JPWO2012026221A1 - Loop type heat transport equipment - Google Patents

Loop type heat transport equipment Download PDF

Info

Publication number
JPWO2012026221A1
JPWO2012026221A1 JP2012530582A JP2012530582A JPWO2012026221A1 JP WO2012026221 A1 JPWO2012026221 A1 JP WO2012026221A1 JP 2012530582 A JP2012530582 A JP 2012530582A JP 2012530582 A JP2012530582 A JP 2012530582A JP WO2012026221 A1 JPWO2012026221 A1 JP WO2012026221A1
Authority
JP
Japan
Prior art keywords
liquid
loop
transport device
heat transport
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012530582A
Other languages
Japanese (ja)
Inventor
加藤 健次
健次 加藤
一法師 茂俊
茂俊 一法師
幸夫 中嶋
幸夫 中嶋
孝介 安井
孝介 安井
利一 狩田
利一 狩田
野田 秀夫
秀夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2012026221A1 publication Critical patent/JPWO2012026221A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

液体が逆流し難く、軽量で強度が高いループ型熱輸送機器を提供することを目的とする。循環液(25)を下方から上方へ通流させる複数の蒸発器内部流路(3)が内部に形成され、外部に発熱体(24)が設置された金属製の蒸発板(4)で構成される蒸発器(2)と、循環液の熱を放出する放熱器(5)と、熱交換器内部流路となる伝熱管(15)と、この伝熱管(15)の周囲に位置し、蒸発器内部流路上方に位置する二相流体送出口(28)から送出される循環液およびこの循環液の蒸気が収容される収容部(18)とを有して、伝熱管(15)の内部の循環液と収容部(18)の蒸気との間で熱交換させる熱交換器(12)とを備えたループ型熱輸送機器であって、蒸発器内部流路の循環液に接する内面は、蒸発板(4)の金属とは異なる金属で形成されたものである。An object of the present invention is to provide a loop-type heat transport device that is difficult to flow back, is lightweight, and has high strength. A plurality of evaporator internal flow paths (3) through which the circulating fluid (25) flows from below to above is formed, and is composed of a metal evaporation plate (4) in which a heating element (24) is installed outside. The evaporator (2), the radiator (5) that releases the heat of the circulating fluid, the heat transfer tube (15) that becomes the heat exchanger internal flow path, and the heat transfer tube (15) are located around the The heat transfer tube (15) has a circulating liquid sent out from the two-phase fluid outlet (28) located above the evaporator internal flow path and a storage part (18) in which the vapor of the circulating liquid is stored. A loop-type heat transport device including a heat exchanger (12) for exchanging heat between the circulating fluid inside and the steam in the storage section (18), and an inner surface of the evaporator internal flow passage in contact with the circulating fluid is The evaporation plate (4) is made of a metal different from the metal.

Description

本発明は、熱輸送機器に関するものであり、特に外部動力を必要としない気泡ポンプを利用したループ型熱輸送機器に関するものである。   The present invention relates to a heat transport device, and particularly to a loop heat transport device using a bubble pump that does not require external power.

エネルギ供給設備、情報通信設備、交通設備などのライフラインに係る重要設備において、近年、多くの電子機器が使用されている。これらの電子機器は、安定して確実に動作させる必要があり、電子機器からの発熱を効率良く放熱する必要がある。放熱する手段としては多種多様の形態があるが、高効率で省エネ・環境保全に即した高信頼性を有する放熱手段の一つとして、外部動力を必要としない気泡ポンプを利用した冷却装置がある(例えば、特許文献1参照。)。この冷却装置では、熱交換用循環溶液の相変化によって生じる循環溶液輸送パイプ内の密度差(密度差によって生じる浮力)を利用して、機器内を熱交換用循環溶液が循環するように構成しているので、ループ型熱輸送機器と呼ばれる。   In recent years, many electronic devices are used in important facilities related to lifelines such as energy supply facilities, information communication facilities, and traffic facilities. These electronic devices need to be operated stably and reliably, and heat generated from the electronic devices must be efficiently radiated. There are various types of means for dissipating heat, but there is a cooling device that uses a bubble pump that does not require external power as one of the highly efficient and highly reliable heat dissipating means suitable for energy saving and environmental conservation. (For example, refer to Patent Document 1). This cooling device is configured so that the circulating solution for heat exchange circulates in the equipment by utilizing the density difference (buoyancy generated by the density difference) in the circulating solution transport pipe generated by the phase change of the circulating solution for heat exchange. Because it is called loop type heat transport equipment.

特許文献1に記載されたループ型熱輸送機器では、加熱熱交換器から二相流体送入口までの気液二相流体送入パイプ内の気液二相流体の見かけの密度と、該区間と同じ高さの区間における循環溶液輸送パイプ内の熱交換用循環溶液の密度との密度差を利用して熱交換用循環溶液を循環させている。また、この循環を繰り返すことによって、加熱熱交換器から伝達された高温度の熱を顕熱放出熱交換器と放熱器とへ輸送し、顕熱放出熱交換器と放熱器とから熱を必要とする別の機器または低熱源に熱を輸送するようにしている。   In the loop heat transport device described in Patent Document 1, the apparent density of the gas-liquid two-phase fluid in the gas-liquid two-phase fluid inlet pipe from the heating heat exchanger to the two-phase fluid inlet, and the section The circulating solution for heat exchange is circulated using the density difference with the density of the circulating solution for heat exchange in the circulating solution transport pipe in the same height section. In addition, by repeating this circulation, the high temperature heat transferred from the heating heat exchanger is transported to the sensible heat release heat exchanger and the radiator, and heat is required from the sensible heat release heat exchanger and the radiator. Try to transport heat to another device or low heat source.

このループ型熱輸送機器において、加熱熱交換器(蒸発器)をブロック状の金属で構成し、この金属ブロック内部に通流路を形成してこの通流路内を循環液が流れるようにすることで、強度が高く放熱特性が良いループ型熱輸送機器とするものがある(例えば特許文献2)。   In this loop heat transport device, the heating heat exchanger (evaporator) is made of a block-shaped metal, and a flow path is formed inside the metal block so that the circulating fluid flows in the flow path. Thus, there is a loop heat transport device that has high strength and good heat dissipation characteristics (for example, Patent Document 2).

また、特許文献1や特許文献2に記載されているループ型熱輸送機器とは構成が異なる冷却システムとして、特許文献3に記載されたものがある。特許文献3には、受熱部、バブルポンプ、ラジエータ・コンデンサ、パイプ部をループ状に結合して熱を輸送する冷却システムが記載されている。この特許文献3に記載された冷却システムでは、受熱部の上方にパイプ状のバブルポンプを設けている。特許文献3に記載された冷却システムでは液体が逆流する恐れがあり、逆流を防止するためにバブルポンプの出口をラジエータの液体レベルよりも上になるように配置している。   Moreover, there exists what was described in patent document 3 as a cooling system in which a structure differs from the loop type heat transport apparatus described in patent document 1 or patent document 2. Patent Document 3 describes a cooling system that transports heat by connecting a heat receiving portion, a bubble pump, a radiator condenser, and a pipe portion in a loop shape. In the cooling system described in Patent Document 3, a pipe-shaped bubble pump is provided above the heat receiving portion. In the cooling system described in Patent Document 3, there is a possibility that the liquid flows backward, and the outlet of the bubble pump is arranged to be higher than the liquid level of the radiator in order to prevent the backward flow.

特開2005−195226号公報JP 2005-195226 A 国際公開第2007/119783号International Publication No. 2007/119783 特表2007−513506号公報Special table 2007-513506 gazette

特許文献1に記載された従来のループ型熱輸送機器は、加熱熱交換器(蒸発器)に循環液を送入および送出する気液二相流体送入パイプを配管で構成しているので、強度が低いという問題があった。また、特許文献3に記載された冷却システムは、全体の詳細構造が明確ではないが、図面からは特許文献1に記載されたものと同様、パイプを主体とした構造となっており、やはり強度が低いという問題がある。   Since the conventional loop heat transport device described in Patent Document 1 is configured with a gas-liquid two-phase fluid feed pipe that feeds and feeds the circulating fluid to and from the heating heat exchanger (evaporator) by piping, There was a problem of low strength. In addition, the cooling system described in Patent Document 3 is not clear about the overall detailed structure, but from the drawing, like the one described in Patent Document 1, the cooling system has a structure mainly composed of pipes and is still strong. There is a problem that is low.

さらに特許文献3では、特許文献1や特許文献2に記載されたループ型熱輸送機器よりも液体が逆流し易いという問題もある。また、特許文献1や特許文献2に記載されたループ型熱輸送機器では放熱器の設置位置に制約は無いが、特許文献3に記載された冷却システムは放熱器を機器の上部に設置しなければならないという制約もある。   Furthermore, in patent document 3, there also exists a problem that a liquid flows back more easily than the loop type heat transport apparatus described in patent document 1 or patent document 2. Further, in the loop heat transport device described in Patent Document 1 or Patent Document 2, there is no restriction on the installation position of the radiator, but in the cooling system described in Patent Document 3, the radiator must be installed on the upper part of the device. There is also a restriction that must be done.

また、特許文献2に記載された従来のループ型熱輸送機器は、蒸発器が銅等の金属に穴加工をしたブロック状の金属で構成されているので、強度が高く放熱特性は良いが、重量が大きいという問題があった。   Moreover, since the conventional loop type heat transport device described in Patent Document 2 is made of a block-shaped metal in which a hole is formed in a metal such as copper, the strength is high and the heat dissipation characteristics are good. There was a problem that the weight was large.

この発明は、上記のような問題点を解消するためになされたものであり、液体が逆流し難く、軽量で強度が高いループ型熱輸送機器を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a loop type heat transport device that is difficult to reverse flow of liquid, is lightweight, and has high strength.

本発明は、循環液を下方から上方へ通流させる複数の蒸発器内部流路が内部に形成され、外部に発熱体が設置された金属製の蒸発板と、蒸発器内部流路下方に位置する予熱液送入口が接続される蒸発器ヘッダ管とで構成される蒸発器と、循環液の高温液体送入口と内部流路と低温液体送出口を有し循環液の熱を放出する放熱器と、放熱器の低温液体送出口から放出された循環液が送入される低温液体送入口を有する熱交換器入口ヘッダと、予熱液体流路を通じて蒸発器ヘッダ管へ循環液が送出される予熱液体送出口を有する熱交換器出口ヘッダと、熱交換器入口ヘッダと熱交換器出口ヘッダとを連結する熱交換器内部流路となる伝熱管と、この伝熱管の周囲に位置し、蒸発器内部流路上方に位置する二相流体送出口から送出される循環液およびこの循環液の蒸気が収容される収容部とを有して、伝熱管の内部の循環液と収容部の蒸気との間で熱交換させる熱交換器と、収容部から循環液が送出される高温液体送出口と放熱器の高温液体送入口とを連結する高温液体流路とを備えたループ型熱輸送機器であって、蒸発器内部流路の循環液に接する内面は、蒸発板の金属とは異なる金属で形成されたものである。   In the present invention, a plurality of evaporator internal flow paths through which circulating fluid flows from below to above are formed, a metal evaporation plate having a heating element installed outside, and a position below the evaporator internal flow path An evaporator composed of an evaporator header pipe to which a preheating liquid inlet is connected, a radiator having a high temperature liquid inlet, an internal flow path, and a low temperature liquid outlet for the circulating liquid and releasing the heat of the circulating liquid And a heat exchanger inlet header having a cryogenic liquid inlet into which the circulating liquid discharged from the cryogenic liquid outlet of the radiator is sent, and preheating in which the circulating liquid is sent to the evaporator header pipe through the preheating liquid channel A heat exchanger outlet header having a liquid outlet, a heat exchanger tube serving as a heat exchanger internal channel connecting the heat exchanger inlet header and the heat exchanger outlet header, and an evaporator located around the heat exchanger tube Circulating fluid delivered from the two-phase fluid outlet located above the internal flow path and A heat exchanger that has a storage portion in which the steam of the circulating fluid is stored and exchanges heat between the circulating fluid in the heat transfer tube and the steam in the storage portion, and the circulating fluid is sent out from the storage portion A loop-type heat transport device having a high-temperature liquid flow path that connects a high-temperature liquid delivery port and a high-temperature liquid feed port of a radiator, and the inner surface of the evaporator internal flow path that is in contact with the circulating liquid is a metal of the evaporation plate It is made of a different metal.

この発明によれば、循環液が逆流せず、軽量で強度が高いループ型熱輸送機器を提供できる。   According to the present invention, it is possible to provide a loop-type heat transport device that is free from circulating fluid, is lightweight, and has high strength.

本発明の実施の形態1によるループ型熱輸送機器の構成を示す断面図である。It is sectional drawing which shows the structure of the loop type heat transport apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるループ型熱輸送機器の構成を示す、図1のA−A断面での断面図である。It is sectional drawing in the AA cross section of FIG. 1 which shows the structure of the loop type heat transport apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるループ型熱輸送機器の構成を示す、図1のB−B断面での断面図である。It is sectional drawing in the BB cross section of FIG. 1 which shows the structure of the loop type heat transport apparatus by Embodiment 1 of this invention. 本発明の実施の形態1によるループ型熱輸送機器の構成を示す、図3の蒸発管3の部分を拡大して示す部分拡大断面図である。It is a partial expanded sectional view which expands and shows the part of the evaporation pipe | tube 3 of FIG. 3 which shows the structure of the loop type heat transport apparatus by Embodiment 1 of this invention. 本発明の実施の形態2によるループ型熱輸送機器の構成を示す断面図である。It is sectional drawing which shows the structure of the loop type heat transport apparatus by Embodiment 2 of this invention. 本発明の実施の形態2によるループ型熱輸送機器の構成を示す、図5のA−A断面での断面図である。It is sectional drawing in the AA cross section of FIG. 5 which shows the structure of the loop type heat transport apparatus by Embodiment 2 of this invention. 本発明の実施の形態3によるループ型熱輸送機器の構成を示す断面図である。It is sectional drawing which shows the structure of the loop type heat transport apparatus by Embodiment 3 of this invention. 本発明の実施の形態3によるループ型熱輸送機器の構成を示す、図7のA−A断面での断面図である。It is sectional drawing in the AA cross section of FIG. 7 which shows the structure of the loop type heat transport apparatus by Embodiment 3 of this invention. 本発明の実施の形態4によるループ型熱輸送機器の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the loop type heat transport apparatus by Embodiment 4 of this invention. 本発明の実施の形態4によるループ型熱輸送機器の効果を説明する模式図である。It is a schematic diagram explaining the effect of the loop type heat transport apparatus by Embodiment 4 of this invention. 本発明の実施の形態5によるループ型熱輸送機器の要部の構成を示す部分拡大断面図である。It is a partial expanded sectional view which shows the structure of the principal part of the loop type heat transport apparatus by Embodiment 5 of this invention. 本発明の実施の形態6によるループ型熱輸送機器の一部組み立て前の構成を示す断面図である。It is sectional drawing which shows the structure before the partial assembly of the loop type heat transport apparatus by Embodiment 6 of this invention. 本発明の実施の形態6によるループ型熱輸送機器の組み立て後の構成を示す断面図である。It is sectional drawing which shows the structure after the assembly of the loop type heat transport apparatus by Embodiment 6 of this invention. 本発明の実施の形態7によるループ型熱輸送機器の構成を示す断面図である。It is sectional drawing which shows the structure of the loop type heat transport apparatus by Embodiment 7 of this invention. 本発明の実施の形態7によるループ型熱輸送機器の構成を示す、図14のA−A断面での断面図である。It is sectional drawing in the AA cross section of FIG. 14 which shows the structure of the loop type heat transport apparatus by Embodiment 7 of this invention. 本発明の実施の形態8によるループ型熱輸送機器の要部の構成を示す断面図である。It is sectional drawing which shows the structure of the principal part of the loop type heat transport apparatus by Embodiment 8 of this invention. 本発明の実施の形態8によるループ型熱輸送機器の要部の別の構成を示す断面図である。It is sectional drawing which shows another structure of the principal part of the loop type heat transport apparatus by Embodiment 8 of this invention. 本発明の実施の形態8によるループ型熱輸送機器の要部のさらに別の構成を示す断面図である。It is sectional drawing which shows another structure of the principal part of the loop type heat transport apparatus by Embodiment 8 of this invention. 本発明の実施の形態8によるループ型熱輸送機器の要部のさらに別の構成を示す断面図である。It is sectional drawing which shows another structure of the principal part of the loop type heat transport apparatus by Embodiment 8 of this invention.

実施の形態1.
図1は本発明の実施の形態1によるループ型熱輸送機器の構成を示す断面図であり、図2は、図1に示すA−A断面における断面図、図3は、図1に示すB−B断面における断面図である。ループ型熱輸送機器1は蒸発器2と放熱器5と熱交換器12を有し、流路がループ状になるようにそれぞれが配管で接続されており、内部を循環液25が循環することで熱を輸送する構成となっている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a configuration of a loop heat transport device according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. 1, and FIG. It is sectional drawing in a -B cross section. The loop heat transport device 1 has an evaporator 2, a radiator 5, and a heat exchanger 12, each of which is connected by a pipe so that the flow path is in a loop shape, and the circulating liquid 25 circulates inside. It is configured to transport heat.

図3に示すように、蒸発器2は、蒸発板4の内部に蒸発器内部流路となる蒸発管3を有しており、図4の部分拡大図に示すように、固定材29としてはんだやろう材などを用いて蒸発管3が蒸発板4に接合される。実施の形態1では蒸発管3の本数と同数の穴を蒸発板4にあけ、蒸発管3を挿入し固定材29で接合しているが、この構成に限らず蒸発管3を蒸発板4で固定できる構成であればよい。蒸発管3の下端となる予熱液体送入口22は、蒸発管3の本数と同数の穴を設けた蒸発器ヘッダ管23と、ろう付け、溶接などを用いて接合される。また、蒸発板4の外面には複数の発熱体24が設けられている。   As shown in FIG. 3, the evaporator 2 has an evaporation pipe 3 serving as an evaporator internal flow path inside the evaporation plate 4. As shown in the partially enlarged view of FIG. The evaporation tube 3 is joined to the evaporation plate 4 using a brazing filler metal or the like. In the first embodiment, the same number of holes as the number of the evaporation tubes 3 are formed in the evaporation plate 4, and the evaporation tubes 3 are inserted and joined by the fixing material 29. Any configuration that can be fixed is acceptable. The preheating liquid inlet 22 which is the lower end of the evaporation pipe 3 is joined to the evaporator header pipe 23 provided with the same number of holes as the number of the evaporation pipes 3 by using brazing, welding or the like. A plurality of heating elements 24 are provided on the outer surface of the evaporation plate 4.

放熱器5は、高温液体送入口6を有した放熱器入口ヘッダ7と低温液体送出口10を有した放熱器出口ヘッダ9の間を放熱器内部流路8で連結され、放熱器内部流路間には複数の放熱フィン11が設けられている。なお、放熱器5は図1の形状に限らず、循環液25の熱を外部に放出できればよく、その形状、寸法、構造に特に制限はない。   The radiator 5 is connected between a radiator inlet header 7 having a high-temperature liquid inlet 6 and a radiator outlet header 9 having a low-temperature liquid outlet 10 by a radiator internal channel 8. A plurality of radiating fins 11 are provided between them. Note that the radiator 5 is not limited to the shape shown in FIG. 1, and it is sufficient that the heat of the circulating fluid 25 can be released to the outside, and the shape, size, and structure are not particularly limited.

熱交換器12は、熱交換器入口ヘッダ14と収容部18と熱交換器出口ヘッダ17が接合された円筒状の容器であり、熱交換器入口ヘッダ14と熱交換器出口ヘッダ17は熱交換器内部流路となる複数の伝熱管15により連結されている。   The heat exchanger 12 is a cylindrical container in which the heat exchanger inlet header 14, the housing portion 18, and the heat exchanger outlet header 17 are joined. The heat exchanger inlet header 14 and the heat exchanger outlet header 17 exchange heat. They are connected by a plurality of heat transfer tubes 15 that serve as internal flow paths.

熱交換器入口ヘッダ14は低温液体送入口13を有しており、放熱器5の低温液体送出口10と接合されている。熱交換器出口ヘッダ17は予熱液体送出口16を有しており、予熱液体流路21を介して蒸発器ヘッダ管23と接合されている。収容部18は高温液体送出口19を有しており、高温液体流路20を介して放熱器の高温液体送入口6と接続されている。また、収容部18の下方には蒸発器2が配置されており、収容部18の下方に蒸発管3の本数と同数の穴を設け、蒸発管3上方の二相流体送出口28と接合される。なお、接合方法としては、ろう付け、溶接などを用いる。放熱器5と熱交換器12の間には取り付け板27が設けられており、所定の箇所に取り付けが可能となっている。   The heat exchanger inlet header 14 has a cryogenic liquid inlet 13 and is joined to the cryogenic liquid outlet 10 of the radiator 5. The heat exchanger outlet header 17 has a preheating liquid delivery port 16, and is joined to the evaporator header pipe 23 via the preheating liquid channel 21. The container 18 has a high temperature liquid delivery port 19 and is connected to the high temperature liquid delivery port 6 of the radiator via a high temperature liquid flow path 20. In addition, the evaporator 2 is disposed below the storage unit 18, and the same number of holes as the number of the evaporation tubes 3 are provided below the storage unit 18, and joined to the two-phase fluid delivery port 28 above the evaporation tube 3. The In addition, brazing, welding, etc. are used as a joining method. An attachment plate 27 is provided between the radiator 5 and the heat exchanger 12 and can be attached to a predetermined location.

以下に動作原理を示す。ループ型熱輸送機器の内部は真空排気されて循環液25が封入されている。蒸発器2では、発熱体24で発生した熱により、蒸発管3を流れる循環液25が加熱されて昇温し、循環液25の一部が蒸気26となり、高温の循環液25と蒸気26の気液二相流体を生成する(図2参照)。蒸発管3内では気液二相流体の見かけの密度と循環液25の密度との差から生じる浮力によって気液二相流体を上昇させ二相流体送出口28から気液二相流体が熱交換器12の収容部18へ送入される。   The operating principle is shown below. The inside of the loop heat transport device is evacuated and filled with a circulating fluid 25. In the evaporator 2, the circulating fluid 25 flowing through the evaporation pipe 3 is heated by the heat generated in the heating element 24 to increase the temperature, and a part of the circulating fluid 25 becomes the steam 26, and the high-temperature circulating fluid 25 and the steam 26 are heated. A gas-liquid two-phase fluid is generated (see FIG. 2). In the evaporation pipe 3, the gas-liquid two-phase fluid is raised by the buoyancy generated from the difference between the apparent density of the gas-liquid two-phase fluid and the density of the circulating fluid 25, and the gas-liquid two-phase fluid exchanges heat from the two-phase fluid delivery port 28. It is fed into the container 18 of the container 12.

収容部18内部では放熱器5から伝熱管15内に送出された低温の循環液25と、伝熱管15外部の蒸気26とが伝熱管15の壁を介して熱交換し、蒸気26が凝縮されて液体へと相変化し、高温の循環液25と共に液単相となり高温液体送出口19から送出される。   Inside the accommodating portion 18, the low-temperature circulating liquid 25 sent from the radiator 5 into the heat transfer tube 15 and the steam 26 outside the heat transfer tube 15 exchange heat through the wall of the heat transfer tube 15, and the steam 26 is condensed. The phase is changed to a liquid and becomes a liquid single phase together with the high-temperature circulating liquid 25 and is sent out from the high-temperature liquid outlet 19.

高温の循環液25は高温液体流路20を通り、高温液体送入口6から放熱器5の放熱器入口ヘッダ7へ送入される。放熱器入口ヘッダ7は高温の循環液25を放熱器内部流路に分配する機能を有している。分配された高温の循環液25は複数設けられている放熱器内部流路8を通流し、放熱フィン11から熱を放出することで低温の循環液25となり放熱器出口ヘッダ9で合流し、低温液体送出口10から送出される。   The high-temperature circulating liquid 25 passes through the high-temperature liquid flow path 20 and is sent from the high-temperature liquid inlet 6 to the radiator inlet header 7 of the radiator 5. The radiator inlet header 7 has a function of distributing the high-temperature circulating fluid 25 to the radiator internal flow path. The distributed high-temperature circulating fluid 25 flows through the plurality of radiator internal flow paths 8 and releases heat from the radiation fins 11 to become a low-temperature circulating fluid 25 and merges at the radiator outlet header 9, It is delivered from the liquid delivery port 10.

低温の循環液25は低温液体送入口13から熱交換器12の熱交換器入口ヘッダ14へ送入され、伝熱管15へと分配される。伝熱管15では、前述のように低温の循環液25が収容部18内の蒸気26と伝熱管15の壁面で熱交換し、伝熱管15を通流する循環液25は昇温する。昇温した循環液25は熱交換器出口ヘッダ17で合流し、予熱液体送出口16から送出される。   The low-temperature circulating liquid 25 is sent from the low-temperature liquid inlet 13 to the heat exchanger inlet header 14 of the heat exchanger 12 and distributed to the heat transfer tubes 15. In the heat transfer tube 15, as described above, the low-temperature circulating fluid 25 exchanges heat between the steam 26 in the housing portion 18 and the wall surface of the heat transfer tube 15, and the circulating fluid 25 flowing through the heat transfer tube 15 is heated. The heated circulating fluid 25 joins at the heat exchanger outlet header 17 and is sent out from the preheating liquid outlet 16.

熱交換器出口ヘッダ17から送出された循環液25は予熱液体流路21を通流し、蒸発器ヘッダ管23へ流入する。蒸発器ヘッダ管23は循環液25を蒸発管3へ分配する機能を有している。循環液25は予熱液体送入口22から蒸発管3へ送入され、一連のループを形成している。   The circulating fluid 25 delivered from the heat exchanger outlet header 17 flows through the preheating liquid channel 21 and flows into the evaporator header pipe 23. The evaporator header pipe 23 has a function of distributing the circulating liquid 25 to the evaporation pipe 3. The circulating fluid 25 is fed from the preheated liquid feed port 22 to the evaporation pipe 3 to form a series of loops.

以上の構成により、二相流体送出口28から送出される循環液25の気液二相流体の蒸気26は熱交換器12の収容部18内で伝熱管15の壁を介して熱交換されて液体となるので、収容部18内部(蒸発管3の二相流体送出口28周辺)の圧力は低く保たれ、蒸発管3へ循環液25が逆流し難い構成となっている。   With the above configuration, the vapor 26 of the gas-liquid two-phase fluid of the circulating liquid 25 delivered from the two-phase fluid outlet 28 is heat-exchanged through the wall of the heat transfer tube 15 in the accommodating portion 18 of the heat exchanger 12. Since it becomes a liquid, the pressure inside the container 18 (around the two-phase fluid delivery port 28 of the evaporation pipe 3) is kept low, and the circulating liquid 25 is difficult to flow back to the evaporation pipe 3.

循環液25としては、熱伝導率や比熱の大きい熱特性のよい流体や粘性係数が小さく流動特性が良い流体を用いることが好ましい。気体の密度に対する液体の密度の比が大きい流体が好ましく、蒸留水、アルコール、液体金属などの単一成分からなる流体、または不凍液、アルコール水溶液等の多成分流体が使用される。多成分流体を用いた場合には、気化する成分と気化しない成分があるが、収容部18内で蒸気26が凝縮して生成された液体成分が収容部18内で撹拌・混合され、循環液25として高温液体送出口19から送出される。   As the circulating liquid 25, it is preferable to use a fluid having a high thermal conductivity and specific heat and a good thermal property or a fluid having a small viscosity coefficient and a good fluidity. A fluid having a large ratio of the liquid density to the gas density is preferable, and a fluid composed of a single component such as distilled water, alcohol or liquid metal, or a multi-component fluid such as an antifreeze liquid or an alcohol aqueous solution is used. When a multi-component fluid is used, there are components that are vaporized and components that are not vaporized, but the liquid component produced by condensing the vapor 26 in the container 18 is agitated and mixed in the container 18, and the circulating fluid 25 is sent out from the high temperature liquid outlet 19.

従来の、特許文献2に開示されたループ型熱輸送機器では、蒸発器が穴加工をしたブロック状の金属体で構成されていた。ブロック状の金属体である蒸発器全体は、蒸留水や不凍液などの水を含む循環液を用いる場合に不凝縮ガスの発生を抑えるため銅で構成する必要があり重量が大きくなるという問題があった。しかし、本実施の形態1のループ型熱輸送機器1では、蒸発器2を、循環液25に接触する蒸発管3と、循環液25に接触しない蒸発板4とで構成したため、循環液25と接触する蒸発管3のみを銅とし、重量の多くを占める蒸発板4をアルミニウムなど軽い金属とすることで、蒸発器2全体を軽量化することが可能となる。また、蒸発管3をアルミニウムなど銅以外の金属のパイプとして、内面を銅メッキしても良い。   In the conventional loop-type heat transport device disclosed in Patent Document 2, the evaporator is composed of a block-shaped metal body with holes drilled. The entire evaporator, which is a block-shaped metal body, needs to be made of copper in order to suppress the generation of non-condensable gas when using circulating liquids containing water such as distilled water and antifreeze liquid, which increases the weight. It was. However, in the loop heat transport device 1 according to the first embodiment, the evaporator 2 is configured by the evaporation pipe 3 that is in contact with the circulating liquid 25 and the evaporation plate 4 that is not in contact with the circulating liquid 25. By using only the evaporating tube 3 in contact with copper and the evaporating plate 4 occupying much of the weight as a light metal such as aluminum, the entire evaporator 2 can be reduced in weight. Further, the evaporation pipe 3 may be made of a metal pipe other than copper, such as aluminum, and the inner surface may be plated with copper.

なお、ループ型熱輸送機器の部品の材質としては熱伝導性のよい金属が好ましい。前記のように実施の形態1では蒸発板4をアルミニウムとし、それ以外を銅としている。蒸留水や不凍液などの水を含む循環液25を用いる場合は、接液部を銅とすることで不凝縮ガスの発生を抑え、冷却性能の劣化を防ぐことができる。なお、アルミニウムで構成される部品の外側表面をメッキ加工することで耐食性を向上させても良い。   In addition, as a material of the components of the loop heat transport device, a metal having good thermal conductivity is preferable. As described above, in the first embodiment, the evaporation plate 4 is made of aluminum and the others are made of copper. When the circulating liquid 25 containing water such as distilled water or antifreeze is used, the generation of non-condensable gas can be suppressed by making the wetted part copper, and deterioration of cooling performance can be prevented. In addition, you may improve corrosion resistance by plating the outer surface of the components comprised with aluminum.

また、ループ型熱輸送機器1の全ての部品の材質をアルミニウムとしても良い。このとき、循環液25として蒸留水や不凍液などの水を含む循環液25を用いる場合は、アルミニウム製部品の接液面を銅メッキすることで不凝縮ガスの発生を抑え、冷却性能の劣化を防ぐことができる。部品を全てアルミニウム化することで、銅製の部品を用いた場合と比較して大幅に軽量化することが可能となる。また、蒸発管3を設けずに、蒸発板4をアルミニウム板で構成し、このアルミニウム板に貫通穴を形成し、貫通穴の内面を銅メッキすることで、貫通穴自身を蒸発器内部流路としてもよい。   Moreover, it is good also considering the material of all the components of the loop type heat transport apparatus 1 as aluminum. At this time, when the circulating fluid 25 containing water such as distilled water or antifreeze is used as the circulating fluid 25, the generation of non-condensable gas is suppressed by copper-plating the wetted surface of the aluminum part, thereby reducing the cooling performance. Can be prevented. By making all the parts aluminum, it is possible to significantly reduce the weight as compared with the case of using copper parts. Further, the evaporation plate 4 is made of an aluminum plate without providing the evaporation tube 3, a through hole is formed in the aluminum plate, and the inner surface of the through hole is plated with copper, thereby allowing the through hole itself to flow inside the evaporator. It is good.

以上のように、蒸発器内部流路の循環液25に接する内面は、循環液25に対して腐食し難い金属で形成するのが好ましい。循環液25が、蒸留水や不凍液のように水を含む液体の場合、腐食し難い金属として、水素よりも標準電極電位が大きい(イオン化傾向が小さい)金属を選択するのが好ましい。また、蒸発板4は軽い金属、すなわち、蒸発器内部流路の循環液25に接する内面を形成する金属よりも密度が小さい金属材料により構成するのが好ましい。   As described above, it is preferable to form the inner surface of the evaporator internal flow passage in contact with the circulating fluid 25 with a metal that is unlikely to corrode with respect to the circulating fluid 25. When the circulating liquid 25 is a liquid containing water such as distilled water or antifreeze liquid, it is preferable to select a metal having a higher standard electrode potential (smaller ionization tendency) than hydrogen as a metal that hardly corrodes. The evaporation plate 4 is preferably made of a light metal, that is, a metal material having a density lower than that of the metal forming the inner surface that contacts the circulating fluid 25 of the evaporator internal flow path.

発熱体24は図2や図3に示すように蒸発板4の両面に設けてもよいし、片面に設けてもよい。本実施の形態1では蒸発板4の内部に管状の蒸発管3が配置されているので、発熱体24を両面に設けても、発熱体24の熱を効率よく循環液25に移送することができ、複数の発熱体を同時に冷却できる。   The heating element 24 may be provided on both sides of the evaporation plate 4 as shown in FIGS. 2 and 3, or may be provided on one side. In the first embodiment, since the tubular evaporation tube 3 is arranged inside the evaporation plate 4, even if the heating element 24 is provided on both sides, the heat of the heating element 24 can be efficiently transferred to the circulating fluid 25. It is possible to cool a plurality of heating elements at the same time.

また、複数の発熱体を設ける場合、発熱量が大きい発熱体や、温度をより低くする必要がある発熱体など、より効率高く冷却する必要がある発熱体240を、図3の断面図における中央付近に設けてもよい。すなわち、図3において、中央付近に設置されている発熱体240が、周辺に設置されている発熱体24よりも高効率冷却が必要な発熱体である。蒸発器2の中央付近は蒸発管3の通流特性が良いため、高効率冷却が必要な発熱体240を中央付近に配置することで、放熱特性を向上させることが可能となる。   When a plurality of heating elements are provided, a heating element 240 that needs to be cooled more efficiently, such as a heating element that generates a large amount of heat or a heating element that requires a lower temperature, is shown in the center of the cross-sectional view of FIG. It may be provided in the vicinity. That is, in FIG. 3, the heating element 240 installed near the center is a heating element that requires higher efficiency cooling than the heating element 24 installed in the vicinity. Since the flow characteristic of the evaporator tube 3 is good near the center of the evaporator 2, it is possible to improve the heat dissipation characteristics by arranging the heating element 240 that requires high-efficiency cooling near the center.

実施の形態2.
図5は本発明の実施の形態2によるループ型熱輸送機器の構成を示す断面図である。また、図6は、図5のA−A断面での断面図である。図5および図6において、図1および図2と同一符号は同一または相当する部分を示す。図5および図6に示すように、実施の形態5によるループ型熱輸送機器1では、蒸発管3の二相流体送出口28は、収容部18の下面からの突き出し高さhが3mm以上となるように配置されている。
Embodiment 2. FIG.
FIG. 5 is a cross-sectional view showing a configuration of a loop heat transport device according to Embodiment 2 of the present invention. 6 is a cross-sectional view taken along the line AA of FIG. 5 and 6, the same reference numerals as those in FIGS. 1 and 2 indicate the same or corresponding parts. As shown in FIGS. 5 and 6, in the loop heat transport device 1 according to the fifth embodiment, the two-phase fluid delivery port 28 of the evaporation tube 3 has a protruding height h from the lower surface of the housing portion 18 of 3 mm or more. It is arranged to be.

高さhが小さいと、蒸発管3の二相流体送出口28が循環液25で満たされるため、収容部18へ送出される循環液25の二相流体の流動抵抗が大きく、循環流量が低下し放熱特性が悪化する。   When the height h is small, the two-phase fluid delivery port 28 of the evaporation pipe 3 is filled with the circulating fluid 25, so that the flow resistance of the two-phase fluid of the circulating fluid 25 delivered to the storage unit 18 is large and the circulating flow rate is reduced. However, the heat dissipation characteristics deteriorate.

図5に示す突き出し高さhを3mm以上とすることで、収容部18下面の蒸発管3の外周部分が高温循環液専用通路34となり、蒸発管3の二相流体送出口28が循環液25で満たされず、蒸発管3から収容部18へ送出される循環液25の二相流体の流動抵抗が小さくなり、循環流量が向上し放熱特性が改善する。特に、本ループ型熱輸送機器1では、蒸発管3が複数並列に配置されているため、高温循環液専用通路34を設けることで、高温の循環液25が高温液体流路20に到達するまでの流れが、蒸発管3から噴出する循環液25の気液二相流体に妨げられ難く、循環流量が向上する。また、発熱量が極端に小さい場合や、発熱体24が取り付けられない箇所の、蒸発管3からの逆流を抑制することもできる。さらに、hを大きくすれば、本体が傾斜した場合にも二相流体送出口28が循環液25で満たされず循環流量が低下しないので放熱特性が向上する。   By setting the protrusion height h shown in FIG. 5 to 3 mm or more, the outer peripheral portion of the evaporation pipe 3 on the lower surface of the housing portion 18 becomes a high-temperature circulating fluid passage 34, and the two-phase fluid delivery port 28 of the evaporation pipe 3 is the circulating fluid 25. In other words, the flow resistance of the two-phase fluid of the circulating fluid 25 sent from the evaporation pipe 3 to the accommodating portion 18 is reduced, the circulation flow rate is improved, and the heat dissipation characteristics are improved. In particular, in the present loop heat transport device 1, since a plurality of the evaporation pipes 3 are arranged in parallel, by providing the high-temperature circulating liquid dedicated passage 34, until the high-temperature circulating liquid 25 reaches the high-temperature liquid flow path 20. Is not easily disturbed by the gas-liquid two-phase fluid of the circulating fluid 25 ejected from the evaporation pipe 3, and the circulating flow rate is improved. In addition, backflow from the evaporator tube 3 can be suppressed when the amount of heat generated is extremely small or where the heating element 24 is not attached. Furthermore, if h is increased, even when the main body is inclined, the two-phase fluid delivery port 28 is not filled with the circulating fluid 25 and the circulating flow rate does not decrease, so that the heat radiation characteristics are improved.

以上のように、蒸発管3の収容部18への突き出し高さhを3mm以上としたことで、放熱特性が向上し、ループ型熱輸送機器が小型化でき軽量化が可能となる。   As described above, by setting the protrusion height h of the evaporation tube 3 to the accommodating portion 18 to be 3 mm or more, the heat dissipation characteristics are improved, and the loop heat transport device can be reduced in size and weight.

実施の形態3.
図7は本実施の形態3によるループ型熱輸送機器の構成を示す断面図である。また、図8は、図7のA−A断面での断面図である。図7および図8において、図1および図2と同一符号は同一または相当する部分を示す。図7および図8で示すように、蒸発管3の二相流体送出口28の両サイドにガイド35を設けて、ガイド35で分離された空間の二相流体送出口28を含まない空間が高温循環液専用通路34として形成されるようにした。
Embodiment 3 FIG.
FIG. 7 is a cross-sectional view showing the configuration of the loop heat transport device according to the third embodiment. FIG. 8 is a cross-sectional view taken along the line AA of FIG. 7 and 8, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding parts. As shown in FIGS. 7 and 8, guides 35 are provided on both sides of the two-phase fluid delivery port 28 of the evaporation pipe 3, and the space that does not include the two-phase fluid delivery port 28 in the space separated by the guide 35 is hot. It was formed as a circulating fluid dedicated passage 34.

このような構成によれば、噴出した循環液25や蒸気26から伝熱管15で凝縮した循環液25の大部分は、収容部18とガイド35とで形成される高温循環液専用通路34を流れる。このため、二相流体送出口28上を流れる循環液25は少なくなり、流動抵抗が小さく放熱特性を向上させることができる。   According to such a configuration, most of the circulating fluid 25 condensed by the heat transfer tube 15 from the jetted circulating fluid 25 and the steam 26 flows through the high-temperature circulating fluid dedicated passage 34 formed by the storage portion 18 and the guide 35. . For this reason, the circulating fluid 25 flowing on the two-phase fluid delivery port 28 is reduced, the flow resistance is small, and the heat dissipation characteristics can be improved.

以上のように、ガイド35を設けることで、実施の形態2と同様、放熱特性が向上し、ループ型熱輸送機器が小型化でき軽量化が可能となる。   As described above, by providing the guide 35, the heat dissipation characteristics are improved as in the second embodiment, and the loop heat transport device can be reduced in size and reduced in weight.

実施の形態4.
図9は本実施の形態4によるループ型熱輸送機器の要部の構成を示す断面図であり、実施の形態1における図2に相当する図である。図9において図2と同一符号は同一または相当する部分を示す。図9に示すように、本実施の形態4によるループ型熱輸送機器の伝熱管15は、熱交換器12の収容部18内の隣接する伝熱管15同士の隙間sが3mm以上となるように配置されている。隙間sが小さいと、隣接する伝熱管15の外側に形成される凝縮液が連結し、伝熱管15の周囲に蒸気26の移動を妨げる凝縮液のブリッジが形成される。そのため、蒸気26と伝熱管15とが接する熱交換面積が小さくなり、放熱特性が悪化する。
Embodiment 4 FIG.
FIG. 9 is a cross-sectional view showing a configuration of a main part of the loop heat transport device according to the fourth embodiment, which corresponds to FIG. 2 in the first embodiment. 9, the same reference numerals as those in FIG. 2 denote the same or corresponding parts. As shown in FIG. 9, in the heat transfer tube 15 of the loop heat transport device according to the fourth embodiment, the gap s between adjacent heat transfer tubes 15 in the accommodating portion 18 of the heat exchanger 12 is 3 mm or more. Has been placed. When the gap s is small, the condensate formed on the outside of the adjacent heat transfer tube 15 is connected, and a condensate bridge that prevents the movement of the vapor 26 is formed around the heat transfer tube 15. Therefore, the heat exchange area where the steam 26 and the heat transfer tube 15 are in contact with each other is reduced, and the heat dissipation characteristics are deteriorated.

一例として、図10に、φ16mmの銅管151を、隙間s=3mm(図10(a))、および2mm(図10(b))で平行に並べ、その隙間に不凍液の水溶液(エチレングリコール50%)を流して形成された液ブリッジを観察した結果の模式図を示す。隙間3mmでは、図10(a)に示すように、短辺(25mm程度)の液ブリッジ251が形成されるが、これ以上成長しようとすると流下する。これに対し、隙間2mmでは、図10(b)に示すように、長辺の液ブリッジ252が形成される。よって、隙間sを3mm以上とすることで液ブリッジが形成されにくくなる。   As an example, in FIG. 10, copper pipes 151 having a diameter of 16 mm are arranged in parallel with a gap s = 3 mm (FIG. 10A) and 2 mm (FIG. 10B), and an antifreeze aqueous solution (ethylene glycol 50) is placed in the gap. %) Is a schematic view of the result of observing the liquid bridge formed. When the gap is 3 mm, a liquid bridge 251 having a short side (about 25 mm) is formed as shown in FIG. On the other hand, in the gap of 2 mm, a long side liquid bridge 252 is formed as shown in FIG. Therefore, the liquid bridge is hardly formed by setting the gap s to 3 mm or more.

図9のように隙間sを3mm以上とすることで、凝縮液が流下しやすくなり、隣接する伝熱管15同士の隙間に液ブリッジが形成されにくくなる。このようにして、熱交換面積が拡大するため放熱特性が向上し、ループ型熱輸送機器を小型化することができ軽量化が可能となる。   When the gap s is 3 mm or more as shown in FIG. 9, the condensate easily flows down, and a liquid bridge is hardly formed in the gap between the adjacent heat transfer tubes 15. Thus, since the heat exchange area is expanded, the heat dissipation characteristics are improved, and the loop heat transport device can be reduced in size and reduced in weight.

実施の形態5.
図11は本実施の形態5によるループ型熱輸送機器の蒸発管3付近の構成を示す部分拡大断面図であり、実施の形態1における図4に相当する図である。図11において図4と同一符号は同一または相当する部分を示す。図11に示すように、実施の形態5によるループ型熱輸送機器では蒸発管3内部にフィン33を設けている。
Embodiment 5 FIG.
FIG. 11 is a partial enlarged cross-sectional view showing a configuration in the vicinity of the evaporation pipe 3 of the loop heat transport device according to the fifth embodiment, which corresponds to FIG. 4 in the first embodiment. 11, the same reference numerals as those in FIG. 4 denote the same or corresponding parts. As shown in FIG. 11, in the loop heat transport device according to the fifth embodiment, fins 33 are provided inside the evaporation pipe 3.

このように構成されたループ型熱輸送機器によれば、蒸発管3内部にフィン33を設けることで気泡核が形成されやすくなり、低発熱時でも沸騰が促進され循環液を適正に循環させることが可能となる。また、蒸発管3内部にフィン33を設けることで伝熱面積も拡大し、蒸発部の熱抵抗を低減でき冷却性能が向上するため、ループ型熱輸送機器を小型化することができ軽量化が可能となる。   According to the loop heat transport device configured as described above, by providing the fins 33 inside the evaporation pipe 3, it becomes easy to form bubble nuclei, and boiling is promoted even when the heat is low, and the circulating fluid is circulated appropriately. Is possible. Further, by providing the fins 33 inside the evaporation pipe 3, the heat transfer area is enlarged, the heat resistance of the evaporation part can be reduced, and the cooling performance is improved, so that the loop heat transport device can be reduced in size and reduced in weight. It becomes possible.

実施の形態6.
図12および図13は、本実施の形態6によるループ型熱輸送機器の構成を示す断面図である。図12は、放熱器5や、熱交換器12、高温液体流路20を取り付け板27に取り付ける前の状態を示し、図13は取り付けた後の状態を示している。図12および図13において、図1と同一符号は同一または相当する部分を示す。図12および図13に示すように、実施の形態6によるループ型熱輸送機器では、放熱器5の高温液体送入口6と低温液体送出口10に、取り付け板27を貫通するようにパイプ30、31を取り付け、高温液体送入パイプ30を高温液体流路20に、低温液体送出パイプ31を熱交換器入口ヘッダ14の低温液体送入口13に接続する。
Embodiment 6 FIG.
12 and 13 are cross-sectional views showing the configuration of the loop heat transport device according to the sixth embodiment. FIG. 12 shows a state before the radiator 5, the heat exchanger 12, and the high-temperature liquid channel 20 are attached to the attachment plate 27, and FIG. 13 shows a state after the attachment. 12 and 13, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. As shown in FIG. 12 and FIG. 13, in the loop heat transport device according to the sixth embodiment, the pipe 30, through the attachment plate 27, penetrates the high temperature liquid inlet 6 and the low temperature liquid outlet 10 of the radiator 5. 31 is attached, and the high temperature liquid inlet pipe 30 is connected to the high temperature liquid flow path 20 and the low temperature liquid outlet pipe 31 is connected to the low temperature liquid inlet 13 of the heat exchanger inlet header 14.

このように構成されたループ型熱輸送機器によれば、蒸発器2および熱交換器12を接合させた部品と、放熱器5とを別々に製作しておき、最後に高温液体送入パイプ30と低温液体送出パイプ31を通す穴を設けた取り付け板27を挟み込む。取り付け板27を挟み込んだ後、高温液体送入パイプ30と高温液体流路20を、ろう付けや溶接で接合し、低温液体送出パイプ31と低温液体送入口13を、ろう付けや溶接で接合できるので製造が容易になる。   According to the loop-type heat transport device configured as described above, the component to which the evaporator 2 and the heat exchanger 12 are joined and the radiator 5 are separately manufactured, and finally the high-temperature liquid inlet pipe 30 is used. And a mounting plate 27 provided with a hole through which the low-temperature liquid delivery pipe 31 passes. After sandwiching the mounting plate 27, the high temperature liquid inlet pipe 30 and the high temperature liquid flow path 20 can be joined by brazing or welding, and the low temperature liquid delivery pipe 31 and the low temperature liquid inlet 13 can be joined by brazing or welding. Therefore, manufacture becomes easy.

また、図1のループ型熱輸送機器では取り付け板27も接液しているため、蒸留水や不凍液の水溶液などの循環液25を用いる場合は、取り付け板27に銅材を使用する必要があるため重量が大きくなるという問題があった。本実施の形態6の構成であれば取り付け板27は接液しないため、重量の軽いアルミニウム等の材料を使用することが可能となり、ループ型熱輸送機器全体を軽量化することが可能となる。   In addition, since the mounting plate 27 is also in contact with the loop heat transport device of FIG. 1, when using a circulating fluid 25 such as an aqueous solution of distilled water or antifreeze, it is necessary to use a copper material for the mounting plate 27. Therefore, there is a problem that the weight increases. Since the attachment plate 27 does not come into contact with the configuration of the sixth embodiment, it is possible to use a light material such as aluminum, and it is possible to reduce the weight of the entire loop heat transport device.

実施の形態7.
図14は実施の形態7によるループ型熱輸送機器の構成を示す断面図である。また、図15は、図14のA−A断面での断面図である。図14および図15において、図1および図2と同一符号は同一または相当する部分を示す。図14および図15に示すように、本実施の形態7によるループ型熱輸送機器では、蒸発板4と蒸発器ヘッダ管23の間に固定部材32を設けている。固定部材32は、少なくとも蒸発板4を支えるように設けられている。図1に示すループ型熱輸送機器では、蒸発器2の蒸発板4は蒸発管3の外周面と、はんだやろう材等の固定材29で接合されているのみであるため、蒸発器2に重量の大きい電子機器等の発熱体が取り付けられた場合に、蒸発器の耐久性、耐振動性が低いという問題があった。
Embodiment 7 FIG.
FIG. 14 is a cross-sectional view showing a configuration of a loop heat transport device according to the seventh embodiment. FIG. 15 is a cross-sectional view taken along the line AA of FIG. 14 and 15, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding parts. As shown in FIGS. 14 and 15, in the loop heat transport apparatus according to the seventh embodiment, a fixing member 32 is provided between the evaporator plate 4 and the evaporator header pipe 23. The fixing member 32 is provided so as to support at least the evaporation plate 4. In the loop heat transport device shown in FIG. 1, the evaporator plate 4 of the evaporator 2 is only joined to the outer peripheral surface of the evaporator tube 3 by a fixing material 29 such as solder or brazing material. When a heating element such as a heavy electronic device is attached, there is a problem that the durability and vibration resistance of the evaporator are low.

本実施の形態7では、はんだやろう材などの固定材29で接合するだけでなく、蒸発器2の下部に蒸発板4を支えるように固定部材32を設けているので、固定部材32の上面で蒸発器2を固定することで、耐久性、耐振動性を向上させることが可能である。また、ループ型熱輸送機器を、固定部材32を用いて、機器を設置する装置の箱の床面等に固定することも可能である。耐久性、耐振動性を向上させることで部品を薄肉化でき、ループ型熱輸送機器の軽量化が可能となる。   In the seventh embodiment, since the fixing member 32 is provided so as to support the evaporation plate 4 at the lower part of the evaporator 2 as well as being joined by the fixing material 29 such as solder or brazing material, the upper surface of the fixing member 32. By fixing the evaporator 2 with this, it is possible to improve durability and vibration resistance. Moreover, it is also possible to fix the loop heat transport device to the floor surface of the box of the device in which the device is installed using the fixing member 32. By improving durability and vibration resistance, it is possible to reduce the thickness of parts and to reduce the weight of loop heat transport equipment.

実施の形態8.
図16〜図19は本実施の形態8によるループ型熱輸送機器の構成の一部を示す断面図で、蒸発器2と熱交換器12の部分を示している。図16〜図19において、図1と同一符号は同一または相当する部分を示す。図16〜図19に示すように、実施の形態8によるループ型熱輸送機器では、循環液の封止パイプ36を設けた。封止パイプ36は、図16に示すループ型熱輸送機器では収容部18に、図17では熱交換器入口ヘッダ14に、図18では熱交換器出口ヘッダ17に、図19では予熱液体流路21に設けられている。
Embodiment 8 FIG.
16-19 is sectional drawing which shows a part of structure of the loop type heat transport apparatus by this Embodiment 8, and has shown the part of the evaporator 2 and the heat exchanger 12. FIG. 16 to 19, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. As shown in FIGS. 16 to 19, in the loop heat transport device according to the eighth embodiment, a circulating fluid sealing pipe 36 is provided. In the loop type heat transport device shown in FIG. 16, the sealing pipe 36 is disposed in the accommodating portion 18, in FIG. 17, in the heat exchanger inlet header 14, in FIG. 18, in the heat exchanger outlet header 17, and in FIG. 21 is provided.

このように構成されたループ型熱輸送機器によれば、封止パイプ36からループ型熱輸送機器内部を真空排気し、循環液25を適量封入し、バルブ等で仮封止した状態で仮動作を行うことができる。封止パイプ36を図17〜図19で示すように配置した場合、封止パイプ36取り付け部は循環液25で満たされている箇所であるので、低発熱から高発熱まで仮動作で放熱特性を確認しながら液量を調整し、最終的に封止パイプ36を封じ切ることにより安定動作させることが可能となる。また、これにより液量の最適値を決定することができる。   According to the loop heat transport device configured as described above, the inside of the loop heat transport device is evacuated from the sealing pipe 36, and an appropriate amount of the circulating fluid 25 is sealed and temporarily operated with a valve or the like temporarily sealed. It can be performed. When the sealing pipe 36 is arranged as shown in FIGS. 17 to 19, the mounting portion of the sealing pipe 36 is a portion filled with the circulating fluid 25, so that the heat dissipation characteristics can be obtained by temporary operation from low heat generation to high heat generation. It is possible to stably operate by adjusting the amount of liquid while confirming and finally sealing off the sealing pipe 36. In addition, the optimum value of the liquid amount can be determined thereby.

また、ループ型熱輸送機器では装置内部の残留ガス、循環液25内に含まれる残留ガス、循環液25注入後内部で発生する不凝縮ガスは収容部18に蓄積される構成であるため、図16のように収容部18の上部に封止パイプ36を設けることで、循環液25の封入後に封止パイプ36から内部ガスを真空排気することが可能となる。もちろん、図17〜図19に示すような液量調節用の封止パイプ36と、図16に示すような内部ガス真空排気用の封止パイプ36を組み合わせて配置しても良い。   Further, in the loop type heat transport device, the residual gas inside the apparatus, the residual gas contained in the circulating liquid 25, and the non-condensable gas generated inside after circulating liquid 25 injection are stored in the storage unit 18, By providing the sealing pipe 36 at the top of the accommodating portion 18 as in FIG. 16, the internal gas can be evacuated from the sealing pipe 36 after the circulating fluid 25 is sealed. Of course, a sealing pipe 36 for adjusting the liquid amount as shown in FIGS. 17 to 19 and a sealing pipe 36 for evacuating the internal gas as shown in FIG.

1:ループ型熱輸送機器 2:蒸発器
3:蒸発管(蒸発器内部流路) 4:蒸発板
5:放熱器 6:高温液体送入口
7:放熱器入口ヘッダ 8:放熱器内部流路
9:放熱器出口ヘッダ 10:低温液体送出口
11:放熱フィン 12:熱交換器
13:低温液体送入口 14:熱交換器入口ヘッダ
15:伝熱管 16:予熱液体送出口
17:熱交換器出口ヘッダ 18:収容部
19:高温液体送出口 20:高温液体流路
21:予熱液体流路 22:予熱液体送入口
23:蒸発器ヘッダ管 24:発熱体
25:循環液 26:蒸気
27:取り付け板 28:二相流体送出口
29:固定材 30:高温液体送入パイプ
31:低温液体送出パイプ 32:固定部材
33:フィン 34:高温液体専用通路
35:ガイド 36:封止パイプ
1: Loop type heat transport device 2: Evaporator 3: Evaporator tube (evaporator internal flow path) 4: Evaporator plate 5: Radiator 6: High temperature liquid inlet 7: Radiator inlet header 8: Radiator internal flow path 9 : Heater outlet header 10: Cryogenic liquid outlet 11: Radiation fin 12: Heat exchanger 13: Cryogenic liquid inlet 14: Heat exchanger inlet header 15: Heat transfer pipe 16: Preheated liquid outlet 17: Heat exchanger outlet header 18: Container 19: High temperature liquid outlet 20: High temperature liquid flow path 21: Preheated liquid flow path 22: Preheated liquid inlet 23: Evaporator header pipe 24: Heating element 25: Circulating liquid 26: Steam 27: Mounting plate 28 : Two-phase fluid delivery port 29: Fixing material 30: High temperature liquid delivery pipe 31: Low temperature liquid delivery pipe 32: Fixing member 33: Fin 34: High temperature liquid dedicated passage 35: Guide 36: Sealing pipe

本発明は、循環液を下方から上方へ通流させる複数の蒸発器内部流路が内部に形成され、外部に発熱体が設置された金属製の蒸発板と、蒸発器内部流路下方に位置する予熱液送入口が接続される蒸発器ヘッダ管とで構成される蒸発器と、循環液の高温液体送入口と内部流路と低温液体送出口を有し循環液の熱を放出する放熱器と、放熱器の低温液体送出口から放出された循環液が送入される低温液体送入口を有する熱交換器入口ヘッダと、予熱液体流路を通じて蒸発器ヘッダ管へ循環液が送出される予熱液体送出口を有する熱交換器出口ヘッダと、熱交換器入口ヘッダと熱交換器出口ヘッダとを連結する熱交換器内部流路となる伝熱管と、この伝熱管の周囲に位置し、蒸発器内部流路上方に位置する二相流体送出口から送出される循環液およびこの循環液の蒸気が収容される収容部とを有して、伝熱管の内部の循環液と収容部の蒸気との間で熱交換させる熱交換器と、収容部から循環液が送出される高温液体送出口と放熱器の高温液体送入口とを連結する高温液体流路とを備えたループ型熱輸送機器であって、複数の蒸発器内部流路は、蒸発板の内部に形成された複数の貫通穴に、それぞれ蒸発板の材料とは異なる材料の蒸発管を挿入して形成され、蒸発管の一方の端部である複数の蒸発器内部流路上方の二相流体送出口は収容部の底面より高く突き出ており、かつ伝熱管より低い位置に配置されたものである。 In the present invention, a plurality of evaporator internal flow paths through which circulating fluid flows from below to above are formed, a metal evaporation plate having a heating element installed outside, and a position below the evaporator internal flow path An evaporator composed of an evaporator header pipe to which a preheating liquid inlet is connected, a radiator having a high temperature liquid inlet, an internal flow path, and a low temperature liquid outlet for the circulating liquid and releasing the heat of the circulating liquid And a heat exchanger inlet header having a cryogenic liquid inlet into which the circulating liquid discharged from the cryogenic liquid outlet of the radiator is sent, and preheating in which the circulating liquid is sent to the evaporator header pipe through the preheating liquid channel A heat exchanger outlet header having a liquid outlet, a heat exchanger tube serving as a heat exchanger internal channel connecting the heat exchanger inlet header and the heat exchanger outlet header, and an evaporator located around the heat exchanger tube Circulating fluid delivered from the two-phase fluid outlet located above the internal flow path and A heat exchanger that has a storage portion in which the steam of the circulating fluid is stored and exchanges heat between the circulating fluid in the heat transfer tube and the steam in the storage portion, and the circulating fluid is sent out from the storage portion A loop-type heat transport device having a high-temperature liquid flow path connecting a high-temperature liquid delivery port and a high-temperature liquid feed port of a radiator, and a plurality of evaporator internal flow paths are formed inside the evaporation plate Formed by inserting evaporation pipes of materials different from the material of the evaporation plate into the plurality of through holes, respectively, and accommodates the two-phase fluid outlets above the plurality of evaporator internal flow paths, which are one end of the evaporation pipes It protrudes higher than the bottom surface of the part and is disposed at a position lower than the heat transfer tube .

Claims (18)

循環液を下方から上方へ通流させる複数の蒸発器内部流路が内部に形成され、外部に発熱体が設置された金属製の蒸発板と、上記蒸発器内部流路下方に位置する予熱液送入口が接続される蒸発器ヘッダ管とで構成される蒸発器と、
上記循環液の高温液体送入口と放熱器内部流路と低温液体送出口とを有し、循環液の熱を放出する放熱器と、
上記放熱器の低温液体送出口から放出された循環液が送入される低温液体送入口を有する熱交換器入口ヘッダと、予熱液体流路を通じて上記蒸発器ヘッダ管へ循環液が送出される予熱液体送出口を有する熱交換器出口ヘッダと、上記熱交換器入口ヘッダと上記熱交換器出口ヘッダとを連結する熱交換器内部流路となる伝熱管と、この伝熱管の周囲に位置し、上記蒸発器内部流路上方に位置する二相流体送出口から送出される循環液とこの循環液の蒸気とが収容される収容部とを有して、上記伝熱管の内部の循環液と上記収容部の蒸気との間で熱交換させる熱交換器と、
上記収容部から循環液が送出される高温液体送出口と上記放熱器の高温液体送入口とを連結する高温液体流路と
を備えたループ型熱輸送機器であって、
上記蒸発器内部流路の上記循環液に接する内面は、上記蒸発板の金属とは異なる金属で形成されたことを特徴とするループ型熱輸送機器。
A plurality of evaporator internal flow paths through which the circulating liquid flows upward from below, a metal evaporation plate having a heating element installed outside, and a preheating liquid positioned below the evaporator internal flow path An evaporator composed of an evaporator header pipe to which the inlet is connected;
A radiator having a high-temperature liquid inlet, a radiator internal flow path, and a low-temperature liquid outlet of the circulating liquid, and releasing the heat of the circulating liquid;
A heat exchanger inlet header having a cryogenic liquid inlet into which the circulating liquid discharged from the cryogenic liquid outlet of the radiator is sent, and preheating in which the circulating liquid is sent to the evaporator header pipe through a preheating liquid channel A heat exchanger outlet header having a liquid delivery outlet, a heat transfer pipe serving as a heat exchanger internal flow path connecting the heat exchanger inlet header and the heat exchanger outlet header, and located around the heat transfer pipe, A circulating liquid sent out from the two-phase fluid delivery port located above the evaporator internal flow path, and a storage part for storing the vapor of the circulating liquid, and the circulating liquid inside the heat transfer tube and the above A heat exchanger for exchanging heat with the steam in the housing,
A loop type heat transport device comprising a high-temperature liquid flow path for connecting a high-temperature liquid delivery port through which the circulating fluid is delivered from the housing part and a high-temperature liquid delivery port of the radiator,
A loop type heat transport device, wherein an inner surface of the evaporator internal flow passage in contact with the circulating fluid is formed of a metal different from the metal of the evaporation plate.
上記循環液が水を含む液体であり、上記蒸発器内部流路の上記循環液に接する内面は、水素よりも標準電極電位が大きい金属で形成されたことを特徴とする請求項1に記載のループ型熱輸送機器。   The said circulating liquid is a liquid containing water, The inner surface which contact | connects the said circulating liquid of the said evaporator internal flow path was formed with the metal with a larger standard electrode potential than hydrogen. Loop type heat transport equipment. 上記蒸発板は、上記蒸発器内部流路の上記循環液に接する内面を形成する金属よりも密度が小さい金属材料で構成されたことを特徴とする請求項2に記載のループ型熱輸送機器。   3. The loop heat transport device according to claim 2, wherein the evaporation plate is made of a metal material having a density lower than that of a metal that forms an inner surface of the evaporator internal flow path that contacts the circulating fluid. 上記蒸発板はアルミニウム板であり、上記蒸発器内部流路は、上記蒸発板の内部に形成された貫通穴に蒸発管を挿入して形成されたことを特徴とする請求項3に記載のループ型熱輸送機器。   The loop according to claim 3, wherein the evaporation plate is an aluminum plate, and the evaporator internal flow path is formed by inserting an evaporation tube into a through hole formed in the evaporation plate. Mold heat transport equipment. 上記蒸発管が上記収容部内に突き出ていることを特徴とする請求項4に記載のループ型熱輸送機器。   The loop heat transport device according to claim 4, wherein the evaporation tube protrudes into the housing portion. 上記蒸発管の上記収容部内への突き出し寸法が3mm以上であることを特徴とする請求項5に記載のループ型熱輸送機器。   6. The loop heat transport device according to claim 5, wherein a protruding dimension of the evaporation tube into the housing portion is 3 mm or more. 上記蒸発管を銅パイプとしたことを特徴とする請求項4〜6のいずれか1項に記載のループ型熱輸送機器。   The loop heat transport device according to any one of claims 4 to 6, wherein the evaporation pipe is a copper pipe. 上記蒸発管の内面を銅メッキしたことを特徴とする請求項4〜6のいずれか1項に記載のループ型熱輸送機器。   The loop heat transport device according to any one of claims 4 to 6, wherein an inner surface of the evaporation tube is plated with copper. 上記蒸発板はアルミニウム板であり、上記蒸発器内部流路は、上記アルミニウム板に形成された貫通穴の内面を銅メッキして形成されたことを特徴とする請求項3に記載のループ型熱輸送機器。   The loop-type heat according to claim 3, wherein the evaporation plate is an aluminum plate, and the evaporator internal flow path is formed by copper plating the inner surface of a through hole formed in the aluminum plate. Transport equipment. 上記蒸発板の両面に上記発熱体を設置したことを特徴とする請求項1〜9のいずれか1項に記載のループ型熱輸送機器。   The loop heat transport device according to any one of claims 1 to 9, wherein the heating elements are installed on both surfaces of the evaporation plate. 上記発熱体を複数設置し、この複数の発熱体のうち、より効率高く冷却する必要がある発熱体を他の発熱体よりも上記蒸発板の中央寄りに設置したことを特徴とする請求項1〜9のいずれか1項に記載のループ型熱輸送機器。   A plurality of the heating elements are installed, and a heating element that needs to be cooled more efficiently among the plurality of heating elements is installed closer to the center of the evaporation plate than the other heating elements. The loop heat transport apparatus according to any one of? 9. 上記蒸発器内部流路の内面にフィンを設けたことを特徴とする請求項1〜9のいずれか1項に記載のループ型熱輸送機器。   The loop heat transport device according to any one of claims 1 to 9, wherein fins are provided on an inner surface of the evaporator internal flow path. 上記低温液体送出口と上記高温液体送入口とを上記放熱器の同じ側に配置するとともに、上記低温液体送出口に低温液体送出パイプを接合し、上記高温液体送入口に高温液体送入パイプを接合して、上記低温液体送出パイプと上記高温液体送入パイプとが貫通する取り付け板を設け、上記低温液体送出パイプを上記熱交換器の上記低温液体送入口に接合し、上記高温液体送入パイプを上記高温液体流路に接合したことを特徴とする請求項1に記載のループ型熱輸送機器。   The cryogenic liquid delivery port and the hot liquid delivery port are arranged on the same side of the radiator, a cryogenic liquid delivery pipe is joined to the cryogenic liquid delivery port, and a hot liquid delivery pipe is connected to the hot liquid delivery port. A mounting plate through which the cryogenic liquid delivery pipe and the hot liquid delivery pipe penetrate is joined, and the cryogenic liquid delivery pipe is joined to the cryogenic liquid inlet of the heat exchanger, and the hot liquid delivery The loop heat transport device according to claim 1, wherein a pipe is joined to the high-temperature liquid flow path. 上記取り付け板はアルミニウム板であることを特徴とする請求項13に記載のループ型熱輸送機器。   14. The loop heat transport device according to claim 13, wherein the mounting plate is an aluminum plate. 上記収容部における二相流体送出口を囲むようにガイドを設け、このガイドで区切られた空間のうち上記二相流体送出口を含まない空間を高温液体の専用通路としたことを特徴とする請求項1に記載のループ型熱輸送機器。   A guide is provided so as to surround the two-phase fluid delivery port in the housing portion, and a space not including the two-phase fluid delivery port among spaces partitioned by the guide is a dedicated passage for high-temperature liquid. Item 2. A loop heat transport device according to item 1. 上記蒸発板を支える固定部材を設けたことを特徴とする請求項1に記載のループ型熱輸送機器。   The loop heat transport device according to claim 1, further comprising a fixing member that supports the evaporation plate. 上記伝熱管が複数平行して設けられ、上記複数の伝熱管同士のうち隣接する伝熱管の隙間を3mm以上としたことを特徴とする請求項1に記載のループ型熱輸送機器。   The loop heat transport device according to claim 1, wherein a plurality of the heat transfer tubes are provided in parallel, and a gap between adjacent heat transfer tubes among the plurality of heat transfer tubes is set to 3 mm or more. 上記熱交換器または上記予熱液体流路に、外部から排気および循環液を封入するための封止パイプを設けたことを特徴とする請求項1に記載のループ型熱輸送機器。   The loop heat transport device according to claim 1, wherein a sealing pipe for sealing exhaust and circulating fluid from outside is provided in the heat exchanger or the preheating liquid channel.
JP2012530582A 2010-08-24 2011-07-07 Loop type heat transport equipment Pending JPWO2012026221A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010187041 2010-08-24
JP2010187041 2010-08-24
PCT/JP2011/065557 WO2012026221A1 (en) 2010-08-24 2011-07-07 Loop-type heat transportation device

Publications (1)

Publication Number Publication Date
JPWO2012026221A1 true JPWO2012026221A1 (en) 2013-10-28

Family

ID=45723234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530582A Pending JPWO2012026221A1 (en) 2010-08-24 2011-07-07 Loop type heat transport equipment

Country Status (2)

Country Link
JP (1) JPWO2012026221A1 (en)
WO (1) WO2012026221A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137775A (en) * 1992-10-22 1994-05-20 Furukawa Electric Co Ltd:The Radiation for semiconductor device
JP2007513506A (en) * 2003-12-08 2007-05-24 ノイズ リミット エーピーエス Cooling system with bubble pump
WO2007058063A1 (en) * 2005-11-17 2007-05-24 Konica Minolta Holdings, Inc. Display element and process for producing the same
WO2007119783A1 (en) * 2006-04-13 2007-10-25 Mitsubishi Electric Corporation Cooling apparatus and power converter
JP2010164260A (en) * 2009-01-16 2010-07-29 Mitsubishi Heavy Ind Ltd Method of manufacturing heat exchanger, heat transfer tube for the heat exchanger and the heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195226A (en) * 2004-01-06 2005-07-21 Mitsubishi Electric Corp Pumpless water cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06137775A (en) * 1992-10-22 1994-05-20 Furukawa Electric Co Ltd:The Radiation for semiconductor device
JP2007513506A (en) * 2003-12-08 2007-05-24 ノイズ リミット エーピーエス Cooling system with bubble pump
WO2007058063A1 (en) * 2005-11-17 2007-05-24 Konica Minolta Holdings, Inc. Display element and process for producing the same
WO2007119783A1 (en) * 2006-04-13 2007-10-25 Mitsubishi Electric Corporation Cooling apparatus and power converter
JP2010164260A (en) * 2009-01-16 2010-07-29 Mitsubishi Heavy Ind Ltd Method of manufacturing heat exchanger, heat transfer tube for the heat exchanger and the heat exchanger

Also Published As

Publication number Publication date
WO2012026221A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP4578552B2 (en) Cooling device and power conversion device
JP5678662B2 (en) Boiling cooler
US7926553B2 (en) Cooling system for electronic devices, in particular, computers
TWI778292B (en) Cooling device and cooling system using cooling device
CN102834688A (en) Phase change cooler and electronic equipment provided with same
US11744044B2 (en) Loop thermosyphon devices and systems, and related methods
WO2015146110A1 (en) Phase-change cooler and phase-change cooling method
WO2017110740A1 (en) Heat-dissipating device, phase-change cooling device in which same is used, and method for dissipating heat
JP6678235B2 (en) Heat exchanger
JPWO2016159056A1 (en) Heat medium distribution device and heat medium distribution method
JP2008258340A (en) Cooler and electronic apparatus equipped with the same
CN111059943A (en) Inner sleeve heat exchange loop heat pipe capable of refrigerating and heating
WO2012026221A1 (en) Loop-type heat transportation device
US11369042B2 (en) Heat exchanger with integrated two-phase heat spreader
WO2020054752A1 (en) Cooling device and cooling system using same
JP2015129594A (en) Airlift pump cooling device
JPH0849991A (en) Closed system temperature controller
JP4930472B2 (en) Cooling system
CN218955545U (en) Evaporator and loop heat pipe
JP2016191509A (en) Loop type heat pipe
JP2023001006A (en) Cooling device and array module
CN114828551A (en) Passive radiating evaporator and passive radiating system
JP2005283022A (en) Evaporator, thermosiphon, and stirling cooler
CN117848122A (en) Tower-type refrigerant two-phase change siphon radiator
CN111059938A (en) Coreless refrigerating and heating loop heat pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423