15/50 minutes), the change rate is 5 to 35/40 minutes Alternatively, when the change rate is within ± 10% with respect to the rate of change in the time zone of 10 minutes for 35 to 45 minutes, 5 minutes for 35 to 40 minutes or 10 minutes for 35 to 45 minutes can be selected. Thus, it is one of the features of the present invention that it is possible to detect changes in the polarization state of mitochondria in living cells in a shorter time (within 1 hour) than the conventional method, but for example when the pH change rate is slow, etc. In the case where it is considered that a change in the mitochondrial polarization state is detected late, a person skilled in the art will be able to determine the detection time zone as appropriate by referring to the description in this specification. (Patent Document 6).

測定のために時間をかけ過ぎると、細胞が分裂することによるシグナルの変化がノイズとなることがある。したがって、細胞が分裂しないうちに、また細胞分裂を抑えた条件で実施するとよい。細胞分裂の抑制は、例えば、細胞外基質成分を含む組成物中に包含させる培地の成分を抑えること、具体的には、無血清培地とすること、等によることができる。   If too much time is taken for measurement, changes in the signal due to cell division may become noise. Therefore, it is good to carry out under the condition that the cell division is suppressed before the cell is divided. Inhibition of cell division can be achieved, for example, by suppressing the components of the medium to be included in the composition containing the extracellular matrix component, specifically by using a serum-free medium.

[エバネッセント照明を用いた蛍光法(例えば田和 圭子: 表面科学 28, 724-727 (2007)、Steyer JA, Almers W. Biophys J. 76(4):2262-71 (1999))との組み合わせ]
本発明は、蛍光試薬(例えば、JC-1等)を用いる方法とエバネッセント照明とを用いた測定方法と組み合わせた態様として実施することができる。この場合の典型的な手順は、下記のとおりである。
[Combination with fluorescence method using evanescent illumination (for example, Tomoko Tawa: Surface Science 28, 724-727 (2007), Steyer JA, Almers W. Biophys J. 76 (4): 2262-71 (1999))]
The present invention can be implemented as an embodiment in combination with a method using a fluorescent reagent (for example, JC-1 etc.) and a measurement method using evanescent illumination. A typical procedure in this case is as follows.

供試細胞は、前培養後、シャーレから剥離し、細胞濃度を完全培地中1×106 cells/mLに調製し、その細胞懸濁液100μLを基板上に滴下し、37℃、CO25%濃度下にて一晩培養する。コラーゲンドロップキットのA液(Collagen Cellmatrix Type CD)、B液(10倍濃縮 F-12培地)、及びC液(再構成用緩衝液)を8:1:1の割合で混合したものを30 μL、細胞上全体に滴下し、再度37℃、CO2 5%、湿度95%下にて適宜静置する(静置する時間のことを静置時間と呼ぶ)。その後、センサーチップを、マッチングオイル(屈折率1.518)を介してHP-SPRセンサーのプリズム上に設置し、5 mLのEMEM (Minimum Essential Medium Eagle)(Sigma-Aldrich、Saint Louis、MI、USA)で満たし、カスタムメイドのHP-SPRにより測定を開始する(Kosaihira and Ona 2008; Nishijima et al. 2010)。この際、CO2 5%、37±0.1℃下にて行うことができる。なお、静置時間は、細胞分裂しない程度の短い時間に相当し、このHP-SPRシグナルの安定なトレンドを示すことにより決定することができる。より具体的には、静置時間は、12時間以内、6時間以内、または約3時間とすることができる。測定開始2〜3分後、SPRシグナルが安定していることを確かめ、JC-1 iodideを2.5μM含むEMEM(最終濃度0.1%のDMSOを含む)と交換後、 20分間置き測定を行う。蛍光強度観察は、観察倍率630倍で行うことができる。ハロゲンランプのSPR光源を励起フィルターにより485±20 nmを透過し、蛍光検出には515〜565 nm透過のフィルターセット、ならびに575〜640 nm透過のフィルターセットを用いることができる。測定開始10分後、EMEMを除き、抗がん剤を含む培地と交換し、測定を続ける。controlはDMSOを0.1%(v/v)を含む培地を用いる。The test cells were detached from the petri dish after pre-culture, and the cell concentration was adjusted to 1 × 10 6 cells / mL in complete medium. 100 μL of the cell suspension was dropped onto the substrate, and the sample was incubated at 37 ° C., CO 2 5 Incubate overnight at% concentration. 30 μL of collagen drop kit solution A (Collagen Cellmatrix Type CD), solution B (10-fold concentrated F-12 medium), and solution C (reconstitution buffer) mixed at a ratio of 8: 1: 1 Then, the solution is dropped onto the whole cell and allowed to stand again at 37 ° C., 5% CO 2 and 95% humidity (the time for standing still is called the standing time). The sensor chip is then placed on the HP-SPR sensor prism via matching oil (refractive index 1.518) and 5 mL EMEM (Minimum Essential Medium Eagle) (Sigma-Aldrich, Saint Louis, MI, USA) Satisfy and start measurement with custom-made HP-SPR (Kosaihira and Ona 2008; Nishijima et al. 2010). At this time, it can be carried out at 5% CO 2 and 37 ± 0.1 ° C. The standing time corresponds to a short time that does not cause cell division, and can be determined by showing a stable trend of this HP-SPR signal. More specifically, the standing time can be within 12 hours, within 6 hours, or about 3 hours. 2 to 3 minutes after the start of measurement, confirm that the SPR signal is stable, replace it with EMEM containing 2.5 μM JC-1 iodide (containing DMSO at a final concentration of 0.1%), and measure for 20 minutes. The fluorescence intensity observation can be performed at an observation magnification of 630 times. The SPR light source of the halogen lamp transmits 485 ± 20 nm by an excitation filter, and a filter set of 515 to 565 nm transmission and a filter set of 575 to 640 nm transmission can be used for fluorescence detection. 10 minutes after the start of measurement, remove EMEM, replace with medium containing anticancer agent, and continue measurement. As a control, a medium containing 0.1% (v / v) DMSO is used.

[表面増強ラマン分光法(例えばUnited States Patent Application 20090118605、Downes, A.; Elfick, A. Sensors 10, 1871-1889 (2010))]
本発明の方法においては、ミトコンドリアの分極状態のモニタリングに関し、ラマン分光法と組み合わせて実施することができる。この場合の典型的な手順は、下記のとおりである。
[Surface-enhanced Raman spectroscopy (eg United States Patent Application 20090118605, Downes, A .; Elfick, A. Sensors 10, 1871-1889 (2010))]
In the method of the present invention, the monitoring of the mitochondrial polarization state can be performed in combination with Raman spectroscopy. A typical procedure in this case is as follows.

ガラス基板として、MATSUNAMI製MICRO COVER GLASS 18×18 mm(Thickness No.1 0.12-0.17 mm)を用いる。金蒸着はイオンコーターJFC-1100(JEOL製)を用いる。ガラス基板への蒸着は、カバーガラスをターゲットから2 cm離れた高さ7cmの位置に設置し、蒸着時間30分、電圧5.5 mA、電流値1.2 kVで行う。供試細胞は、前培養後、シャーレから剥離し、細胞濃度を完全培地中1×106cells/mLに調製し、その細胞懸濁液100μLを基板上に滴下し、37℃、CO25%濃度下にて一晩培養する。表面増強ラマン測定は、Process Raman分光計Raman Analyzer PI-200(Process Instruments製)を用いる。測定範囲300-2400 cm-1、励起波長785 nm、検出器CCD、積算回数1秒×5(5秒)にて測定を行い、測定方法はプローブ(Inphotonics製)を用いる。As the glass substrate, MICRO COVER GLASS 18 × 18 mm (Thickness No.1 0.12-0.17 mm) manufactured by MATSUNAMI is used. Ion coater JFC-1100 (manufactured by JEOL) is used for gold deposition. Vapor deposition on a glass substrate is performed at a position of 7 cm in height, 2 cm away from the target, with a deposition time of 30 minutes, a voltage of 5.5 mA, and a current value of 1.2 kV. The test cells are detached from the petri dish after pre-culture, and the cell concentration is adjusted to 1 × 10 6 cells / mL in complete medium, and 100 μL of the cell suspension is dropped onto the substrate, at 37 ° C. and CO25% concentration Incubate overnight under. The surface enhanced Raman measurement uses a Process Raman spectrometer Raman Analyzer PI-200 (manufactured by Process Instruments). Measurement is performed at a measurement range of 300-2400 cm −1 , an excitation wavelength of 785 nm, a detector CCD, and the number of integrations of 1 second × 5 (5 seconds), and the measurement method is a probe (Inphotonics).

(4)小括:
本発明は、長期の細胞培養をせず、細胞を単純にセンサー基板に接触及び、又は検出可能なほど検出器に対して十分近傍に配置させて、エンドポイントを迅速に予測する点で斬新な方法である。先進医療に取り入れられている、三次元培養による抗がん剤感受性試験であるCD-DST法においては薬剤添加してから7日後の生存率を指標に評価するが、同様の評価が、時間のかかる三次元培養をする必要なしに、わずか1時間以内で実施できる。
(4) Summary:
The present invention is novel in that the cell is simply contacted with the sensor substrate without being subjected to long-term cell culture and / or placed close enough to the detector so that the endpoint can be quickly predicted. Is the method. In the CD-DST method, which is an anticancer drug susceptibility test by three-dimensional culture, which is adopted in advanced medicine, the survival rate 7 days after the addition of the drug is evaluated as an index. This can be done in as little as one hour without the need for such three-dimensional culture.

本手法では、細胞を二次元的に基板に維持するのみで、細胞を三次元培養の状態(Yamada & Cukierman Cell 130:601, 2007)にしている。接着する細胞は、三次元培養や、三次元を構成している必要がなく、二次元培養したものでも構わない。このため非常に迅速であり、ハイスループット化に向いている。   In this method, the cells are brought into a three-dimensional culture state (Yamada & Cukierman Cell 130: 601, 2007) only by maintaining the cells two-dimensionally on the substrate. The cell to adhere does not need to constitute three-dimensional culture or three-dimensional, and may be one that has been two-dimensionally cultured. For this reason, it is very quick and is suitable for high throughput.

細胞をコラーゲンで覆い、細胞の活性を確認することにより、一定時間後にこれを達成する点で本手法は優れている。また、三次元培養で行う生理的濃度での測定では、これまでの二次元培養の百分の一程度まで薬剤濃度が低下する可能性があるが(Higashiyama et al. 2008)、これに対する応答も、これまでの方法では当然低下する。しかし、三次元培養で細胞が生理的濃度でも応答するということは、細胞の活性が高まるためと予測していたが、得られた結果はこれを支持するものであった。さらに、標準的な方法で必要な細胞数105と比較し、1000個程度の少数の細胞しか使用せず、HP-SPR測定することで、正確で十分な感受性試験を行える点でも非常に優れており、臨床応用にも向いている。本手法では、迅速に弱い光で測定するため、光退色の問題を回避できる長所がある。今後は、コンテンツの充実はもちろんであるが、臨床サンプルを用いた研究、並びに自動化装置の開発を行うことにより、将来効率的なテーラーメイド医薬品・医療への展開が期待される。本発明の方法を用いた具体的な評価系は、下記を含む。   This method is excellent in that this is achieved after a certain time by covering the cells with collagen and confirming the activity of the cells. In addition, the measurement at physiological concentrations performed in three-dimensional culture may reduce the drug concentration to about one-hundred of conventional two-dimensional culture (Higashiyama et al. 2008). Of course, the conventional methods will decrease. However, it was predicted that the cells responded even at physiological concentrations in the three-dimensional culture because the activity of the cells was increased, but the obtained results supported this. Furthermore, compared to the required number of cells of 105 by the standard method, it uses only a small number of cells, which is about 1000, and is very superior in that it can perform accurate and sufficient sensitivity tests by measuring HP-SPR. It is also suitable for clinical application. This method has the advantage of avoiding the problem of photobleaching because it measures quickly with weak light. In the future, not only will the content be enhanced, but it is expected to be developed into efficient tailor-made medicines and medical care in the future by conducting research using clinical samples and developing automated devices. A specific evaluation system using the method of the present invention includes the following.

[抗がん剤の評価]
本発明の方法は、抗がん剤の評価のために用いることができる。本発明においては細胞は三次元培養した場合と同様の状態に活性化されており、したがって、生理的濃度で評価することができる。また、患者由来の細胞を使用することで、感受性試験に応用することもできる。
[Evaluation of anticancer drugs]
The method of the present invention can be used for evaluation of anticancer agents. In the present invention, the cells are activated in the same state as when three-dimensionally cultured, and thus can be evaluated at physiological concentrations. Moreover, it can also apply to a sensitivity test by using a patient-derived cell.

[抗がん剤のスクリーニング]
アポトーシスの誘導により抗がん作用を示す抗がん剤においてミトコンドリアの脱分極が起こるなど、抗がん剤が、がん細胞に作用する過程においてミトコンドリアの分極状態に変化が起こることが知られている。また、その脱分極の程度から抗がん作用の評価が可能であることが見出されている(非特許文献1)。このため抗がん剤候補物質をがん細胞に投与した際のミトコンドリア分極状態のモニタリングから抗がん剤のスクリーニングが可能である。(Apoptosis 2005;10:687-705参照)また、例えばこのような抗がん剤候補物質の併用投与による相乗効果の判断も、ミトコンドリア分極状態のモニタリングによって可能となる。具体的には、抗がん剤候補化合物のスクリーニングのための方法は、次の工程を含む:基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;活性化した細胞へ試験化合物を供与する工程。そして、試験化合物を供与した後に生じる、細胞の変化を検出する工程を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した試験化合物を抗がん剤候補化合物として選択する。
[Screening for anticancer drugs]
It is known that changes in the mitochondrial polarization state occur during the process of anticancer drugs acting on cancer cells, such as mitochondrial depolarization in anticancer drugs that exhibit anticancer effects due to induction of apoptosis. Yes. Further, it has been found that the anticancer effect can be evaluated from the degree of depolarization (Non-patent Document 1). Therefore, screening for anticancer agents is possible by monitoring the mitochondrial polarization state when a candidate anticancer agent is administered to cancer cells. (See Apoptosis 2005; 10: 687-705) In addition, for example, the synergistic effect of the combined administration of such anticancer drug candidate substances can also be determined by monitoring the mitochondrial polarization state. Specifically, a method for screening an anticancer drug candidate compound includes the following steps: covering a part of a cell derived from a monolayer animal maintained on a substrate with a composition containing an extracellular matrix component. Activating the cell under non-dividing conditions; donating the test compound to the activated cell. Then, the method includes a step of detecting a change in cells that occurs after supplying the test compound, and the test compound supplied to the cells is selected as an anticancer agent candidate compound using the presence or absence or degree of change of the cells as an index.

なお、本明細書では、スクリーニング方法に関し、上記のように抗がん剤候補物質のスクリーニング方法として実施される場合を例に説明することがあるが、特に記載した場合を除き、その説明は他の目的で候補物質を選択するためのスクリーニング方法にも当てはまる。   In the present specification, the screening method may be described as an example of the screening method for candidate anticancer agents as described above. However, the description is not limited to the case described otherwise. This also applies to a screening method for selecting candidate substances for the purpose described above.

[脂肪燃焼物質(抗肥満薬剤)のスクリーニング]
過度の脂肪の蓄積は肥満という症状のみでなく、糖尿病、脳卒中、動脈硬化などの疾患を引き起こすことが明らかになっていることから、抗肥満薬剤としての脂肪燃焼物質の利用価値は非常に高い。また、脂肪燃焼は、褐色脂肪細胞や肝細胞により行なわれるが、脂肪燃焼時は肝細胞内においてミトコンドリアの分極・脱分極が起こることが明らかになっているため、褐色脂肪細胞のミトコンドリア分極状態モニタリングにより脂肪燃焼物質のスクリーニングが可能である。(Biophysical journal 2002;82(1):1673 part2およびFEBS Letters 1984;170(1):181-185参照)
[Screening for fat burning substances (anti-obesity drugs)]
Excessive fat accumulation has been shown to cause not only symptoms of obesity, but also diseases such as diabetes, stroke, and arteriosclerosis. Therefore, the usefulness of fat burning substances as anti-obesity drugs is very high. Fat burning is performed by brown adipocytes and hepatocytes, but it is known that mitochondrial polarization and depolarization occurs in hepatocytes during fat burning. This makes it possible to screen for fat burning substances. (See Biophysical journal 2002; 82 (1): 1673 part2 and FEBS Letters 1984; 170 (1): 181-185)

[がんの診断]
がん化した細胞では、正常な細胞と比較し、ミトコンドリアの分極状態が顕著に異なることが知られていることから正常細胞とがん細胞の判別に応用可能である。(Cancer Research 2005;65(21):9861-9867参照)
[Cancer diagnosis]
Since cancerous cells are known to have a significantly different mitochondrial polarization state compared to normal cells, they can be applied to distinguish normal cells from cancer cells. (See Cancer Research 2005; 65 (21): 9861-9867)

[RNAiの評価]
RNAi(RNA interference; RNA干渉)は、細胞に導入された二本鎖RNAが、それと相補的な塩基配列を持つmRNAを分解する現象で、この現象を利用して人工的に二本鎖RNAを導入することにより、任意の遺伝子の発現を抑制することができる。RNAiのうち、特にミトコンドリアの脱分極に影響を与えると考えられるものについての効果の判断が、ミトコンドリア分極状態のモニタリングによって可能となる。そのようなRNAiとしては、例えば、細胞のアポトーシス、細胞の分裂活性、老化、肥満、肥満に関連した糖尿病、脳卒中、動脈硬化、褐色脂肪細胞、肝細胞等に関与するRNAiが挙げられるが、これらに限定されない。(RNAiに関して:Nature 2001;411:494-498参照)
[Evaluation of RNAi]
RNAi (RNA interference) is a phenomenon in which double-stranded RNA introduced into a cell degrades mRNA having a complementary base sequence, and this phenomenon is used to artificially convert double-stranded RNA. By introducing, the expression of any gene can be suppressed. It is possible to determine the effect of RNAi, particularly those that are thought to affect mitochondrial depolarization, by monitoring the mitochondrial polarization state. Examples of such RNAi include RNAi involved in cell apoptosis, cell division activity, aging, obesity, diabetes related to obesity, stroke, arteriosclerosis, brown adipocytes, hepatocytes, etc. It is not limited to. (For RNAi: see Nature 2001; 411: 494-498)

[環境モニタリング]
環境ホルモンとして知られるビスフェノールAなどの内分泌かく乱物質ではその種類、濃度により特定の細胞に対し増殖やアポトーシスを誘導することが明らかになっており、上述の細胞増殖における細胞分裂やアポトーシスをミトコンドリアの分極状態のモニタリングより検出可能なことから環境中の内分泌かく乱物質の検出およびそれらの影響評価に利用可能である。(Archives of Toxicology 2000;74(2):99-105、およびJournal of Biological Chemistry 2005;280(7):6181-6196参照)
[Environmental monitoring]
Endocrine disruptors such as bisphenol A, known as environmental hormones, have been shown to induce proliferation and apoptosis in specific cells depending on their type and concentration. Polarization of mitochondria in cell proliferation and apoptosis in the aforementioned cell proliferation Since it can be detected by monitoring the condition, it can be used to detect endocrine disrupting substances in the environment and evaluate their effects. (See Archives of Toxicology 2000; 74 (2): 99-105, and Journal of Biological Chemistry 2005; 280 (7): 6181-6196)

[毒性評価]
生細胞に対する毒性物質の投与はミトコンドリアの急激な脱分極を引き起こすことが一般的に知られており、蛍光試薬によるミトコンドリア分極状態のモニタリングにより各種物質の毒性評価を行なった例がある。本発明を用いて非標識下で簡便に毒性評価が可能である。(Hepatology 2000;31;1141-1152およびToxicological Sciences 2005;86(2):436-443参照)
[Toxicity assessment]
It is generally known that administration of a toxic substance to a living cell causes a rapid depolarization of mitochondria, and there are examples in which the toxicity of various substances is evaluated by monitoring the mitochondrial polarization state with a fluorescent reagent. Using the present invention, toxicity evaluation can be easily performed under no label. (See Hepatology 2000; 31; 1141-1152 and Toxicological Sciences 2005; 86 (2): 436-443)

[細胞の分裂活性の評価]
人工受精や動植物クローンにおける優良細胞の選抜においては分裂活性の高い細胞を選択することが重要であるが、ミトコンドリアの分極状態は細胞の分裂活性と密接に関連するため、本発明を用いて非標識下でミトコンドリアの分極状態をモニタリングすることで上記用途において優良な細胞を非侵襲的に選抜可能である。(Cancer Research 1998;58(13):2869-2875参照)
[Evaluation of cell division activity]
It is important to select cells with high division activity in artificial fertilization and selection of excellent cells in animal and plant clones. However, since the mitochondrial polarization state is closely related to cell division activity, it is not labeled using the present invention. By monitoring the mitochondrial polarization state below, it is possible to non-invasively select cells that are excellent in the above-mentioned use. (See Cancer Research 1998; 58 (13): 2869-2875)

[細胞の老化状態の評価」
老化状態の細胞においては分裂活性が低く、ミトコンドリアの分極状態もこれと関連しているため、ミトコンドリアの分極状態モニタリングから細胞の老化状態のモニタリングが可能である。また、細胞を活性化させ、老化を抑制するような薬剤のスクリーニングに応用可能である。(Biological Signals and Receptors 2001;10:176-188参照)
[Evaluation of cellular aging status]
In senescent cells, mitotic activity is low, and the mitochondrial polarization state is related to this, so that monitoring of the aging state of cells is possible from monitoring the mitochondrial polarization state. It can also be applied to screening for drugs that activate cells and suppress aging. (See Biological Signals and Receptors 2001; 10: 176-188)

[その他]
本発明の方法は、候補生細胞群の分裂活性、老化状態又は悪性(がん細胞であるか、正常細胞であるか)を評価し、スクリーニングするために用いることができる。また、iPSなどの幹細胞に関し、細胞の分化を検出することができる(特許文献6)。
[Other]
The method of the present invention can be used to evaluate and screen the dividing activity, senescence state, or malignancy (whether it is a cancer cell or a normal cell) of a candidate living cell group. In addition, cell differentiation can be detected for stem cells such as iPS (Patent Document 6).

また、本発明の方法は、種々の候補物質(例えば、ミトコンドリアの分極に関連した疾患又は状態を処置するための医薬候補化合物)を、スクリーニングするために用いることができる。すなわち、ミトコンドリアに関係する薬剤(候補物質)の薬効評価も期待される(Hock and Kralli 2009)。メタボリックシンドローム関連の高血圧、糖尿病、肥満の治療、予防のためのスクリーニングを中心に、心筋症、腎障害、不妊、難聴、動脈硬化の進展、脳卒中、アルツハイマー病、慢性疲労症候群、てんかん、心筋梗塞、脳梗塞、精子の泳動性、老化などへの展開が、生理的濃度で可能になる。このため、本研究から、斬新な着想に基づく新原理による、製薬、医療における新しい方法論の提案を行えると確信する。   The methods of the invention can also be used to screen a variety of candidate substances (eg, pharmaceutical candidate compounds for treating diseases or conditions associated with mitochondrial polarization). In other words, drug efficacy evaluation of mitochondria-related drugs (candidate substances) is also expected (Hock and Kralli 2009). Focusing on screening for the treatment and prevention of metabolic syndrome related hypertension, diabetes, obesity, cardiomyopathy, nephropathy, infertility, hearing loss, progression of arteriosclerosis, stroke, Alzheimer's disease, chronic fatigue syndrome, epilepsy, myocardial infarction, Development to cerebral infarction, sperm migration, aging, etc. is possible at physiological concentrations. For this reason, we are confident that we can propose new methodologies in medicine and medicine based on new principles based on novel ideas.

実施例1:三次元培養状態における、抗がん剤の細胞活性化に対する作用
[細胞培養]
供試細胞には、ヒト膵臓腺がん由来の細胞である、MIA PaCa-2(理化学研究所 バイオリソースセンター 細胞材料開発室RIKEN BRC through the National Bio-Resource Project of the MEXT, Japanから譲渡)及びPANC-1(九州大学 医学研究院 片野光男 教授から譲渡)を用い、37℃、CO2 5%、湿度91%下において、ペニシリン50 unit/mL−ストレプトマイシン50 μg混合試薬(Invitrogen、Calsbad、CA、USA)、牛胎児血清FBS10%(v/v)(Thermo Scientific、Waltham、MA、USA) を含む液体培地DMEM(Dulbecco’s Modified Eagle’s Medium)(Sigma-Aldrich、Saint Louis、MI、USA)にて培養した。対数増殖期にある細胞を用い実験を行った。
Example 1: Effect of anticancer agents on cell activation in a three-dimensional culture state
[Cell culture]
The test cells were human pancreatic adenocarcinoma-derived cells, MIA PaCa-2 (transferred from RIKEN BRC through the National Bio-Resource Project of the MEXT, Japan) and PANC -1 (assigned from Prof. Mitsuo Katano, Faculty of Medicine, Kyushu University) at 37 ° C, CO 2 5%, humidity 91%, penicillin 50 unit / mL-streptomycin 50 μg mixed reagent (Invitrogen, Calsbad, CA, USA) ), Fetal bovine serum FBS 10% (v / v) (Thermo Scientific, Waltham, MA, USA) in a liquid medium DMEM (Dulbecco's Modified Eagle's Medium) (Sigma-Aldrich, Saint Louis, MI, USA). Experiments were performed using cells in the logarithmic growth phase.

[CD-DST法による細胞生存率の測定]
前述の各種成分を含む液体培地DMEMを用いて、各がん細胞を3.5×106 個/mL懸濁液として調製し、コラーゲンドロップキット(Primaster(登録商標) KIT)(倉敷紡績、大阪)のA液(Collagen Cellmatrix Type CD)、B液(10倍濃縮 F-12培地)、及びC液(再構成用緩衝液)8:1:1(容量)に、調製した細胞懸濁液を1/10濃度になるように混合し、6穴マイクロプレートの各穴に30 μLを3滴ずつ落下、37℃、CO2 5%、湿度91%下にて1時間インキュベートした(Kobayashi et al. 2001)。その後、各種成分を含むDMEM培地を3mLずつ各穴に入れ24時間インキュベートし、各種濃度の抗がん剤ストック溶液を30 μLずつ添加、さらに24時間インキュベートした。その後、各穴の培地を4 mLのDMEMと交換、37℃、CO2 5%、湿度91%下にてプレートミキサーで10分間振とう後、同様の作業をもう一度繰り返した。さらに、各穴の培地を4 mLのPCM-2培地(Primaster(登録商標) KIT)(倉敷紡績、大阪)と交換し、2〜3日毎に4 mLのPCM-2培地で液交換を行いながら、7日間培養を行った。各穴を0.1%コラゲナーゼ(コラゲナーゼL、新田ゼラチン、大阪)を含むDMEM培地3 mLと交換、37℃、CO2 5%、湿度91%下にてプレートミキサーで30分間振とうした。コラーゲンが取り除かれた細胞をトリパンブルー(和光純薬、大阪)で染色し、血球計算盤により細胞数を計測、コントロールの細胞生存数を100%として生細胞数を計算した。
[Measurement of cell viability by CD-DST method]
Prepare each cancer cell as a suspension of 3.5 × 10 6 cells / mL using the liquid medium DMEM containing the above-mentioned various components. Collagen Drop Kit (Primaster (registered trademark) KIT) (Kurashikibo, Osaka) In the solution A (Collagen Cellmatrix Type CD), solution B (10-fold concentrated F-12 medium), and solution C (reconstitution buffer) 8: 1: 1 (volume), Mix to 10 concentrations, drop 3 drops of 30 μL into each well of a 6-well microplate, and incubate for 1 hour at 37 ° C., 5% CO 2 and 91% humidity (Kobayashi et al. 2001) . Thereafter, 3 mL each of DMEM medium containing various components was placed in each well and incubated for 24 hours, 30 μL each of anticancer drug stock solutions having various concentrations were added, and further incubated for 24 hours. Thereafter, the medium in each hole was replaced with 4 mL of DMEM, and after shaking for 10 minutes with a plate mixer at 37 ° C., 5% CO 2 and 91% humidity, the same operation was repeated once more. Furthermore, the medium in each well was replaced with 4 mL of PCM-2 medium (Primaster (registered trademark) KIT) (Kurashiki Boseki, Osaka), and the liquid was replaced with 4 mL of PCM-2 medium every 2-3 days. The culture was performed for 7 days. Each hole was replaced with 3 mL of DMEM medium containing 0.1% collagenase (collagenase L, Nitta Gelatin, Osaka), and shaken with a plate mixer at 37 ° C., 5% CO 2 and 91% humidity for 30 minutes. The cells from which collagen was removed were stained with trypan blue (Wako Pure Chemicals, Osaka), the number of cells was counted with a hemocytometer, and the number of viable cells was calculated with the number of viable cells of the control as 100%.

抗がん剤として、ドキソルビシン、又はパクリタキセル(Sigma-Aldrich、Saint Louis、MI、USA)を用いた。試験濃度が、それぞれ25及び50 nM、並びに1、2.5及び5 nMになるように、ストック溶液をそれぞれ100倍濃度で、ドキソルビシンに対しては超純水を、またパクリタキセルに対してはジメチルスルホキシド(DMSO)(ナカライテスク、京都)を溶媒として用い、調製した。   As an anticancer agent, doxorubicin or paclitaxel (Sigma-Aldrich, Saint Louis, MI, USA) was used. The stock solutions are 100-fold concentrated, respectively, so that the test concentrations are 25 and 50 nM and 1, 2.5 and 5 nM, respectively, ultrapure water for doxorubicin, and dimethyl sulfoxide (for paclitaxel). DMSO) (Nacalai Tesque, Kyoto) was used as a solvent.

[高精度表面プラズモン共鳴装置(HP-SPR)による表面プラズモン共鳴角のリアルタイムモニタリング]
BK7スライドガラス上に45 nm金を蒸着したセンサーチップに、高さ約1.5 mm、外径9 mm、内径8 mmのポリプロピレンリングをコラーゲン(Type A-I)(新田ゼラチン、大阪)で接着した。この中にペニシリン−ストレプトマイシン、及びFBSフリーのDMEMに調製した細胞1×106 個/mLを100 μL滴下し、37℃、CO2 5%、湿度95%下にて一晩保持した後、培養液50 μLを取り除き、コラーゲンドロップキットのA液(Collagen Cellmatrix Type CD)、B液(10倍濃縮 F-12培地)、及びC液(再構成用緩衝液)を8:1:1の割合で混合したものを30 μL、細胞上全体に滴下し、再度37℃、CO2 5%、湿度95%下にて適宜静置した(図1)。
[Real-time monitoring of surface plasmon resonance angle with high precision surface plasmon resonance device (HP-SPR)]
A polypropylene ring with a height of about 1.5 mm, an outer diameter of 9 mm, and an inner diameter of 8 mm was bonded to collagen (Type A-I) (Nitta Gelatin, Osaka) on a sensor chip with 45 nm gold deposited on a BK7 glass slide. . 100 μL of 1 × 10 6 cells / mL prepared in penicillin-streptomycin and FBS-free DMEM was dropped into this, and kept overnight at 37 ° C., 5% CO 2 , 95% humidity. Remove 50 μL of the solution, and use the collagen drop kit solution A (Collagen Cellmatrix Type CD), solution B (10-fold concentrated F-12 medium), and solution C (reconstitution buffer) at a ratio of 8: 1: 1. 30 μL of the mixed solution was dropped onto the entire cell and allowed to stand again at 37 ° C., 5% CO 2 and 95% humidity (FIG. 1).

その後、センサーチップを、マッチングオイル(屈折率1.518)を介してHP-SPRセンサーのプリズム上に設置し、5 mLのEMEM (Minimum Essential Medium Eagle)(Sigma-Aldrich、Saint Louis、MI、USA)で満たし、カスタムメイドのHP-SPRにより測定を開始した(Kosaihira and Ona 2008; Nishijima et al. 2010)。この際、CO2 5%、37±0.1℃下にて行った。なお、静置時間は、細胞分裂しない程度の短い時間に相当し、このHP-SPRシグナルの安定なトレンドを示すことにより決定した。測定開始2〜3分後、SPRシグナルが安定していることを確かめ、ドキソルビシン、パクリタキセルいずれかを含む新しい5 mLのEMEM、もしくはコントロールとして5 mLのEMEMのみを交換した後、60分間測定し続けた。薬剤は、それぞれ1000倍濃度溶液ストックを用い、CD-DST法と同じ濃度になるように行った。The sensor chip is then placed on the HP-SPR sensor prism via matching oil (refractive index 1.518) and 5 mL EMEM (Minimum Essential Medium Eagle) (Sigma-Aldrich, Saint Louis, MI, USA) Satisfied and started measurement with custom-made HP-SPR (Kosaihira and Ona 2008; Nishijima et al. 2010). At this time, it was carried out at 5% CO 2 and 37 ± 0.1 ° C. The standing time corresponds to a short time that does not cause cell division, and was determined by showing a stable trend of this HP-SPR signal. 2 to 3 minutes after the start of measurement, confirm that the SPR signal is stable, replace 5 mL of EMEM containing either doxorubicin or paclitaxel, or only 5 mL of EMEM as a control, and continue measurement for 60 minutes. It was. Each drug was used at the same concentration as the CD-DST method using a 1000-fold concentrated solution stock.

薬剤が細胞に作用し始める時間帯である薬剤投入後25分以降で、安定した直線的なシグナル部分を5分間モニターし、各細胞におけるコントロールの変化率を差し引き、HP-SPR角度変化率として求めた(Nishijima et al. 2010)。   The stable linear signal part is monitored for 5 minutes after 25 minutes after drug injection, which is the time zone when the drug starts to act on the cells, and the rate of change of HP-SPR angle is obtained by subtracting the rate of change of control in each cell. (Nishijima et al. 2010).

[結果と考察]
CD-DST法による細胞生存率の測定結果を図2に示す。MIA PaCa-2及びPANC-1における50%生存率を示す抗がん剤の濃度は、ドキソルビシンで25nM、パクリタキセルで2.5nM程度であった。本手法を用いることにより、臨床検査で用いられている濃度と同様の結果が得られることが確認できた(Yasuda et al. 1998)。このため、ドキソルビシンは、PANC-1よりもMIA PaCa-2で良く効いており、感受性の個人差も見られる。用いた二つのセルラインではともに、K-ras並びにp53に変異が認められる(Moore et al. 2001)。ただし、変異の箇所は異なっており、個人差を現わしている。
[Results and discussion]
The measurement results of cell viability by CD-DST method are shown in FIG. The concentrations of anticancer agents showing 50% survival in MIA PaCa-2 and PANC-1 were about 25 nM for doxorubicin and about 2.5 nM for paclitaxel. By using this method, it was confirmed that the same result as the concentration used in the clinical examination was obtained (Yasuda et al. 1998). For this reason, doxorubicin works better with MIA PaCa-2 than PANC-1, and there are individual differences in sensitivity. In both cell lines used, mutations are observed in K-ras and p53 (Moore et al. 2001). However, the location of the mutation is different and shows individual differences.

HP-SPRによる測定結果を図3に示す。これまでの金基板上での測定では、コントロールはほぼ変化のないトレンドであった(Kosaihira and Ona 2008; Nishijima et al. 2010)。これとは異なり、細胞をコラーゲンで覆った場合には、コントロールでもミトコンドリア脱分極のトレンドが見られた。細胞をコラーゲンで覆った場合、細胞増殖の増加が認められ、代謝活性も上昇している(Kleinman et al. 1987)。しかしながらHP-SPRの測定においては、FBSを新たに添加しておらず、またEMEM培地を用いているため、成長因子、栄養ともに不足してきていると考えられる。この結果、コントロールでも経時的なミトコンドリアの脱分極が観察されたと考えられる。これに対し、抗がん剤を添加した場合には、コントロールよりも強い脱分極のトレンドを示しており、これまでと同様に薬効の評価が可能と考えられた。   The measurement results by HP-SPR are shown in FIG. In the measurement on the gold substrate so far, the control has been almost unchanged (Kosaihira and Ona 2008; Nishijima et al. 2010). In contrast, when the cells were covered with collagen, the control also showed a trend of mitochondrial depolarization. When cells are covered with collagen, cell proliferation is increased and metabolic activity is also increased (Kleinman et al. 1987). However, in the measurement of HP-SPR, since FBS is not newly added and EMEM medium is used, it is considered that both growth factors and nutrition are lacking. As a result, it is considered that mitochondrial depolarization over time was also observed in the control. On the other hand, when an anticancer agent was added, it showed a stronger depolarization trend than the control, and it was considered possible to evaluate the efficacy as before.

ここでドキソルビシンは、DNAへの挿入とともに、トポイソメラーゼ−IIを阻害し、DNA鎖を切断することにより働く(Sin and Moore 2005)。一方、パクリタキセルは、微小管の脱重合の阻害により、細胞分裂を停止させる(Sin and Moore 2005)。ともに、細胞膜を通過し、細胞内で作用する抗がん剤であるが、コラーゲンで覆っていない場合の実験結果とは異なり(Nishijima et al. 2010)、HP-SPRシグナルは細胞膜通過の影響をほとんど受けず、シグナリング エコー法による結果と同様のトレンドを見せた(Nishijima et al. 2010)。このため、細胞をコラーゲンで覆った場合は抗がん剤の細胞膜の通過が容易になることが想像された(Ong et al. 2010)。   Here, doxorubicin works by inhibiting topoisomerase-II along with its insertion into DNA and cleaving the DNA strand (Sin and Moore 2005). Paclitaxel, on the other hand, stops cell division by inhibiting microtubule depolymerization (Sin and Moore 2005). Both are anticancer drugs that pass through the cell membrane and act intracellularly, but unlike the experimental results when not covered with collagen (Nishijima et al. 2010), the HP-SPR signal is affected by the passage through the cell membrane. It was almost unaffected and showed the same trend as the result of signaling echo method (Nishijima et al. 2010). For this reason, it was imagined that the cell membrane of an anticancer drug could be easily passed when the cells were covered with collagen (Ong et al. 2010).

CD-DST法による細胞生存率とHP-SPRシグナルの変化率との関係を図4に示す。図からも見て取れるように、セルラインや抗がん剤の種類に依存せず、有意義に高い相関が得られた(P<0.001)。   FIG. 4 shows the relationship between the cell viability by the CD-DST method and the change rate of the HP-SPR signal. As can be seen from the figure, a significantly high correlation was obtained regardless of the type of cell line or anticancer drug (P <0.001).

抗がん剤の作用機構は、前述のように異なっている。また、同様に用いたセルラインは個人差を示すことから、得られた結果は、本発明により、抗がん剤の作用機序の違い、及び個人の遺伝子発現の違いに関わらず、薬効の評価を行えることを示している。   The mechanism of action of anticancer agents is different as described above. In addition, since the cell lines used in the same manner show individual differences, the results obtained were obtained according to the present invention regardless of differences in the mechanism of action of anticancer agents and differences in individual gene expression. It shows that it can be evaluated.

実施例2:二次元培養状態と三次元培養状態における細胞活性の比較
本実施例においては、本発明の三次元培養状態における細胞活性を、二次元培養状態の場合の細胞活性と比較することを目的として行った。
Example 2: Comparison of cell activity in two-dimensional culture state and three-dimensional culture state In this example, cell activity in the three-dimensional culture state of the present invention is compared with cell activity in the two-dimensional culture state. Done as a purpose.

抗がん剤として、実施例1において効果的に細胞を活性化させることが明らかになったドキソルビシン(Sigma-Aldrich、Saint Louis、MI、USA)を用いた。試験濃度が、25 nMになるように、ストック溶液を100倍濃度で、ドキソルビシンに対して超純水をを溶媒として用い、調製した。   As an anticancer agent, doxorubicin (Sigma-Aldrich, Saint Louis, MI, USA), which was found to effectively activate cells in Example 1, was used. The stock solution was prepared at a 100-fold concentration and ultrapure water was used as a solvent for doxorubicin so that the test concentration was 25 nM.

[高精度表面プラズモン共鳴装置(HP-SPR)による二次元培養状態細胞の表面プラズモン共鳴角のリアルタイムモニタリング]
BK7スライドガラス上に45 nm金を蒸着したセンサーチップに、高さ約1.5 mm、外径9 mm、内径8 mmのポリプロピレンリングをコラーゲン(Type A-I)(新田ゼラチン、大阪)で接着した。この中にペニシリン−ストレプトマイシン、及びFBSフリーのDMEMに調製した細胞1×106 個/mLを100 μL滴下し、37℃、CO2 5%、湿度95%下にて20時間培養した。
[Real-time monitoring of surface plasmon resonance angle of two-dimensional cultured cells using high-precision surface plasmon resonance device (HP-SPR)]
A polypropylene ring with a height of about 1.5 mm, an outer diameter of 9 mm, and an inner diameter of 8 mm was bonded to collagen (Type A-I) (Nitta Gelatin, Osaka) on a sensor chip with 45 nm gold deposited on a BK7 glass slide. . To this, 100 μL of 1 × 10 6 cells / mL prepared in penicillin-streptomycin and FBS-free DMEM was dropped, and cultured at 37 ° C., CO 2 5%, humidity 95% for 20 hours.

その後、センサーチップを、マッチングオイル(屈折率1.518)を介してHP-SPRセンサーのプリズム上に設置し、5 mLのEMEM (Minimum Essential Medium Eagle)(Sigma-Aldrich、Saint Louis、MI、USA)で満たし、カスタムメイドのHP-SPRにより測定を開始した(Kosaihira and Ona 2008; Nishijima et al. 2010)。この際、CO2 5%、37±0.1℃下にて行った。The sensor chip is then placed on the HP-SPR sensor prism via matching oil (refractive index 1.518) and 5 mL EMEM (Minimum Essential Medium Eagle) (Sigma-Aldrich, Saint Louis, MI, USA) Satisfied and started measurement with custom-made HP-SPR (Kosaihira and Ona 2008; Nishijima et al. 2010). At this time, it was carried out at 5% CO 2 and 37 ± 0.1 ° C.

なお、静置時間は、細胞分裂しない程度の短い時間に相当し、このHP-SPRシグナルの安定なトレンドを示すことにより決定した。測定開始2〜3分後、SPRシグナルが安定していることを確かめ、ドキソルビシンを含む新しい5 mLのEMEM、もしくはコントロールとして5 mLのEMEMのみを交換した後、60分間測定し続けた。   The standing time corresponds to a short time that does not cause cell division, and was determined by showing a stable trend of this HP-SPR signal. Two to three minutes after the start of measurement, it was confirmed that the SPR signal was stable, and after replacement of fresh 5 mL EMEM containing doxorubicin or only 5 mL EMEM as a control, measurement was continued for 60 minutes.

HP-SPRによる測定結果を図5に示す。二次元培養状態の細胞を用いた場合、コントロールと薬剤を投与したシグナルに差が認められず、細胞は活性化されていないことが確認できた。これに対して、本発明の手法を用いた三次元培養状態の細胞による試験では、細胞は活性化され、薬剤に対し感受性を示していることが判明した。このように、本手法を用いることより、細胞をin vitroで短時間の間に三次元培養状態に活性化させ、生体内に近い微小環境を形成でき、臨床応用に結び付く、薬剤感受性試験が可能になることを証明した。   The measurement result by HP-SPR is shown in FIG. When cells in a two-dimensional culture state were used, no difference was observed between the control signal and the drug administration signal, confirming that the cells were not activated. In contrast, in a test using cells in a three-dimensional culture state using the technique of the present invention, it was found that the cells were activated and showed sensitivity to drugs. In this way, by using this method, cells can be activated in vitro in a three-dimensional culture state in a short time to form a microenvironment that is close to the living body, and can be used for drug susceptibility testing that leads to clinical application. Proved to be.

Claims (6)

基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で又は活性化する工程;
活性化した細胞へ刺激を供与する工程;及び
刺激を供与した後に生じる、細胞の変化を検出する工程
を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した刺激を評価する方法。
Covering a portion of a monolayer animal-derived cell maintained on a substrate with a composition comprising an extracellular matrix component and activating the cell under non-dividing conditions;
A method of evaluating a stimulus provided to a cell, using a step of providing a stimulus to an activated cell; and a step of detecting a change in the cell that occurs after the stimulus is provided, and using the presence or degree of the change of the cell as an index.
細胞の変化を検出する工程が、細胞非分裂条件下で、表面プラズモン共鳴装置を用い、細胞及び/又はミトコンドリアの分極状態の変化、又は細胞及び/又はミトコンドリアの誘電率の変化に起因する表面プラズモン共鳴角の変化を測定することにより実施される、請求項1に記載の方法。   The step of detecting a change in the cell is performed under a non-dividing condition using a surface plasmon resonance apparatus, and the surface plasmon resulting from a change in the polarization state of the cell and / or mitochondrion or a change in the dielectric constant of the cell and / or mitochondrion The method of claim 1, wherein the method is performed by measuring a change in resonance angle. 細胞ががん細胞であり、刺激を供与する工程が、一又は二以上の抗がん剤を供与することにより行われる、抗がん剤の薬効を評価するための、請求項2に記載の方法。   The cell is a cancer cell, and the step of providing a stimulus is performed by supplying one or more anticancer agents, The method according to claim 2, for evaluating the efficacy of the anticancer agent. Method. 基板に維持した単層状の動物由来の細胞の一部分を、細胞外基質成分を含む組成物で覆い、細胞を非分裂条件下で活性化する工程;
活性化した細胞へ試験化合物を供与する工程;及び
試験化合物を供与した後に生じる、細胞の変化を検出する工程
を含み、細胞の変化の有無又は程度を指標に、細胞へ供与した試験化合物を抗がん剤候補化合物として選択する、抗がん剤候補化合物のスクリーニングのための方法。
Covering a portion of a monolayer animal-derived cell maintained on a substrate with a composition comprising an extracellular matrix component and activating the cell under non-dividing conditions;
A step of supplying a test compound to activated cells; and a step of detecting a change in the cell that occurs after the test compound is supplied, and the test compound supplied to the cell is treated with the presence or degree of the change of the cell as an index. A method for screening an anticancer drug candidate compound selected as a cancer drug candidate compound.
基板に維持した単層状の動物細胞の一部を、細胞外基質成分を含む組成物で覆うことにより、細胞の外来刺激に対する感受性を高める、方法。   A method of increasing sensitivity of a cell to an external stimulus by covering a part of a monolayer animal cell maintained on a substrate with a composition containing an extracellular matrix component. 基板に維持した単層状の動物細胞の一部を、細胞外基質成分を含む組成物で覆うことによる、三次元培養環境を模倣する方法。   A method for imitating a three-dimensional culture environment by covering a part of a monolayer animal cell maintained on a substrate with a composition containing an extracellular matrix component.
JP2013533691A 2011-09-12 2012-09-12 Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof Pending JPWO2013039112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533691A JPWO2013039112A1 (en) 2011-09-12 2012-09-12 Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011198369 2011-09-12
JP2011198369 2011-09-12
JP2013533691A JPWO2013039112A1 (en) 2011-09-12 2012-09-12 Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof

Publications (1)

Publication Number Publication Date
JPWO2013039112A1 true JPWO2013039112A1 (en) 2015-03-26

Family

ID=47883337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013533691A Pending JPWO2013039112A1 (en) 2011-09-12 2012-09-12 Method for activating two-dimensional cultured cells in the same manner as three-dimensional culture or in vivo and use thereof

Country Status (2)

Country Link
JP (1) JPWO2013039112A1 (en)
WO (1) WO2013039112A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505448A (en) * 2014-01-14 2017-02-16 チョイ ウォンチョルCHOI, Won Cheol Screening method for cancer preventive or anticancer agent using morphological characteristics of ruthereal
CN103903015B (en) * 2014-03-20 2017-02-22 南京信息工程大学 Cell mitosis detection method
JP6325858B2 (en) * 2014-03-20 2018-05-16 株式会社Screenホールディングス Medicinal efficacy evaluation method and image processing apparatus
EP3597733A4 (en) * 2017-03-16 2020-12-23 LSI Medience Corporation Three-dimensional culture of primary cancer cells using tumor tissue

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106048A1 (en) * 2007-02-28 2008-09-04 Corning Incorporated Surfaces and methods for biosensor cellular assays
US8658353B2 (en) * 2008-11-25 2014-02-25 Corning Incorporated Liver cell toxicity assay

Also Published As

Publication number Publication date
WO2013039112A1 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Nath et al. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model
JP7005018B2 (en) Spontaneous beating heart organoid constructs and integrated body-on-chip devices containing them
Brancato et al. 3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro
Wang et al. Mapping single-cell–substrate interactions by surface plasmon resonance microscopy
Smith et al. NanoMEA: a tool for high-throughput, electrophysiological phenotyping of patterned excitable cells
ES2729341T3 (en) Method for a cell-based drug selection assay and use thereof
Khalafalla et al. P2Y2 nucleotide receptor prompts human cardiac progenitor cell activation by modulating hippo signaling
Wu et al. Bionic 3D spheroids biosensor chips for high-throughput and dynamic drug screening
CA2995088A1 (en) Fluidic devices incorporating functional muscle tissue and methods of use
Tunesi et al. Optimization of a 3D dynamic culturing system for in vitro modeling of frontotemporal neurodegeneration-relevant pathologic features
Serena et al. Micro-arrayed human embryonic stem cells-derived cardiomyocytes for in vitro functional assay
WO2013039112A1 (en) Method for activating two-dimensional cultured cells similarly to three-dimensional culture or in vivo, and use thereof
KR102488481B1 (en) Spherical 3D tumor Spheroid
Plou et al. Nanocomposite scaffolds for monitoring of drug diffusion in three-dimensional cell environments by surface-enhanced Raman spectroscopy
Bardsley et al. Current state-of-the-art 3D tissue models and their compatibility with live cell imaging
Kim et al. Raman spectroscopy-based 3D analysis of odontogenic differentiation of human dental pulp stem cell spheroids
WO2014200997A2 (en) Method for preparing three-dimensional, organotypic cell cultures and uses thereof
Onbas et al. Fabrication of tunable 3D cellular structures in high volume using magnetic levitation guided assembly
Fröhlich Issues with cancer spheroid models in therapeutic drug screening
Sohrabi et al. Microenvironmental stiffness induces metabolic reprogramming in glioblastoma
US20150377863A1 (en) Method for Testing the Response of Cells to Exposure with Therapeutics
Redmond et al. Development and characterisation of 3D collagen-gelatin based scaffolds for breast cancer research
Frtús et al. Mechanical Regulation of Mitochondrial Dynamics and Function in a 3D-Engineered Liver Tumor Microenvironment
Kocsis et al. Dependence of mitochondrial function on the filamentous actin cytoskeleton in cultured mesenchymal stem cells treated with cytochalasin B
Junghans et al. Understanding dynamic changes in live cell adhesion with neutron reflectometry