JPWO2010147055A1 - Ultrasonic imaging apparatus and ultrasonic imaging method - Google Patents

Ultrasonic imaging apparatus and ultrasonic imaging method Download PDF

Info

Publication number
JPWO2010147055A1
JPWO2010147055A1 JP2011519749A JP2011519749A JPWO2010147055A1 JP WO2010147055 A1 JPWO2010147055 A1 JP WO2010147055A1 JP 2011519749 A JP2011519749 A JP 2011519749A JP 2011519749 A JP2011519749 A JP 2011519749A JP WO2010147055 A1 JPWO2010147055 A1 JP WO2010147055A1
Authority
JP
Japan
Prior art keywords
pressure
ultrasonic
frequency distribution
frequency
contrast agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011519749A
Other languages
Japanese (ja)
Other versions
JP5341995B2 (en
Inventor
真理子 山本
真理子 山本
梅村 晋一郎
晋一郎 梅村
森 修
修 森
英世 鎌田
英世 鎌田
東 隆
隆 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2011519749A priority Critical patent/JP5341995B2/en
Publication of JPWO2010147055A1 publication Critical patent/JPWO2010147055A1/en
Application granted granted Critical
Publication of JP5341995B2 publication Critical patent/JP5341995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • G01S7/52039Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target exploiting the non-linear response of a contrast enhancer, e.g. a contrast agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

非侵襲・高精度・高い時間分解能で心内圧を計測する。超音波造影剤から反射された信号の減衰曲線、共鳴曲線から圧力を計算する。また、多成分液滴型造影剤を体内に注入し、検出したい圧力範囲を気液平衡になるように組成を設定し、気泡径を圧力に依存させて、減衰曲線、共鳴曲線へ圧力を強く反映させ、高精度な圧力計測を実現する。Measures intracardiac pressure with non-invasive, high accuracy, and high time resolution. The pressure is calculated from the attenuation curve and resonance curve of the signal reflected from the ultrasound contrast agent. In addition, a multi-component droplet type contrast agent is injected into the body, the composition is set so that the pressure range to be detected becomes gas-liquid equilibrium, and the bubble diameter depends on the pressure, increasing the pressure to the attenuation curve and resonance curve. Reflect and realize highly accurate pressure measurement.

Description

本発明は、医療用の超音波撮像装置及び方法に関し、特に非侵襲・高精度・高い時間分解能で心内圧を計測する超音波撮像装置及び方法に関する。   The present invention relates to an ultrasonic imaging apparatus and method for medical use, and more particularly to an ultrasonic imaging apparatus and method for measuring intracardiac pressure with noninvasive, high accuracy, and high time resolution.

心臓疾患は老化にともなう機能不全という意味ではすべての人が患う疾患であり、多くの先進国で3大死因の1つとなっている。このように経過の長い、患者の多い疾患の医療には、予防医療から高度医療まで広いフェーズがあるが、すべてのフェーズに共通する技術的なニーズとして、患者への負担の小ささがある。患者への負担の小さい検査技術があれば、早期診断をより初期へ、経過観察をよりきめ細かくでき、医療の質を向上することができる。   Heart disease is a disease that affects all people in terms of dysfunction associated with aging, and is one of the three leading causes of death in many developed countries. In such a long-term medical treatment of a disease with many patients, there are wide phases from preventive medical care to advanced medical care. However, as a technical need common to all phases, there is a small burden on the patient. If there is an examination technique with a small burden on the patient, early diagnosis can be made earlier, follow-up can be made more finely, and the quality of medical care can be improved.

血圧計測は心臓疾患の検査の基本である。現在主に行われている血圧計測方法は、予防医療では、上腕などをカフで段階的に圧迫して拍動音が消失する圧迫圧を計測値する圧迫検査、高度医療では、血管から心臓へ管を挿入して体外に残した管の端の圧力を計測値とするカテーテル検査である。   Blood pressure measurement is the basis of testing for heart disease. The main blood pressure measurement methods currently used are compression tests that measure the compression pressure at which the upper arm and other parts are compressed stepwise with a cuff in the preventive medicine, and the pulsating sound disappears. Is a catheter test in which the pressure at the end of the tube left outside the body after insertion is measured.

また、研究段階であるが、超音波撮像装置によって血圧を非侵襲に計測する方法が報告されている(特許文献1)。この方法は、液体中で超音波を照射された造影剤は、液体の圧力を線形に反映した信号強度の分調波を有するという現象を発見し、利用した方法である。手順としては、超音波造影剤を静脈注射したあと超音波診断装置で心臓を撮像し、分調波の信号強度(dB)を検出して、あらかじめ調べておいた分調波の信号強度と圧力の関係を用いて受信信号を血圧に換算している。   Moreover, although it is a research stage, the method of measuring blood pressure non-invasively with an ultrasonic imaging device is reported (patent document 1). This method is a method in which a contrast agent irradiated with ultrasonic waves in a liquid discovers a phenomenon that a subharmonic wave having a signal intensity that linearly reflects the pressure of the liquid is discovered and used. As a procedure, after intravenously injecting an ultrasonic contrast agent, the heart is imaged by an ultrasonic diagnostic apparatus, the signal intensity (dB) of the subharmonic wave is detected, and the signal intensity and pressure of the subharmonic wave that have been examined in advance. The received signal is converted into blood pressure using the relationship.

米国特許第6,302,845号明細書US Pat. No. 6,302,845

しかし、上記従来技術では、非侵襲性と、計測精度、時間分解能が両立できていない。具体的には、圧迫検査は計測値が心内圧ではないため、心内圧とみなすには精度が不足し、確定的な心臓検査として用いることはできない。カテーテル検査は侵襲的で、患者への負担が大きい。   However, the above-described conventional technology cannot achieve both noninvasiveness, measurement accuracy, and time resolution. Specifically, since the measurement value of the compression test is not the intracardiac pressure, the accuracy is insufficient to be regarded as the intracardiac pressure, and it cannot be used as a definitive cardiac test. Catheter examination is invasive and burdensome to the patient.

特許文献1の方法は、非侵襲に心内圧を計測する方法であるが、精度と時間分解能に問題がある。詳しくは、まず、時間分解能と血圧精度が両立しない点である。この方法では分調波から圧力を算出しているが、一般的に分調波は高いSN比では得られない。そこで、複数心拍分の計測を行って時相の同じ受信信号の平均値をとる、あるいは、時間区間を設定して時間区間内の受信信号の平均値をとることで、SN比を高めている。すなわち、精度を向上させるかわりに時間分解能を犠牲にしている。しかし、心内圧を医療行為として測定する場合には0.1秒以上の時間分解能が必要であり、かつ、複数心拍の時相平均処理は不整脈患者を検査対象から外すという問題があり、好ましくない。診断に使う値は、左室拡張末期圧など、部位と拍動周期のタイミングを指定した血圧であるからである。また、不整脈患者を検査対象外にしないためにも時間分解能は必要である。非健常者は医療上、重要かつ主な検査対象で、彼らは必然的に不整脈のあることが多い。次に、低い圧力範囲で精度が得られない問題がある。低い圧力範囲(20〜60mmHg)は心疾患の診断に重要な役割を果たす左室拡張末期圧の値域で、±5mmHg以上の精度が必要である。このように、特許文献1の方法は、診断に重要な値域で必要な精度が得られないため、医用装置として不十分である。   Although the method of patent document 1 is a method of measuring an intracardiac pressure non-invasively, there exists a problem in accuracy and time resolution. Specifically, first, the time resolution and the blood pressure accuracy are not compatible. In this method, the pressure is calculated from the subharmonic wave, but generally the subharmonic wave cannot be obtained at a high S / N ratio. Therefore, the SN ratio is increased by measuring multiple heartbeats and taking the average value of the received signals having the same time phase, or by setting the time interval and taking the average value of the received signals within the time interval. . In other words, instead of improving accuracy, time resolution is sacrificed. However, when measuring the intracardiac pressure as a medical practice, a time resolution of 0.1 seconds or more is necessary, and the time-phase average processing of multiple heartbeats has the problem of excluding arrhythmia patients from the examination target, which is not preferable. . This is because the value used for diagnosis is a blood pressure that specifies the timing of the region and the pulsation cycle, such as left ventricular end-diastolic pressure. Also, time resolution is necessary to prevent arrhythmic patients from being examined. Non-healthy people are important medically important test subjects, and they often have arrhythmias. Next, there is a problem that accuracy cannot be obtained in a low pressure range. The low pressure range (20 to 60 mmHg) is a range of left ventricular end-diastolic pressure that plays an important role in the diagnosis of heart disease, and requires an accuracy of ± 5 mmHg or more. As described above, the method disclosed in Patent Literature 1 is insufficient as a medical device because the accuracy required in a range of values important for diagnosis cannot be obtained.

本発明は、非侵襲・高精度・高い時間分解能で心内圧を計測する医用撮像装置を提供するものである。   The present invention provides a medical imaging apparatus that measures intracardiac pressure with noninvasive, high accuracy, and high time resolution.

本発明の超音波撮像装置は、超音波造影剤を注入した撮像対象に対して超音波を送受信する超音波探触子と、超音波探触子が受信した撮像対象からの超音波信号を信号処理する信号処理部と、信号処理部の処理結果を表示する表示手段とを備え、信号処理部は、受信した超音波信号の周波数分布を算出する周波数解析部と、周波数解析部によって算出された周波数分布から、受信した超音波信号の減衰率の周波数依存性の、1つ以上の規定の周波数での値、最大値を示す周波数、最大値、半値幅のうち1つ以上である、周波数分布特徴量を検出する周波数分布特徴量検出部と、周波数分布特徴量を圧力に換算する周波数分布特徴量−圧力換算部とを有し、表示手段は、周波数分布特徴量−圧力換算部で算出された圧力の値を表示する。   The ultrasonic imaging apparatus according to the present invention includes an ultrasonic probe that transmits / receives ultrasonic waves to / from an imaging target injected with an ultrasonic contrast agent, and an ultrasonic signal from the imaging target received by the ultrasonic probe. A signal processing unit for processing, and display means for displaying a processing result of the signal processing unit. The signal processing unit calculates the frequency distribution of the received ultrasonic signal, and is calculated by the frequency analysis unit. A frequency distribution that is one or more of a value at one or more specified frequencies, a frequency indicating a maximum value, a maximum value, and a half-value width of the frequency dependence of the attenuation rate of the received ultrasonic signal from the frequency distribution. A frequency distribution feature quantity detection unit for detecting the feature quantity; and a frequency distribution feature quantity-pressure conversion section for converting the frequency distribution feature quantity to pressure, and the display means is calculated by the frequency distribution feature quantity-pressure conversion section. Displays the pressure value.

また、本発明の超音波撮像方法は、撮像対象に超音波造影剤を注入する造影剤注入ステップと、撮像対象に超音波信号を送波する超音波送波ステップと、撮像対象から反射された超音波信号を受信し、受信した超音波信号の周波数分布を算出する周波数解析ステップと、算出した周波数分布から、受信した超音波信号の減衰率の周波数依存性の、1つ以上の規定の周波数での値、最大値を示す周波数、最大値、半値幅のうち1つ以上である、周波数分布特徴量を検出する周波数分布特徴量ステップと、検出した周波数分布特徴量を圧力に換算する周波数分布特徴量−圧力換算ステップとを有する。   The ultrasonic imaging method of the present invention includes a contrast agent injection step for injecting an ultrasonic contrast agent into an imaging target, an ultrasonic transmission step for transmitting an ultrasonic signal to the imaging target, and a reflection from the imaging target. A frequency analysis step for receiving an ultrasonic signal and calculating a frequency distribution of the received ultrasonic signal, and one or more specified frequencies of the frequency dependence of the attenuation rate of the received ultrasonic signal from the calculated frequency distribution A frequency distribution feature quantity step for detecting a frequency distribution feature quantity that is at least one of a value at, a frequency indicating a maximum value, a maximum value, and a half width, and a frequency distribution for converting the detected frequency distribution feature quantity into pressure And a feature amount-pressure conversion step.

超音波造影剤は、複数の液体成分を内包する多成分液滴型造影剤であり、圧力を検出する部位の温度をTc、検出しようとする圧力の上限をPu、下限をPlとするとき、液体成分のうち少なくとも1つは温度Tcでの蒸気圧がPu以上であり、他の少なくとも1つは温度Tcでの蒸気圧がPl以下であり、複数の液体成分はPl以上、Pu以下の圧力で気液平衡が成り立つモル分率で混合されていることが好ましい。また、このとき、超音波送波は、多成分液滴型造影剤を気化させるための気化用超音波送波を行った後、圧力検出用の超音波を送波する2段階送波を行う。The ultrasonic contrast agent is a multi-component droplet type contrast agent containing a plurality of liquid components, and the temperature of a part where pressure is detected is T c , the upper limit of the pressure to be detected is P u , and the lower limit is P l . to time, at least one liquid component vapor pressure at temperature T c is greater than or equal to P u, the other at least one is not more than the vapor pressure P l at the temperature T c, a plurality of liquid components P l or more, which is preferably mixed in a molar fraction of vapor-liquid equilibrium is established at pressures P u. Further, at this time, the ultrasonic wave transmission is a two-stage transmission in which an ultrasonic wave for vaporization for vaporizing the multi-component liquid droplet type contrast agent is performed and then an ultrasonic wave for pressure detection is transmitted. .

本発明によれば、非侵襲・高精度・高い時間分解能で体内の圧力を計測することができる。より具体的には、従来技術は規定の1周波数における信号強度であるのに対して、本発明は複数の周波数における物理量を用い、サンプル点を多数用いるため、高い精度が得られる。また、従来例は非線形成分である分調波を抽出するために、1回の受信に2回、送信する必要があるが、本発明はその必要がなく、単純計算でも従来例より2倍高い時間分解能が得られる。   According to the present invention, the pressure in the body can be measured with non-invasive, high accuracy, and high time resolution. More specifically, while the conventional technique has signal strength at one specified frequency, the present invention uses physical quantities at a plurality of frequencies and uses a large number of sample points, so that high accuracy can be obtained. In addition, in order to extract the subharmonic which is a non-linear component in the conventional example, it is necessary to transmit twice for each reception. However, the present invention does not need that, and even simple calculation is twice as high as the conventional example. Time resolution is obtained.

さらに、本発明の一態様では、2以上の液体成分を内包する多成分液滴型造影剤を体内に注入し、着目した部位を超音波照射して温度を上昇させ、多成分液滴型造影剤が内包した液体を気化させ、気液平衡状態を成立させる。気液平衡状態では、圧力によって気相の体積が変化するが、この体積変化は気泡径の変化として現れ、その結果、受信信号に含まれる気泡の挙動は圧力の影響が増強され、高い精度で圧力を検出できる。   Furthermore, in one embodiment of the present invention, a multi-component droplet type contrast agent containing two or more liquid components is injected into the body, and the temperature is increased by irradiating the focused site with ultrasonic waves. The liquid contained in the agent is vaporized to establish a vapor-liquid equilibrium state. In the vapor-liquid equilibrium state, the volume of the gas phase changes depending on the pressure, but this volume change appears as a change in the bubble diameter.As a result, the behavior of the bubbles contained in the received signal is enhanced by the influence of pressure and with high accuracy. The pressure can be detected.

本発明による超音波撮像装置の構成例を示すブロック図。1 is a block diagram showing a configuration example of an ultrasonic imaging apparatus according to the present invention. 本発明による超音波撮像方法の処理を表すフローチャート。The flowchart showing the process of the ultrasonic imaging method by this invention. 受信信号から圧力を算出する処理の詳細を表すフローチャート。The flowchart showing the detail of the process which calculates a pressure from a received signal. 減衰量の周波数分布を算出する処理の詳細を表すフローチャート。The flowchart showing the detail of the process which calculates the frequency distribution of attenuation amount. 生体に超音波を送信・受信する処理の説明図。Explanatory drawing of the process which transmits and receives an ultrasonic wave to a biological body. 減衰量の周波数分布を算出する処理の説明図。Explanatory drawing of the process which calculates the frequency distribution of attenuation amount. 超音波造影剤の気泡径の分布を表す図。The figure showing distribution of the bubble diameter of an ultrasonic contrast agent. 周波数分布特徴量の例、及び、圧力を変えた場合の減衰曲線の例を表す図。The figure showing the example of a frequency distribution feature-value, and the example of the attenuation | damping curve at the time of changing a pressure. 生体に超音波を送信・受信する処理を説明する図。The figure explaining the process which transmits and receives an ultrasonic wave to a biological body. 減衰量の周波数分布を算出する処理のフローチャート。The flowchart of the process which calculates the frequency distribution of attenuation amount. 代表的な超音波造影剤の構造を示す概念図。The conceptual diagram which shows the structure of a typical ultrasonic contrast agent. 2成分系の一定温度における気液平衡曲線の概念図。The conceptual diagram of the vapor-liquid equilibrium curve in the constant temperature of a two-component system. 2成分系の一定温度における気液平衡曲の例を示す図。The figure which shows the example of the gas-liquid equilibrium music in the constant temperature of a 2 component system. 本発明による超音波撮像装置の構成例を示すブロック図。1 is a block diagram showing a configuration example of an ultrasonic imaging apparatus according to the present invention. 硬さを表示する実施例の処理を示すフローチャート。The flowchart which shows the process of the Example which displays hardness. 血管壁の硬さを算出する場合を例に、動き量を検出する方法を説明した図。The figure explaining the method of detecting the amount of movements in the case of calculating the hardness of a blood vessel wall as an example. 心臓に超音波を送信・受信する処理の説明図。Explanatory drawing of the process which transmits and receives an ultrasonic wave to the heart. 測定部位の形状と圧力を表示する処理の全体の流れを示すフローチャート。The flowchart which shows the flow of the whole process which displays the shape and pressure of a measurement site | part. 表示の一例を示す図。The figure which shows an example of a display.

図1は、本発明による超音波撮像装置の構成例を示すブロック図である。超音波探触子1は複数の素子から構成される。装置本体2は、送信ビームフォーマ3、増幅手段4、受信ビームフォーマ5、信号処理部6、メモリ7、表示手段8、入力手段9、制御部10を有する。信号処理部6は、受信信号の周波数分布を算出する周波数解析部61、周波数解析部61の算出した周波数分布から、周波数分布特徴量を検出する周波数分布特徴量検出部62、周波数分布特徴量を圧力に換算する周波数分布特徴量−圧力換算部63を備える。周波数分布特徴量検出部62で検出する周波数分布特徴量は、減衰率の周波数依存性の、1つ以上の規定の周波数での値、最大値を示す周波数、最大値、半値幅のうち1つ以上である。周波数分布特徴量−圧力換算部63は、周波数分布特徴量から圧力へ換算するための知識である周波数分布特徴量−圧力換算知識を格納する周波数分布特徴量−圧力換算知識格納部631を備える。なお、通常のBモード表示やドップラ表示などの構成は簡単のために記していない。   FIG. 1 is a block diagram showing a configuration example of an ultrasonic imaging apparatus according to the present invention. The ultrasonic probe 1 is composed of a plurality of elements. The apparatus main body 2 includes a transmission beamformer 3, an amplification unit 4, a reception beamformer 5, a signal processing unit 6, a memory 7, a display unit 8, an input unit 9, and a control unit 10. The signal processing unit 6 includes a frequency analysis unit 61 that calculates the frequency distribution of the received signal, a frequency distribution feature amount detection unit 62 that detects a frequency distribution feature amount from the frequency distribution calculated by the frequency analysis unit 61, and a frequency distribution feature amount. A frequency distribution feature value-pressure conversion unit 63 that converts pressure is provided. The frequency distribution feature quantity detected by the frequency distribution feature quantity detection unit 62 is one of a value at one or more specified frequencies, a frequency indicating a maximum value, a maximum value, and a half-value width of the frequency dependency of the attenuation rate. That's it. The frequency distribution feature value-pressure conversion unit 63 includes a frequency distribution feature value-pressure conversion knowledge storage unit 631 that stores frequency distribution feature value-pressure conversion knowledge, which is knowledge for converting the frequency distribution feature value into pressure. It should be noted that configurations such as normal B-mode display and Doppler display are not shown for simplicity.

ユーザによって超音波造影剤が撮像対象である生体部位に注入され、送信ビームフォーマ3で生成された超音波パルスが超音波探触子1から生体に送信され、超音波造影剤を含む生体部位から反射した超音波を超音波探触子1が受信する。受信信号は増幅手段4に入力されて増幅され、受信ビームフォーマ5が整相加算する。信号処理部6には受信ビームフォーマ5が出力した受信信号が入力され、画像化と圧力の算出を行う。作成された画像及び算出された圧力はメモリ7に格納された後、読み出し・補間されて表示手段8に表示される。なお、これらの処理は制御手段10によって制御される。   An ultrasonic contrast agent is injected by a user into a living body part to be imaged, and an ultrasonic pulse generated by the transmission beamformer 3 is transmitted from the ultrasonic probe 1 to the living body, from the living body part including the ultrasonic contrast agent. The ultrasonic probe 1 receives the reflected ultrasonic waves. The received signal is input to the amplifying means 4 and amplified, and the receiving beamformer 5 performs phasing addition. The signal processing unit 6 receives the reception signal output from the reception beamformer 5 and performs imaging and pressure calculation. The created image and the calculated pressure are stored in the memory 7, read out and interpolated, and displayed on the display unit 8. These processes are controlled by the control means 10.

信号処理部6は、周波数解析部61が受信信号の周波数分布を算出したあと、この周波数分布から周波数分布特徴量検出部62が周波数分布特徴量を検出し、周波数分布特徴量−圧力換算知識を用いて、周波数分布特徴量−圧力換算部63が周波数分布特徴量を圧力に換算する。   In the signal processing unit 6, after the frequency analysis unit 61 calculates the frequency distribution of the received signal, the frequency distribution feature quantity detection unit 62 detects the frequency distribution feature quantity from this frequency distribution, and the frequency distribution feature quantity-pressure conversion knowledge is obtained. The frequency distribution feature value-pressure conversion unit 63 converts the frequency distribution feature value into pressure.

図2から図4は、本発明の超音波撮像方法の処理の一例を表す処理フロー図である。本発明では、図2に示したように、最初にユーザが撮像対象に超音波造影剤を注入する(S11)。その後、超音波探触子1から撮像対象に超音波信号を送波し(S12)、増幅手段が撮像対象から超音波信号を受信して受信ビームフォーマで整相加算し、この受信信号を信号処理部6が処理して圧力を算出する(S13)。算出された圧力は前記表示手段に表示される(S14)。   2 to 4 are process flowcharts showing an example of the process of the ultrasonic imaging method of the present invention. In the present invention, as shown in FIG. 2, the user first injects an ultrasound contrast agent into the imaging target (S11). Thereafter, an ultrasonic signal is transmitted from the ultrasonic probe 1 to the object to be imaged (S12), the amplifying means receives the ultrasonic signal from the object to be imaged, and performs phasing addition with a reception beamformer. The processing unit 6 performs processing to calculate the pressure (S13). The calculated pressure is displayed on the display means (S14).

ここで、本発明で使用する超音波造影剤はマイクロバブルあるいはナノバブルと呼ばれる直径数10μm以下の微小気泡で、生分解性高分子から構成される殻を有してもよい。   Here, the ultrasound contrast agent used in the present invention is a microbubble having a diameter of several tens of μm or less called a microbubble or nanobubble, and may have a shell composed of a biodegradable polymer.

図3に、図2のステップ13における信号処理部6の処理の詳細を示す。信号処理部6では、受信深度の異なる受信信号をもとに減衰量の周波数分布を算出し(S21)、周波数分布から周波数分布特徴量を検出する(S22)。その後、圧力をパラメータとした測定ノイズのない理想的な減衰量の周波数分布である、次式(1)に示す周波数分布特徴量−圧力換算知識を用いて周波数分布特徴量を圧力p0に変換する(S23)。変換の方法としては、たとえば、周波数分布特徴量を入力し、周波数分布特徴量−圧力換算知識を回帰曲線として最小二乗法でパラメータである圧力を求める方法による。

Figure 2010147055
FIG. 3 shows details of processing of the signal processing unit 6 in step 13 of FIG. The signal processing unit 6 calculates the frequency distribution of the attenuation amount based on the received signals having different reception depths (S21), and detects the frequency distribution feature quantity from the frequency distribution (S22). After that, the frequency distribution feature value is converted into the pressure p 0 using the frequency distribution feature value-pressure conversion knowledge shown in the following equation (1), which is an ideal attenuation frequency distribution without pressure measurement noise. (S23). As a conversion method, for example, a frequency distribution feature amount is input, and a pressure that is a parameter is obtained by a least square method using frequency distribution feature amount-pressure conversion knowledge as a regression curve.
Figure 2010147055

ここで、σeは散乱断面積、ωは式(1)の変数である周波数で、共鳴周波数ω0で規格化してΩで表す。aeは気泡径の平衡値、ρLは周りの流体の密度、κはポリトロープ指数、GSは気泡の殻の剛性率、dSeは式(3)で定義される殻の厚み、ηSは気泡殻のせん断粘度を表し、造影剤及び血液などの流体の物性値によって決まる。これらは式(1)においては定数であり、あらかじめ調べられて装置内に記憶されているものとする。p0は静水圧で、(1)における唯一のパラメータであり、本発明の装置及び方法で検出すべき圧力である。Here, σ e is a scattering cross section, ω is a frequency which is a variable of the formula (1), normalized by the resonance frequency ω 0 , and expressed as Ω. a e is the equilibrium value of the bubble diameter, ρ L is the density of the surrounding fluid, κ is the polytropic index, G S is the rigidity of the bubble shell, d Se is the shell thickness defined by equation (3), η S Represents the shear viscosity of the bubble shell and is determined by the physical properties of the contrast agent and fluid such as blood. These are constants in the equation (1), and are examined in advance and stored in the apparatus. p 0 is the hydrostatic pressure, the only parameter in (1), the pressure to be detected by the apparatus and method of the present invention.

図4は、図3のステップ21における減衰量の周波数分布を算出する処理の詳細を示した図である。まず、受信深度の異なる受信信号Sigi(t)と受信深度zi{i=1,2,…,n}を入力する(S31)。次に、受信信号Sigi(t){i=1,2,…,n}の周波数分布|Sigi(f)|=|F[Sigi(t)]|を計算する(S32)。最後に、受信信号の周波数分布|Sigi(f)|から減衰量の周波数分布
σ(f)=|Sigi(f)|/|Sigj(f)|
を計算する(S33)。ここでF[・]はフーリエ変換を表す。
FIG. 4 is a diagram showing details of the process of calculating the frequency distribution of the attenuation amount in step 21 of FIG. First, received signals Sig i (t) having different received depths and received depths z i {i = 1, 2,..., N} are input (S31). Next, the frequency distribution | Sig i (f) | = | F [Sig i (t)] | of the received signal Sig i (t) {i = 1, 2,..., N} is calculated (S32). Finally, the frequency distribution of attenuation from the frequency distribution | Sig i (f) |
σ (f) = | Sig i (f) | / | Sig j (f) |
Is calculated (S33). Here, F [•] represents a Fourier transform.

次に、図5から図8を用いて、本発明の超音波撮像装置による撮像方法の詳細について説明する。図5は、超音波探触子が生体に超音波を送信・受信する様子を示す図である。超音波探触子1から生体72に超音波が送信されると、臓器73に含まれる超音波造影剤74から反射された信号75,76を受信する。信号75の受信深度はz1であり、信号76の受信深度はz2である。臓器73は血管や心臓の心腔のように、超音波造影剤より反射輝度がいちじるしく低い流体を含む臓器でもよいし、肝臓のように視認できる程度の反射輝度を持つ柔組織から成る臓器でもよい。後者の場合は、信号処理部は、周波数解析部が、超音波造影剤による減衰のみを処理できるように、超音波造影剤がない場合に、受信信号75,76と同様の信号を受信し、超音波造影剤以外に起因する減衰量を差し引く処理を行えばよい。なお、超音波造影剤以外に起因する減衰量は、一般的に、周波数に比例する量であり、たとえば超音波造影剤の注入前に超音波を送受信・解析して求めることができる。Next, details of the imaging method by the ultrasonic imaging apparatus of the present invention will be described with reference to FIGS. FIG. 5 is a diagram illustrating a state in which the ultrasonic probe transmits and receives ultrasonic waves to a living body. When ultrasonic waves are transmitted from the ultrasonic probe 1 to the living body 72, the signals 75 and 76 reflected from the ultrasonic contrast agent 74 included in the organ 73 are received. The reception depth of the signal 75 is z 1 and the reception depth of the signal 76 is z 2 . The organ 73 may be an organ containing a fluid whose reflection luminance is significantly lower than that of an ultrasound contrast agent, such as a blood vessel or a heart chamber of the heart, or may be an organ composed of a soft tissue having a reflection luminance of a level that can be visually recognized, such as a liver. . In the latter case, the signal processing unit receives signals similar to the reception signals 75 and 76 when there is no ultrasonic contrast agent so that the frequency analysis unit can process only attenuation by the ultrasonic contrast agent, What is necessary is just to perform the process which subtracts the attenuation amount resulting from other than an ultrasonic contrast agent. It should be noted that the attenuation caused by other than the ultrasonic contrast agent is generally an amount proportional to the frequency, and can be obtained by, for example, transmitting / receiving / analyzing ultrasonic waves before injection of the ultrasonic contrast agent.

図6は、減衰量の周波数分布を算出する図3のステップ21の処理を説明した図である。分布81は受信深度ziからの受信信号Sigi(t)をフーリエ変換した信号Sigi(f)=F[Sigi(t)]を示し、分布82は受信深度zjでの信号強度の周波数分布である。図4のステップ32では、複数の受信深度でこのような周波数分布81,82を計算する。ただし、受信深度ziからの受信信号Sigi(t)は、cを音速を表す定数とし、dtを周波数の計算に必要なサンプル数を含む時間とし、時刻は変換撮像対象に超音波を送波した時刻をt=0とするとして、受信深度ziに相当する時間(t=zi/c−dtからt=zi/c+dt)に受信した信号とする。FIG. 6 is a diagram for explaining the processing of step 21 in FIG. 3 for calculating the frequency distribution of the attenuation amount. A distribution 81 indicates a signal Sig i (f) = F [Sig i (t)] obtained by performing a Fourier transform on the reception signal Sig i (t) from the reception depth z i , and a distribution 82 indicates the signal intensity at the reception depth z j. Frequency distribution. In step 32 of FIG. 4, such frequency distributions 81 and 82 are calculated at a plurality of reception depths. However, in the received signal Sig i (t) from the reception depth z i , c is a constant representing the speed of sound, dt is a time including the number of samples necessary for frequency calculation, and the time is an ultrasonic wave sent to the conversion imaging target. Assume that the waved time is t = 0, and the signal is received at a time corresponding to the reception depth z i (from t = z i / c-dt to t = z i / c + dt).

図6(b)に示した分布は、信号強度の周波数分布81と82の比をとって得た、次式で表される減衰量の周波数分布σ(f)である。図4のステップ33では、この減衰量の周波数分布σ(f)を計算する。ただし、図6ではdB表示で示した。   The distribution shown in FIG. 6B is a frequency distribution σ (f) of attenuation expressed by the following equation, which is obtained by taking a ratio of frequency distributions 81 and 82 of signal intensity. In step 33 of FIG. 4, the frequency distribution σ (f) of this attenuation is calculated. However, in FIG. 6, it is shown in dB.

σ(f)=|Sigi(f)|/|Sigj(f)|
ここで、式(1)で表される周波数分布特徴量−圧力換算知識について説明する。超音波造影剤は、体内に注入される数μm前後の微小気泡で、超音波を照射されると、泡の外部が液体、内部が気体であり、密度差が大きいことから、大きな反射率で超音波信号を反射する。通常、超音波造影剤から反射された信号は、基本波成分及び高周波成分の信号強度が画像化される。このように通常の使い方では、気泡が存在していることを使って、血管壁や肝腫瘍の境界の可視化を行っている。しかし本発明では、気泡の力学的挙動から気泡の存在以上の情報を抽出することを目標とし、気泡の運動を記述する方程式の性質を概観した。気泡の運動は、気泡半径a(t)の運動方程式である次のChurch方程式によって記述される。

Figure 2010147055
σ (f) = | Sig i (f) | / | Sig j (f) |
Here, the frequency distribution feature amount-pressure conversion knowledge represented by Expression (1) will be described. An ultrasound contrast agent is a microbubble around several μm that is injected into the body, and when irradiated with ultrasound, the outside of the bubble is a liquid and the inside is a gas, and the density difference is large. Reflects ultrasound signals. Usually, the signal intensity of the fundamental wave component and the high frequency component of the signal reflected from the ultrasound contrast agent is imaged. In this way, in normal usage, the presence of bubbles is used to visualize the boundaries of blood vessel walls and liver tumors. However, in the present invention, the objective is to extract information beyond the presence of bubbles from the mechanical behavior of the bubbles, and an overview of the properties of the equations describing the bubble motion. Bubble motion is described by the following Church equation, which is the equation of motion for bubble radius a (t).
Figure 2010147055

ここで、a1は気泡の内径、a2は気泡の外径、a1eは内径の平衡値、a2eは外径の平衡値、ρLは周りの流体の密度、ρSは気泡殻の密度、ηLはまわりの流体のせん断粘度、ηSは気泡殻のせん断粘度、VSは気泡核の体積、p(t)は気泡から十分離れた場所での圧力、p0は静水圧で、検出すべき圧力である。Where a 1 is the inner diameter of the bubble, a 2 is the outer diameter of the bubble, a 1e is the equilibrium value of the inner diameter, a 2e is the equilibrium value of the outer diameter, ρ L is the density of the surrounding fluid, and ρ S is the bubble shell Density, η L is the shear viscosity of the surrounding fluid, η S is the shear viscosity of the bubble shell, V S is the volume of the bubble core, p (t) is the pressure at a location sufficiently away from the bubble, and p 0 is the hydrostatic pressure The pressure to be detected.

泡の挙動を記述する方程式は仮定の置き方によって各種あるが、生体内の残存時間を長くするために、2000年以降は殻のついた気泡が主流であるため、殻のついた気泡の方程式であるChurch方程式を用いた。ここで、式(3)の近似と式(4)に示す変数変換により、気泡径の変位量x(t)を変数とする。aは気泡径、aeは気泡径の平衡値である。

Figure 2010147055
There are various equations describing the behavior of bubbles, depending on the assumptions made, but in order to increase the remaining time in the living body, since bubbles with shells have been the mainstream since 2000, the equations for bubbles with shells have been used. The Church equation is used. Here, the bubble diameter displacement amount x (t) is made a variable by approximation of equation (3) and variable conversion shown in equation (4). a is the bubble diameter and a e is the equilibrium value of the bubble diameter.
Figure 2010147055

さらに線形化を行って式(5)を得ると、その解として式(6)が得られる。

Figure 2010147055
Further, when linearization is performed to obtain Equation (5), Equation (6) is obtained as a solution.
Figure 2010147055

ここで、pi(t)は超音波パルスの照射による圧変化である。Here, p i (t) is a pressure change due to irradiation of an ultrasonic pulse.

減衰率の周波数分布は、散乱断面積の式(7)から式(8)と求められる。

Figure 2010147055
The frequency distribution of the attenuation rate can be obtained from Expression (7) to Expression (8) of the scattering cross section.
Figure 2010147055

式(8)中のn(a)は気泡径の分布である。気泡径は例えば図7に示すような分布をしているが、図4のステップ33に関する上記の説明では分布の幅が0、すなわち撮像対象内部の気泡は全て同じ値を持つとして説明を簡略化した。実際にはn(a)を反映する必要があり、たとえば体内注入前の気泡径の分布を測定しておき、これを用いてもよい。   In the formula (8), n (a) is a bubble diameter distribution. For example, the bubble diameter has a distribution as shown in FIG. 7, but in the above description relating to step 33 in FIG. 4, the distribution width is 0, that is, the bubbles inside the imaging target are all assumed to have the same value. did. Actually, it is necessary to reflect n (a). For example, the distribution of the bubble diameter before injection into the body may be measured and used.

上記の結果のうち、定性的な把握に必要なものを以下にまとめた。

Figure 2010147055
Of the above results, those necessary for qualitative understanding are summarized below.
Figure 2010147055

すなわち、共鳴曲線(6)の形状は共振周波数ω0と分散の大きさδでほぼ決まる。減衰曲線(7)(8)の形もω0、δ、超音波パルスの周波数分布pi(ω)でほぼ決まる。ω0、δを表す式(9)の右辺のうち、p0以外は超音波造影剤の構造(物性定数)によって固定される、測定においては既知とみなされる値だが、これらの物性定数のうち実質的に可変なのは殻の剛性Gs及び気泡の平衡径aeのみである。共鳴曲線(6)及び減衰曲線(7)(8)の形状、すなわち圧p0の感知力はこれら2つの値によって調節でき、気泡殻の剛性率Gsが小さく、気泡の平衡径aeが小さい超音波造影剤が圧検出には適していることがわかる。That is, the shape of the resonance curve (6) is substantially determined by the resonance frequency ω 0 and the dispersion magnitude δ. The shapes of the attenuation curves (7) and (8) are also substantially determined by ω 0 and δ and the frequency distribution p i (ω) of the ultrasonic pulse. Of the right side of the equation (9) representing ω 0 and δ, values other than p 0 are fixed by the structure (physical property constant) of the ultrasound contrast agent. Only the shell stiffness G s and the bubble equilibrium diameter a e are substantially variable. The shape of the resonance curve (6) and the attenuation curve (7) (8), that is, the sensing power of the pressure p 0 can be adjusted by these two values, the bubble shell rigidity G s is small, and the bubble equilibrium diameter a e is It can be seen that a small ultrasonic contrast agent is suitable for pressure detection.

参考のために、商品化されている超音波造影剤の物性定数を表1に示す。

Figure 2010147055
For reference, Table 1 shows physical property constants of commercially available ultrasonic contrast agents.
Figure 2010147055

図8に、周波数分布特徴量の例、及び、気泡の平衡径aeを一定にして、圧力を3通りの値に変えた場合の減衰曲線の一例を示した。減衰曲線は圧力によって有意に変形している。この変形を検出するための周波数分布特徴量として、図8では共鳴周波数ω0、分散δ-1、規定の周波数ω1における減衰強度、規定の2個の周波数ω1,ω2における減衰強度の傾きを示した。FIG. 8 shows an example of a frequency distribution feature amount and an example of an attenuation curve when the bubble has an equilibrium diameter a e constant and the pressure is changed to three values. The decay curve is significantly deformed by pressure. As frequency distribution features for detecting this deformation, in FIG. 8, the resonance frequency ω 0 , the dispersion δ −1 , the attenuation intensity at the specified frequency ω 1, and the attenuation intensity at the two specified frequencies ω 1 and ω 2 are shown. The inclination was shown.

上記の周波数分布特徴量は全て式(1)の周波数分布特徴量−圧力換算知識に入力することで出力として圧力p0を与える。これらの周波数分布特徴量は、共鳴周波数と分散など、異なる物理量であっても同時に式(1)に入力可能であり、入力する値の数が多いほどp0の検出精度を向上させることができる。All the frequency distribution feature values described above are input to the frequency distribution feature value-pressure conversion knowledge of the equation (1) to give the pressure p 0 as an output. These frequency distribution feature quantities can be simultaneously input to equation (1) even if they are different physical quantities such as resonance frequency and variance, and the detection accuracy of p 0 can be improved as the number of input values increases. .

より詳しくは、規定の周波数ωiにおける減衰強度σi (i=1,2,…,n)が得られた場合、(7)を回帰式とする回帰問題として圧p0を求めることができる。すなわち、最小二乗法により
J=Σi=1〜ne(ωi;p0)-σi|2を最小にするp0、別の表現では
δJ=∂/∂p0 i=1〜ne(ωi;p0)-σi|2]
=0
を満たすp0を数値的に求めて圧力の検出値とする。気方径の分布n(ae)の影響を考慮する場合は(8)を回帰式とし、上記のσe(ωi;p0)をΣe(ωi;p0)で置き換えればよい。
More specifically, when the attenuation intensity σ i (i = 1, 2,..., N) at a predetermined frequency ω i is obtained, the pressure p 0 can be obtained as a regression problem with (7) as a regression equation. . That is, by the least square method
J = Σ i = 1 to n | σ ei ; p 0 ) −σ i | 2, which minimizes p 0 ,
δJ = ∂ / ∂p 0i = 1 to n | σ ei ; p 0 ) −σ i | 2 ]
= 0
The value of p 0 that satisfies the above is obtained numerically and used as the pressure detection value. When considering the influence of the distribution n (a e ) of the radial direction, (8) should be used as a regression equation and σ ei ; p 0 ) above should be replaced with Σ ei ; p 0 ) .

さらに、規定の周波数ωiにおける減衰強度σi(i=1,2,…,n)の他にも共鳴周波数ω0、分散δ-1、規定の2個の周波数ω1,ω2における減衰強度の傾きが得られた場合には、これらを規定の周波数ωiにおける減衰強度σi(i=n+1,n+2,…,n+m)に換算して、回帰問題の入力値の数を増やし、p0を求めることができる。又は、これらのうち1つのみが得られた場合、回帰問題は1つの式に帰着される。たとえば共鳴周波数ω0のみが得られた場合、回帰問題は式(7’-2)に帰着され、式(7’-2)によりω0をp0に変換すればよい。同様に、分散δのみが得られた場合、回帰問題は式(7’-2)及び式(7’-3)に帰着され、式(7’-2)及び式(7’-3)によりδをp0に変換できる。Further, in addition to the attenuation intensity σ i (i = 1, 2,..., N) at the specified frequency ω i, the resonance frequency ω 0 , the dispersion δ −1 , and the attenuation at the two specified frequencies ω 1 and ω 2 . If intensity gradients are obtained, these are converted into attenuation intensity σ i (i = n + 1, n + 2,..., N + m) at a prescribed frequency ω i to increase the number of input values of the regression problem, and p 0 can be obtained. Or, if only one of these is obtained, the regression problem is reduced to one equation. For example, when only the resonance frequency ω 0 is obtained, the regression problem is reduced to the equation (7′-2), and ω 0 may be converted to p 0 by the equation (7′-2). Similarly, when only the variance δ is obtained, the regression problem is reduced to the equation (7'-2) and the equation (7'-3), and the equation (7'-2) and the equation (7'-3) δ can be converted to p 0 .

以上のような構成によれば、非侵襲・高精度・高い時間分解能で体内の圧力を計測する医用撮像装置を提供することができる。特に、複数の周波数における信号強度を用い、サンプル点を多数用いるため、SN比が高くなり、高い精度が得られる。また、分調波の抽出と異なり、1つの空間位置での圧力を検出するために2回以上、送信する必要がないため、高い時間分解能が得られる。さらに、本発明では1つ以上の物理量を検出して血圧に換算することで、精度を向上させることができる。   According to the above configuration, it is possible to provide a medical imaging apparatus that measures the pressure in the body with noninvasive, high accuracy, and high time resolution. In particular, since signal strengths at a plurality of frequencies are used and a large number of sample points are used, the S / N ratio is increased and high accuracy is obtained. Further, unlike subharmonic wave extraction, it is not necessary to transmit twice or more in order to detect the pressure at one spatial position, so that high time resolution can be obtained. Furthermore, in the present invention, accuracy can be improved by detecting one or more physical quantities and converting them into blood pressure.

次に、図9及び図10を用いて本発明の第2の実施例を説明する。第2の実施例の方法は、図2のステップ13の処理において、周波数分布特徴量−圧力換算知識として式(10)に示す共鳴曲線を用いる例である。   Next, a second embodiment of the present invention will be described with reference to FIGS. The method of the second embodiment is an example in which the resonance curve shown in Expression (10) is used as the frequency distribution feature amount-pressure conversion knowledge in the processing of step 13 in FIG.

図9は、本実施例において、超音波探触子が生体に超音波を送信・受信する処理を説明した図である。超音波探触子1から生体72に超音波が送信されると、生体に含まれる超音波造影剤74から反射された信号75を受信する。臓器73は血管や心臓の心腔のように、超音波造影剤より反射輝度がいちじるしく低い流体を含む臓器でもよいし、肝臓のように視認できる程度の反射輝度を持つ柔組織から成る臓器でもよい。後者の場合は、図5で説明したような処理を行って超音波造影剤に起因する減衰量のみを抽出すればよい。   FIG. 9 is a diagram illustrating a process in which the ultrasonic probe transmits and receives ultrasonic waves to the living body in the present embodiment. When an ultrasonic wave is transmitted from the ultrasonic probe 1 to the living body 72, the signal 75 reflected from the ultrasonic contrast agent 74 included in the living body is received. The organ 73 may be an organ containing a fluid whose reflection luminance is significantly lower than that of an ultrasound contrast agent, such as a blood vessel or a heart chamber of the heart, or may be an organ composed of a soft tissue having a reflection luminance that can be visually recognized, such as a liver. . In the latter case, it is only necessary to perform the process described with reference to FIG. 5 and extract only the attenuation due to the ultrasound contrast agent.

図10は、本実施例の場合、図2のステップ13において実行する信号処理部6が受信信号から圧力を算出する処理を説明するフローチャートである。ある受信深度での受信信号を入力してその周波数分布を算出し(S41)。次に、その周波数分布から、基本波、高調波、分調波、差周波、和周波の強度の周波数分布、値の分岐の大きさのうち1つ以上である周波数分布特徴量を検出し(S42)、その後、圧力をパラメータとした測定ノイズのない理想的な共鳴曲線である次式の周波数分布特徴量−圧力換算知識を用いて周波数分布特徴量を圧力に変換する(S43)。

Figure 2010147055
FIG. 10 is a flowchart for explaining the process of calculating the pressure from the received signal by the signal processing unit 6 executed in step 13 of FIG. 2 in this embodiment. A received signal at a certain receiving depth is inputted and its frequency distribution is calculated (S41). Next, from the frequency distribution, a frequency distribution feature quantity that is one or more of the frequency distribution of the intensity of the fundamental wave, the harmonic wave, the subharmonic wave, the difference frequency, the sum frequency, and the value branch is detected ( After that, the frequency distribution feature value is converted into pressure using the following frequency distribution feature value-pressure conversion knowledge which is an ideal resonance curve without measurement noise using the pressure as a parameter (S43).
Figure 2010147055

たとえば、基本波の強度の周波数分布xB(ω)を測定した場合、xB(ω)は共鳴曲線x(ω)になっているはずである。したがって測定値xB(ω)を入力値、(10)を回帰式として最小二乗法を行えばp0が求まる。同様にして、n次高調波の強度の周波数分布xn(ω)、1/m分調波の強度の周波数分布x1/m(ω)、差周波の強度の周波数分布pm-n(ω)、和周波の強度の周波数分布pm+n(ω)を測定した場合は、それぞれ回帰式(10)のpi(ω)を、造影剤がない場合に想定されるn次高調波、1/m分調波、差周波、和周波の強度の周波数分布として回帰式(10)によってpnを計算する。たとえば基本波と高調波など、1つ以上の周波数特徴量が得られた場合は、第1の実施例と同様に、回帰問題の入力数が増えたことになり、より正確にp0を求められる。For example, when the frequency distribution x B (ω) of the intensity of the fundamental wave is measured, x B (ω) should be a resonance curve x (ω). Therefore, if the least square method is performed with the measured value x B (ω) as the input value and (10) as the regression equation, p 0 is obtained. Similarly, the frequency distribution x n (ω) of the intensity of the n-th harmonic, the frequency distribution x 1 / m (ω) of the intensity of the 1 / m subharmonic, and the frequency distribution p m−n ( ω), when the frequency distribution pm + n (ω) of the intensity of the sum frequency is measured, p i (ω) in the regression equation (10) is set as the nth-order harmonic assumed when there is no contrast agent. Pn is calculated by the regression equation (10) as the frequency distribution of the intensity of 1 / m subharmonic, difference frequency, and sum frequency. For example, when one or more frequency feature quantities such as a fundamental wave and a harmonic wave are obtained, the number of regression problem inputs is increased as in the first embodiment, and p 0 is obtained more accurately. It is done.

以上のような構成によれば、構造が一様である領域が小さく、減衰をS/Nよく検出できない毛細血管や臓器中の超音波造影剤の信号からも、圧力を求めることができる。   According to the configuration as described above, the pressure can be obtained from the signal of the ultrasound contrast agent in the capillary blood vessel or organ in which the region having a uniform structure is small and the attenuation cannot be detected with good S / N.

次に、図11から図13を用いて本発明の第3の実施例を説明する。   Next, a third embodiment of the present invention will be described with reference to FIGS.

第1及び第2の実施例では、式(9)を用いて述べたように、超音波造影剤の信号は、圧力p0と気泡の平衡径aeを反映しているが、特に西暦2000年以降、体内の残存時間を長くするために用いられるようになってきた殻のついた気泡、式(9)で言えば、気泡殻の剛性Gsが大きい場合、気泡の挙動、ひいては共鳴曲線及び減衰曲線は、外圧p0よりも気泡の平衡径aeをより強く反映する。そこで、複数の成分を液体状態で含む超音波造影剤を用いることで、気泡の平衡径aeを外圧p0の俊敏な関数にさせて、圧力の検出精度を向上させた例が以下で述べる第3の実施例である。In the first and second embodiments, as described using the equation (9), the signal of the ultrasonic contrast agent reflects the pressure p 0 and the equilibrium diameter a e of the bubble. Bubbles with shells that have been used to increase the remaining time in the body since 1980. In equation (9), if the stiffness G s of the bubble shell is large, the behavior of the bubbles, and thus the resonance curve The decay curve more strongly reflects the bubble equilibrium diameter a e than the external pressure p 0 . Therefore, an example in which the pressure detection accuracy is improved by using an ultrasonic contrast agent containing a plurality of components in the liquid state to make the bubble equilibrium diameter a e agile function of the external pressure p 0 will be described below. This is a third embodiment.

第3の実施例では、超音波造影剤の組成が異なり、また、気泡の平衡径aeと外圧p0の関係
e=f(p0) (11)
を、式(1)あるいは式(10)とあわせて用いる。関数f(p0)は実験から求め、あらかじめ装置内に格納しているとする。ただし、特に気液2相共存状態以外では、ファンデルワールスの状態方程式と構成成分のモル分率から理論的に求めて装置内に格納していてもよい。
In the third embodiment, the composition of the ultrasound contrast agent is different, and the relationship between the equilibrium diameter a e of the bubbles and the external pressure p 0
a e = f (p 0 ) (11)
Is used together with the formula (1) or the formula (10). It is assumed that the function f (p 0 ) is obtained from experiments and stored in the apparatus in advance. However, except for the gas-liquid two-phase coexistence state, it may be theoretically obtained from the van der Waals equation of state and the molar fraction of the constituent components and stored in the apparatus.

図11は、代表的な超音波造影剤の構造を示した概念図である。図11(a)は、内部に気体を含み、殻を有さない、気泡径dが1μm以上の超音波造影剤である。このような超音波造影剤はすでに商品化されており、第1世代造影剤と呼ばれ、生体内での残存時間が短い。図11(b)は、内部に気体を含み、殻141を有し、気泡径dが1μm以上の超音波造影剤である。このような超音波造影剤はすでに商品化されており、第2世代造影剤と呼ばれ、生体内での残存時間が長い。殻141の厚みtは径dの数%以下であり、親水性の部位142と疎水性の部位143を持つ高分子をその構成単位とする。図11(c)は、内部に液体を含み、殻144を有し、気泡径dが1μm以下の超音波造影剤である。このような超音波造影剤はまだ商品化されておらず、研究段階にある。相変化液滴型造影剤と呼ばれる。毛細血管より先など、浸透可能な領域が広く、超音波照射によって意図した部位で気化し、撮像に用いられる。第3の実施例は、複数種類の液体を含む相変化液滴型造影剤を用いる例である。   FIG. 11 is a conceptual diagram showing the structure of a typical ultrasonic contrast agent. FIG. 11A shows an ultrasound contrast agent that contains a gas inside, does not have a shell, and has a bubble diameter d of 1 μm or more. Such an ultrasound contrast agent has already been commercialized and is called a first generation contrast agent, and has a short remaining time in a living body. FIG. 11B shows an ultrasound contrast agent that contains a gas inside, has a shell 141, and has a bubble diameter d of 1 μm or more. Such an ultrasound contrast agent has already been commercialized and is called a second generation contrast agent, and has a long remaining time in a living body. The thickness t of the shell 141 is several percent or less of the diameter d, and a polymer having a hydrophilic portion 142 and a hydrophobic portion 143 is a structural unit. FIG. 11C shows an ultrasound contrast agent that contains a liquid inside, has a shell 144, and a bubble diameter d of 1 μm or less. Such an ultrasound contrast agent has not yet been commercialized and is in the research stage. It is called a phase change droplet type contrast agent. The penetrable region such as the tip of the capillary is wide, and is vaporized at an intended site by ultrasonic irradiation and used for imaging. The third embodiment is an example using a phase change droplet type contrast agent containing a plurality of types of liquids.

現在研究されている相変化液滴型造影剤としては日立製作所の川畑らのものがあり、物性値は以下のようである。   The phase change droplet type contrast agent currently being studied includes that of Hitachi, Ltd. Kawabata et al. The physical properties are as follows.

殻の材質 :Lipid / surfactant emulsion
液滴の直径 :200nm
内包物 :PEOB
相変化型造影剤を用いる第3の実施例では、図2のステップ11において、気液相変化型の複数成分の造影剤を撮像対象に注入する。また、ステップ12の撮像対象に超音波信号を送波する処理において、まず気化用の超音波を撮像対象に送波して造影剤内部の液体を気化し、その後に圧力検出用の超音波を撮像対象に送波する。ただし、造影剤が内包する成分の蒸気圧が測定したい圧力の値域より低い場合、気化用の超音波を撮像対象に送波するこのステップはなくてもよい。送波する場合、気化用の超音波を送波する空間位置は、圧検出用の超音波を送受信する空間位置と同じ、あるいはそれより血流が上流の位置とする。たとえば、心臓の左心室内の圧力を検出する場合、左心室内あるいは左心房内に気化用の超音波を送波すればよい。また、肝臓内の圧力を検出する場合には、肝動脈に気化用の超音波を送波すればよい。
Shell material: Lipid / surfactant emulsion
Droplet diameter: 200nm
Inclusion: PEOB
In the third embodiment using a phase change type contrast agent, a gas-liquid phase change type multi-component contrast agent is injected into the imaging target in step 11 of FIG. Further, in the process of transmitting the ultrasonic signal to the imaging target in step 12, first, the ultrasonic wave for vaporization is transmitted to the imaging target to vaporize the liquid inside the contrast agent, and then the ultrasonic wave for pressure detection is supplied. Transmit to the imaging target. However, when the vapor pressure of the component contained in the contrast agent is lower than the pressure value range to be measured, this step of transmitting the ultrasonic wave for vaporization to the imaging target may be omitted. When transmitting, the spatial position where the ultrasonic wave for vaporization is transmitted is the same as the spatial position where the ultrasonic wave for pressure detection is transmitted or received, or the position where the blood flow is upstream. For example, when detecting the pressure in the left ventricle of the heart, an ultrasonic wave for vaporization may be transmitted into the left ventricle or the left atrium. Further, when detecting the pressure in the liver, an ultrasonic wave for vaporization may be transmitted to the hepatic artery.

次に、図12及び図13を用いて、複数の成分を液体状態で含む超音波造影剤を用いることで、気泡の平衡径aeを外圧p0の俊敏な関数にできることを説明する。図12(a)は、1成分系の等温曲線、すなわちファンデルワールスの状態方程式で、図12(b)は、2成分系の一定温度における気液平衡曲線の概念図である。Next, using FIG. 12 and FIG. 13, it will be explained that the bubble equilibrium diameter a e can be made an agile function of the external pressure p 0 by using an ultrasonic contrast agent containing a plurality of components in a liquid state. FIG. 12A is a one-component isothermal curve, that is, Van der Waals equation of state, and FIG. 12B is a conceptual diagram of a vapor-liquid equilibrium curve at a constant temperature of the two-component system.

図12(a)の縦軸は圧力、横軸は体積である。図の下に記したファンデルワースの状態方程式に従う変化を点線で示した。図中の実線は実際の流体が辿る体積−圧力変化である。ただし温度は一定値を仮定している。実際の流体の体積−圧力はファンデルワースの状態方程式と異なり、単調に起こる。状態方程式と異なる部分は、図中の面積S1とS2が等しくなるように引いた直線部で、体積は変化するが圧力が一定であるこの直線部は、気液相変化における気液2相共存状態にあたり、このときの圧力を蒸気圧Pcと呼ぶ。気液2相共存状態より圧力が小さい線上は気体状態、大きい線上は液体状態である。このように1成分系では、温度を一定にして圧力を変化させると、蒸気圧Pcにおいて体積が不連続な飛びをもって大きく変化するが、多成分系では、温度を一定にして圧力を変化させると、体積は常に連続して変化する。このため、圧力変化を体積変化によって定量できる。   In FIG. 12A, the vertical axis represents pressure, and the horizontal axis represents volume. The change according to the van der Waals equation of state shown at the bottom of the figure is shown by a dotted line. The solid line in the figure is the volume-pressure change followed by the actual fluid. However, the temperature is assumed to be constant. The actual fluid volume-pressure occurs monotonically, unlike Van der Worth's equation of state. The difference from the equation of state is a straight line drawn so that the areas S1 and S2 in the figure are equal. This straight line where the volume changes but the pressure is constant is the gas-liquid phase coexistence in the gas-liquid phase change. In this state, the pressure at this time is called a vapor pressure Pc. On the line where the pressure is lower than the gas-liquid two-phase coexistence state, the gas state is present, and on the larger line is the liquid state. As described above, in the one-component system, if the pressure is changed while keeping the temperature constant, the volume of the vapor pressure Pc changes greatly with a discontinuous jump. In the multi-component system, if the pressure is changed while keeping the temperature constant, The volume always changes continuously. For this reason, the pressure change can be quantified by the volume change.

多成分系の気液相変化における体積変化の様子を図12(b)に示す。図12(b)では2成分系を仮定した。縦軸は圧力、横軸は第1成分のモル分率である。Pc1が成分1の蒸気圧、Pc2が成分2の蒸気圧で、太実線が液相線、細実線が気相線を意味する。液相線より圧力の大きい領域では液体状態、細実線より圧力が小さい領域では気体状態、その中間の、斜線部にあたる圧力では気液2相共存状態にある。図12(a)では気液2相共存状態の圧力は1つの値Pcに決まったのに対し、2成分系では、斜線部が縦軸Pに対して幅を持つことからわかるように、気液2相共存状態での圧力は成分1の蒸気圧Pc1から成分2の蒸気圧Pc2まで幅を持つ。気体状態から圧力を増加していくと、準静過程とみなせるほど変化速度が遅い場合、鎖線のような圧力‐モル分率変化を経て蒸気圧の低い成分である成分1のモル濃度が増加し、凝縮される。本発明の超音波撮像装置及び方法における変化は実践矢印のような変化とみなすことができる。圧力Pと気泡径aeの関係p0=f(ae)の式(11)は、気液2相共存状態(斜線部)以外ではファンデルワールスの状態方程式(ただし関係V=πae 3/4により体積Vを気泡径aeに変換する)でよく表される。気液2相共存状態(斜線部)での関係は実験により求めた値を使うとする。FIG. 12B shows the volume change in the multi-component gas-liquid phase change. In FIG. 12B, a two-component system is assumed. The vertical axis represents pressure, and the horizontal axis represents the molar fraction of the first component. Pc1 is the vapor pressure of component 1, Pc2 is the vapor pressure of component 2, thick solid lines mean liquid phase lines, and thin solid lines mean gas phase lines. In the region where the pressure is higher than the liquid phase line, it is in the liquid state, in the region where the pressure is lower than the thin solid line, it is in the gas state, and in the middle, the pressure corresponding to the hatched portion is in the gas-liquid two phase coexistence state. In FIG. 12 (a), the pressure in the gas-liquid two-phase coexistence state is determined to be one value Pc, whereas in the two-component system, the hatched portion has a width with respect to the vertical axis P. The pressure in the liquid two-phase coexistence state has a width from the vapor pressure Pc1 of component 1 to the vapor pressure Pc2 of component 2. When the pressure is increased from the gaseous state, when the rate of change is so slow that it can be regarded as a quasi-static process, the molar concentration of component 1, which is a low vapor pressure component, increases through a pressure-molar fraction change like a chain line. , Condensed. The change in the ultrasonic imaging apparatus and method of the present invention can be regarded as a change like a practice arrow. The relationship (11) of the relationship P 0 = f (a e ) between the pressure P and the bubble diameter a e is the van der Waals equation of state (however, the relationship V = πa e 3 ) except for the gas-liquid two-phase coexistence state (shaded portion). The volume V is converted into a bubble diameter a e by / 4). It is assumed that the value obtained by experiments is used for the relationship in the gas-liquid two-phase coexistence state (shaded portion).

圧力変化の定量精度は、2成分気液混合相の圧力方向の厚み18が大きいほど高精度になる。2成分気液混合相の圧力方向の厚みは、成分の物性値、具体的には、活性係数と蒸気圧で決まる。モル分率が0.5に近いほど厚みが厚いのはもちろんである。すなわち、多成分系の気液平衡における圧−体積変化を活用することは、測定を意図した圧力範囲において、圧依存性を増強させる効果を持つ。   The quantitative accuracy of the pressure change becomes higher as the thickness 18 in the pressure direction of the two-component gas-liquid mixed phase is larger. The thickness in the pressure direction of the two-component gas-liquid mixed phase is determined by the physical property values of the components, specifically, the activity coefficient and the vapor pressure. Of course, the closer the molar fraction is to 0.5, the thicker the thickness. That is, utilizing the pressure-volume change in the gas-liquid equilibrium of the multi-component system has the effect of enhancing the pressure dependence in the pressure range intended for measurement.

厚み18の大きさに影響する活性係数は、2成分の混合溶液において、各成分の相互作用の度合いを表す物性値で、値が1以上の2成分を造影剤の要素とすることが望ましい。1以上の場合の図12(b)の具体例(メタノール−水系)を図13(a)に、1以下の例(tertブタノール−secブタノール系)を図13(b)に示した。図13(a)の方が、2成分気液混合相の圧力方向の厚みが大きくなっている。図13(a)、図13(b)は共に温度が25度の例であるが、図13(a)では40mmHgから80mmHgの範囲で高精度な圧計測が可能である。   The activity coefficient that affects the thickness 18 is a physical property value that represents the degree of interaction of each component in a two-component mixed solution, and it is desirable to use two components having a value of 1 or more as elements of the contrast agent. A specific example (methanol-water system) of FIG. 12 (b) in the case of 1 or more is shown in FIG. 13 (a), and an example of 1 or less (tert butanol-sec butanol system) is shown in FIG. 13 (b). In FIG. 13A, the thickness of the two-component gas-liquid mixed phase in the pressure direction is larger. FIGS. 13 (a) and 13 (b) are examples in which the temperature is 25 degrees, but in FIG. 13 (a), highly accurate pressure measurement is possible in the range of 40 mmHg to 80 mmHg.

内包物の活量係数をなるべく大きく設定することを考えるとき、相変化型造影剤の内包物としては、C33,C38,C512,SF6で比べるなら、C33がよい。そのほか、モル分率の0.5近傍への調節も有効である。When the activity coefficient of the inclusion think that you set as large as possible, as the inclusions of phase shift contrast agent, if compared with C 3 F 3, C 3 F 8, C 5 F 12, SF 6, C 3 F 3 is good. In addition, adjustment of the molar fraction to around 0.5 is also effective.

以上のように内包成分を選択すれば、気泡の平衡径aeを外圧p0の俊敏な関数(11)にできる。本発明の第3の実施例では、第1あるいは第2の実施例と同様の処理において、それぞれ(1)あるいは(10)に(11)を代入した式を回帰式として、p0を求める。
以上のような構成によれば、体内の圧力を高精度で検出することができる。
If the inclusion component is selected as described above, the bubble equilibrium diameter a e can be made into an agile function (11) of the external pressure p 0 . In the third embodiment of the present invention, in the same processing as in the first or second embodiment, p 0 is obtained by using a formula obtained by substituting (11) for (1) or (10), respectively.
According to the above configuration, the pressure in the body can be detected with high accuracy.

次に、図14から図16を用いて本発明の第4の実施例を説明する。本実施例は、第1から第3の実施例の処理を含み、超音波を送受する空間位置の圧力のほかに動き量も検出し、圧力と動きから超音波を送受する空間位置の硬さを算出する例である。   Next, a fourth embodiment of the present invention will be described with reference to FIGS. This embodiment includes the processing of the first to third embodiments, detects the amount of movement in addition to the pressure at the spatial position where ultrasound is transmitted and received, and the hardness at the spatial position where ultrasound is transmitted and received from the pressure and motion. Is an example of calculating.

図14は、本実施例の装置構成を示すブロック図である。本実施例の信号処理部6は、動き量検出部64及び動き量・圧力−硬さ変換部65を備える。   FIG. 14 is a block diagram showing a device configuration of the present embodiment. The signal processing unit 6 of this embodiment includes a motion amount detection unit 64 and a motion amount / pressure-hardness conversion unit 65.

図15は、本実施例の処理の流れを示すフローチャートである。第1から第3の実施例で述べた方法で、撮像対象の圧力を算出する(S51)。それと同時に、撮像対象の動き量も検出する(S52)。動き量の検出方法は既存のどのような方法でもよい。例えば、B像のスペックルパターンを追跡して動き量とするティッシュトラッキング法などでもよい。その後、圧力と動きから硬さを算出し(S53)、硬さを表示する(S54)。硬さは圧力に比例し、動き量に逆比例する量で定義される。   FIG. 15 is a flowchart showing the flow of processing of this embodiment. The pressure of the imaging target is calculated by the method described in the first to third embodiments (S51). At the same time, the amount of motion of the imaging target is also detected (S52). Any existing method may be used as the method for detecting the amount of motion. For example, a tissue tracking method may be used in which the speckle pattern of the B image is tracked to obtain a movement amount. Thereafter, the hardness is calculated from the pressure and movement (S53), and the hardness is displayed (S54). Hardness is defined as an amount proportional to the pressure and inversely proportional to the amount of movement.

図16は、血管において血管壁の硬さを算出する場合を例に、動き量を検出する方法を説明した図である。図16(a)は血管の全体図である。本発明の方法は、最初に血管101を撮像する。撮像断面は径方向断面102でも軸方向断面103のどちらでもよい。図16(b)(c)は径方向断面102をとった場合、図16(d)(e)は軸方向断面103をとった場合の撮像結果を表す。図16(b)と図16(c)、図16(d)と図16(e)は隣接する時刻における撮像結果を示している。   FIG. 16 is a diagram illustrating a method for detecting the amount of motion, taking as an example the case of calculating the hardness of a blood vessel wall in a blood vessel. FIG. 16A is an overall view of a blood vessel. The method of the present invention first images the blood vessel 101. The imaging section may be either the radial section 102 or the axial section 103. FIGS. 16B and 16C show the imaging results when the radial section 102 is taken, and FIGS. 16D and 16E show the imaging results when the axial section 103 is taken. FIG. 16B and FIG. 16C, FIG. 16D and FIG. 16E show imaging results at adjacent times.

図16(b)(c)について説明すると、図16(b)は時刻t、図16(c)は時刻t+dtにおける撮像結果である。時刻tでの位置104及び時刻t+dtでの位置104’での圧力が算出されているとする。このとき、t=tでの撮像結果の中に微小領域105を設定し、t=t+dtで同じ形状を持つと判断される微小領域105’を検出し、微小領域105と105’の重心の移動量106を動きとする。また、動き量の精度が低くてよい場合には、たとえば血管径d1とd2の差の1/2を大きさ、血管壁の法線方向を方向とするベクトルを動き量としてもよい。図16(d)及び図16(e)に示した軸方向断面103においても同様に動き量106が算出できる。   16B and 16C will be described. FIG. 16B shows the imaging result at time t, and FIG. 16C shows the imaging result at time t + dt. It is assumed that the pressure at the position 104 at time t and the position 104 'at time t + dt is calculated. At this time, the micro area 105 is set in the imaging result at t = t, the micro area 105 ′ determined to have the same shape is detected at t = t + dt, and the center of gravity of the micro areas 105 and 105 ′ is moved. Let the amount 106 be a movement. Further, when the accuracy of the motion amount may be low, for example, a motion vector may be used in which a half of the difference between the blood vessel diameters d1 and d2 is large and the normal direction of the blood vessel wall is a direction. Similarly, the movement amount 106 can be calculated in the axial section 103 shown in FIGS. 16D and 16E.

以上のような構成によれば、非侵襲に、高精度で、生体の硬さを検出することができる。   According to the above configuration, the hardness of the living body can be detected non-invasively with high accuracy.

次に、第1から第4の実施例の処理を心臓に適用した場合の例を、図17及び図18を用いて説明する。   Next, an example in which the processing of the first to fourth embodiments is applied to the heart will be described with reference to FIGS. 17 and 18.

図17は、超音波探触子が心臓に超音波を送信・受信する処理を説明した図である。超音波探触子1から生体72に超音波を送信し、心臓73に含まれる超音波造影剤74から反射された信号751,752を受信する。   FIG. 17 is a diagram illustrating a process in which the ultrasound probe transmits and receives ultrasound to the heart. Ultrasound is transmitted from the ultrasound probe 1 to the living body 72, and signals 751 and 752 reflected from the ultrasound contrast agent 74 included in the heart 73 are received.

処理の全体の流れは図18に示した。最初に超音波像により心臓の形状を撮像し(S61)、圧力を測定する部位を検出する(S62)。次に、測定部位の圧力を実施例1から実施例4の方法で検出し(S63)、測定部位の形状と圧力を表示する(S64)。   The overall flow of the processing is shown in FIG. First, the shape of the heart is picked up by an ultrasonic image (S61), and a part for measuring pressure is detected (S62). Next, the pressure of the measurement site is detected by the method of Example 1 to Example 4 (S63), and the shape and pressure of the measurement site are displayed (S64).

表示の例を図19に示す。図19(a)は心臓内部の血圧を場所ごとに検出し、形態画像に重ねて表示した例、図19(b)は心臓の形態画像及び血圧の検出値を解析した結果を表示した例である。図19(a)(b)とも91は表示画面、92は撮像領域、93は撮像対象の形態画像で、図19(a)において、94は圧力の検出結果を、異なる検出値を異なる色で表示した例である。図19(b)において、95は解析結果の表示エリアで、横軸を形態画像を画像処理して抽出した、心臓の左心室の体積VLV、縦軸を本発明の撮像方法によって検出した左心室の圧力の空間的な代表値PLVとした例を示した。グラフ内に示した96は (VLV,LV)の時間変化である。測定条件の違いにより、複数のループが描かれている。97は複数のループの接線の傾きで心機能の指標の1つであるEMAX、98は前記接線の切片で心機能の指標の1つであるV0である。図19では撮像対象が心臓である例を示したが、撮像対象は心臓に限らない。なお、図19は静止画でも動画でもよい。An example of display is shown in FIG. FIG. 19A shows an example in which the blood pressure inside the heart is detected for each location and displayed superimposed on the morphological image. FIG. 19B shows an example in which the result of analyzing the heart morphological image and the detected blood pressure is displayed. is there. 19 (a) and 19 (b), 91 is a display screen, 92 is an imaging region, 93 is a morphological image to be imaged, and in FIG. 19 (a), 94 is a pressure detection result, and different detection values are displayed in different colors. It is a displayed example. In FIG. 19B, reference numeral 95 denotes an analysis result display area, in which the horizontal axis indicates the volume V LV of the left ventricle extracted by morphological image processing, and the vertical axis indicates the left detected by the imaging method of the present invention. An example is shown in which the spatial representative value P LV of the ventricular pressure is used. Reference numeral 96 shown in the graph represents the time change of (V LV, P LV ). Multiple loops are drawn due to differences in measurement conditions. 97 is E MAX which is one of the indices of the heart function by the inclination of the tangent of the plurality of loops, and 98 is V 0 which is one of the indices of the heart function by the intercept of the tangent. Although FIG. 19 illustrates an example in which the imaging target is the heart, the imaging target is not limited to the heart. Note that FIG. 19 may be a still image or a moving image.

以上のような構成によれば、心臓など撮像対象の内部の血圧を非侵襲に高精度に検出することができ、形態情報とあわせて臨床的に意味のある量をユーザに提示することができる。   According to the above configuration, the blood pressure inside the imaging target such as the heart can be detected noninvasively with high accuracy, and a clinically meaningful amount can be presented to the user together with the morphological information. .

1:超音波探触子
2:装置本体
3:送信ビームフォーマ
4:増幅手段
5:受信ビームフォーマ
6:信号処理部
61:周波数解析部
62:周波数分布特徴量検出部
63:周波数分布特徴量−圧力換算部
7:メモリ
8:表示手段。
1: Ultrasonic probe 2: Device body 3: Transmission beamformer 4: Amplifying means 5: Reception beamformer 6: Signal processing unit 61: Frequency analysis unit 62: Frequency distribution feature amount detection unit 63: Frequency distribution feature amount − Pressure conversion unit 7: memory 8: display means.

Claims (9)

超音波造影剤を注入した撮像対象に対して超音波を送受信する超音波探触子と、
前記超音波探触子が受信した撮像対象からの超音波信号を信号処理する信号処理部と、
前記信号処理部の処理結果を表示する表示手段とを備え、
前記信号処理部は、撮像対象内の任意の空間位置に焦点を設定し、前記焦点に位置する造影剤が反射した信号から、圧力を検出することを特徴とする超音波撮像装置。
An ultrasound probe that transmits and receives ultrasound to and from an imaging target injected with an ultrasound contrast agent;
A signal processing unit that performs signal processing of an ultrasonic signal from an imaging target received by the ultrasonic probe;
Display means for displaying the processing result of the signal processing unit,
The ultrasonic imaging apparatus, wherein the signal processing unit sets a focal point at an arbitrary spatial position in an imaging target and detects pressure from a signal reflected by a contrast agent located at the focal point.
超音波造影剤を注入した撮像対象に対して超音波を送受信する超音波探触子と、
前記超音波探触子が受信した撮像対象からの超音波信号を信号処理する信号処理部と、
前記信号処理部の処理結果を表示する表示手段とを備え、
前記信号処理部は、前記受信した超音波信号の周波数分布を算出する周波数解析部と、
前記周波数解析部によって算出された周波数分布から、前記受信した超音波信号の減衰率の周波数依存性の、1つ以上の規定の周波数での値、最大値を示す周波数、最大値、半値幅のうち1つ以上である、周波数分布特徴量を検出する周波数分布特徴量検出部と、
前記周波数分布特徴量を圧力に換算する周波数分布特徴量−圧力換算部とを有し、
前記表示手段は、前記周波数分布特徴量−圧力換算部で算出された圧力の値を表示することを特徴とする超音波撮像装置。
An ultrasound probe that transmits and receives ultrasound to and from an imaging target injected with an ultrasound contrast agent;
A signal processing unit that performs signal processing of an ultrasonic signal from an imaging target received by the ultrasonic probe;
Display means for displaying the processing result of the signal processing unit,
The signal processing unit is a frequency analysis unit that calculates a frequency distribution of the received ultrasonic signal;
From the frequency distribution calculated by the frequency analysis unit, the frequency dependence of the attenuation rate of the received ultrasonic signal is a value at one or more specified frequencies, a frequency indicating a maximum value, a maximum value, and a half-value width. A frequency distribution feature quantity detection unit for detecting a frequency distribution feature quantity, which is one or more of them,
A frequency distribution feature value for converting the frequency distribution feature value into a pressure-pressure conversion unit;
The ultrasonic imaging apparatus, wherein the display means displays a pressure value calculated by the frequency distribution feature value-pressure conversion unit.
請求項2に記載の超音波撮像装置において、前記周波数分布特徴量−圧力換算部は、前記周波数解析部の算出した周波数分布から、基本波、高調波、分調波、差周波、和周波の強度の周波数分布、値の分岐の大きさのうち1つ以上である周波数分布特徴量を検出することを特徴とする超音波撮像装置。   3. The ultrasonic imaging apparatus according to claim 2, wherein the frequency distribution feature value-pressure conversion unit calculates a fundamental wave, a harmonic, a subharmonic wave, a difference frequency, and a sum frequency from the frequency distribution calculated by the frequency analysis unit. An ultrasonic imaging apparatus that detects a frequency distribution feature amount that is one or more of a frequency distribution of intensity and a magnitude of a branch of a value. 請求項2に記載の超音波撮像装置において、前記信号処理部は、体内の圧力を検出した部位の動き量を検出する動き量検出部と、前記周波数分布特徴量−圧力換算部が換算した圧力と前記動き量検出部が検出した動き量から、体内の圧力と動きを検出した部位の硬さである硬さ量を算出する圧力・動き量−硬さ量換算部を備えることを特徴とする超音波撮像装置。   3. The ultrasonic imaging apparatus according to claim 2, wherein the signal processing unit is a pressure converted by a motion amount detection unit that detects a motion amount of a part where a pressure in the body is detected, and the frequency distribution feature value-pressure conversion unit. And a pressure / motion amount-hardness amount conversion unit for calculating a hardness amount, which is the hardness of a part where the pressure and motion in the body are detected, from the motion amount detected by the motion amount detection unit. Ultrasonic imaging device. 撮像対象に超音波造影剤を注入する造影剤注入ステップと、
撮像対象に超音波信号を送波する超音波送波ステップと、
撮像対象から反射された超音波信号を受信し、受信した超音波信号の周波数分布を算出する周波数解析ステップと、
前記算出した周波数分布から、前記受信した超音波信号の減衰率の周波数依存性の、1つ以上の規定の周波数での値、最大値を示す周波数、最大値、半値幅のうち1つ以上である、周波数分布特徴量を検出する周波数分布特徴量ステップと、
前記検出した周波数分布特徴量を圧力に換算する周波数分布特徴量−圧力換算ステップと
を有することを特徴とする超音波撮像方法。
A contrast agent injection step of injecting an ultrasound contrast agent into the imaging target;
An ultrasonic wave transmission step for transmitting an ultrasonic signal to the imaging target;
A frequency analysis step of receiving an ultrasonic signal reflected from the imaging target and calculating a frequency distribution of the received ultrasonic signal;
From the calculated frequency distribution, the frequency dependence of the attenuation rate of the received ultrasonic signal is one or more of a value at one or more specified frequencies, a frequency indicating a maximum value, a maximum value, and a half-value width. A frequency distribution feature amount step for detecting a frequency distribution feature amount;
An ultrasonic imaging method comprising: a frequency distribution feature amount-pressure conversion step of converting the detected frequency distribution feature amount into pressure.
請求項5に記載の超音波撮像方法において、
前記造影剤注入ステップは、複数の液体成分を内包する多成分液滴型造影剤を体内に注入し、
前記超音波送波ステップは、前記多成分液滴型造影剤を気化させるための気化用超音波送波を行った後、圧力検出用の超音波を送波することを特徴とする超音波撮像方法。
The ultrasonic imaging method according to claim 5, wherein
The contrast agent injecting step injects a multi-component droplet type contrast agent containing a plurality of liquid components into the body,
In the ultrasonic wave transmission step, ultrasonic wave for pressure detection is transmitted after performing ultrasonic wave for vaporization for vaporizing the multi-component liquid droplet type contrast agent. Method.
請求項6に記載の超音波撮像方法において、圧力を検出する部位の温度をTc、検出しようとする圧力の上限をPu、下限をPlとするとき、前記複数の液体成分のうち少なくとも1つは温度Tcでの蒸気圧がPu以上であり、他の少なくとも1つは温度Tcでの蒸気圧がPl以下であり、前記複数の液体成分はPl以上、Pu以下の圧力で気液平衡が成り立つモル分率で混合されていることを特徴とする超音波撮像方法。7. The ultrasonic imaging method according to claim 6, wherein when the temperature of a part for detecting pressure is T c , the upper limit of pressure to be detected is P u , and the lower limit is P l , at least of the plurality of liquid components. One has a vapor pressure at a temperature T c equal to or higher than P u , and at least one other has a vapor pressure at a temperature T c equal to or lower than P l , and the plurality of liquid components are equal to or higher than P l and lower than P u. An ultrasonic imaging method characterized by being mixed at a molar fraction at which a gas-liquid equilibrium is established at a pressure of 5. 請求項5に記載の超音波撮像方法において、さらに、
体内の圧力を検出した部位の動き量を検出するステップと、
前記換算した圧力と前検出した動き量から前記圧力と動きを検出した部位の硬さである硬さ量を算出するステップを有することを特徴とする超音波撮像方法。
The ultrasonic imaging method according to claim 5, further comprising:
Detecting the amount of movement of the part that detected the pressure in the body;
An ultrasonic imaging method comprising: calculating a hardness amount that is a hardness of a part where the pressure and the motion are detected from the converted pressure and the previously detected motion amount.
請求項6に記載の超音波撮像方法において、さらに、
体内の圧力を検出した部位の動き量を検出するステップと、
前記換算した圧力と前検出した動き量から前記圧力と動きを検出した部位の硬さである硬さ量を算出するステップを有することを特徴とする超音波撮像方法。
The ultrasonic imaging method according to claim 6, further comprising:
Detecting the amount of movement of the part that detected the pressure in the body;
An ultrasonic imaging method comprising: calculating a hardness amount that is a hardness of a part where the pressure and the motion are detected from the converted pressure and the previously detected motion amount.
JP2011519749A 2009-06-18 2010-06-11 Ultrasonic imaging apparatus and method of operating ultrasonic imaging apparatus Expired - Fee Related JP5341995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519749A JP5341995B2 (en) 2009-06-18 2010-06-11 Ultrasonic imaging apparatus and method of operating ultrasonic imaging apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009145676 2009-06-18
JP2009145676 2009-06-18
JP2011519749A JP5341995B2 (en) 2009-06-18 2010-06-11 Ultrasonic imaging apparatus and method of operating ultrasonic imaging apparatus
PCT/JP2010/059912 WO2010147055A1 (en) 2009-06-18 2010-06-11 Ultrasonic image pickup apparatus and ultrasonic image pickup method

Publications (2)

Publication Number Publication Date
JPWO2010147055A1 true JPWO2010147055A1 (en) 2012-12-06
JP5341995B2 JP5341995B2 (en) 2013-11-13

Family

ID=43356373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519749A Expired - Fee Related JP5341995B2 (en) 2009-06-18 2010-06-11 Ultrasonic imaging apparatus and method of operating ultrasonic imaging apparatus

Country Status (2)

Country Link
JP (1) JP5341995B2 (en)
WO (1) WO2010147055A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433130B2 (en) 2014-02-19 2018-12-05 キヤノン株式会社 Subject information acquisition apparatus, subject information acquisition method, and program
JP7104709B2 (en) * 2016-10-11 2022-07-21 トーマス・ジェファーソン・ユニバーシティ Non-invasive method for pressure measurement
US20210259666A1 (en) * 2020-02-21 2021-08-26 Alexander Brenner System and method for non-invasive real time assessment of cardiovascular blood pressure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164035A (en) * 1983-03-09 1984-09-17 三菱電機株式会社 Internal pressure measuring apparatus of living body tissue
GB9701274D0 (en) * 1997-01-22 1997-03-12 Andaris Ltd Ultrasound contrast imaging
JP3819845B2 (en) * 2001-04-06 2006-09-13 ブラッコ・リサーチ・ソシエテ・アノニム Improved method for measuring local physical parameters in fluid filled cavities
JP2006230504A (en) * 2005-02-22 2006-09-07 Micro-Star Internatl Co Ltd Method for measuring intracranial pressure and system
JP3143459U (en) * 2008-05-12 2008-07-24 微星科技股▲分▼有限公司 Intracranial pressure measurement system

Also Published As

Publication number Publication date
WO2010147055A1 (en) 2010-12-23
JP5341995B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
Correas et al. Ultrasound-based imaging methods of the kidney—recent developments
ANGELSEN et al. Transcutaneous measurement of blood flow velocity in the human aorta
Kanai et al. Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study
Pernot et al. Real-time assessment of myocardial contractility using shear wave imaging
JP3652791B2 (en) Ultrasonic diagnostic equipment
Dave et al. Noninvasive LV pressure estimation using subharmonic emissions from microbubbles
US8414491B2 (en) Ultrasonograph and ultrasonograph control method
JP3875581B2 (en) Ultrasound diagnostic system
US20030109785A1 (en) Method and apparatus for measuring volume flow and area for a dynamic orifice
JP4667392B2 (en) Ultrasonic diagnostic equipment
EP1806099A1 (en) Ultrasonographic device and ultrasonographic device control method
JPWO2005055831A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
CN116098652B (en) Ultrasonic contrast blood pressure measuring device and method based on subharmonic resonance frequency
Hansen et al. In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography
Gudmundsson et al. Factors affecting color Doppler energy ultrasound recordings in an in-vitro model
JP5341995B2 (en) Ultrasonic imaging apparatus and method of operating ultrasonic imaging apparatus
Xu et al. Subharmonic scattering of sonovue microbubbles within 10–40-mmHg overpressures in vitro
JP2008161546A (en) Ultrasonic diagnostic apparatus
JP6433130B2 (en) Subject information acquisition apparatus, subject information acquisition method, and program
JP5014132B2 (en) Ultrasonic diagnostic equipment
Bok et al. Feasibility study of high-frequency ultrasonic blood imaging in human radial artery
Kucewicz et al. Plethysmographic arterial waveform strain discrimination by Fisher's method
WO2007072720A1 (en) Diagnostic imaging apparatus for medical use and method of identifying biological tissue
JPH114826A (en) Living body measuring device
Serra Analysis of breathing effect on vena cava

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees