JPWO2012132143A1 - Charging stand - Google Patents

Charging stand Download PDF

Info

Publication number
JPWO2012132143A1
JPWO2012132143A1 JP2013507069A JP2013507069A JPWO2012132143A1 JP WO2012132143 A1 JPWO2012132143 A1 JP WO2012132143A1 JP 2013507069 A JP2013507069 A JP 2013507069A JP 2013507069 A JP2013507069 A JP 2013507069A JP WO2012132143 A1 JPWO2012132143 A1 JP WO2012132143A1
Authority
JP
Japan
Prior art keywords
coil
position detection
circuit
echo
echo signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013507069A
Other languages
Japanese (ja)
Inventor
恭三 寺尾
恭三 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2012132143A1 publication Critical patent/JPWO2012132143A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】位置検出コイルに誘導されるエコー信号のレベルが変動しても、受電コイルの位置を正確に検出する。
【解決手段】充電台は、上面プレート21に載せられる電池内蔵機器50の受電コイル51の位置を位置検出制御器14で検出し、移動機構13を制御して送電コイル11を受電コイル51に接近させて電力搬送する。位置検出制御器14は、上面プレート21に配置している複数の位置検出コイル30に検出パルス発生回路31からパルス信号を供給し、受電コイル51から位置検出コイル30に誘導されるエコー信号をエコー増幅回路32で受信して受電コイル51の位置を識別回路33で判別する。エコー増幅回路32は、入力されるエコー信号を飽和することなくリニアに増幅するように増幅率を調整するゲイン調整回路37を備え、増幅率の特定されたエコー増幅回路32が位置検出コイル30から入力されるエコー信号を増幅して識別回路33に入力している。
【選択図】図9
The position of a power receiving coil is accurately detected even if the level of an echo signal induced in the position detecting coil varies.
A charging stand detects a position of a power receiving coil 51 of a battery built-in device 50 placed on an upper plate 21 by a position detection controller 14 and controls a moving mechanism 13 to bring the power transmitting coil 11 closer to the power receiving coil 51. To carry power. The position detection controller 14 supplies a pulse signal from the detection pulse generation circuit 31 to the plurality of position detection coils 30 arranged on the upper surface plate 21, and echoes an echo signal induced from the power reception coil 51 to the position detection coil 30. The signal is received by the amplifier circuit 32 and the position of the power receiving coil 51 is determined by the identification circuit 33. The echo amplification circuit 32 includes a gain adjustment circuit 37 that adjusts the amplification factor so as to linearly amplify the input echo signal without being saturated, and the echo amplification circuit 32 with the specified amplification factor is connected to the position detection coil 30. The input echo signal is amplified and input to the identification circuit 33.
[Selection] Figure 9

Description

本発明は、パック電池や携帯電話などの電池内蔵機器を上に載せて、電磁誘導作用で電力を搬送して内蔵電池を充電する充電台に関する。   The present invention relates to a charging base on which a battery built-in device such as a battery pack or a mobile phone is placed on top, and power is transferred by electromagnetic induction to charge the built-in battery.

電磁誘導の作用で送電コイルから受電コイルに電力搬送して、内蔵電池を充電する充電台は開発されている。この充電台は、交流電源で励磁される送電コイルを内蔵している。充電台にセットされるパック電池や携帯機器などの電池内蔵機器は、充電台の送電コイルに電磁結合される受電コイルを内蔵している。電池内蔵機器は、受電コイルに誘導される交流を整流し、これを電池に供給して充電する回路も内蔵している。この構造によると、充電台の上にパック電池を載せて、非接触状態でパック電池の電池を充電できる。   A charging stand has been developed that carries power from the power transmission coil to the power receiving coil by the action of electromagnetic induction and charges the built-in battery. This charging stand incorporates a power transmission coil that is excited by an AC power source. A battery built-in device such as a battery pack or a portable device set on a charging base has a power receiving coil that is electromagnetically coupled to a power transmission coil of the charging base. The battery built-in device also has a built-in circuit for rectifying the alternating current induced in the power receiving coil and supplying the battery to the battery for charging. According to this structure, the battery pack can be charged in a non-contact state by placing the battery pack on the charging stand.

以上の充電台は、送電コイルを受電コイルの位置に移動させることで便利に使用できる。それは、ユーザーが充電台の自由な位置に電池内蔵機器をセットして、電池内蔵機器の受電コイルに送電コイルを接近させて充電できるからである。このことを実現する充電台は開発されている。(特許文献1参照)   The above charging stand can be conveniently used by moving the power transmission coil to the position of the power receiving coil. This is because the user can set the battery built-in device at a free position on the charging stand and charge the power receiving coil of the battery built-in device close to the power receiving coil. A charging stand has been developed to achieve this. (See Patent Document 1)

特開2009−247194号公報JP 2009-247194 A

以上の充電台は、送電コイルを受電コイルに接近するように移動させる移動機構を備えている。移動機構をコントロールするために、受電コイルの位置を検出して移送機構を制御する位置検出制御器を備えている。位置検出制御器は、受電コイルの位置を検出するために、電池内蔵機器を載せるケースの上面プレートに複数の位置検出コイルを固定している。位置検出コイルは、一定の間隔で固定される。各々の位置検出コイルには、パルス信号を供給する検出パルス発生回路を接続している。検出パルス発生回路から位置検出コイルにパルス信号が供給されると、このパルス信号に励起されて受電コイルから位置検出コイルに、エコー信号が出力される。エコー信号は、パルス信号に励起された受電コイルから出力されるので、パルス信号から一定の時間遅れて位置検出コイルに誘導される。このエコー信号を受信するために、位置検出コイルにはエコー増幅回路を接続している。エコー増幅回路が受信するエコー信号は、受電コイルの位置を検出する識別回路に入力される。識別回路は、入力されるエコー信号のレベルから受電コイルの位置を判別する。   The above charging stand includes a moving mechanism that moves the power transmission coil so as to approach the power receiving coil. In order to control the moving mechanism, a position detection controller for detecting the position of the power receiving coil and controlling the transfer mechanism is provided. In order to detect the position of the power receiving coil, the position detection controller fixes a plurality of position detection coils to the upper surface plate of the case on which the battery built-in device is placed. The position detection coils are fixed at regular intervals. A detection pulse generating circuit for supplying a pulse signal is connected to each position detection coil. When a pulse signal is supplied from the detection pulse generating circuit to the position detection coil, the pulse signal is excited to output an echo signal from the power receiving coil to the position detection coil. Since the echo signal is output from the power receiving coil excited by the pulse signal, the echo signal is guided to the position detection coil with a certain time delay from the pulse signal. In order to receive this echo signal, an echo amplification circuit is connected to the position detection coil. The echo signal received by the echo amplifier circuit is input to an identification circuit that detects the position of the power receiving coil. The identification circuit determines the position of the power receiving coil from the level of the input echo signal.

以上の位置検出制御器は、検出パルス発生回路でもって、各々の位置検出コイルに順番にパルス信号を出力する。識別回路は、各々の位置検出コイルに誘導されるエコー信号のレベルから、受電コイルの位置を検出することができる。受電コイルが最も接近している位置検出コイルに誘導されるエコー信号が最も大きくなり、受電コイル151が2つの位置検出コイル130の中間にあるとき、図13の点Bで示すように、第1のX軸位置検出コイル130Aと第2のX軸位置検出コイル130Aに誘導されるエコー信号のレベルは同じとなる。すなわち、各々のX軸位置検出コイル130Aは、受電コイル151が最も近くにあるときに誘導されるエコー信号のレベルが最も強くなり、受電コイル151が離れるにしたがってエコー信号のレベルは小さくなる。したがって、どのX軸位置検出コイルのエコー信号のレベルが最も強いかで、受電コイルがどのX軸位置検出コイルに最も接近しているかを判定できる。また、隣接するふたつのX軸位置検出コイルにエコー信号が誘導されるとき、エコー信号のレベル比でいずれに位置検出コイルに近いかを判定できる。   The above position detection controller outputs a pulse signal in order to each position detection coil by a detection pulse generation circuit. The identification circuit can detect the position of the power receiving coil from the level of the echo signal induced in each position detection coil. When the echo signal induced in the position detection coil closest to the power receiving coil becomes the largest and the power receiving coil 151 is in the middle of the two position detecting coils 130, as shown by the point B in FIG. The levels of echo signals induced in the X-axis position detection coil 130A and the second X-axis position detection coil 130A are the same. That is, in each X-axis position detection coil 130A, the level of the echo signal that is induced when the power receiving coil 151 is closest is the strongest, and the level of the echo signal decreases as the power receiving coil 151 moves away. Therefore, it can be determined which X-axis position detection coil the power receiving coil is closest to which X-axis position detection coil has the strongest echo signal level. Further, when an echo signal is induced in two adjacent X-axis position detection coils, it can be determined which of the level ratios of the echo signals is closer to the position detection coil.

以上の位置検出制御器は、位置検出コイルから受電コイルにパルス信号を出力し、このパルス信号に励起された受電コイルから位置検出コイルに出力されるエコー信号のレベルを検出して受電コイルの位置を検出する。位置検出コイルに誘導されるエコー信号のレベルは極めて小さいので、エコー増幅回路で増幅して識別回路に入力される。エコー増幅回路は、エコー信号を一定の増幅率で増幅する。この位置検出制御器は、充電台にセットされる電池内蔵機器の機種によっては、受電コイルの位置を正確に検出できない欠点がある。それは、電池内蔵機器の受電コイルの大きさや共振回路のQ、さらに位置検出コイルと受電コイルとの間隔などが変化して、受電コイルから位置検出コイルに誘導されるエコー信号のレベルが変動するからである。   The above position detection controller outputs a pulse signal from the position detection coil to the power receiving coil, detects the level of the echo signal output from the power receiving coil excited by the pulse signal to the position detection coil, and detects the position of the power receiving coil. Is detected. Since the level of the echo signal induced in the position detection coil is extremely small, it is amplified by the echo amplification circuit and input to the identification circuit. The echo amplification circuit amplifies the echo signal with a constant amplification factor. This position detection controller has a drawback that the position of the power receiving coil cannot be accurately detected depending on the model of the battery built-in device set on the charging stand. This is because the level of the echo signal induced from the power receiving coil to the position detecting coil varies due to changes in the size of the power receiving coil of the battery built-in device, the Q of the resonance circuit, and the interval between the position detecting coil and the power receiving coil. It is.

エコー信号のレベルが大きい電池内蔵機器に最適なように、エコー増幅回路の増幅率を小さく設定すると、エコー信号のレベルが小さい電池内蔵機器の受電コイルの位置を正確に検出できなくなる。それは、エコー信号のレベルが小さいと、量子化雑音や外部雑音などによってエコー信号のレベルを正確に検出できなくなるからである。反対に、エコー信号のレベルが小さい電池内蔵機器に最適なように、エコー増幅回路の増幅率を大きく調整しても、エコー信号のレベルが大きい電池内蔵機器の受電コイルの位置を正確に検出できなくなる。それは、エコー増幅回路に入力される大きなレベルのエコー信号が飽和して、エコー信号が直線的に増幅できる領域外になるからである。すなわち、種々の電池内蔵機器をセットして、全ての電池内蔵機器の受電コイルの位置を正確に検出できなくなる。   If the amplification factor of the echo amplifier circuit is set to be small so as to be optimal for a battery built-in device having a large echo signal level, the position of the power receiving coil of the battery built-in device having a small echo signal level cannot be detected accurately. This is because if the level of the echo signal is small, the level of the echo signal cannot be accurately detected due to quantization noise or external noise. On the other hand, even if the amplification factor of the echo amplifier circuit is adjusted to a large value so that it is optimal for devices with a low echo signal level, it is possible to accurately detect the position of the power receiving coil of the device with a high echo signal level. Disappear. This is because the echo signal of a large level input to the echo amplifier circuit is saturated, and the echo signal is outside the region where it can be linearly amplified. That is, it becomes impossible to accurately detect the positions of the power receiving coils of all the battery built-in devices by setting various types of battery built-in devices.

識別回路がエコー信号のレベルから正確に受電コイルの位置を検出するためには、エコー増幅回路がリニアに、すなわち入力されるエコー信号のレベルに正比例するように一定の利得で増幅して、識別回路に入力する必要がある。エコー増幅回路は、電源電圧によって出力レベルの最大値が制限され、一般的には電源電圧の70%〜80%までの信号レベルをリニアに出力できる。また、識別回路に入力されるエコー信号のレベルが小さいと、所定のレベルに増幅したエコー信号を識別回路に入力できなくなって、識別回路が正確に受電コイルの位置を検出できなくなる。識別回路は、増幅して入力されるエコー信号のレベルをデジタル信号に変換して、受電コイルの位置を演算するが、信号レベルが小さいと、量子化雑音による誤差が大きくなる。たとえば、エコー増幅回路から入力されるエコー信号を8ビットのデジタル信号に変換して、受電コイルの位置を検出する識別回路は、入力されるエコー信号を256階調に分解して、受電コイルの位置を正確に検出できる。しかしながら、エコー信号のレベルが半分になると、エコー信号の128階調に分解して受電コイルの位置を検出するので、エコー信号のレベルから受電コイルの位置を正確に検出できなくなる。   In order for the discriminating circuit to accurately detect the position of the receiving coil from the level of the echo signal, the echo amplifying circuit is amplified linearly, that is, with a certain gain so as to be directly proportional to the level of the input echo signal, and discriminating. Must be input to the circuit. The echo amplification circuit has a maximum output level limited by the power supply voltage, and generally can output a signal level of 70% to 80% of the power supply voltage linearly. Further, if the level of the echo signal input to the identification circuit is small, the echo signal amplified to a predetermined level cannot be input to the identification circuit, and the identification circuit cannot accurately detect the position of the power receiving coil. The identification circuit converts the level of the echo signal that is amplified and input into a digital signal and calculates the position of the power receiving coil. However, if the signal level is low, an error due to quantization noise increases. For example, an identification circuit that converts an echo signal input from an echo amplifier circuit into an 8-bit digital signal and detects the position of the receiving coil decomposes the input echo signal into 256 gradations, The position can be detected accurately. However, when the level of the echo signal is halved, the position of the receiving coil is detected from the echo signal level because the position of the receiving coil is detected by decomposing the echo signal into 128 gradations.

エコー信号から受電コイルの位置を正確に検出するには、位置検出コイルから入力されるエコー信号のレベルが小さくとも、識別回路の識別に最適なレベルまで増幅し、かつ、大きなレベルのエコー信号を飽和させることなく、識別回路に入力する必要がある。しかしながら、小さいレベルのエコー信号を受電コイルの位置の検出に最適なレベルに増幅することと、大レベルのエコー信号を飽和させることなく、識別回路に入力することは互いに相反する特性であって両方を満足することができない。このため、従来の位置検出制御器は、受電コイルの位置を常に正確に検出することが難しく、電池内蔵機器によっては、正確に受電コイルの位置を検出できない問題点があった。   In order to accurately detect the position of the power receiving coil from the echo signal, even if the level of the echo signal input from the position detection coil is small, it is amplified to an optimum level for discrimination of the discrimination circuit, and a large level echo signal is It is necessary to input to the identification circuit without saturation. However, amplifying a small level echo signal to an optimum level for detecting the position of the receiving coil and inputting it to the identification circuit without saturating the large level echo signal are mutually contradictory characteristics. Can not be satisfied. For this reason, it is difficult for the conventional position detection controller to always accurately detect the position of the power receiving coil, and there is a problem that the position of the power receiving coil cannot be accurately detected depending on the battery built-in device.

以上の欠点を解消するために、特許文献1の充電台は、受電コイルの位置をより精密に検出する修正位置検出制御器を設けている。この充電台は、位置検出制御器で受電コイルの位置を粗検出して、受電コイルに送電コイルを接近させた後、さらに修正位置検出制御器で受電コイルの位置をより正確に検出して、送電コイルを受電コイルにより接近させる。   In order to eliminate the above drawbacks, the charging stand of Patent Document 1 is provided with a corrected position detection controller that more accurately detects the position of the power receiving coil. This charging stand roughly detects the position of the power receiving coil with the position detection controller, and after making the power transmission coil approach the power receiving coil, further detects the position of the power receiving coil with the corrected position detection controller, The power transmission coil is moved closer to the power reception coil.

修正位置検出制御器は、送電コイルに交流信号を出力する交流電源を自励式の発振回路として、発振回路の発振周波数から受電コイルの位置を正確に検出して移動機構を制御する。この修正位置検出制御器は、送電コイルを移動させて、交流電源の発振周波数を検出する。自励式の発振回路の発振周波数が変化する特性を図14に示している。この図は、送電コイルと受電コイルの相対的な位置ずれに対する発振周波数の変化を示している。この図に示すように、自励式の発振回路の発振周波数は、送電コイルが受電コイルに最も接近する位置でもっとも高くなり、相対位置がずれるにしたがって発振周波数が低くなる。したがって、修正位置検出制御器は、送電コイルを移動させて、発振周波数が最も高くなる位置で停止して、送電コイルを受電コイルに接近できる。この充電台は、送電コイルを受電コイルに接近するために、送電コイルの位置をより正確に検出するために専用の回路構成を必要とする。このため、位置検出制御器が複雑となって製造コストが高くなる欠点がある。   The correction position detection controller controls the moving mechanism by accurately detecting the position of the power receiving coil from the oscillation frequency of the oscillation circuit using an AC power source that outputs an AC signal to the power transmission coil as a self-excited oscillation circuit. The correction position detection controller detects the oscillation frequency of the AC power supply by moving the power transmission coil. FIG. 14 shows the characteristic that the oscillation frequency of the self-excited oscillation circuit changes. This figure shows the change in the oscillation frequency with respect to the relative displacement between the power transmission coil and the power reception coil. As shown in this figure, the oscillation frequency of the self-excited oscillation circuit is highest at the position where the power transmission coil is closest to the power reception coil, and the oscillation frequency is lowered as the relative position is shifted. Therefore, the corrected position detection controller can move the power transmission coil, stop at the position where the oscillation frequency is highest, and approach the power transmission coil to the power reception coil. This charging stand requires a dedicated circuit configuration to detect the position of the power transmission coil more accurately in order to bring the power transmission coil closer to the power reception coil. For this reason, there exists a fault which a position detection controller becomes complicated and a manufacturing cost becomes high.

本発明は、さらに以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、位置検出コイルに誘導されるエコー信号のレベルが変動しても、受電コイルの位置を正確に検出して、送電コイルを受電コイルに接近して効率よく電力搬送できる充電台を提供することにある。   The present invention has been developed for the purpose of solving the above-mentioned drawbacks. An important object of the present invention is to accurately detect the position of the power receiving coil even when the level of the echo signal induced in the position detecting coil fluctuates, and to efficiently carry power by bringing the power transmitting coil closer to the power receiving coil. To provide a charging stand.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

本発明の充電台は、受電コイル51に電力搬送される電力で充電される電池52を内蔵する電池内蔵機器50の充電台である。充電台は、交流電源12に接続されて受電コイル51に起電力を電力搬送する送電コイル11と、この送電コイル11を内蔵すると共に、上面には電池内蔵機器50を載せる上面プレート21を有するケース20と、このケース20に内蔵されて、送電コイル11を上面プレート21の内面に沿って移動させる移動機構13と、上面プレート21に載せられる電池内蔵機器50の受電コイル51の位置を検出して前記移動機構13を制御して送電コイル11を受電コイル51に接近させる位置検出制御器14、64とを備える。位置検出制御器14、64は、上面プレート21の裏側に所定の間隔で配置している複数の位置検出コイル30と、位置検出コイル30に位置検出信号としてパルス信号を供給する検出パルス発生回路31と、この検出パルス発生回路31から位置検出コイル30に供給されるパルス信号に励起されて受電コイル51から位置検出コイル30に誘導されるエコー信号を受信するエコー増幅回路32と、このエコー増幅回路32から出力されるエコー信号から受電コイル51の位置を判別する識別回路33とを備えている。エコー増幅回路32は、位置検出コイル30から入力されるエコー信号を飽和することなくリニアに増幅するように増幅率を調整するゲイン調整回路37を備え、このゲイン調整回路37で増幅率の特定されたエコー増幅回路32が位置検出コイル30から入力されるエコー信号を増幅して識別回路33に入力している。   The charging stand according to the present invention is a charging stand for the battery built-in device 50 including the battery 52 that is charged by the power conveyed to the power receiving coil 51. The charging stand is connected to the AC power source 12 and includes a power transmission coil 11 that carries electromotive force to the power receiving coil 51, and a case having the power transmission coil 11 and an upper surface plate 21 on which the battery built-in device 50 is placed on the upper surface. 20, detecting the position of the moving mechanism 13 built in the case 20 and moving the power transmission coil 11 along the inner surface of the upper surface plate 21, and the position of the power receiving coil 51 of the battery built-in device 50 mounted on the upper surface plate 21. Position detection controllers 14 and 64 that control the moving mechanism 13 to cause the power transmission coil 11 to approach the power reception coil 51 are provided. The position detection controllers 14 and 64 include a plurality of position detection coils 30 arranged at predetermined intervals on the back side of the top plate 21, and a detection pulse generation circuit 31 that supplies a pulse signal as a position detection signal to the position detection coil 30. An echo amplification circuit 32 that receives an echo signal that is excited by a pulse signal supplied from the detection pulse generation circuit 31 to the position detection coil 30 and is induced from the power reception coil 51 to the position detection coil 30; And an identification circuit 33 for discriminating the position of the power receiving coil 51 from the echo signal output from the input signal 32. The echo amplification circuit 32 includes a gain adjustment circuit 37 that adjusts the amplification factor so that the echo signal input from the position detection coil 30 is linearly amplified without being saturated, and the gain adjustment circuit 37 specifies the amplification factor. The echo amplifying circuit 32 amplifies the echo signal input from the position detection coil 30 and inputs it to the identification circuit 33.

以上の充電台は、セットされる電池内蔵機器の機種によって、位置検出コイルに誘導されるエコー信号のレベルが変動しても、受電コイルの位置を正確に検出して、送電コイルを受電コイルに接近して効率よく電力搬送できる特徴がある。それは、以上の充電台が、ゲイン調整回路でもってエコー増幅回路の増幅率を最適値に設定して、位置検出コイルに誘導されるエコー信号を増幅して識別回路に入力するからである。ゲイン調整回路で増幅率が最適値に設定されたエコー増幅回路は、エコー信号が大きなレベルから小さいレベルに変化しても、エコー信号を飽和させることなく、一定の増幅率でリニアに増幅して識別回路に最適なレベルで入力できる。   The above charging stand detects the position of the receiving coil accurately even if the level of the echo signal induced in the position detecting coil varies depending on the model of the battery built-in device to be set, and the transmitting coil becomes the receiving coil. It has the feature that it can approach and efficiently carry power. This is because the charging base described above sets the amplification factor of the echo amplification circuit to an optimum value by the gain adjustment circuit, amplifies the echo signal induced in the position detection coil, and inputs it to the identification circuit. The echo amplification circuit whose gain is set to the optimum value by the gain adjustment circuit does not saturate the echo signal even if the echo signal changes from a large level to a small level, and linearly amplifies it at a constant gain. It can be input at the optimum level for the identification circuit.

本発明の充電台は、エコー増幅回路32が差動アンプ38を備え、ゲイン調整回路37が差動アンプ38の一方の入力端子に増幅率調整電圧を入力して、差動アンプ38の増幅率を調整することができる。
以上の充電台は、簡単な回路構成でエコー増幅回路の増幅率を最適値に設定できる。
In the charging stand of the present invention, the echo amplifier circuit 32 includes a differential amplifier 38, the gain adjustment circuit 37 inputs an amplification factor adjustment voltage to one input terminal of the differential amplifier 38, and the amplification factor of the differential amplifier 38. Can be adjusted.
The above charging stand can set the amplification factor of the echo amplifier circuit to an optimum value with a simple circuit configuration.

本発明の充電台は、ゲイン調整回路37が、PWM変調して出力される信号を平滑化してゲイン調整電圧を出力する電圧調整回路39を備え、この電圧調整回路39から出力されるゲイン調整電圧を差動アンプ38の一方の入力端子に入力して差動アンプ38の増幅率を調整することができる。
以上の充電台は、簡単な回路構成の電圧調整回路でもって差動アンプの増幅率を設定できる。
In the charging stand according to the present invention, the gain adjustment circuit 37 includes a voltage adjustment circuit 39 that outputs a gain adjustment voltage by smoothing a signal output by PWM modulation, and the gain adjustment voltage output from the voltage adjustment circuit 39. Can be input to one input terminal of the differential amplifier 38 to adjust the amplification factor of the differential amplifier 38.
The above charging stand can set the amplification factor of the differential amplifier with a voltage adjustment circuit having a simple circuit configuration.

本発明の充電台は、各々の位置検出コイル30を、検出パルス発生回路31とエコー増幅回路32とに順番に接続するマルチプレクサ34を備え、このマルチプレクサ34の内部抵抗のアンバランスを解消するバランス調整部44を備えることができる。
以上の充電台は、マルチプレクサの内部抵抗によるアンバランスを解消して、より正確にエコー信号のレベルから受電コイルの位置を判定できる。
The charging stand of the present invention includes a multiplexer 34 that sequentially connects each position detection coil 30 to a detection pulse generation circuit 31 and an echo amplification circuit 32, and balance adjustment that eliminates an imbalance in the internal resistance of the multiplexer 34. A portion 44 can be provided.
The above charging stand can eliminate the imbalance due to the internal resistance of the multiplexer, and more accurately determine the position of the power receiving coil from the level of the echo signal.

本発明の充電台は、バランス調整部44が、送電コイル11を位置検出コイル30の配列方向に移動させる駆動機構47を有すると共に、位置検出コイル30から送電コイル11に出力されるパルス信号でもって、送電コイル11から位置検出コイル30に出力されるエコー信号のレベルを検出して、マルチプレクサ34の内部抵抗によるアンバランスを解消することができる。
以上の充電台は、マルチプレクサの内部抵抗のアンバランスの検出に送電コイルを併用するので、簡単な回路構成でマルチプレクサの内部抵抗のアンバランスを検出できる。
In the charging stand of the present invention, the balance adjustment unit 44 has a drive mechanism 47 that moves the power transmission coil 11 in the arrangement direction of the position detection coils 30, and a pulse signal output from the position detection coil 30 to the power transmission coil 11. By detecting the level of the echo signal output from the power transmission coil 11 to the position detection coil 30, the imbalance due to the internal resistance of the multiplexer 34 can be eliminated.
Since the charging stand described above uses the power transmission coil in combination with the detection of the imbalance of the internal resistance of the multiplexer, the imbalance of the internal resistance of the multiplexer can be detected with a simple circuit configuration.

本発明の充電台は、駆動機構47が、各々の位置検出コイル30の中央部に送電コイル11を移動させて、バランス調整部44が送電コイル11からのエコー信号でもって、マルチプレクサ34の内部抵抗のアンバランスを解消することができる。
以上の充電台は、マルチプレクサの内部抵抗のアンバランスの検出に送電コイルを利用すると共に、受電コイルに接近させるための移動構造をも利用して、マルチプレクサの各チャンネルの内部抵抗のアンバランスを検出できる特徴がある。このため、専用の回路や構造を付加することなく、マルチプレクサの各チャンネルの内部抵抗の検出できる特徴がある。
In the charging stand of the present invention, the drive mechanism 47 moves the power transmission coil 11 to the center of each position detection coil 30, and the balance adjustment unit 44 uses the echo signal from the power transmission coil 11 to change the internal resistance of the multiplexer 34. Can be eliminated.
The above charging stand uses the power transmission coil to detect the unbalance of the internal resistance of the multiplexer, and also uses the moving structure to approach the power receiving coil to detect the unbalance of the internal resistance of each channel of the multiplexer. There are features that can be done. Therefore, there is a feature that the internal resistance of each channel of the multiplexer can be detected without adding a dedicated circuit or structure.

本発明の充電台は、位置検出コイル30が、隣接して配設してなる位置検出コイル30の一部を隣の位置検出コイル30に重ねて配設して、識別回路33が、最大レベルのエコー信号が誘導される位置検出コイル30と、その両側に配設している位置検出コイル30のエコー信号のレベルから受電コイル51の位置を判別することができる。   In the charging stand according to the present invention, the position detection coil 30 is arranged adjacent to the position detection coil 30 with a part of the position detection coil 30 arranged adjacently, and the identification circuit 33 has the maximum level. The position of the power receiving coil 51 can be determined from the position detection coil 30 from which the echo signal is induced and the levels of the echo signals of the position detection coils 30 disposed on both sides thereof.

以上の充電台は、位置検出コイルに誘導されるエコー信号でもって、受電コイルの位置を正確に検出して、送電コイルを受電コイルに接近させて効率よく電力搬送できる特徴がある。それは、以上の充電台が、隣接して配設している位置検出コイルの一部を隣の位置検出コイルに重ねて配設すると共に、識別回路が、最大レベルのエコー信号が誘導される位置検出コイルと、その両側に配設している位置検出コイルのエコー信号のレベルから受電コイルの位置を判別するからである。隣接して配置している位置検出コイルの一部を互いに重ねて配置することで、図12に示すように、ひとつの位置検出コイルに誘導されるエコー信号のレベルが最大レベルとなる領域、すなわちピーク近傍領域において、その両側に配置している位置検出コイルに誘導されるエコー信号のレベルを大きくでき、さらにピーク近傍領域における両側の位置検出コイルのエコー信号の0レベル領域の幅を狭くでき、さらに、ピーク近傍領域においては、識別回路が、最大レベルのエコー信号のみでなく、両側の位置検出コイルに誘導されるエコー信号のレベルからも受電コイルの位置を判定するので、ピーク近傍領域においても、受電コイルの位置をより正確に判定できる。   The above charging stand is characterized in that it can accurately detect the position of the power receiving coil with an echo signal induced in the position detecting coil, and efficiently convey power by bringing the power transmitting coil close to the power receiving coil. This is because the charging base described above is disposed by overlapping a part of the position detection coil adjacent to the adjacent position detection coil, and the identification circuit is a position where the maximum level echo signal is induced. This is because the position of the power reception coil is determined from the detection coil and the level of the echo signal of the position detection coil disposed on both sides of the detection coil. By arranging a part of the position detection coils arranged adjacent to each other so as to overlap each other, as shown in FIG. 12, the area where the level of the echo signal induced in one position detection coil becomes the maximum level, that is, In the peak vicinity region, the level of the echo signal induced in the position detection coils arranged on both sides of the peak detection region can be increased, and the width of the zero level region of the echo signal of the position detection coil on both sides in the peak vicinity region can be reduced. Further, in the vicinity of the peak, the identification circuit determines the position of the receiving coil not only from the echo signal of the maximum level but also from the level of the echo signal induced in the position detection coils on both sides. The position of the power receiving coil can be determined more accurately.

本発明の充電台は、位置検出コイル30を直線部を有する細長いコイルとして、隣接する位置検出コイル30を、コイルの長手方向に直交する方向に位置ずれして配置すると共に、互いに重なるように隣接してなる位置検出コイル30同士の重なり量(d)を、細長いコイルの横幅(W)の1/2ないし9/10とすることができる。
以上の充電台は、細長い位置検出コイルを並べている方向の受電コイルの位置を正確に検出できる。とくに、位置検出コイルを構成する直線部を等間隔に配置して、受電コイルの位置を正確に検出できる。また、互いに隣接する位置検出コイル同士の重なり量(d)を位置検出コイルの横幅(W)よりも狭くすることで、ピーク近傍領域における両側の位置検出コイルのエコー信号のレベルを大きくして受電コイルの位置を正確に検出できる。
In the charging stand according to the present invention, the position detection coil 30 is an elongated coil having a straight portion, and the adjacent position detection coils 30 are arranged so as to be displaced in a direction perpendicular to the longitudinal direction of the coils and adjacent to each other so as to overlap each other. Thus, the overlapping amount (d) of the position detection coils 30 can be set to 1/2 to 9/10 of the lateral width (W) of the elongated coil.
The above charging stand can accurately detect the position of the power receiving coil in the direction in which the elongated position detecting coils are arranged. In particular, it is possible to accurately detect the position of the power receiving coil by arranging the linear portions constituting the position detecting coil at equal intervals. Further, by reducing the overlapping amount (d) between the position detection coils adjacent to each other to be smaller than the lateral width (W) of the position detection coil, the level of the echo signals of the position detection coils on both sides in the peak vicinity region is increased. The position of the coil can be accurately detected.

本発明の一実施例にかかる充電台の概略斜視図である。It is a schematic perspective view of the charging stand concerning one Example of this invention. 本発明の一実施例にかかる充電台の概略構成図である。It is a schematic block diagram of the charging stand concerning one Example of this invention. 図2に示す充電台の垂直縦断面図である。It is a vertical longitudinal cross-sectional view of the charging stand shown in FIG. 図2に示す充電台の垂直横断面図である。It is a vertical cross-sectional view of the charging stand shown in FIG. 本発明の一実施例にかかる充電台の位置検出制御器を示す回路図である。It is a circuit diagram which shows the position detection controller of the charging stand concerning one Example of this invention. 本発明の一実施例にかかる充電台と電池内蔵機器のブロック図である。It is a block diagram of the charging stand and battery built-in apparatus concerning one Example of this invention. 図5に示す位置検出コイルが重なる状態を示す概略図である。It is the schematic which shows the state which the position detection coil shown in FIG. 5 overlaps. パルス信号で励起された受電コイルから出力されるエコー信号の一例を示す図である。It is a figure which shows an example of the echo signal output from the receiving coil excited with the pulse signal. エコー増幅回路の一例を示す回路図である。It is a circuit diagram which shows an example of an echo amplifier circuit. バランス調整部の一例を示すブロック図である。It is a block diagram which shows an example of a balance adjustment part. 本発明の他の実施例にかかる充電台の位置検出制御器を示す回路図である。It is a circuit diagram which shows the position detection controller of the charging stand concerning the other Example of this invention. 図11に示す位置検出制御器の位置検出コイルに誘導されるエコー信号のレベルを示す図である。It is a figure which shows the level of the echo signal induced | guided | derived to the position detection coil of the position detection controller shown in FIG. 従来の充電台の位置検出コイルに誘導されるエコー信号のレベルを示す図である。It is a figure which shows the level of the echo signal induced | guided | derived to the position detection coil of the conventional charging stand. 送電コイルと受電コイルの相対的な位置ずれに対するエコー信号のレベルを示す図である。It is a figure which shows the level of the echo signal with respect to the relative position shift of a power transmission coil and a receiving coil.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための充電台を例示するものであって、本発明は充電台を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiment described below exemplifies a charging stand for embodying the technical idea of the present invention, and the present invention does not specify the charging stand as follows. In addition, the member shown by the claim is not what specifies the member of embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments.

図1ないし図6は、充電台の概略構成図及び原理図を示している。充電台10は、図1と図6に示すように、充電台10の上に電池内蔵機器50を載せて、電池内蔵機器50の内蔵電池52を磁気誘導作用で充電する。電池内蔵機器50は、送電コイル11に電磁結合される受電コイル51を内蔵している。この受電コイル51に誘導される電力で充電される電池52を内蔵している。ここで、電池内蔵機器50は、パック電池であっても良い。   1 to 6 show a schematic configuration diagram and a principle diagram of a charging stand. As shown in FIGS. 1 and 6, the charging stand 10 places the battery built-in device 50 on the charging stand 10 and charges the built-in battery 52 of the battery built-in device 50 by magnetic induction. The battery built-in device 50 includes a power receiving coil 51 that is electromagnetically coupled to the power transmitting coil 11. A battery 52 that is charged with electric power induced in the power receiving coil 51 is incorporated. Here, the battery built-in device 50 may be a battery pack.

図6は電池内蔵機器50の回路図を示す。この電池内蔵機器50は、受電コイル51と並列にコンデンサー53を接続している。コンデンサー53と受電コイル51は並列共振回路54を構成する。図6の電池内蔵機器50は、受電コイル51から出力される交流を整流するダイオード55と、整流された脈流を平滑化する平滑コンデンサー56とからなる整流回路57と、この整流回路57から出力される直流で電池52を充電する充電制御回路58とを備える。充電制御回路58は、電池52の満充電を検出して、満充電されたことを示す満充電信号を充電台10に伝送する。充電台10は、満充電信号を検出して充電を停止する。   FIG. 6 is a circuit diagram of the battery built-in device 50. The battery built-in device 50 has a capacitor 53 connected in parallel with the power receiving coil 51. The capacitor 53 and the power receiving coil 51 constitute a parallel resonance circuit 54. The battery built-in device 50 of FIG. 6 includes a rectifier circuit 57 including a diode 55 that rectifies an alternating current output from the power receiving coil 51, a smoothing capacitor 56 that smoothes the rectified pulsating current, and an output from the rectifier circuit 57. And a charge control circuit 58 for charging the battery 52 with a direct current. The charge control circuit 58 detects the full charge of the battery 52 and transmits a full charge signal indicating that the battery 52 is fully charged to the charging stand 10. The charging stand 10 detects a full charge signal and stops charging.

充電台10は、図1ないし図6に示すように、交流電源12に接続されて受電コイル51に電力搬送する送電コイル11と、この送電コイル11を内蔵すると共に、上面には電池内蔵機器50を載せる上面プレート21を有するケース20と、このケース20に内蔵されて、送電コイル11を上面プレート21の内面に沿って移動させて、受電コイル51に接近させる移動機構13と、上面プレート21に載せられる電池内蔵機器50の位置を検出して、移動機構13を制御して送電コイル11を電池内蔵機器50の受電コイル51に接近させる位置検出制御器14とを備える。充電台10は、送電コイル11と、交流電源12と、移動機構13と、位置検出制御器14とをケース20に内蔵している。   As shown in FIGS. 1 to 6, the charging stand 10 includes a power transmission coil 11 that is connected to an AC power source 12 and conveys power to the power receiving coil 51, and the power transmission coil 11. A case 20 having an upper surface plate 21 on which the power receiving coil 51 is mounted, a moving mechanism 13 that is built in the case 20 and moves the power transmission coil 11 along the inner surface of the upper surface plate 21 to approach the power receiving coil 51, and the upper surface plate 21. And a position detection controller 14 that detects the position of the battery built-in device 50 to be mounted and controls the moving mechanism 13 to bring the power transmission coil 11 closer to the power receiving coil 51 of the battery built-in device 50. The charging stand 10 includes a power transmission coil 11, an AC power source 12, a moving mechanism 13, and a position detection controller 14 in a case 20.

この充電台10は、以下の動作で電池内蔵機器50の内蔵電池52を充電する。
(1)ケース20の上面プレート21に電池内蔵機器50が載せられると、この電池内蔵機器50の位置が位置検出制御器14で検出される。
(2)電池内蔵機器50の位置を検出した位置検出制御器14は、移動機構13を制御して、移動機構13でもって送電コイル11を上面プレート21に沿って移動させて電池内蔵機器50の受電コイル51に接近させる。
(3)受電コイル51に接近する送電コイル11は、受電コイル51に電磁結合されて受電コイル51に交流電力を搬送する。
(4)電池内蔵機器50は、受電コイル51の交流電力を整流して直流に変換し、この直流で内蔵電池52を充電する。
The charging stand 10 charges the built-in battery 52 of the battery built-in device 50 by the following operation.
(1) When the battery built-in device 50 is placed on the upper surface plate 21 of the case 20, the position detection controller 14 detects the position of the battery built-in device 50.
(2) The position detection controller 14 that has detected the position of the battery built-in device 50 controls the moving mechanism 13 to move the power transmission coil 11 along the upper surface plate 21 with the moving mechanism 13, thereby Approach the power receiving coil 51.
(3) The power transmission coil 11 approaching the power reception coil 51 is electromagnetically coupled to the power reception coil 51 and carries AC power to the power reception coil 51.
(4) The battery built-in device 50 rectifies the AC power of the power receiving coil 51 and converts it into direct current, and charges the built-in battery 52 with this direct current.

以上の動作で電池内蔵機器50の電池52を充電する充電台10は、交流電源12に接続している送電コイル11をケース20に内蔵している。送電コイル11は、ケース20の上面プレート21の下に配設されて、上面プレート21に沿って移動するように配置される。送電コイル11から受電コイル51への電力搬送の効率は、送電コイル11を受電コイル51に接近させて向上できる。したがって、送電コイル11は、上面プレート21の下にあって、できるかぎり上面プレート21に接近して配設される。送電コイル11は、上面プレート21の上に載せられる電池内蔵機器50の受電コイル51に接近するように移動するので、上面プレート21の下面に沿って移動できるように配設される。   The charging stand 10 that charges the battery 52 of the battery built-in device 50 by the above operation has the power transmission coil 11 connected to the AC power supply 12 built in the case 20. The power transmission coil 11 is disposed below the upper surface plate 21 of the case 20 and is disposed so as to move along the upper surface plate 21. The efficiency of power transfer from the power transmission coil 11 to the power reception coil 51 can be improved by bringing the power transmission coil 11 closer to the power reception coil 51. Therefore, the power transmission coil 11 is disposed below the top plate 21 and as close to the top plate 21 as possible. Since the power transmission coil 11 moves so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21, the power transmission coil 11 is disposed so as to be movable along the lower surface of the upper surface plate 21.

送電コイル11を内蔵するケース20は、電池内蔵機器50を載せる平面状の上面プレート21を上面に設けている。図の充電台10は、上面プレート21全体を平面状として水平に配設している。上面プレート21は、大きさや外形が異なる種々の電池内蔵機器50を上に載せることができる大きさ、たとえば、一辺を5cmないし30cmとする四角形、又は直径を5cmないし30cmとする円形としている。本発明の充電台は、上面プレートを大きくして、すなわち複数の電池内蔵機器を同時に載せることができる大きさとして、複数の電池内蔵機器を一緒に載せて内蔵電池を順番に充電することもできる。また、上面プレートは、その周囲に周壁などを設け、周壁の内側に電池内蔵機器をセットして、内蔵する電池を充電することもできる。   The case 20 containing the power transmission coil 11 is provided with a flat upper surface plate 21 on which the battery built-in device 50 is placed on the upper surface. The charging stand 10 shown in the figure is disposed horizontally with the entire top plate 21 as a flat surface. The upper surface plate 21 has such a size that various battery built-in devices 50 having different sizes and outer shapes can be placed thereon, for example, a quadrangle having a side of 5 cm to 30 cm, or a circle having a diameter of 5 cm to 30 cm. The charging stand according to the present invention can also charge a built-in battery in order by mounting a plurality of battery-equipped devices together so that the top plate is enlarged, that is, a size capable of simultaneously loading a plurality of battery-equipped devices. . The top plate can also be provided with a peripheral wall around it, and a battery built-in device can be set inside the peripheral wall to charge the built-in battery.

送電コイル11は、上面プレート21と平行な面で渦巻き状に巻かれて、上面プレート21の上方に交流磁束を放射する。この送電コイル11は、上面プレート21に直交する交流磁束を上面プレート21の上方に放射する。送電コイル11は、交流電源12から交流電力が供給されて、上面プレート21の上方に交流磁束を放射する。送電コイル11は、磁性材からなるコア15に線材を巻いてインダクタンスを大きくできる。コア15は、透磁率が大きいフェライト等の磁性材料で、上方を開放する壺形としている。壺形のコア15は、渦巻き状に巻かれた送電コイル11の中心に配置する円柱部15Aと、外側に配置される円筒部15Bを底部で連結する形状としている。コア15のある送電コイル11は、磁束を特定部分に集束して、効率よく電力を受電コイル51に伝送できる。ただ、送電コイルは、必ずしもコアを設ける必要はなく、空芯コイルとすることもできる。空芯コイルは軽いので、これを上面プレートの内面で移動する移動機構を簡単にできる。送電コイル11は、受電コイル51の外径にほぼ等しくして、受電コイル51に効率よく電力搬送する。   The power transmission coil 11 is wound in a spiral shape on a surface parallel to the upper surface plate 21 and radiates an alternating magnetic flux above the upper surface plate 21. The power transmission coil 11 radiates an alternating magnetic flux orthogonal to the upper surface plate 21 above the upper surface plate 21. The power transmission coil 11 is supplied with AC power from the AC power source 12 and radiates AC magnetic flux above the upper surface plate 21. The power transmission coil 11 can increase the inductance by winding a wire around a core 15 made of a magnetic material. The core 15 is made of a magnetic material such as ferrite having a high magnetic permeability, and has a bowl shape that opens upward. The bowl-shaped core 15 has a shape in which a columnar portion 15A disposed at the center of a power transmission coil 11 wound in a spiral shape and a cylindrical portion 15B disposed on the outside are connected at the bottom. The power transmission coil 11 having the core 15 can concentrate the magnetic flux to a specific portion and efficiently transmit power to the power reception coil 51. However, the power transmission coil does not necessarily need to be provided with a core, and may be an air-core coil. Since the air-core coil is light, a moving mechanism for moving it on the inner surface of the upper plate can be simplified. The power transmission coil 11 is substantially equal to the outer diameter of the power reception coil 51 and efficiently conveys power to the power reception coil 51.

交流電源12は、たとえば、20kHz〜1MHzの高周波電力を送電コイル11に供給する。交流電源12は、可撓性のリード線16を介して送電コイル11に接続される。送電コイル11が上面プレート21に載せられる電池内蔵機器50の受電コイル51に接近するように移動されるからである。交流電源12は、図示しないが、発振回路と、この発振回路から出力される交流を電力増幅するパワーアンプとを備える。   For example, the AC power supply 12 supplies high-frequency power of 20 kHz to 1 MHz to the power transmission coil 11. The AC power supply 12 is connected to the power transmission coil 11 via a flexible lead wire 16. This is because the power transmission coil 11 is moved so as to approach the power reception coil 51 of the battery built-in device 50 placed on the upper surface plate 21. Although not shown, the AC power supply 12 includes an oscillation circuit and a power amplifier that amplifies the AC output from the oscillation circuit.

送電コイル11は、移動機構13で受電コイル51に接近するように移動される。図1ないし図4の移動機構13は、送電コイル11を、上面プレート21に沿って、X軸方向とY軸方向に移動させて受電コイル51に接近させる。図の移動機構13は、位置検出制御器14で制御されるサーボモータ22でネジ棒23を回転して、ネジ棒23にねじ込んでいるナット材24を移動して、送電コイル11を受電コイル51に接近させる。サーボモータ22は、送電コイル11をX軸方向に移動させるX軸サーボモータ22Aと、Y軸方向に移動させるY軸サーボモータ22Bとを備える。ネジ棒23は、送電コイル11をX軸方向に移動させる一対のX軸ネジ棒23Aと、送電コイル11をY軸方向に移動させるY軸ネジ棒23Bとを備える。一対のX軸ネジ棒23Aは、互いに平行に配設されて、ベルト25に駆動されてX軸サーボモータ22Aで一緒に回転される。ナット材24は、各々のX軸ネジ棒23Aにねじ込んでいる一対のX軸ナット材24Aと、Y軸ネジ棒23Bにねじ込んでいるY軸ナット材24Bからなる。Y軸ネジ棒23Bは、その両端を一対のX軸ナット材24Aに回転できるように連結している。送電コイル11はY軸ナット材24Bに連結している。   The power transmission coil 11 is moved by the moving mechanism 13 so as to approach the power reception coil 51. The moving mechanism 13 in FIGS. 1 to 4 moves the power transmission coil 11 along the upper surface plate 21 in the X-axis direction and the Y-axis direction to approach the power receiving coil 51. The moving mechanism 13 shown in the figure rotates the screw rod 23 by the servo motor 22 controlled by the position detection controller 14 to move the nut member 24 screwed into the screw rod 23, and the power transmission coil 11 is moved to the power receiving coil 51. To approach. The servo motor 22 includes an X-axis servo motor 22A that moves the power transmission coil 11 in the X-axis direction, and a Y-axis servo motor 22B that moves the Y-axis direction. The screw rod 23 includes a pair of X-axis screw rods 23A that move the power transmission coil 11 in the X-axis direction, and a Y-axis screw rod 23B that moves the power transmission coil 11 in the Y-axis direction. The pair of X-axis screw rods 23A are arranged in parallel to each other, driven by the belt 25, and rotated together by the X-axis servomotor 22A. The nut member 24 includes a pair of X-axis nut members 24A screwed into the respective X-axis screw rods 23A, and a Y-axis nut member 24B screwed into the Y-axis screw rods 23B. The Y-axis screw rod 23B is coupled so that both ends thereof can be rotated to a pair of X-axis nut members 24A. The power transmission coil 11 is connected to the Y-axis nut member 24B.

さらに、図に示す移動機構13は、送電コイル11を水平な姿勢でY軸方向に移動させるために、Y軸ネジ棒23Bと平行にガイドロッド26を配設している。ガイドロッド26は、両端を一対のX軸ナット材24Aに連結しており、一対のX軸ナット材24Aと一緒に移動する。ガイドロッド26は、送電コイル11に連結されるガイド部27を貫通しており、送電コイル11をガイドロッド26に沿ってY軸方向に移動できるようにしている。すなわち、送電コイル11は、互いに平行に配設されるY軸ネジ棒23Bとガイドロッド26に沿って移動するY軸ナット材24Bとガイド部27を介して、水平な姿勢でY軸方向に移動する。   Further, the moving mechanism 13 shown in the figure has a guide rod 26 disposed in parallel with the Y-axis screw rod 23B in order to move the power transmission coil 11 in the Y-axis direction in a horizontal posture. Both ends of the guide rod 26 are connected to the pair of X-axis nut members 24A and move together with the pair of X-axis nut members 24A. The guide rod 26 penetrates the guide portion 27 coupled to the power transmission coil 11 so that the power transmission coil 11 can be moved along the guide rod 26 in the Y-axis direction. That is, the power transmission coil 11 moves in the Y-axis direction in a horizontal posture via the Y-axis nut member 24 </ b> B and the guide portion 27 that move along the Y-axis screw rod 23 </ b> B and the guide rod 26 arranged in parallel to each other. To do.

この移動機構13は、X軸サーボモータ22AがX軸ネジ棒23Aを回転させると、一対のX軸ナット材24AがX軸ネジ棒23Aに沿って移動して、Y軸ネジ棒23Bとガイドロッド26をX軸方向に移動させる。Y軸サーボモータ22BがY軸ネジ棒23Bを回転させると、Y軸ナット材24BがY軸ネジ棒23Bに沿って移動して、送電コイル11をY軸方向に移動させる。このとき、送電コイル11に連結されたガイド部27は、ガイドロッド26に沿って移動して、送電コイル11を水平な姿勢でY軸方向に移動させる。したがって、X軸サーボモータ22AとY軸サーボモータ22Bの回転を位置検出制御器14で制御して、送電コイル11をX軸方向とY軸方向に移動できる。ただし、本発明の充電台は、移動機構を以上のメカニズムには特定しない。移動機構には、送電コイルをX軸方向とY軸方向に移動できる全ての機構を利用できるからである。   In the moving mechanism 13, when the X-axis servo motor 22A rotates the X-axis screw rod 23A, the pair of X-axis nut members 24A move along the X-axis screw rod 23A, and the Y-axis screw rod 23B and the guide rod 26 is moved in the X-axis direction. When the Y-axis servo motor 22B rotates the Y-axis screw rod 23B, the Y-axis nut member 24B moves along the Y-axis screw rod 23B, and moves the power transmission coil 11 in the Y-axis direction. At this time, the guide part 27 connected to the power transmission coil 11 moves along the guide rod 26 to move the power transmission coil 11 in the Y-axis direction in a horizontal posture. Therefore, the rotation of the X-axis servomotor 22A and the Y-axis servomotor 22B can be controlled by the position detection controller 14, and the power transmission coil 11 can be moved in the X-axis direction and the Y-axis direction. However, the charging stand of the present invention does not specify the moving mechanism as the above mechanism. This is because any mechanism that can move the power transmission coil in the X-axis direction and the Y-axis direction can be used as the moving mechanism.

さらに、本発明の充電台は、移動機構を、送電コイルをX軸方向とY軸方向に移動させる機構に特定しない。それは、本発明の充電台が、上面プレートに直線状のガイド壁を設けて、このガイド壁に沿って電池内蔵機器を載せる構造として、送電コイルをガイド壁に沿って直線上に移動できる構造とすることができるからである。この充電台は、図示しないが、送電コイルを、一方向、たとえばX軸方向にのみ移動できる移動機構として、送電コイルをガイド壁に沿って直線上に移動できる。   Furthermore, the charging stand of the present invention does not specify the moving mechanism as a mechanism that moves the power transmission coil in the X-axis direction and the Y-axis direction. That is, the charging stand of the present invention has a structure in which a linear guide wall is provided on the upper plate, and a battery built-in device is placed along the guide wall, and the power transmission coil can be moved linearly along the guide wall. Because it can be done. Although this charging stand is not shown, the power transmission coil can be moved linearly along the guide wall as a moving mechanism that can move the power transmission coil only in one direction, for example, the X-axis direction.

位置検出制御器14は、上面プレート21に載せられた電池内蔵機器50の位置を検出する。図1ないし図4の位置検出制御器14は、電池内蔵機器50に内蔵される受電コイル51の位置を検出して、送電コイル11を受電コイル51に接近させる。   The position detection controller 14 detects the position of the battery built-in device 50 placed on the top plate 21. The position detection controller 14 in FIGS. 1 to 4 detects the position of the power receiving coil 51 built in the battery built-in device 50, and causes the power transmitting coil 11 to approach the power receiving coil 51.

位置検出制御器14は、図5に示すように、上面プレート21の内面に固定している複数の位置検出コイル30と、この位置検出コイル30に位置検出信号としてパルス信号を供給する検出パルス発生回路31と、この検出パルス発生回路31から位置検出コイル30に供給される位置検出信号のパルスに励起されて受電コイル51から位置検出コイル30に出力されるエコー信号を受信するエコー増幅回路32と、このエコー増幅回路32が受信するエコー信号から受電コイル51の位置を判別する識別回路33とを備える。   As shown in FIG. 5, the position detection controller 14 generates a plurality of position detection coils 30 fixed to the inner surface of the upper surface plate 21, and generates a detection pulse for supplying a pulse signal as a position detection signal to the position detection coil 30. A circuit 31, and an echo amplification circuit 32 that receives an echo signal that is excited by a pulse of a position detection signal supplied from the detection pulse generation circuit 31 to the position detection coil 30 and output from the power reception coil 51 to the position detection coil 30. And an identification circuit 33 for determining the position of the power receiving coil 51 from the echo signal received by the echo amplifier circuit 32.

位置検出コイル30は複数列のコイルからなり、複数の位置検出コイル30を上面プレート21の裏側に配置している。位置検出コイル30は上面プレート21の内面に固定されて、上面プレート21の裏側に配置できる。位置検出コイル30は、受電コイル51のX軸方向の位置を検出する複数のX軸位置検出コイル30Aと、Y軸方向の位置を検出する複数のY軸位置検出コイル30Bとを備える。X軸位置検出コイル30Aは、Y軸方向に細長いループ状で、複数のX軸位置検出コイル30Aは、所定の間隔で上面プレート21の内面に固定されている。Y軸位置検出コイル30Bは、X軸方向に細長いループ状で、複数のY軸位置検出コイル30Bは、所定の間隔で上面プレート21の内面に固定されている。   The position detection coil 30 includes a plurality of rows of coils, and the plurality of position detection coils 30 are arranged on the back side of the top plate 21. The position detection coil 30 is fixed to the inner surface of the upper surface plate 21 and can be disposed on the back side of the upper surface plate 21. The position detection coil 30 includes a plurality of X-axis position detection coils 30A that detect the position of the power receiving coil 51 in the X-axis direction, and a plurality of Y-axis position detection coils 30B that detect a position in the Y-axis direction. The X-axis position detection coil 30A has a loop shape elongated in the Y-axis direction, and the plurality of X-axis position detection coils 30A are fixed to the inner surface of the upper surface plate 21 at a predetermined interval. The Y-axis position detection coil 30B has a loop shape elongated in the X-axis direction, and the plurality of Y-axis position detection coils 30B are fixed to the inner surface of the upper surface plate 21 at a predetermined interval.

位置検出コイル30は、隣接して配設している位置検出コイル30の一部を隣の位置検出コイル30に重ねて配設している。細長いコイルの位置検出コイル30は、コイルの長手方向に直交する方向に位置ずれさせて、隣接する位置検出コイル30を互いに重なるように配置している。X軸位置検出コイル30Aは、Y軸方向に延びる直線部を有する細長いループ状であって、複数のX軸位置検出コイル30Aは、直線部をX軸方向に位置ずれさせて、所定の重なり量(d)となるように上面プレート21の裏側に配置している。Y軸位置検出コイル30Bは、X軸方向に延びる直線部を有する細長いループ状であって、複数のY軸位置検出コイル30Bは、直線部をY軸方向に位置ずれさせて、所定の重なり量(d)となるように上面プレート21の裏側に配置している。   The position detection coil 30 is arranged such that a part of the position detection coil 30 disposed adjacent to the position detection coil 30 is overlapped with the adjacent position detection coil 30. The position detection coil 30 of the elongated coil is displaced in a direction orthogonal to the longitudinal direction of the coil, and the adjacent position detection coils 30 are arranged so as to overlap each other. The X-axis position detection coil 30A has an elongated loop shape having a linear portion extending in the Y-axis direction, and the plurality of X-axis position detection coils 30A are displaced in the X-axis direction by a predetermined amount of overlap. It arrange | positions on the back side of the upper surface plate 21 so that it may become (d). The Y-axis position detection coil 30B has an elongated loop shape having a linear portion extending in the X-axis direction, and the plurality of Y-axis position detection coils 30B are displaced in the Y-axis direction by a predetermined amount of overlap. It arrange | positions on the back side of the upper surface plate 21 so that it may become (d).

図5の位置検出コイル30は、互いに重なるように隣接してなる位置検出コイル30同士の重なり量(d)を、細長いコイルの横幅(W)の2/3としている。いいかえると、互いに隣接する位置検出コイル30を、コイルの横幅方向に、コイルの横幅(W)の1/3だけ位置ずれさせる状態で重ねて配置している。この位置検出コイル30は、図7に示すように、互いに隣接する2つの位置検出コイル30同士の重なり合う領域が、各位置検出コイル30の2/3の領域(図7のハッチングA及びハッチングBで表示)となり、互いに隣接する3つの位置検出コイル30同士の重なり合う領域が、各位置検出コイル30の1/3の領域(図7のハッチングA及びハッチングBの共通部分)となる。図の位置検出コイル30は、隣接する位置検出コイル30同士の重なり量(d)を、細長いコイルの横幅(W)の2/3としているが、位置検出コイルは、互いに重なるように隣接してなる位置検出コイル同士の重なり量(d)を、細長いコイルの横幅(W)の1/2ないし9/10とすることができる。   In the position detection coil 30 of FIG. 5, the overlapping amount (d) between adjacent position detection coils 30 so as to overlap each other is set to 2/3 of the lateral width (W) of the elongated coil. In other words, the position detection coils 30 adjacent to each other are arranged so as to be displaced in the lateral width direction of the coil by 1/3 of the lateral width (W) of the coil. As shown in FIG. 7, the position detection coil 30 has an area where two adjacent position detection coils 30 overlap each other with 2/3 of each position detection coil 30 (hatching A and hatching B in FIG. 7). The area where the three position detection coils 30 adjacent to each other overlap each other is a 1/3 area of each position detection coil 30 (the common part of hatching A and hatching B in FIG. 7). In the illustrated position detection coil 30, the overlapping amount (d) between adjacent position detection coils 30 is 2/3 of the width (W) of the elongated coil, but the position detection coils are adjacent to each other so as to overlap each other. The overlap amount (d) between the position detection coils can be set to 1/2 to 9/10 of the lateral width (W) of the elongated coil.

互いに重なるように隣接する位置検出コイル同士の重なり量(d)を、コイルの横幅(W)の1/2とする位置検出コイルは、図示しないが、互いに隣接する2つの位置検出コイル同士の重なり合う領域が、各位置検出コイルの1/2の領域となる。また、互いに重なるように隣接する位置検出コイル同士の重なり量(d)を、コイルの横幅(W)の3/4とする位置検出コイルは、図示しないが、互いに隣接する2つの位置検出コイル同士の重なり合う領域が、各位置検出コイルの3/4の領域となり、互いに隣接する3つの位置検出コイル同士の重なり合う領域が、各位置検出コイルの2/4の領域となり、互いに隣接する4つの位置検出コイル同士の重なり合う領域が、各位置検出コイルの1/4の領域となる。   A position detection coil in which the overlap amount (d) between adjacent position detection coils so as to overlap each other is ½ of the lateral width (W) of the coil is not shown, but two adjacent position detection coils overlap each other. The area is a half of each position detection coil. A position detection coil in which the overlap amount (d) between adjacent position detection coils so as to overlap each other is 3/4 of the lateral width (W) of the coil is not shown, but two adjacent position detection coils are not shown. The overlapping area of each position detection coil becomes a 3/4 area, and the overlapping area of the three position detection coils adjacent to each other becomes a 2/4 area of each position detection coil, and the four position detections adjacent to each other. A region where the coils overlap is a quarter of each position detection coil.

さらに、位置検出コイル30の横幅(W)は、受電コイル51の外径(D)にほぼ等しくし、あるいは、外径(D)よりも大きくし、あるいはまた、外径(D)よりも小さくしている。位置検出コイル30は、互いに重なるように隣接する位置検出コイル30同士の重なり量(d)を大きくして、より高い精度で受電コイル51の位置を検出できる。   Further, the lateral width (W) of the position detection coil 30 is substantially equal to the outer diameter (D) of the power receiving coil 51, or is larger than the outer diameter (D), or is smaller than the outer diameter (D). doing. The position detection coil 30 can detect the position of the power receiving coil 51 with higher accuracy by increasing the overlap amount (d) between the adjacent position detection coils 30 so as to overlap each other.

検出パルス発生回路31は、所定のタイミングでパルス信号を位置検出コイル30に出力する。パルス信号が入力される位置検出コイル30は、パルス信号で接近する受電コイル51を励起する。励起された受電コイル51は、流れる電流のエネルギーでエコー信号を位置検出コイル30に出力する。したがって、受電コイル51の近くにある位置検出コイル30は、図8に示すように、パルス信号が入力された後、所定の時間遅れて、受電コイル51からのエコー信号が誘導される。位置検出コイル30に誘導されるエコー信号は、エコー増幅回路32で識別回路33に出力される。   The detection pulse generation circuit 31 outputs a pulse signal to the position detection coil 30 at a predetermined timing. The position detection coil 30 to which the pulse signal is input excites the power receiving coil 51 that approaches with the pulse signal. The excited power receiving coil 51 outputs an echo signal to the position detection coil 30 with the energy of the flowing current. Therefore, as shown in FIG. 8, the position detection coil 30 near the power receiving coil 51 induces an echo signal from the power receiving coil 51 with a predetermined time delay after the pulse signal is input. The echo signal induced in the position detection coil 30 is output to the identification circuit 33 by the echo amplification circuit 32.

識別回路33は、エコー増幅回路32から入力されるエコー信号でもって、位置検出コイル30に受電コイル51が接近しているかどうかを判定する。複数の位置検出コイル30にエコー信号が誘導されるとき、識別回路33は、エコー信号レベルの大きい位置検出コイル30にもっとも接近していると判定する。   The identification circuit 33 determines whether or not the power receiving coil 51 is approaching the position detection coil 30 based on the echo signal input from the echo amplification circuit 32. When echo signals are induced in the plurality of position detection coils 30, the identification circuit 33 determines that the position detection coil 30 with the highest echo signal level is closest.

図5に示す位置検出制御器14は、各々の位置検出コイル30をマルチプレクサ34を介してエコー増幅回路32に接続する。この位置検出制御器14は、マルチプレクサ34でもって、エコー増幅回路32の入力側を順番に切り換えて複数の位置検出コイル30に接続するので、ひとつのエコー増幅回路32で複数の位置検出コイル30のエコー信号を検出できる。ただし、各々の位置検出コイルにエコー増幅回路を接続してエコー信号を検出することもできる。   The position detection controller 14 shown in FIG. 5 connects each position detection coil 30 to the echo amplification circuit 32 via the multiplexer 34. The position detection controller 14 switches the input side of the echo amplification circuit 32 in order by the multiplexer 34 and connects it to the plurality of position detection coils 30. An echo signal can be detected. However, an echo amplifier circuit can be connected to each position detection coil to detect an echo signal.

図5の位置検出制御器14は、識別回路33で制御されるマルチプレクサ34で複数の位置検出コイル30を順番に切り換えてエコー増幅回路32に接続する。検出パルス発生回路31はエコー増幅回路32の入力側に接続されて、マルチプレクサ34を介して位置検出コイル30に順番にパルス信号を出力する。検出パルス発生回路31から位置検出コイル30に出力されるパルス信号のレベルは、受電コイル51からのエコー信号に比較して極めて大きい。エコー増幅回路32は、入力側にダイオードからなるリミッター回路35を接続している。リミッター回路35は、検出パルス発生回路31からエコー増幅回路32に入力されるパルス信号の信号レベルを制限してエコー増幅回路32に入力する。信号レベルの小さいエコー信号は、制限されることなくエコー増幅回路32に入力される。エコー増幅回路32は、パルス信号とエコー信号の両方を増幅して出力する。エコー増幅回路32から出力されるエコー信号は、パルス信号から所定のタイミング、たとえば数μsec〜数百μsec遅れた信号となる。エコー信号がパルス信号から遅れる遅延時間は、一定の時間であるから、パルス信号から所定の遅延時間後の信号をエコー信号とし、このエコー信号のレベルから位置検出コイル30に受電コイル51が接近しているかどうかを判定する。   The position detection controller 14 in FIG. 5 switches the plurality of position detection coils 30 in order by the multiplexer 34 controlled by the identification circuit 33 and connects it to the echo amplification circuit 32. The detection pulse generation circuit 31 is connected to the input side of the echo amplification circuit 32, and sequentially outputs pulse signals to the position detection coil 30 via the multiplexer 34. The level of the pulse signal output from the detection pulse generation circuit 31 to the position detection coil 30 is extremely higher than the echo signal from the power receiving coil 51. The echo amplifier circuit 32 has a limiter circuit 35 made of a diode connected to the input side. The limiter circuit 35 limits the signal level of the pulse signal input from the detection pulse generation circuit 31 to the echo amplification circuit 32 and inputs it to the echo amplification circuit 32. The echo signal having a low signal level is input to the echo amplifier circuit 32 without being limited. The echo amplification circuit 32 amplifies and outputs both the pulse signal and the echo signal. The echo signal output from the echo amplifier circuit 32 is a signal delayed from the pulse signal by a predetermined timing, for example, several μsec to several hundred μsec. Since the delay time that the echo signal is delayed from the pulse signal is a fixed time, the signal after a predetermined delay time from the pulse signal is used as an echo signal, and the receiving coil 51 approaches the position detection coil 30 from the level of this echo signal. Determine whether or not.

エコー増幅回路32は、位置検出コイル30から入力されるエコー信号を増幅して識別回路33に出力するアンプである。このエコー増幅回路32は、パルス信号とエコー信号を識別回路33に出力する。エコー増幅回路32は、エコー信号を飽和することなくリニアに増幅するように増幅率を調整するゲイン調整回路37を備えている。ゲイン調整回路37で増幅率の特定されたエコー増幅回路32は、位置検出コイル30から入力されるエコー信号を増幅して識別回路33に入力する。ゲイン調整回路37は、エコー増幅回路32の増幅率を、エコー信号を所定のレベルとして識別回路33に出力するように調整する。   The echo amplification circuit 32 is an amplifier that amplifies an echo signal input from the position detection coil 30 and outputs the amplified echo signal to the identification circuit 33. The echo amplification circuit 32 outputs a pulse signal and an echo signal to the identification circuit 33. The echo amplification circuit 32 includes a gain adjustment circuit 37 that adjusts the amplification factor so that the echo signal is amplified linearly without being saturated. The echo amplification circuit 32 whose amplification factor is specified by the gain adjustment circuit 37 amplifies the echo signal input from the position detection coil 30 and inputs it to the identification circuit 33. The gain adjustment circuit 37 adjusts the amplification factor of the echo amplification circuit 32 so that the echo signal is output to the identification circuit 33 as a predetermined level.

ゲイン調整回路37は、エコー信号を検出する毎にエコー増幅回路32の増幅率を変化させるのではない。充電台10の上面プレート21に電池内蔵機器50がセットされた最初に、エコー増幅回路32の増幅率を最適値に設定した後、その後は増幅率を変化させることなく、エコー信号を増幅して識別回路33に出力する。ゲイン調整回路37がエコー増幅回路32の増幅率を最適値に設定するのは、電池内蔵機器50の種類によって、電池内蔵機器50の受電コイル51から・BR>ハ置検出コイル30に出力されるエコー信号のレベルが変化して、受電コイル51の位置を正確に検出できなくなるのを防止するためである。増幅率が最適値に設定されたエコー増幅回路32は、その後にエコー増幅回路32の増幅率を変化させることなく、最適な増幅率に特定された状態で、電池内蔵機器50の受電コイル51の位置を検出する。したがって、電池内蔵機器50がセットされた最初に、ゲイン調整回路37でもってエコー増幅回路32の増幅率が最適値に設定された後、識別回路33はエコー増幅回路32から入力されるエコー信号のレベルで受電コイル51の位置を検出する。位置が検出された後、送電コイル11を受電コイル51に位置に移動させて、送電コイル11から受電コイル51に電力搬送して電池内蔵機器50の電池52が充電される。   The gain adjustment circuit 37 does not change the amplification factor of the echo amplification circuit 32 every time an echo signal is detected. First, when the battery built-in device 50 is set on the top plate 21 of the charging base 10, the amplification factor of the echo amplification circuit 32 is set to an optimum value, and thereafter the echo signal is amplified without changing the amplification factor. Output to the identification circuit 33. The gain adjustment circuit 37 sets the amplification factor of the echo amplifying circuit 32 to an optimum value depending on the type of the battery built-in device 50, and is output from the power receiving coil 51 of the battery built-in device 50 to the BR position detection coil 30. This is to prevent the level of the echo signal from changing and the position of the power receiving coil 51 from being accurately detected. The echo amplification circuit 32 in which the amplification factor is set to the optimum value does not change the amplification factor of the echo amplification circuit 32 after that and is specified to the optimum amplification factor. Detect position. Therefore, after the battery built-in device 50 is set, the gain adjustment circuit 37 sets the amplification factor of the echo amplification circuit 32 to the optimum value, and then the identification circuit 33 receives the echo signal input from the echo amplification circuit 32. The position of the power receiving coil 51 is detected by the level. After the position is detected, the power transmission coil 11 is moved to the position of the power reception coil 51, power is transferred from the power transmission coil 11 to the power reception coil 51, and the battery 52 of the battery built-in device 50 is charged.

ゲイン調整回路37は、位置検出コイル30に誘導されるエコー信号を飽和させず、また、小さいレベルのエコー信号を最適なレベルに増幅して識別回路33に入力する増幅率に、エコー増幅回路32の増幅率を設定する。エコー信号のレベルは、受電コイル51と位置検出コイル30との相対位置によって変化する。受電コイル51が特定の位置検出コイル30の中央にセットされる状態で、特定の位置検出コイル30に誘導されるエコー信号のレベルは最大となる。また、受電コイル51が2つの位置検出コイル30に跨ってセットされるとき、ふたつの位置検出コイル30にエコー信号が出力される。ゲイン調整回路37は、何れかの位置検出コイル30に誘導される最大レベルのエコー信号でエコー増幅回路32が飽和せず、かつ、最大レベルのエコー信号が誘導される位置検出コイル30の両側に配置している位置検出コイル30に誘導されるエコー信号のレベルの和も飽和しないように増幅率が設定される。ゲイン調整回路37は、エコー増幅回路32の増幅率を、最大レベルのエコー信号を増幅して出力するエコー信号のレベルと、最大レベルのエコー信号の両側の位置検出コイル30に誘導されるエコー信号を増幅して出力するエコー信号のレベルの和の両方が、電源電圧に対して設定範囲、たとえば電源電圧の3/4とするように、エコー増幅回路32の増幅率を設定する。ゲイン調整回路37は、エコー増幅回路32から出力されるエコー信号のレベルを特定する設定範囲を大きくして、大レベルのエコー信号を識別回路33に入力できる。ただ、出力されるエコー信号の設定範囲を大きくすると、エコー増幅回路32がエコー信号をリニアに増幅するのが難しくなる。反対に設定範囲を小さくすると、識別回路33に入力されるエコー信号のレベルが小さくなって、識別回路33が正確に受電コイル51の位置を検出するのが難しくなる。したがって、エコー増幅回路32がエコー信号を出力する設定範囲、すなわちエコー増幅回路32の増幅率は、エコー増幅回路32が入力されるエコー信号をリニアに増幅でき、かつ識別回路33が受電コイル51の位置を正確に検出できるように設定される。   The gain adjustment circuit 37 does not saturate the echo signal induced in the position detection coil 30, and amplifies the echo signal of a small level to an optimum level and inputs the gain to the discrimination circuit 33 so that the echo amplification circuit 32 Set the amplification factor. The level of the echo signal varies depending on the relative position between the power reception coil 51 and the position detection coil 30. In a state where the power receiving coil 51 is set at the center of the specific position detection coil 30, the level of the echo signal induced in the specific position detection coil 30 becomes maximum. Further, when the power receiving coil 51 is set across the two position detection coils 30, echo signals are output to the two position detection coils 30. The gain adjustment circuit 37 is placed on both sides of the position detection coil 30 where the echo amplification circuit 32 is not saturated with the maximum level echo signal induced in any one of the position detection coils 30 and the maximum level echo signal is induced. The amplification factor is set so that the sum of the levels of echo signals induced in the arranged position detection coils 30 is not saturated. The gain adjustment circuit 37 determines the amplification factor of the echo amplification circuit 32, the level of the echo signal that amplifies and outputs the maximum level echo signal, and the echo signal that is induced in the position detection coils 30 on both sides of the maximum level echo signal. The amplification factor of the echo amplifying circuit 32 is set so that both of the sums of the levels of echo signals that are amplified and output are within a set range with respect to the power supply voltage, for example, 3/4 of the power supply voltage. The gain adjustment circuit 37 can increase the setting range for specifying the level of the echo signal output from the echo amplification circuit 32 and can input a large level echo signal to the identification circuit 33. However, if the setting range of the output echo signal is increased, it becomes difficult for the echo amplification circuit 32 to amplify the echo signal linearly. On the contrary, if the setting range is reduced, the level of the echo signal input to the identification circuit 33 is reduced, and it becomes difficult for the identification circuit 33 to accurately detect the position of the power receiving coil 51. Therefore, the setting range in which the echo amplification circuit 32 outputs the echo signal, that is, the amplification factor of the echo amplification circuit 32 can linearly amplify the echo signal input to the echo amplification circuit 32, and the identification circuit 33 can It is set so that the position can be detected accurately.

図9は、エコー増幅回路32とゲイン調整回路37の具体例を示している。この図のエコー増幅回路32は差動アンプ38を備えており、ゲイン調整回路37は差動アンプ38の一方の入力端子に増幅率調整電圧を入力して、差動アンプ38の増幅率を調整するようにしている。さらに、この図のゲイン調整回路37は、識別回路33からPWM変調して出力されるパルス信号を平滑化してゲイン調整電圧を出力する電圧調整回路39を備えている。電圧調整回路39は、識別回路33からPWM変調して出力されるパルス信号を抵抗41とコンデンサー42からなる平滑回路40で直流に変換して、トランジスタ43のベースに入力している。トランジスタ43は、入力される電圧でコレクタ−エミッタ間の電気抵抗が変化して、差動アンプ38の一方の端子に入力する電圧を変化させて、差動アンプ38の負帰還量をコントロールして増幅率を調整する。   FIG. 9 shows a specific example of the echo amplification circuit 32 and the gain adjustment circuit 37. The echo amplifier circuit 32 in this figure includes a differential amplifier 38, and the gain adjustment circuit 37 inputs an amplification factor adjustment voltage to one input terminal of the differential amplifier 38 to adjust the amplification factor of the differential amplifier 38. Like to do. Further, the gain adjustment circuit 37 in this figure includes a voltage adjustment circuit 39 that smoothes a pulse signal output by PWM modulation from the identification circuit 33 and outputs a gain adjustment voltage. The voltage adjustment circuit 39 converts the pulse signal output by PWM modulation from the identification circuit 33 into a direct current by a smoothing circuit 40 including a resistor 41 and a capacitor 42 and inputs the direct current to the base of the transistor 43. The transistor 43 controls the negative feedback amount of the differential amplifier 38 by changing the voltage input to one terminal of the differential amplifier 38 by changing the electrical resistance between the collector and the emitter with the input voltage. Adjust the amplification factor.

識別回路33は、入力されるエコー信号のレベルから、PWM変調して出力するパルス信号のデューティーを演算する。識別回路33は、前述したように、最大レベルのエコー信号と、その両側の位置検出コイル30に誘導されるエコー信号のレベルの和から、PWM変調して出力するパルス信号のデューティーを特定して、エコー増幅回路32の増幅率、すなわち差動アンプ38の増幅率を特定する。   The identification circuit 33 calculates the duty of the pulse signal that is PWM-modulated and output from the level of the input echo signal. As described above, the identification circuit 33 specifies the duty of the pulse signal output by PWM modulation from the sum of the echo signal of the maximum level and the level of the echo signal induced in the position detection coils 30 on both sides thereof. The amplification factor of the echo amplifier circuit 32, that is, the amplification factor of the differential amplifier 38 is specified.

位置検出コイル30に誘導されるエコー信号は、マルチプレクサ34を介して識別回路33に入力される。マルチプレクサ34は、図10に示すように、各々の位置検出コイル30を識別回路33に接続するトランジスタやFETなどのスイッチング素子34Aを備えている。マルチプレクサ34は、スイッチング素子34Aを順番にオンに切り換えて、各位置検出コイル30に誘導されるエコー信号を順番に識別回路33に入力する。位置検出コイル30のエコー信号を識別回路33に入力するマルチプレクサ34のスイッチング素子34Aはオン状態で電気抵抗を有する。すなわち、オン抵抗がある。スイッチング素子34Aのオン抵抗は、位置検出コイル30から識別回路33に入力するエコー信号を減衰させる要因となる。さらに困ったことに、マルチプレクサ34を構成している各々のスイッチング素子34A、言い換えると各位置検出コイル30を識別回路33に接続する各々のスイッチング素子34Aのオン抵抗はアンバランスな状態にある。たとえば、マルチプレクサ34のスイッチング素子34Aは、オン抵抗に数十%ものアンバランスがある。スイッチング素子34Aのオン抵抗のアンバランスは、位置検出コイル30から識別回路33に入力するエコー信号のレベルを変動させる。オン抵抗の大きいスイッチング素子は、オン抵抗の小さいスイッチング素子よりもエコー信号の減衰量が大きく、識別回路33に入力するエコー信号のレベルを低下させる。識別回路33は、入力されるエコー信号のレベルから受電コイル51の位置を判別するので、マルチプレクサ34によるエコー信号のレベル変動は、受電コイル51の位置検出に誤差を発生させる。   The echo signal induced in the position detection coil 30 is input to the identification circuit 33 via the multiplexer 34. As shown in FIG. 10, the multiplexer 34 includes a switching element 34 </ b> A such as a transistor or FET that connects each position detection coil 30 to an identification circuit 33. The multiplexer 34 sequentially turns on the switching elements 34 </ b> A and inputs the echo signals induced in the position detection coils 30 to the identification circuit 33 in order. The switching element 34 </ b> A of the multiplexer 34 that inputs the echo signal of the position detection coil 30 to the identification circuit 33 has an electrical resistance in the on state. That is, there is an on-resistance. The on-resistance of the switching element 34 </ b> A becomes a factor that attenuates an echo signal input from the position detection coil 30 to the identification circuit 33. Furthermore, the on-resistance of each switching element 34A that configures the multiplexer 34, in other words, each switching element 34A that connects each position detection coil 30 to the identification circuit 33 is in an unbalanced state. For example, the switching element 34A of the multiplexer 34 has an unbalance of several tens of percent in on-resistance. The imbalance of the on-resistance of the switching element 34A varies the level of the echo signal input from the position detection coil 30 to the identification circuit 33. The switching element having a large on-resistance has a larger attenuation amount of the echo signal than the switching element having a low on-resistance, and lowers the level of the echo signal input to the identification circuit 33. Since the identification circuit 33 determines the position of the power receiving coil 51 from the level of the input echo signal, the level fluctuation of the echo signal caused by the multiplexer 34 causes an error in the position detection of the power receiving coil 51.

この弊害を防止するために、充電台10は、図10に示すバランス調整部44でもって、マルチプレクサ34の各チャンネルの内部抵抗のアンバランスを解消する。バランス調整部44は、各々の位置検出コイル30に同じレベルのエコー信号を誘導する状態で、同じレベルのエコー信号をマルチプレクサ34の各チャンネルから識別回路33に入力して、各チャンネルの内部抵抗の差によるアンバランスを均等化する。バランス調整部44は、オン抵抗の大きい、すなわち減衰量の大きいチャンネルのスイッチング素子を介して入力されるエコー信号のレベルを、減衰量の小さいチャンネルのスイッチング素子を介して入力されるエコー信号のレベルよりも大きく補正して、マルチプレクサ34のチャンネル間のアンバランスを解消する。バランス調整部44は、特定の位置検出コイル30から識別回路33に入力されるエコー信号のレベルを基準レベルとし、この基準レベルに対して、各位置検出コイル30から、すなわち各チャンネルから識別回路33に入力されるエコー信号のレベルを比較して、マルチプレクサ34のチャンネル間のアンバランスを補正する。また、バランス調整部44は、マルチプレクサ34から識別回路33に入力されるエコー信号の平均値、最大値、最小値のいずれかを基準レベルとし、この基準レベルに対して、各チャンネルから識別回路33に入力されるエコー信号のレベルを比較して、マルチプレクサ34のチャンネル間のアンバランスを解消する。たとえば、バランス調整部44は、基準レベルに対してエコー信号のレベルが10%小さくなるチャンネルについては、識別回路33が入力されるエコー信号のレベルを10%大きく補正する。すなわち、バランス調整部44は、識別回路33が、各チャンネルから入力されるエコー信号のレベルに特定の係数をかけて、入力されるエコー信号のレベルを補正して、各チャンネルのアンバランスを解消する。この係数は、全てのチャンネルに同じレベルのエコー信号を入力して検出できる。減衰量が大きくて、識別回路33に入力されるエコー信号のレベルが小さくなるチャンネルは係数を大きくして、マルチプレクサ34のチャンネル間のアンバランスは解消される。   In order to prevent this adverse effect, the charging stand 10 eliminates the imbalance of the internal resistance of each channel of the multiplexer 34 with the balance adjusting unit 44 shown in FIG. The balance adjustment unit 44 inputs the echo signal of the same level from each channel of the multiplexer 34 to the identification circuit 33 in a state in which the echo signal of the same level is induced in each position detection coil 30, and the internal resistance of each channel is calculated. Equalize unbalance due to differences. The balance adjustment unit 44 determines the level of the echo signal input via the switching element of the channel having a large ON resistance, that is, the channel having a large attenuation, and the level of the echo signal input via the switching element of the channel having the small attenuation. Is corrected to be larger than that, and the imbalance between channels of the multiplexer 34 is eliminated. The balance adjustment unit 44 sets the level of the echo signal input from the specific position detection coil 30 to the identification circuit 33 as a reference level, and the position of the identification circuit 33 from each position detection coil 30, that is, from each channel, relative to this reference level. The level of the echo signal input to is compared, and the imbalance between channels of the multiplexer 34 is corrected. Further, the balance adjustment unit 44 uses any one of the average value, the maximum value, and the minimum value of the echo signals input from the multiplexer 34 to the discrimination circuit 33 as a reference level, and the discrimination circuit 33 from each channel with respect to this reference level. The level of the echo signal input to is compared, and the imbalance between channels of the multiplexer 34 is eliminated. For example, the balance adjustment unit 44 corrects the level of the echo signal to which the identification circuit 33 is input 10% larger for a channel in which the level of the echo signal is 10% smaller than the reference level. That is, the balance adjustment unit 44 corrects the level of the input echo signal by applying a specific coefficient to the level of the echo signal input from each channel by the identification circuit 33 to eliminate the unbalance of each channel. To do. This coefficient can be detected by inputting an echo signal of the same level to all channels. A channel whose attenuation is large and the level of the echo signal input to the identification circuit 33 is small increases the coefficient, and the imbalance between the channels of the multiplexer 34 is eliminated.

バランス調整部44は、送電コイル11を使用して、マルチプレクサ34の各チャンネルに同じレベルのエコー信号を入力する。このバランス調整部44は、位置検出コイル30にパルス信号を入力し、入力されるパルス信号で送電コイル11を励起し、励起された送電コイル11から位置検出コイル30にエコー信号を誘導させて、マルチプレクサ34の各チャンネルに同じレベルのエコー信号を誘導する。位置検出コイル30にエコー信号を誘導する状態で、送電コイル11は、交流電源12に接続されず、その両端に共振回路46を構成するコンデンサー45を接続して、共振回路46を構成する。送電コイル11から全ての位置検出コイル30に同じレベルのエコー信号を誘導させるために、送電コイル11は各々の位置検出コイル30の中央部に移動され、送電コイル11を中央部に移動している位置検出コイル30にパルス信号を出力して、この位置検出コイル30にエコー信号を誘導させる。   The balance adjustment unit 44 uses the power transmission coil 11 to input echo signals of the same level to each channel of the multiplexer 34. The balance adjustment unit 44 inputs a pulse signal to the position detection coil 30, excites the power transmission coil 11 with the input pulse signal, induces an echo signal from the excited power transmission coil 11 to the position detection coil 30, The same level of echo signal is induced in each channel of the multiplexer 34. In a state in which an echo signal is induced in the position detection coil 30, the power transmission coil 11 is not connected to the AC power supply 12, and a capacitor 45 constituting the resonance circuit 46 is connected to both ends thereof to constitute the resonance circuit 46. In order to induce the echo signals of the same level from the power transmission coils 11 to all the position detection coils 30, the power transmission coils 11 are moved to the center of each position detection coil 30, and the power transmission coils 11 are moved to the center. A pulse signal is output to the position detection coil 30 to induce an echo signal in the position detection coil 30.

送電コイル11を位置検出コイル30の中央部に移動させるために、バランス調整部44は、送電コイル11を位置検出コイル30の配列方向に移動させる駆動機構47を有する。図のバランス調整部44は、駆動機構47として送電コイルを移動させる移動機構13を併用している。バランス調整部44は、駆動機構47である移動機構13を制御して送電コイル11を位置検出コイル30の配列方向に移動させる。さらに、バランス調整部44は、位置検出コイル30から送電コイル11にパルス信号を出力する。このパルス信号で送電コイル11を励起し、励起された送電コイル11から位置検出コイル30にエコー信号を出力する。このエコー信号のレベルを検出して、マルチプレクサ34の内部抵抗によるアンバランス、すなわちマルチプレクサ34のチャンネル間のアンバランスを解消する。   In order to move the power transmission coil 11 to the center of the position detection coil 30, the balance adjustment unit 44 includes a drive mechanism 47 that moves the power transmission coil 11 in the arrangement direction of the position detection coil 30. The balance adjusting unit 44 shown in the drawing also uses the moving mechanism 13 that moves the power transmission coil as the driving mechanism 47. The balance adjustment unit 44 controls the moving mechanism 13 that is the drive mechanism 47 to move the power transmission coil 11 in the arrangement direction of the position detection coils 30. Further, the balance adjustment unit 44 outputs a pulse signal from the position detection coil 30 to the power transmission coil 11. The power transmission coil 11 is excited by this pulse signal, and an echo signal is output from the excited power transmission coil 11 to the position detection coil 30. The level of the echo signal is detected, and unbalance due to the internal resistance of the multiplexer 34, that is, unbalance between channels of the multiplexer 34 is eliminated.

バランス調整部44の駆動機構47は、送電コイル11を各々の位置検出コイル30の中央部に順番に移動させる。バランス調整部44は、送電コイル11の位置を記憶している。送電コイル11が中央部に配置される位置検出コイル30に、パルス信号が出力される。このパルス信号で励起される送電コイル11から位置検出コイル30にエコー信号を誘導される。このエコー信号のレベルを検出して、マルチプレクサ34のチャンネル間のアンバランスを解消する係数を検出する。バランス調整部44は、順番に送電コイル11を各位置検出コイル30の中央部に移動し、各位置検出コイル30に接続しているマルチプレクサ34の各チャンネルの減衰量を検出して、アンバランスを解消する係数を検出する。バランス調整部44は、最初にマルチプレクサ34のチャンネル間のアンバランスを補正する係数を検出し、その後、この係数で各チャンネルに誘導されるエコー信号のレベルを補正して、受電コイル51の位置を検出する。   The drive mechanism 47 of the balance adjustment unit 44 sequentially moves the power transmission coil 11 to the center of each position detection coil 30. The balance adjustment unit 44 stores the position of the power transmission coil 11. A pulse signal is output to the position detection coil 30 in which the power transmission coil 11 is disposed in the center. An echo signal is induced to the position detection coil 30 from the power transmission coil 11 excited by this pulse signal. The level of the echo signal is detected, and a coefficient for canceling the imbalance between channels of the multiplexer 34 is detected. The balance adjustment unit 44 sequentially moves the power transmission coil 11 to the center of each position detection coil 30, detects the attenuation amount of each channel of the multiplexer 34 connected to each position detection coil 30, and performs unbalance. Detect the coefficient to cancel. The balance adjustment unit 44 first detects a coefficient for correcting the imbalance between channels of the multiplexer 34, and then corrects the level of the echo signal induced in each channel by this coefficient, thereby determining the position of the power receiving coil 51. To detect.

識別回路33は、エコー増幅回路32から入力される信号をデジタル信号に変換するA/Dコンバータ36を備えている。このA/Dコンバータ36から出力されるデジタル信号を演算してエコー信号を検出する。識別回路33は、パルス信号から特定の遅延時間の後に入力される信号をエコー信号として検出し、さらにエコー信号のレベルから受電コイル51が位置検出コイル30に接近しているかどうかを判定する。   The identification circuit 33 includes an A / D converter 36 that converts a signal input from the echo amplification circuit 32 into a digital signal. The digital signal output from the A / D converter 36 is calculated to detect an echo signal. The identification circuit 33 detects a signal input after a specific delay time from the pulse signal as an echo signal, and further determines whether the power receiving coil 51 is approaching the position detection coil 30 from the level of the echo signal.

識別回路33は、複数のX軸位置検出コイル30Aを順番にエコー増幅回路32に接続するようにマルチプレクサ34を制御して、受電コイル51のX軸方向の位置を検出する。識別回路33は、各々のX軸位置検出コイル30Aをエコー増幅回路32に接続する毎に、識別回路33に接続しているX軸位置検出コイル30Aにパルス信号を出力し、パルス信号から特定の遅延時間の後に、エコー信号が検出されるかどうかで、このX軸位置検出コイル30Aに受電コイル51が接近しているかどうかを判定する。識別回路33は、全てのX軸位置検出コイル30Aをエコー増幅回路32に接続して、各々のX軸位置検出コイル30Aに受電コイル51が接近しているかどうかを判定する。受電コイル51がいずれかのX軸位置検出コイル30Aに接近していると、このX軸位置検出コイル30Aをエコー増幅回路32に接続する状態でエコー信号が検出される。したがって、識別回路33は、エコー信号を検出できるX軸位置検出コイル30Aから受電コイル51のX軸方向の位置を検出できる。受電コイル51が複数のX軸位置検出コイル30Aに跨って接近する状態では、複数のX軸位置検出コイル30Aからエコー信号が検出される。この状態において、識別回路33は複数のX軸位置検出コイル30Aに誘導されるエコー信号のレベルから受電コイル51のX軸方向の位置を判定する。さらに、識別回路33は、Y軸位置検出コイル30Bも同じように制御して、受電コイル51のY軸方向の位置を検出する。   The identification circuit 33 detects the position of the power receiving coil 51 in the X-axis direction by controlling the multiplexer 34 so that the plurality of X-axis position detection coils 30 </ b> A are sequentially connected to the echo amplification circuit 32. The identification circuit 33 outputs a pulse signal to the X-axis position detection coil 30A connected to the identification circuit 33 every time each X-axis position detection coil 30A is connected to the echo amplification circuit 32, and a specific signal is identified from the pulse signal. It is determined whether or not the power receiving coil 51 is approaching the X-axis position detection coil 30A based on whether or not an echo signal is detected after the delay time. The identification circuit 33 connects all the X-axis position detection coils 30A to the echo amplification circuit 32, and determines whether or not the power receiving coil 51 is close to each X-axis position detection coil 30A. When the power receiving coil 51 approaches one of the X-axis position detection coils 30A, an echo signal is detected in a state where the X-axis position detection coil 30A is connected to the echo amplification circuit 32. Therefore, the identification circuit 33 can detect the position of the power receiving coil 51 in the X-axis direction from the X-axis position detection coil 30A that can detect an echo signal. In a state in which the power receiving coil 51 approaches across the plurality of X-axis position detection coils 30A, echo signals are detected from the plurality of X-axis position detection coils 30A. In this state, the identification circuit 33 determines the position of the power receiving coil 51 in the X-axis direction from the level of echo signals induced in the plurality of X-axis position detection coils 30A. Further, the identification circuit 33 similarly controls the Y-axis position detection coil 30B to detect the position of the power receiving coil 51 in the Y-axis direction.

識別回路33は、検出するX軸方向の位置とY軸方向の位置から移動機構13を制御して、送電コイル11を受電コイル51に接近する位置に移動させる。識別回路33は、移動機構13のX軸サーボモータ22Aを制御して、送電コイル11を受電コイル51のX軸方向の位置に移動させる。また、移動機構13のY軸サーボモータ22Bを制御して、送電コイル11を受電コイル51のY軸方向の位置に移動させる。   The identification circuit 33 controls the moving mechanism 13 from the position in the X axis direction and the position in the Y axis direction to be detected, and moves the power transmission coil 11 to a position approaching the power reception coil 51. The identification circuit 33 controls the X-axis servomotor 22 </ b> A of the moving mechanism 13 to move the power transmission coil 11 to the position of the power reception coil 51 in the X-axis direction. Further, the Y-axis servomotor 22B of the moving mechanism 13 is controlled to move the power transmission coil 11 to the position of the power reception coil 51 in the Y-axis direction.

以上のようにして、位置検出制御器14が送電コイル11を受電コイル51に接近する位置に移動させる。本発明の充電台は、位置検出制御器14で送電コイル11を受電コイル51に接近した後、送電コイル11から受電コイル51に電力搬送して電池52を充電することができる。ただ、充電台は、さらに送電コイル11の位置を正確に制御して受電コイル51に接近させた後、電力搬送して電池52を充電する。   As described above, the position detection controller 14 moves the power transmission coil 11 to a position approaching the power reception coil 51. The charging stand of the present invention can charge the battery 52 by transferring power from the power transmission coil 11 to the power reception coil 51 after the power transmission coil 11 approaches the power reception coil 51 by the position detection controller 14. However, the charging stand further accurately controls the position of the power transmission coil 11 to approach the power receiving coil 51, and then transports power to charge the battery 52.

さらに、図11に示す位置検出制御器64は、識別回路73に、受電コイル51の位置に対する各々の位置検出コイル30に誘導されるエコー信号のレベル、すなわち図7に示すように、各々の位置検出コイル30をパルス信号で励起して所定の時間経過後に誘導されるエコー信号のレベルを記憶する記憶回路77を備えている。この位置検出制御器64は、各々の位置検出コイル30に誘導されるエコー信号のレベルを検出し、検出したエコー信号のレベルを記憶回路77に記憶しているエコー信号のレベルに比較して、受電コイル51の位置を検出している。   Further, the position detection controller 64 shown in FIG. 11 causes the identification circuit 73 to detect the level of the echo signal induced in each position detection coil 30 with respect to the position of the power receiving coil 51, that is, each position as shown in FIG. A memory circuit 77 is provided for storing the level of an echo signal that is induced after a predetermined time has elapsed by exciting the detection coil 30 with a pulse signal. The position detection controller 64 detects the level of the echo signal induced in each position detection coil 30, compares the level of the detected echo signal with the level of the echo signal stored in the storage circuit 77, and The position of the power receiving coil 51 is detected.

この位置検出制御器64は、以下のようにして、各々の位置検出コイル30に誘導されるエコー信号のレベルから、受電コイル51の位置を求めている。図12は、受電コイル51をX軸方向に移動させる状態における、X軸位置検出コイル30Aに誘導されるエコー信号のレベルを示しており、横軸が受電コイル51のX軸方向の位置を示し、縦軸が各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルを示している。この位置検出制御器64は、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルを検出して、受電コイル51のX軸方向の位置を求める。この図に示すように、受電コイル51をX軸方向に移動すると、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは変化する。   The position detection controller 64 obtains the position of the power receiving coil 51 from the level of the echo signal induced in each position detection coil 30 as follows. FIG. 12 shows the level of the echo signal induced in the X-axis position detection coil 30A in a state where the power receiving coil 51 is moved in the X-axis direction, and the horizontal axis shows the position of the power receiving coil 51 in the X-axis direction. The vertical axis indicates the level of the echo signal induced in each X-axis position detection coil 30A. The position detection controller 64 detects the level of the echo signal induced in each X-axis position detection coil 30A, and obtains the position of the power receiving coil 51 in the X-axis direction. As shown in this figure, when the power receiving coil 51 is moved in the X-axis direction, the level of the echo signal induced in each X-axis position detection coil 30A changes.

たとえば、受電コイル51が第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aの中間にあるとき、図12の点aで示すように、第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは最大であって、かつ同じとなる。また、受電コイル51が第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aの中間からずれる位置にあるとき、第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベル比が変化する。したがって、第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベル比から受電コイル51の位置を検出できる。   For example, when the power receiving coil 51 is in the middle of the first X-axis position detection coil 30A and the second X-axis position detection coil 30A, as shown by a point a in FIG. 12, the first X-axis position detection coil 30A. And the level of the echo signal induced in the second X-axis position detection coil 30A is the maximum and the same. Further, when the power receiving coil 51 is at a position deviated from the middle between the first X-axis position detection coil 30A and the second X-axis position detection coil 30A, the first X-axis position detection coil 30A and the second X-axis position The level ratio of the echo signal induced in the detection coil 30A changes. Therefore, the position of the power receiving coil 51 can be detected from the level ratio of echo signals induced in the first X-axis position detection coil 30A and the second X-axis position detection coil 30A.

さらに、受電コイル51が第2のX軸位置検出コイル30Aの中央部にあるとき、すなわち図12のA領域にあるとき、第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは、最も強くなる。ただ、受電コイル51がA領域にあるときには、受電コイル51のX軸方向の移動距離に対するエコー信号のレベル変動は少なく、また、エコー信号のレベルは、他の要因によっても変動するので、受電コイル51がA領域にあるとき、第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベルのみで受電コイル51の位置を判定すると正確に判定できなくなる。したがって、識別回路33は、この領域にあるとき、第2のX軸位置検出コイル30Aに誘導されるエコー信号のみでなく、第1のX軸位置検出コイル30Aと第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルからも受電コイル51の位置を判定する。受電コイル51が第2のX軸位置検出コイル30Aの中央に位置するとき、第1のX軸位置検出コイル30Aと第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルは等しくなり、あるいは、エコー信号のレベルが0レベルとなる。したがって、識別回路33は、第2のX軸位置検出コイル30Aに誘導されるエコー信号が最大レベルとなる状態で、第1のX軸位置検出コイル30Aと第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが等しく、あるいは両方が0レベルであると、受電コイル51は第2のX軸位置検出コイル30Aの中央に位置すると判定する。受電コイル51の位置が、第2のX軸位置検出コイル30Aの中央部からわずかにずれると、第1のX軸位置検出コイル30Aと第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが変化する。受電コイル51が第1のX軸位置検出コイル30A側にずれると、第1のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが、第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルよりも大きくなる。したがって、この状態になると、識別回路33は、第1のX軸位置検出コイル30Aと第2のX軸位置検出コイル30Aに誘導されるエコー信号のレベル比から受電コイル51の位置を正確に検出することができる。受電コイル51が第1のX軸位置検出コイル30A側に移動するにしたがって、第1のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが大きくなるからである。反対に、受電コイル51が第3のX軸位置検出コイル30A側にずれると、第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが、第1のX軸位置検出コイル30Aに誘導されるエコー信号のレベルよりも大きくなる。したがって、この状態になると、識別回路33は、第2と第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベル比から受電コイルの位51置を正確に検出することができる。受電コイル51が第3のX軸位置検出コイル30A側に移動するにしたがって、第3のX軸位置検出コイル30Aに誘導されるエコー信号のレベルが大きくなるからである。   Furthermore, when the power receiving coil 51 is in the center of the second X-axis position detection coil 30A, that is, in the region A in FIG. 12, the level of the echo signal induced in the second X-axis position detection coil 30A is , Become the strongest. However, when the power receiving coil 51 is in the A region, the level variation of the echo signal with respect to the movement distance of the power receiving coil 51 in the X-axis direction is small, and the level of the echo signal varies depending on other factors. When 51 is in the A region, if the position of the power receiving coil 51 is determined only by the level of the echo signal induced in the second X-axis position detection coil 30A, it cannot be accurately determined. Therefore, when the identification circuit 33 is in this region, the first X-axis position detection coil 30A and the third X-axis position detection coil as well as the echo signal induced by the second X-axis position detection coil 30A The position of the power receiving coil 51 is also determined from the level of the echo signal induced by 30A. When the power receiving coil 51 is located at the center of the second X-axis position detection coil 30A, the levels of the echo signals induced in the first X-axis position detection coil 30A and the third X-axis position detection coil 30A are equal. Alternatively, the level of the echo signal becomes 0 level. Accordingly, the identification circuit 33 is applied to the first X-axis position detection coil 30A and the third X-axis position detection coil 30A in a state where the echo signal induced in the second X-axis position detection coil 30A is at the maximum level. If the levels of the induced echo signals are equal or both are 0 level, it is determined that the power receiving coil 51 is located at the center of the second X-axis position detection coil 30A. When the position of the power receiving coil 51 is slightly shifted from the center portion of the second X-axis position detection coil 30A, an echo signal that is induced in the first X-axis position detection coil 30A and the third X-axis position detection coil 30A. The level of changes. When the power receiving coil 51 is displaced toward the first X-axis position detection coil 30A, the level of the echo signal induced in the first X-axis position detection coil 30A is induced in the third X-axis position detection coil 30A. It becomes larger than the level of the echo signal. Therefore, in this state, the identification circuit 33 accurately detects the position of the power receiving coil 51 from the level ratio of echo signals induced in the first X-axis position detection coil 30A and the second X-axis position detection coil 30A. can do. This is because as the power receiving coil 51 moves toward the first X-axis position detection coil 30A, the level of the echo signal induced in the first X-axis position detection coil 30A increases. On the other hand, when the power receiving coil 51 is shifted to the third X-axis position detection coil 30A side, the level of the echo signal induced in the third X-axis position detection coil 30A is changed to the first X-axis position detection coil 30A. It becomes larger than the level of the induced echo signal. Therefore, in this state, the identification circuit 33 can accurately detect the position 51 of the power receiving coil from the level ratio of echo signals induced in the second and third X-axis position detecting coils 30A. This is because as the power receiving coil 51 moves toward the third X-axis position detection coil 30A, the level of the echo signal induced in the third X-axis position detection coil 30A increases.

以上のように、識別回路33は、エコー信号が最大レベルとなる状態においては、最大レベルとなる位置検出コイル30のエコー信号のみから受電コイル51の位置を判定しない。最大レベルのエコー信号を検出する位置検出コイル30の両側にある位置検出コイル30に誘導されるエコー信号も考慮して、受電コイル51の位置を判定する。したがって、位置検出コイル30の中央部であるA領域にある受電コイル51の位置は、最大レベルとなる位置検出コイル30の中央からのわずかなずれも正確に検出できる。   As described above, the identification circuit 33 does not determine the position of the power receiving coil 51 only from the echo signal of the position detection coil 30 at the maximum level in a state where the echo signal is at the maximum level. The position of the power receiving coil 51 is determined in consideration of echo signals induced in the position detection coils 30 on both sides of the position detection coil 30 that detects the maximum level echo signal. Accordingly, the position of the power receiving coil 51 in the area A, which is the central portion of the position detection coil 30, can accurately detect even a slight deviation from the center of the position detection coil 30 at the maximum level.

識別回路73は、受電コイル51のX軸方向の位置に対する、各々のX軸位置検出コイル30Aに誘導されるエコー信号のレベルとレベル比を記憶回路77に記憶している。受電コイル51が置かれると、いずれかのX軸位置検出コイル30Aにエコー信号が誘導される。したがって、識別回路73は、X軸位置検出コイル30Aに誘導されるエコー信号で受電コイル51が載せられたこと、すなわち電池内蔵機器50が充電台10に載せられたことを検出する。さらに、いずれかのX軸位置検出コイル30Aに誘導されるエコー信号のレベルとレベル比を、記憶回路77に記憶しているレベルとレベル比に比較して、受電コイル51のX軸方向の位置を正確に判別する。   The identification circuit 73 stores the level and level ratio of the echo signal induced in each X-axis position detection coil 30 </ b> A with respect to the position of the power receiving coil 51 in the X-axis direction in the storage circuit 77. When the power receiving coil 51 is placed, an echo signal is induced in one of the X-axis position detection coils 30A. Therefore, the identification circuit 73 detects that the power receiving coil 51 has been placed by an echo signal induced in the X-axis position detection coil 30 </ b> A, that is, that the battery built-in device 50 has been placed on the charging stand 10. Further, the level and level ratio of the echo signal induced in one of the X-axis position detection coils 30 </ b> A is compared with the level and level ratio stored in the storage circuit 77, and the position of the power receiving coil 51 in the X-axis direction. Is accurately determined.

以上は、識別回路73が、X軸位置検出コイル30Aに誘導されるエコー信号から、受電コイル51のX軸方向の位置を検出する方法を示すが、受電コイル51のY軸方向の位置もX軸方向と同じようにして、Y軸位置検出コイル30Bに誘導されるエコー信号から検出できる。   The above shows a method in which the identification circuit 73 detects the position of the power receiving coil 51 in the X-axis direction from the echo signal induced in the X-axis position detection coil 30A, but the position of the power receiving coil 51 in the Y-axis direction is also X. In the same manner as in the axial direction, it can be detected from the echo signal induced in the Y-axis position detection coil 30B.

識別回路73が、受電コイル51のX軸方向とY軸方向の位置を検出すると、この識別回路73からの位置信号でもって、位置検出制御器64は送電コイル11を受電コイル51の位置に移動させる。
なお、上記のような波形のエコー信号が検出されたとき、充電台の識別回路73は、電池内蔵機器50の受電コイル51が搭載されたと認識、識別することができる。エコー信号の波形とは異なる波形が検出、識別されるときは、電池内蔵機器50の受電コイル51以外(例えば、金属異物)のものが搭載されたとして、電力供給を停止することができる。また、エコー信号の波形が検出、識別されないときは、電池内蔵機器50の受電コイル51が搭載されていないとして、電力供給をしない。
When the identification circuit 73 detects the positions of the power receiving coil 51 in the X-axis direction and the Y-axis direction, the position detection controller 64 moves the power transmission coil 11 to the position of the power receiving coil 51 with the position signal from the identification circuit 73. Let
When the echo signal having the waveform as described above is detected, the identification circuit 73 of the charging stand can recognize and identify that the power receiving coil 51 of the battery built-in device 50 is mounted. When a waveform different from the waveform of the echo signal is detected and identified, the power supply can be stopped assuming that a device other than the power receiving coil 51 (for example, a metal foreign object) of the battery built-in device 50 is mounted. When the waveform of the echo signal is not detected or identified, the power supply coil 51 of the battery built-in device 50 is not mounted and power is not supplied.

充電台10は、位置検出制御器14、64で移動機構13を制御して送電コイル11を受電コイル51に接近させた状態で、交流電源12で送電コイル11に交流電力を供給する。送電コイル11の交流電力は受電コイル51に電力搬送されて、電池52の充電に使用される。電池内蔵機器50は、電池52が満充電されたことを検出すると、充電を停止して、満充電信号を充電台10に伝送する。電池内蔵機器50は、受電コイル51に満充電信号を出力し、この満充電信号を受電コイル51から送電コイル11に伝送して、充電台10に満充電の情報を伝送することができる。この電池内蔵機器50は、交流電源12と異なる周波数の交流信号を受電コイル51に出力し、充電台10はこの交流信号を送電コイル11で受信して満充電を検出することができる。また、電池内蔵機器50が特定周波数の搬送波を満充電信号で変調する信号を受電コイル51に出力し、充電台10が特定周波数の搬送波を受信し、この信号を復調して満充電信号を検出することもできる。さらに、電池内蔵機器は、満充電信号を充電台に無線伝送して、満充電の情報を伝送することもできる。この電池内蔵機器は、満充電信号を送信する送信器を内蔵しており、充電台は満充電信号を受信する受信器を内蔵する。図6に示す位置検出制御器14は、内蔵電池52の満充電を検出する満充電検出回路17を内蔵している。この満充電検出回路17は、電池内蔵機器50から出力される満充電信号を検出して、電池52の満充電を検出する。   The charging stand 10 supplies AC power to the power transmission coil 11 with the AC power source 12 in a state where the position detection controllers 14 and 64 control the moving mechanism 13 to bring the power transmission coil 11 closer to the power reception coil 51. The AC power of the power transmission coil 11 is transferred to the power reception coil 51 and used for charging the battery 52. When the battery built-in device 50 detects that the battery 52 is fully charged, it stops charging and transmits a full charge signal to the charging stand 10. The battery built-in device 50 can output a full charge signal to the power receiving coil 51, transmit this full charge signal from the power receiving coil 51 to the power transmission coil 11, and transmit full charge information to the charging stand 10. The battery built-in device 50 outputs an AC signal having a frequency different from that of the AC power source 12 to the power receiving coil 51, and the charging stand 10 can receive the AC signal by the power transmitting coil 11 and detect full charge. Further, the battery built-in device 50 outputs a signal that modulates a carrier wave of a specific frequency with a full charge signal to the power receiving coil 51, and the charging stand 10 receives the carrier wave of a specific frequency and demodulates this signal to detect a full charge signal. You can also Furthermore, the battery built-in device can also transmit full charge information by wirelessly transmitting a full charge signal to the charging stand. The battery built-in device has a built-in transmitter that transmits a full charge signal, and the charging stand has a built-in receiver that receives the full charge signal. The position detection controller 14 shown in FIG. 6 incorporates a full charge detection circuit 17 that detects the full charge of the built-in battery 52. The full charge detection circuit 17 detects a full charge signal output from the battery built-in device 50 to detect full charge of the battery 52.

複数の電池内蔵機器50を載せることができる上面プレート21の充電台10は、複数の電池内蔵機器50の電池52を順番に切り換えて満充電する。この充電台10は、最初にいずれかの電池内蔵機器50の受電コイル51の位置を検出して、この受電コイル51に送電コイル11を接近させて、この電池内蔵機器50の電池52を満充電する。この電池内蔵機器50の電池52が満充電されて、満充電検出回路17が満充電信号を受信すると、位置検出制御器14は、この電池内蔵機器50とは別の位置にセットされる第2の電池内蔵機器50の受電コイル51の位置を検出し、移動機構13を制御して送電コイル11を第2の電池内蔵機器50の受電コイル51に接近させる。この状態で、第2の電池内蔵機器50の電池52に電力搬送して、この電池52を満充電する。さらに、第2の電池内蔵機器50の電池52が満充電されて、第2の電池内蔵機器50からの満充電信号を満充電検出回路17が受信すると、位置検出制御器14が、さらに第3の電池内蔵機器50の受電コイル51を検出して、移動機構13を制御して第3の電池内蔵機器50の受電コイル51に送電コイル11を接近させて、この電池内蔵機器50の電池52を満充電する。以上のように、複数の電池内蔵機器50が上面プレート21にセットされると、次々と電池内蔵機器50を切り換えて内蔵電池52を満充電する。この充電台10は、満充電された電池内蔵機器50の位置を記憶して、満充電された電池内蔵機器50の電池52を充電しない。上面プレート21の上にセットされる全ての電池内蔵機器50の電池52を満充電したことを検出すると、充電台10は、交流電源12の動作を停止して電池52の充電を停止する。ここで、上記の実施例では、電池内蔵機器50の電池52が満充電されると充電を停止しているが、電池52が所定容量となったときを満充電として充電を停止してもよい。   The charging stand 10 on the top plate 21 on which the plurality of battery built-in devices 50 can be placed switches the batteries 52 of the plurality of battery built-in devices 50 in order and is fully charged. The charging stand 10 first detects the position of the power receiving coil 51 of any of the battery built-in devices 50, makes the power transmitting coil 11 approach the power receiving coil 51, and fully charges the battery 52 of the battery built-in device 50. To do. When the battery 52 of the battery built-in device 50 is fully charged and the full charge detection circuit 17 receives the full charge signal, the position detection controller 14 is set to a second position different from the battery built-in device 50. The position of the power receiving coil 51 of the battery built-in device 50 is detected, and the moving mechanism 13 is controlled to bring the power transmitting coil 11 closer to the power receiving coil 51 of the second battery built-in device 50. In this state, power is transferred to the battery 52 of the second battery-equipped device 50, and the battery 52 is fully charged. Further, when the battery 52 of the second battery built-in device 50 is fully charged and the full charge detection circuit 17 receives the full charge signal from the second battery built-in device 50, the position detection controller 14 further performs the third operation. The power receiving coil 51 of the battery built-in device 50 is detected, the moving mechanism 13 is controlled to bring the power transmission coil 11 close to the power receiving coil 51 of the third battery built-in device 50, and the battery 52 of the battery built-in device 50 is moved. Fully charge. As described above, when the plurality of battery built-in devices 50 are set on the top plate 21, the battery built-in devices 50 are sequentially switched to fully charge the built-in battery 52. The charging stand 10 stores the position of the fully-charged battery built-in device 50 and does not charge the battery 52 of the fully-charged battery built-in device 50. When it is detected that the batteries 52 of all the battery built-in devices 50 set on the top plate 21 are fully charged, the charging stand 10 stops the operation of the AC power supply 12 and stops the charging of the batteries 52. Here, in the above embodiment, the charging is stopped when the battery 52 of the battery built-in device 50 is fully charged. However, the charging may be stopped when the battery 52 reaches a predetermined capacity. .

以上の移動機構13は、送電コイル11をX軸方向とY軸方向とに移動して、送電コイル11を受電コイル51に最も近い位置に移動させるが、本発明は、移動機構がX軸方向とY軸方向とに送電コイルを移動して、送電コイルの位置を受電コイルに接近させる構造には特定せず、送電コイルは種々の方向に移動させて、受電コイルに接近することもできる。   The above moving mechanism 13 moves the power transmission coil 11 in the X-axis direction and the Y-axis direction to move the power transmission coil 11 to a position closest to the power receiving coil 51. In the present invention, the movement mechanism is in the X-axis direction. The power transmission coil is moved in the Y-axis direction and the position of the power transmission coil is not specified as a structure for approaching the power reception coil, and the power transmission coil can be moved in various directions to approach the power reception coil.

本発明に係る充電台は、携帯電話や携帯音楽プレーヤ等の充電の他、アシスト自転車や電気自動車の充電等にも好適に利用できる。   The charging stand according to the present invention can be suitably used not only for charging a mobile phone or a portable music player, but also for charging an assist bicycle or an electric vehicle.

10…充電台
11…送電コイル
12…交流電源
13…移動機構
14…位置検出制御器
15…コア 15A…円柱部
15B…円筒部
16…リード線
17…満充電検出回路
20…ケース
21…上面プレート
22…サーボモータ 22A…X軸サーボモータ
22B…Y軸サーボモータ
23…ネジ棒 23A…X軸ネジ棒
23B…Y軸ネジ棒
24…ナット材 24A…X軸ナット材
24B…Y軸ナット材
25…ベルト
26…ガイドロッド
27…ガイド部
30…位置検出コイル 30A…X軸位置検出コイル
30B…Y軸位置検出コイル
31…検出パルス発生回路
32…エコー増幅回路
33…識別回路
34…マルチプレクサ 34A…スイッチング素子
35…リミッター回路
36…A/Dコンバータ
37…ゲイン調整回路
38…差動アンプ
39…電圧調整回路
40…平滑回路
41…抵抗
42…コンデンサー
43…トランジスタ
44…バランス調整部
45…コンデンサー
46…共振回路
47…駆動機構
50…電池内蔵機器
51…受電コイル
52…電池
53…コンデンサー
54…並列共振回路
55…ダイオード
56…平滑コンデンサー
57…整流回路
58…充電制御回路
64…位置検出制御器
73…識別回路
77…記憶回路
130…位置検出コイル 130A…X軸位置検出コイル
151…受電コイル
DESCRIPTION OF SYMBOLS 10 ... Charging stand 11 ... Power transmission coil 12 ... AC power supply 13 ... Moving mechanism 14 ... Position detection controller 15 ... Core 15A ... Cylindrical part
15B ... Cylindrical part 16 ... Lead wire 17 ... Full charge detection circuit 20 ... Case 21 ... Top plate 22 ... Servo motor 22A ... X-axis servo motor
22B ... Y-axis servo motor 23 ... Screw rod 23A ... X-axis screw rod
23B ... Y-axis screw rod 24 ... Nut material 24A ... X-axis nut material
24B ... Y-axis nut material 25 ... Belt 26 ... Guide rod 27 ... Guide part 30 ... Position detection coil 30A ... X-axis position detection coil
30B ... Y-axis position detection coil 31 ... Detection pulse generation circuit 32 ... Echo amplification circuit 33 ... Identification circuit 34 ... Multiplexer 34A ... Switching element 35 ... Limiter circuit 36 ... A / D converter 37 ... Gain adjustment circuit 38 ... Differential amplifier 39 ... voltage adjustment circuit 40 ... smoothing circuit 41 ... resistor 42 ... capacitor 43 ... transistor 44 ... balance adjustment unit 45 ... capacitor 46 ... resonance circuit 47 ... drive mechanism 50 ... battery built-in device 51 ... power receiving coil 52 ... battery 53 ... capacitor 54 ... Parallel resonant circuit 55 ... Diode 56 ... Smoothing capacitor 57 ... Rectifier circuit 58 ... Charge control circuit 64 ... Position detection controller 73 ... Identification circuit 77 ... Storage circuit 130 ... Position detection coil 130A ... X-axis position detection coil 151 ... Receiving coil

Claims (8)

受電コイル(51)に電力搬送される電力で充電される電池(52)を内蔵する電池内蔵機器(50)の充電台であって、
交流電源(12)に接続されて前記受電コイル(51)に起電力を電力搬送する送電コイル(11)と、この送電コイル(11)を内蔵すると共に、上面には電池内蔵機器(50)を載せる上面プレート(21)を有するケース(20)と、このケース(20)に内蔵されて、前記送電コイル(11)を上面プレート(21)の内面に沿って移動させる移動機構(13)と、上面プレート(21)に載せられる電池内蔵機器(50)の受電コイル(51)の位置を検出して前記移動機構(13)を制御して前記送電コイル(11)を前記受電コイル(51)に接近させる位置検出制御器(14;64)とを備える充電台であって、
前記位置検出制御器(14;64)が、上面プレート(21)の裏側に所定の間隔で配置している複数の位置検出コイル(30)と、位置検出コイル(30)に位置検出信号としてパルス信号を供給する検出パルス発生回路(31)と、この検出パルス発生回路(31)から位置検出コイル(30)に供給されるパルス信号に励起されて受電コイル(51)から位置検出コイル(30)に誘導されるエコー信号を受信するエコー増幅回路(32)と、このエコー増幅回路(32)から出力されるエコー信号から受電コイル(51)の位置を判別する識別回路(33)とを備え、
前記エコー増幅回路(32)が、位置検出コイル(30)から入力されるエコー信号を飽和することなくリニアに増幅するように増幅率を調整するゲイン調整回路(37)を備え、このゲイン調整回路(37)で増幅率の特定されたエコー増幅回路(32)が位置検出コイル(30)から入力されるエコー信号を増幅して識別回路(33)に入力するようにしてなる充電台。
A charging stand for a battery built-in device (50) including a battery (52) to be charged with power carried by the power receiving coil (51),
A power transmission coil (11) connected to the AC power source (12) and carrying the electromotive force to the power reception coil (51), and the power transmission coil (11) are incorporated, and a battery built-in device (50) is provided on the upper surface. A case (20) having an upper surface plate (21) to be mounted, and a moving mechanism (13) built in the case (20) to move the power transmission coil (11) along the inner surface of the upper surface plate (21); The position of the power receiving coil (51) of the battery built-in device (50) placed on the upper surface plate (21) is detected and the moving mechanism (13) is controlled so that the power transmitting coil (11) becomes the power receiving coil (51). A charging stand comprising a position detection controller (14; 64) to be approached,
The position detection controller (14; 64) has a plurality of position detection coils (30) arranged at predetermined intervals on the back side of the upper surface plate (21), and pulses as position detection signals to the position detection coil (30). A detection pulse generator circuit (31) for supplying a signal, and a pulse signal supplied from the detection pulse generator circuit (31) to the position detection coil (30) and excited by a pulse signal from the power reception coil (51) to the position detection coil (30) An echo amplifier circuit (32) for receiving the echo signal induced by the signal, and an identification circuit (33) for determining the position of the power receiving coil (51) from the echo signal output from the echo amplifier circuit (32),
The echo amplification circuit (32) includes a gain adjustment circuit (37) for adjusting an amplification factor so as to linearly amplify an echo signal input from the position detection coil (30) without being saturated. A charging base in which the echo amplification circuit (32) whose amplification factor is specified in (37) amplifies the echo signal input from the position detection coil (30) and inputs it to the identification circuit (33).
前記エコー増幅回路(32)が差動アンプ(38)を備え、前記ゲイン調整回路(37)が差動アンプ(38)の一方の入力端子に増幅率調整電圧を入力して、差動アンプ(38)の増幅率を調整するようにしてなる請求項1に記載される充電台。   The echo amplification circuit (32) includes a differential amplifier (38), and the gain adjustment circuit (37) inputs an amplification factor adjustment voltage to one input terminal of the differential amplifier (38), and the differential amplifier ( The charging stand according to claim 1, wherein the amplification factor of 38) is adjusted. 前記ゲイン調整回路(37)が、PWM変調して出力される信号を平滑化してゲイン調整電圧を出力する電圧調整回路(39)を備え、この電圧調整回路(39)から出力されるゲイン調整電圧が差動アンプ(38)の一方の入力端子に入力されて差動アンプ(38)の増幅率を調整するようにしてなる請求項2に記載される充電台。   The gain adjustment circuit (37) includes a voltage adjustment circuit (39) for smoothing a signal output by PWM modulation and outputting a gain adjustment voltage, and the gain adjustment voltage output from the voltage adjustment circuit (39) 3. The charging stand according to claim 2, wherein is input to one input terminal of the differential amplifier (38) to adjust the amplification factor of the differential amplifier (38). 各々の位置検出コイル(39)を、前記検出パルス発生回路(31)とエコー増幅回路(32)とに順番に接続するマルチプレクサ(34)を備え、このマルチプレクサ(34)の内部抵抗のアンバランスを解消するバランス調整部(44)を備える請求項1ないし3のいずれかに記載される充電台。   Each position detection coil (39) is provided with a multiplexer (34) for sequentially connecting the detection pulse generation circuit (31) and the echo amplification circuit (32), and the internal resistance of the multiplexer (34) is unbalanced. The charging stand according to any one of claims 1 to 3, further comprising a balance adjusting unit (44) for canceling. 前記バランス調整部(44)が、送電コイル(11)を位置検出コイル(30)の配列方向に移動させる駆動機構(47)を有すると共に、位置検出コイル(30)から送電コイル(11)に出力されるパルス信号でもって、送電コイル(11)から位置検出コイル(30)に出力されるエコー信号のレベルを検出して、マルチプレクサ(34)の内部抵抗によるアンバランスを解消する請求項4に記載される充電台。   The balance adjusting unit (44) has a drive mechanism (47) for moving the power transmission coil (11) in the arrangement direction of the position detection coil (30), and outputs from the position detection coil (30) to the power transmission coil (11). 5. The level of the echo signal output from the power transmission coil (11) to the position detection coil (30) is detected with the pulse signal generated to cancel the imbalance due to the internal resistance of the multiplexer (34). Charging stand. 前記駆動機構(47)が、各々の位置検出コイル(30)の中央部に送電コイル(11)を移動させて、前記バランス調整部(44)が送電コイル(11)からのエコー信号でもって、マルチプレクサ(34)の内部抵抗のアンバランスを解消する請求項5に記載される充電台。   The drive mechanism (47) moves the power transmission coil (11) to the center of each position detection coil (30), and the balance adjustment unit (44) has an echo signal from the power transmission coil (11), 6. The charging stand according to claim 5, which eliminates an imbalance in the internal resistance of the multiplexer (34). 前記位置検出コイル(30)が、隣接して配設してなる位置検出コイル(30)の一部を隣の位置検出コイル(30)に重ねて配設しており、
前記識別回路(33)は、最大レベルのエコー信号が誘導される位置検出コイル(30)と、その両側に配設している位置検出コイル(30)のエコー信号のレベルから受電コイル(51)の位置を判別することを特徴とする請求項1ないし6のいずれかに記載される充電台。
The position detection coil (30) is disposed so as to overlap a part of the position detection coil (30) adjacent to the position detection coil (30),
The identification circuit (33) includes a position detection coil (30) from which an echo signal of the maximum level is induced, and a receiving coil (51) from the level of the echo signal of the position detection coil (30) disposed on both sides thereof. The charging stand according to claim 1, wherein the position is determined.
前記位置検出コイル(30)が直線部を有する細長いコイルであって、隣接する位置検出コイル(30)が、コイルの長手方向に直交する方向に位置ずれして配置され、
互いに重なるように隣接してなる位置検出コイル(30)同士の重なり量(d)が、細長いコイルの横幅(W)の1/2ないし9/10である請求項7に記載される充電台。
The position detection coil (30) is an elongated coil having a straight portion, and the adjacent position detection coil (30) is arranged so as to be displaced in a direction perpendicular to the longitudinal direction of the coil,
The charging stand according to claim 7, wherein the overlapping amount (d) of the position detecting coils (30) adjacent to each other so as to overlap each other is 1/2 to 9/10 of the lateral width (W) of the elongated coil.
JP2013507069A 2011-03-30 2011-12-21 Charging stand Pending JPWO2012132143A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011076865 2011-03-30
JP2011076865 2011-03-30
PCT/JP2011/079618 WO2012132143A1 (en) 2011-03-30 2011-12-21 Charging platform

Publications (1)

Publication Number Publication Date
JPWO2012132143A1 true JPWO2012132143A1 (en) 2014-07-24

Family

ID=46929940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013507069A Pending JPWO2012132143A1 (en) 2011-03-30 2011-12-21 Charging stand

Country Status (2)

Country Link
JP (1) JPWO2012132143A1 (en)
WO (1) WO2012132143A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6191949B2 (en) * 2013-06-18 2017-09-06 パナソニックIpマネジメント株式会社 Non-contact charging device, program, and vehicle equipped with the non-contact charging device
CN109591630A (en) * 2018-12-18 2019-04-09 深圳创维汽车智能有限公司 Reminding method, terminal, system and the readable storage medium storing program for executing of wireless charging state
CN113459836B (en) * 2021-06-16 2022-08-26 重庆市计量质量检测研究院 AGV intelligent wireless charging device for charging electric automobile
CN113263941A (en) * 2021-06-30 2021-08-17 奇瑞商用车(安徽)有限公司 Automobile wireless charging control method and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331709B2 (en) * 1993-12-15 2002-10-07 株式会社デンソー Sensor signal processing device
JP2002232283A (en) * 2001-01-31 2002-08-16 Keyence Corp Photoelectric switch
JP5362330B2 (en) * 2007-12-18 2013-12-11 三洋電機株式会社 Charging stand
JP2010192973A (en) * 2009-02-16 2010-09-02 Hitachi High-Technologies Corp Analog input and output circuit and vacuum processing apparatus
JP5394135B2 (en) * 2009-06-15 2014-01-22 三洋電機株式会社 Charging stand

Also Published As

Publication number Publication date
WO2012132143A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5362453B2 (en) Charging stand
JP5362330B2 (en) Charging stand
WO2012132144A1 (en) Charging platform
US8410751B2 (en) Device housing a battery and charging pad
JP5340017B2 (en) Built-in battery and charging stand
WO2013011905A1 (en) Charging stand, battery pack and charging stand, and battery pack
JP5496553B2 (en) Charging stand
US20120119708A1 (en) Charging base, charging system and charging method
JP2009273327A (en) Battery built-in apparatus and charging cradle
JP2010183706A (en) Charging cradle
JP5775614B2 (en) Charging stand
JP2011259534A (en) Battery-integrated apparatus and charging stand
WO2012132143A1 (en) Charging platform
WO2012132145A1 (en) Charging platform
WO2012173128A1 (en) Charging station
WO2012141080A1 (en) Non-contact charging method for battery built-in device
JP5394135B2 (en) Charging stand
JP2012110085A (en) Built-in battery apparatus, and built-in battery apparatus and charger