JPWO2009014125A1 - Rechargeable battery unit, power transmission system and power transmission method therefor - Google Patents

Rechargeable battery unit, power transmission system and power transmission method therefor Download PDF

Info

Publication number
JPWO2009014125A1
JPWO2009014125A1 JP2009524489A JP2009524489A JPWO2009014125A1 JP WO2009014125 A1 JPWO2009014125 A1 JP WO2009014125A1 JP 2009524489 A JP2009524489 A JP 2009524489A JP 2009524489 A JP2009524489 A JP 2009524489A JP WO2009014125 A1 JPWO2009014125 A1 JP WO2009014125A1
Authority
JP
Japan
Prior art keywords
power
power supply
unit
rechargeable battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009524489A
Other languages
Japanese (ja)
Inventor
宮 邦 文 小
宮 邦 文 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UNIVERSAL DEVICE TECHNOLOGY CO., LTD.
Original Assignee
UNIVERSAL DEVICE TECHNOLOGY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UNIVERSAL DEVICE TECHNOLOGY CO., LTD. filed Critical UNIVERSAL DEVICE TECHNOLOGY CO., LTD.
Publication of JPWO2009014125A1 publication Critical patent/JPWO2009014125A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

様々な電子装置に対応して無接点で適切に電力を伝送し供給することができる充電池ユニットとそのための電力伝送システム及び電力伝送方法を提供する。本発明の充電池ユニットは、電池ユニットを特定するための識別情報を少なくとも含み無線信号を用いて電力供給装置と電力伝送に伴う情報の授受を行う通信手段と、電力供給装置から無接点で電力を受給する電力受給手段と、受給した電力を貯蔵する2次電池と、受給した電力を2次電池に充電する充電手段と、2次電池の充電状態を監視する充電状態監視手段と、2次電池の充電状態に応じて充電手段を制御する充電制御手段と、電力受給状態を監視する受給電力監視手段と、受給電力を該充電池ユニットに対応して適切に制御するための電力受給情報を電力供給装置に通信手段を介して送信する受給情報送信手段と、を備える。Provided are a rechargeable battery unit capable of appropriately transmitting and supplying power in a contactless manner corresponding to various electronic devices, a power transmission system and a power transmission method therefor. The rechargeable battery unit according to the present invention includes at least identification information for specifying a battery unit, a communication means that transmits and receives information associated with power transmission using a wireless signal, and power from the power supply apparatus without contact. Power receiving means for receiving the received power, a secondary battery for storing the received power, a charging means for charging the received power to the secondary battery, a charging state monitoring means for monitoring the charging state of the secondary battery, and the secondary Charging control means for controlling the charging means in accordance with the state of charge of the battery, received power monitoring means for monitoring the power receiving state, and power reception information for appropriately controlling the received power corresponding to the rechargeable battery unit. Receiving information transmitting means for transmitting to the power supply device via the communication means.

Description

本発明は、充電池ユニットとそのための電力伝送システム及び電力伝送方法に係り、より詳細には種類の異なる様々な充電池ユニットとこの充電池ユニットに対して無接点で適切に電力を伝送し供給するための電力伝送システム及び電力伝送方法に関する。   The present invention relates to a rechargeable battery unit, a power transmission system and a power transmission method therefor, and more specifically, various rechargeable battery units of different types and appropriately transmitting power to the rechargeable battery unit without contact. The present invention relates to a power transmission system and a power transmission method.

携帯型の電子機器は、通常電源として内蔵する1次電池や2次電池により駆動され、2次電池を内蔵した電子機器には充電器が接続され、内部の2次電池に電力が供給されてその電源を維持する。電動歯ブラシ、コードレス電話、PHS等それほど電力消費を必要としない小型の電子機器は、現在でも電力受給のための接続端子を持たずに無接点で充電されるように構成され、それに対応して無接点で電力供給する充電装置が使用されている。   A portable electronic device is driven by a primary battery or a secondary battery built in as a normal power source, and a charger is connected to the electronic device incorporating the secondary battery, and power is supplied to the internal secondary battery. Maintain that power. Small electronic devices that do not require much power consumption, such as electric toothbrushes, cordless phones, and PHSs, are still configured to be charged contactlessly without having a connection terminal for receiving power. A charging device that supplies power at a contact point is used.

このような無接点で電力を伝送して供給する電力伝送システムを携帯電話やノートパソコンのような比較的電力消費が大きな電子機器に適用しようという動きが、電力伝送効率の向上に目処がついたこともあり近年活発化している。比較的大きな電力伝送方式としてはコイル間を貫く磁束の強さの変化によって生じる起電力を利用する電磁誘導型(トランス結合)が使用されている。   The movement to apply such a power transmission system that transmits and supplies power without contact to electronic devices with relatively high power consumption, such as mobile phones and laptop computers, has the goal of improving power transmission efficiency. In recent years, it has become more active. As a relatively large power transmission method, an electromagnetic induction type (transformer coupling) using an electromotive force generated by a change in strength of magnetic flux passing between coils is used.

更に、無接点の充電器を個々の電子機器にそれぞれ対応させるというだけではなく、ユビキタス時代を反映して街中の店舗等のテーブル等に、どの電子機器にも充電可能なユニバーサルな充電装置を組み込み、電磁調理器のように平板上の充電台に載せるだけで充電できるようにしようとする動きもある。電力供給のための接続端子を持たずに無接点で充電するシステムとしては、例えば特許文献1に非接触充電型電池システム、充電装置および電池パックが開示されている。
特開2006−115562号公報
Furthermore, not only does a non-contact charger correspond to each electronic device, but it also incorporates a universal charging device that can charge any electronic device on a table in a store in the city, reflecting the ubiquitous era. There is also a movement to charge the battery simply by placing it on a charging base on a flat plate like an electromagnetic cooker. As a system for charging without contact without having a connection terminal for supplying power, for example, Patent Document 1 discloses a non-contact chargeable battery system, a charging device, and a battery pack.
JP 2006-115562 A

しかしながら、消費電力、内蔵する2次電池の電圧や容量、形状等様々に異なる電子機器に対して内部の電子部品を破壊することなく適切な電力を供給し充電を行うためには、それぞれの電子機器に適合した電力伝送を行う必要があり、その電子機器自身もそれぞれが適切に受給できるようにするためのそれぞれの制御システムが必要となるという問題点がある。更に加えて、例えば平板上の充電機器装置とは異なる金属等の異物が載置された場合も考慮して発熱、発煙、発火等に対応した安全面での配慮も必要になるという問題点がある。   However, in order to supply appropriate power without destroying internal electronic components to various electronic devices such as power consumption, voltage, capacity, and shape of the built-in secondary battery, There is a problem in that it is necessary to perform power transmission suitable for the device, and the electronic device itself needs each control system so that each device can receive it appropriately. In addition, there is a problem that it is necessary to consider safety in response to heat generation, smoke generation, ignition, etc., taking into account the case where a foreign object such as a metal different from the charging device on the flat plate is placed. is there.

そこで、本発明は上記従来の問題点に鑑みてなされたものであって、本発明の目的は、電力供給のための接続端子を持たずに無接点で充電され、様々な電子機器に装着されてユニバーサル化が可能な充電池ユニットと、この充電池ユニットに対して適切に電力を伝送し供給することができる電力伝送システム及び電力伝送方法を提供することにある。   Therefore, the present invention has been made in view of the above-described conventional problems, and an object of the present invention is to be charged in a contactless manner without having a connection terminal for power supply and attached to various electronic devices. Another object of the present invention is to provide a rechargeable battery unit that can be universalized, and a power transmission system and a power transmission method that can appropriately transmit and supply power to the rechargeable battery unit.

上記目的を達成するためになされた本発明による充電池ユニットは、電子機器に装着され、電力供給装置から無接点で電力が供給されて充電される充電池ユニットであって、
前記電池ユニットを特定するための識別情報を少なくとも含み、無線信号を用いて前記電力供給装置と電力伝送に伴う情報の授受を行う通信手段と、前記電力供給装置から無接点で電力を受給する電力受給手段と、前記電力受給手段で受給した電力を貯蔵する2次電池と、前記電力受給手段で受給した電力を前記2次電池に充電する充電手段と、前記2次電池の充電状態を監視する充電状態監視手段と、監視された前記2次電池の充電状態に応じて前記充電手段を制御する充電制御手段と、前記電力受給手段で受給する電力受給状態を監視する受給電力監視手段と、監視された受給電力を該充電池ユニットに対応して適切に制御するための電力受給情報を前記電力供給装置に前記通信手段を介して送信する受給情報送信手段と、を備えることを特徴とする。
The rechargeable battery unit according to the present invention made to achieve the above object is a rechargeable battery unit that is attached to an electronic device and charged by being supplied with electric power from a power supply device in a contactless manner.
Communication means including at least identification information for specifying the battery unit, and transmitting and receiving information associated with power transmission with the power supply device using a radio signal, and power for receiving power from the power supply device in a contactless manner A receiving unit; a secondary battery that stores the power received by the power receiving unit; a charging unit that charges the secondary battery with the power received by the power receiving unit; and a charge state of the secondary battery is monitored. A charging state monitoring unit; a charging control unit that controls the charging unit according to the monitored charging state of the secondary battery; a received power monitoring unit that monitors a power receiving state received by the power receiving unit; Receiving information transmitting means for transmitting to the power supply apparatus via the communication means power receiving information for appropriately controlling the received power received corresponding to the rechargeable battery unit. And features.

本発明の充電池ユニットは、前記充電状態監視手段で監視された前記2次電池の充電状態に応じて前記電力供給装置から供給される電力を制御するための充電制御情報を前記電力供給装置に前記通信手段を介して送信する充電制御情報送信手段を更に備えることができる。
本発明の充電池ユニットにおける前記通信手段は、近距離無線通信、赤外線通信、及び電力伝送の際の電磁界又は電磁波を介して行う通信の中から選択されるいずれか1つ以上の通信方式により行なわれる。
また、本発明の充電池ユニットは、前記2次電池に対して充電容量が単位時間当たり2倍以上となる充電率で急速充電が可能な電気二重層キャパシタを更に備え、前記充電手段は、前記電力受給手段で受給した電力を前記電気二重層キャパシタに充電する第1充電手段と、該第1充電手段で充電された前記電気二重層キャパシタの電力を前記2次電池に充電する第2充電手段と、を含むことができる。
The rechargeable battery unit of the present invention provides the power supply device with charge control information for controlling the power supplied from the power supply device according to the charge state of the secondary battery monitored by the charge state monitoring means. Charge control information transmitting means for transmitting via the communication means can be further provided.
The communication means in the rechargeable battery unit according to the present invention is based on any one or more communication methods selected from short-range wireless communication, infrared communication, and communication performed via an electromagnetic field or electromagnetic wave during power transmission. Done.
The rechargeable battery unit of the present invention further includes an electric double layer capacitor capable of rapid charging at a charging rate at which a charging capacity is twice or more per unit time with respect to the secondary battery, and the charging means includes the charging unit First charging means for charging the electric double layer capacitor with the electric power received by the electric power receiving means, and second charging means for charging the secondary battery with electric power of the electric double layer capacitor charged by the first charging means. And can be included.

上記目的を達成するためになされた本発明による電力伝送システムは、電力供給装置から電子機器に装着される充電池ユニットに無接点で電力を伝送し供給するシステムであって、
前記充電池ユニットは、前記充電池ユニットを特定するための識別情報を少なくとも含み、無線信号を用いて前記電力供給装置と電力伝送に伴う情報の授受を行う通信手段と、前記電力供給装置から無接点で電力を受給する電力受給手段と、前記電力受給手段で受給した電力を貯蔵する2次電池と、前記電力受給手段で受給した電力を前記2次電池に充電する充電手段と、前記2次電池の充電状態を監視する充電状態監視手段と、監視された前記2次電池の充電状態に応じて前記充電手段を制御する充電制御手段と、前記電力受給手段で受給する電力受給状態を監視する受給電力監視手段と、監視された受給電力を該充電池ユニットに対応して適切に制御するための電力受給情報を前記電力供給装置に前記通信手段を介して送信する受給情報送信手段と、を備え、
前記電力供給装置は、前記通信手段を介して前記充電池ユニットから送信された前記識別情報を読み取る識別情報読み取り手段と、前記識別情報読み取り手段により前記充電池ユニットの識別情報を読み取り該充電池ユニットを特定する充電池ユニット識別手段と、前記充電池ユニットに無接点で電力を供給する電力供給手段と、前記識別情報に対応する充電池ユニット毎の電力供給制御情報を保持する制御情報保持手段と、前記通信手段を介して前記充電池ユニットから送信された電力受給情報を受信する受給情報受信手段と、前記電力供給制御情報及び前記電力受給情報を基に前記電力供給手段を制御して対応する充電池ユニットに適合した電力を供給する電力供給制御手段と、を備えることを特徴とする。
The power transmission system according to the present invention made to achieve the above object is a system for transmitting and supplying power in a contactless manner from a power supply device to a rechargeable battery unit attached to an electronic device,
The rechargeable battery unit includes at least identification information for identifying the rechargeable battery unit, and includes a communication unit that exchanges information associated with power transmission with the power supply device using a wireless signal, A power receiving means for receiving power at the contact; a secondary battery for storing the power received by the power receiving means; a charging means for charging the secondary battery with the power received by the power receiving means; and the secondary battery Charge state monitoring means for monitoring the charge state of the battery, charge control means for controlling the charge means in accordance with the monitored charge state of the secondary battery, and monitoring the power receiving state received by the power receiving means. Received power monitoring means, and received information for transmitting the received power for appropriately controlling the monitored received power corresponding to the rechargeable battery unit to the power supply device via the communication means. And signal means, equipped with a,
The power supply device reads identification information reading means for reading the identification information transmitted from the rechargeable battery unit via the communication means, and reads identification information of the rechargeable battery unit by the identification information reading means. A rechargeable battery unit identifying means for identifying the rechargeable battery unit, a power supply means for supplying power to the rechargeable battery unit without contact, and a control information retaining means for retaining power supply control information for each rechargeable battery unit corresponding to the identification information , Receiving information receiving means for receiving the power receiving information transmitted from the rechargeable battery unit via the communication means, and responding by controlling the power supplying means based on the power supply control information and the power receiving information Power supply control means for supplying power suitable for the rechargeable battery unit.

本発明の電力伝送システムにおける前記充電池ユニットは、前記充電状態監視手段で監視された前記2次電池の充電状態に応じて前記電力供給装置から供給される電力を制御するための充電制御情報を前記電力供給装置に前記通信手段を介して送信する充電制御情報送信手段を更に備え、
前記電力供給装置は、前記通信手段を介して前記充電池ユニットから送信された充電制御情報を受信する充電制御情報受信手段を更に備え、
前記電力供給制御手段は、前記電力供給制御情報、前記電力受給情報、及び前記充電制御情報を基に前記電力供給手段の供給電力を制御することができる。
また、本発明の電力伝送システムにおける前記通信手段は、近距離無線通信、赤外線通信、及び電力伝送の際の電磁界又は電磁波を介して行う通信の中から選択されるいずれか1つ以上の通信方式により行なわれる。
また、本発明の電力伝送システムにおける前記充電池ユニットは、前記2次電池に対して充電容量が単位時間あたり5倍以上の充電率で急速充電が可能な電気二重層キャパシタを更に備え、
前記充電手段は、前記電力受給手段で受給した電力を前記電気二重層キャパシタに充電する第1充電手段と、該第1充電手段で充電された前記電気二重層キャパシタの電力を前記2次電池に充電する第2充電手段と、を含むことができる。
The rechargeable battery unit in the power transmission system according to the present invention includes charge control information for controlling power supplied from the power supply device in accordance with a charge state of the secondary battery monitored by the charge state monitoring unit. Charging control information transmitting means for transmitting to the power supply device via the communication means,
The power supply device further includes charge control information receiving means for receiving charge control information transmitted from the rechargeable battery unit via the communication means,
The power supply control means can control the power supplied by the power supply means based on the power supply control information, the power reception information, and the charge control information.
Further, the communication means in the power transmission system of the present invention is any one or more communications selected from short-range wireless communications, infrared communications, and communications performed via electromagnetic fields or electromagnetic waves during power transmission. This is done by the method.
The rechargeable battery unit in the power transmission system of the present invention further includes an electric double layer capacitor capable of rapid charging with a charging rate of 5 times or more per unit time with respect to the secondary battery,
The charging means includes a first charging means for charging the electric double layer capacitor with the electric power received by the electric power receiving means, and an electric power of the electric double layer capacitor charged by the first charging means to the secondary battery. And a second charging means for charging.

ここで、前記電力供給手段で供給される電力は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により伝送され、前記電力供給装置は、前記1次側電力供給部と2次側電力受給部との間の結合度を検出する結合度検出手段を更に備えることが好ましい。
前記結合度検出手段は、前記1次側電力供給部の消費電力、周波数特性、及び位相特性の中から選択されるいずれか一つ以上の特性の変化により検出することができる。
また、前記電池ユニットは、前記2次側電力受給部の負荷状態を変化させる手段を有し、前記結合度検出手段は、前記2次側電力受給部の負荷状態の変化に応じた前記1次側電力供給部の特性の変化により検出することができる。
前記電力供給装置は、前記結合度検出手段により検出された前記1次側電力供給部と2次側電力受給部の結合度を基に前記電力供給制御手段の制御情報を補正する制御情報補正手段を更に備えることができる。
前記電力供給装置は、1次側電力供給部にそれぞれ独立して制御及び駆動が可能な複数の駆動部を有し、前記結合度検出手段は、前記それぞれの駆動部の結合度を基に前記充電池ユニットに電力を供給する駆動部を選択することができる。
前記電力供給装置は、前記識別情報読み取り手段及び充電池ユニット識別手段で複数の前記充電池ユニットが特定され、前記結合度検出手段で検出された前記駆動部の結合度が前記複数の充電池ユニットに対応して所定の範囲内にある場合、前記複数の充電池ユニットに時分割で電力を伝送し供給することができる。
Here, the power supplied by the power supply means is transmitted by electromagnetic induction between a primary power supply unit of the power supply device and a secondary power supply unit of the rechargeable battery unit, and the power supply It is preferable that the apparatus further includes a coupling degree detection unit that detects a coupling degree between the primary power supply unit and the secondary power reception unit.
The coupling degree detection unit can detect the change based on a change in one or more characteristics selected from power consumption, frequency characteristics, and phase characteristics of the primary power supply unit.
The battery unit includes means for changing a load state of the secondary power receiving unit, and the coupling degree detection unit is configured to change the primary power according to a change in the load state of the secondary power receiving unit. This can be detected by a change in the characteristics of the side power supply unit.
The power supply device is a control information correction unit that corrects control information of the power supply control unit based on a coupling degree between the primary power supply unit and the secondary power reception unit detected by the coupling degree detection unit. Can be further provided.
The power supply device has a plurality of drive units that can be controlled and driven independently of each other on the primary side power supply unit, and the coupling degree detection means is based on the coupling degree of the respective driving units. The drive part which supplies electric power to a rechargeable battery unit can be selected.
In the power supply device, a plurality of the rechargeable battery units are specified by the identification information reading unit and the rechargeable battery unit identifying unit, and the coupling degree of the driving unit detected by the coupling degree detecting unit is the plurality of rechargeable battery units. Can be transmitted and supplied to the plurality of rechargeable battery units in a time-sharing manner.

また、前記電力供給手段で供給される電力は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により伝送され、前記電力供給装置は、前記1次側電力供給部の電流を検出する電流検出手段を更に備えることが好ましい。
前記電力供給装置は、該電力供給装置に物体が載置されたことを電圧、電流、抵抗値、静電容量、磁束、圧力、音、光、及び温度の中から選択されるいずれか一つ以上の変化により検出することができる。
また、前記電力供給装置は、外部装置と情報の授受を行うための外部通信手段と、前記外部通信手段を介し前記制御情報保持手段の電力供給制御情報を受信して更新する制御情報更新手段と、を更に備えることが好ましい。
The power supplied by the power supply means is transmitted by electromagnetic induction between a primary power supply unit of the power supply device and a secondary power supply unit of the rechargeable battery unit, and the power supply device Preferably further includes a current detecting means for detecting a current of the primary power supply unit.
The power supply device may be selected from voltage, current, resistance value, capacitance, magnetic flux, pressure, sound, light, and temperature that an object is placed on the power supply device. It can detect by the above change.
In addition, the power supply device includes external communication means for exchanging information with an external device, and control information update means for receiving and updating power supply control information of the control information holding means via the external communication means. Are preferably further provided.

上記目的を達成するためになされた本発明による電力伝送方法は、識別情報を有し無線信号を用いて情報の授受を行う通信手段と2次電池及びその充電部とを具備する充電池ユニットに、電力供給装置から無接点で電力を伝送し供給する方法であって、
前記通信手段を介して前記充電池ユニットの識別情報を読み取り当該充電池ユニットを特定する充電池ユニット識別段階と、前記2次電池の充電状態を監視しその充電状態に応じて前記電力供給装置の供給電力を制御するための充電制御情報を前記充電池ユニットから前記電力供給装置に前記通信手段を介して送信する充電制御情報送信段階と、前記電力供給装置で前記充電池ユニットから前記通信手段を介して前記充電制御情報を受信する充電制御情報受信段階と、前記識別情報により特定された充電池ユニット毎の電力供給制御情報及び前記充電制御情報受信段階で受信した前記充電制御情報を基に前記充電池ユニットへの供給電力を制御する電力供給制御段階と、を有することを特徴とする。
A power transmission method according to the present invention made to achieve the above object is provided in a rechargeable battery unit comprising communication means having identification information and transmitting / receiving information using a radio signal, a secondary battery, and a charging unit thereof. , A method of transmitting and supplying electric power from a power supply device in a contactless manner,
The identification information of the rechargeable battery unit is read via the communication means, the rechargeable battery unit identification stage for specifying the rechargeable battery unit, the charge state of the secondary battery is monitored, and the power supply device Charging control information transmission stage for transmitting charging control information for controlling supply power from the rechargeable battery unit to the power supply device via the communication means; and the communication means from the rechargeable battery unit in the power supply device. The charge control information receiving step for receiving the charge control information via the power supply control information for each rechargeable battery unit specified by the identification information and the charge control information received in the charge control information receiving step And a power supply control stage for controlling power supplied to the rechargeable battery unit.

前記充電池ユニット識別段階で前記識別情報が読み取れず充電池ユニットを特定することができない場合、その後の処理を中止して少なくとも音又は表示出力のいずれかによって利用者に注意喚起することが好ましい。
前記電力供給装置から前記充電池ユニットへの電力供給は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により行われ、前記1次側電力供給部と前記2次側電力受給部との間の結合度を検出する結合度検出段階を更に有し、前記結合度検出段階で検出された結合度と前記充電池ユニット毎に特定された電力供給制御情報の結合度とを比較した値が所定の範囲内にない場合、電力供給を中止して少なくとも音又は表示出力のいずれかによって利用者に注意喚起することが好ましい。
When the identification information cannot be read and the rechargeable battery unit cannot be specified at the rechargeable battery unit identification stage, it is preferable to stop the subsequent processing and alert the user by at least either sound or display output.
The power supply from the power supply device to the rechargeable battery unit is performed by electromagnetic induction between a primary power supply unit of the power supply device and a secondary power supply unit of the rechargeable battery unit, It further has a coupling degree detection step for detecting a coupling degree between the secondary power supply unit and the secondary power receiving unit, and is specified for the coupling degree detected in the coupling degree detection step and each rechargeable battery unit. If the value obtained by comparing the combined power supply control information is not within a predetermined range, it is preferable to stop the power supply and alert the user at least by sound or display output.

本発明の充電池ユニットとそのための電力伝送システム及び電力伝送方法によれば、接続端子を持たずに無接点で電力伝送を行うシステムをユニバーサル化が可能な充電池ユニットに適用することで、2次電池が組み込まれる電子機器それぞれに対応した制御システムを必要とせずに様々な電子機器に装着することができるようになる。更に、金属等の異物をも考慮した装置が提供されるので、街中の店舗や喫茶店等に設置される場合でも、その場所を選ばずユーザが所有する電子機器に装着される充電池ユニットに電力を供給することができ、内蔵する2次電池に安全に充電をすることができるという効果がある。   According to the rechargeable battery unit and the power transmission system and power transmission method therefor according to the present invention, by applying a system that transmits power without contact without a connection terminal to a universally rechargeable battery unit, 2 It becomes possible to attach to various electronic devices without requiring a control system corresponding to each electronic device in which the secondary battery is incorporated. In addition, since devices that take into account foreign objects such as metals are provided, even when installed in shops and coffee shops in the city, power is supplied to the rechargeable battery unit that is installed in electronic devices owned by the user regardless of the location. And the built-in secondary battery can be safely charged.

以下、本発明による充電池ユニットとそのための電力伝送システム及び電力伝送方法を実施するための最良の形態の具体例を、図面を参照しながら説明する。
図1は、本発明の一実施形態による充電池ユニットとこれに用いる電力供給装置の概略構成図である。
Hereinafter, a specific example of the best mode for carrying out a rechargeable battery unit, a power transmission system and a power transmission method therefor according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a rechargeable battery unit according to an embodiment of the present invention and a power supply device used therefor.

図1に示すように、本発明の一実施形態による充電池ユニットとこれに用いる電力供給装置として、具体的には、電力伝送の対象となる充電池ユニットに内蔵された2次電池への充電を想定しているが、充電システム以外に応用可能なことは明らかである。また、図1に示した電力供給装置10及び充電池ユニット30の各手段は、それぞれの装置に実装される電子回路、機構部品、CPU、メモリ、ファームウェア、及びアプリケーションプログラム等が連携して作動することにより実現されるものであり、本発明に直接関係する内容以外の図面及びその説明は省略する。   As shown in FIG. 1, as a rechargeable battery unit according to an embodiment of the present invention and a power supply device used therefor, specifically, charging a secondary battery built in a rechargeable battery unit that is a target of power transmission. However, it is clear that it can be applied to other than the charging system. Further, each means of the power supply device 10 and the rechargeable battery unit 30 shown in FIG. 1 operates in cooperation with an electronic circuit, a mechanical component, a CPU, a memory, firmware, an application program, and the like mounted on each device. The drawings and explanations other than the contents directly related to the present invention are omitted.

図1に示す充電池ユニット30は、電子機器に実装されてその電子機器内部の電子回路を作動させるための2次電池33を内蔵しており、電力受給手段32で受給した電力は充電手段34によって2次電池33に充電される。充電制御手段36は、充電電圧、充電電流、充電時の温度等に応じて2次電池33への充電を制御し、その充電状態は充電状態監視手段35により監視される。電力受給手段32は、受給した電力をそのまま急速に充電することが可能な電気二重層キャパシタ40を備えてもよく、例えば充電手段34の第1充電手段により電気二重層キャパシタ40に高い電圧のまま急速に一旦充電しておき、第2充電手段によりスイッチング電源等(図示せず)で2次電池33の電圧及び充電レートにあわせて降圧しながら徐々に充電するように構成することもできる。このように構成することで充電池ユニット30の急速充電が可能になり、電気二重層キャパシタ40の容量に応じた時間だけ充電池ユニット30の使用が可能になって、緊急時の用途等の今すぐに少しの時間だけでも使用したいというような要求に応えることができる。なお、ここでは電気二重層キャパシタ40の機能等の詳しい説明については省略するが、少なくとも2次電池33に対して充電容量が単位時間当たり2倍以上となる充電率で急速充電が可能なものを用いる。   A rechargeable battery unit 30 shown in FIG. 1 incorporates a secondary battery 33 that is mounted on an electronic device and operates an electronic circuit inside the electronic device, and the power received by the power receiving means 32 is the charging means 34. As a result, the secondary battery 33 is charged. The charging control unit 36 controls charging of the secondary battery 33 according to the charging voltage, charging current, temperature at the time of charging, and the like, and the charging state is monitored by the charging state monitoring unit 35. The power receiving unit 32 may include an electric double layer capacitor 40 that can rapidly charge the received power as it is. For example, the first charging unit of the charging unit 34 keeps the electric double layer capacitor 40 at a high voltage. It is also possible to configure such that the battery is quickly charged once and then gradually charged by the second charging means while being stepped down in accordance with the voltage and the charging rate of the secondary battery 33 with a switching power supply or the like (not shown). With this configuration, the rechargeable battery unit 30 can be quickly charged, and the rechargeable battery unit 30 can be used for a time corresponding to the capacity of the electric double layer capacitor 40. It can respond to requests that you want to use for a short time. In addition, although detailed description of the function of the electric double layer capacitor 40 is omitted here, a battery that can be rapidly charged at a charging rate at which the charging capacity of the secondary battery 33 is at least twice per unit time is used. Use.

通信手段31は、電力供給装置10から充電池ユニット30に無接点で電力を供給する際に、電力供給装置10が充電池ユニット30に電源がなくてもその種類等を特定できるように、充電池ユニット30への電力供給が開始される前にその識別情報を送信するようにしており、充電池ユニット30が電力を最適な制御下で受給するためにはそれぞれの充電池ユニット30に固有な一意の(ユニークな)識別情報(ID)を有することが望ましい。充電池ユニット30の種類を分類するだけでも十分な場合は、その種類毎のIDを有するものであっても構わない。本実施形態では、2次電池の容量が空の場合も想定し、内蔵電源を必要としない方式としてISO/IEC15693の近傍型の通称無線タグ(RFID)を用いた近距離通信方式のものを一例としているが、充電開始前に電力供給装置10から適切な電力を供給することで、IrDA、IrSimple等の赤外線通信を用いることや、或いは電力伝送の際の電磁界又は電磁波を介して識別情報を受け取るように構成することも可能である。   When supplying power from the power supply device 10 to the rechargeable battery unit 30 in a contactless manner, the communication unit 31 charges the rechargeable battery unit 30 so that the type and the like can be specified even if the rechargeable battery unit 30 has no power source. The identification information is transmitted before the power supply to the battery unit 30 is started. In order for the rechargeable battery unit 30 to receive power under optimum control, the rechargeable battery unit 30 is unique to each rechargeable battery unit 30. It is desirable to have unique (unique) identification information (ID). If it is sufficient to classify the type of the rechargeable battery unit 30, it may have an ID for each type. In this embodiment, it is assumed that the capacity of the secondary battery is empty, and an example of a short-range communication method using a proximity type wireless tag (RFID) of ISO / IEC15693 is used as a method that does not require a built-in power supply. However, by supplying appropriate power from the power supply device 10 before the start of charging, it is possible to use infrared communication such as IrDA, IrSimple, etc., or identification information via electromagnetic fields or electromagnetic waves during power transmission. It can also be configured to receive.

このように、電力供給装置10から充電池ユニット30に電力が供給される前に充電池ユニット30から通信手段31を介して送信される識別情報は、充電池ユニット30それぞれに適合した電力が適切に供給されるように、充電池ユニット30内の2次電池33の容量がゼロであっても、この識別情報を電力供給装置10で読み取ることによって充電池ユニット30が識別され、それぞれの充電池ユニット30に対応した電力が伝送されるようにして適切な充電を可能にするものである。   Thus, before the power is supplied from the power supply device 10 to the rechargeable battery unit 30, the identification information transmitted from the rechargeable battery unit 30 via the communication unit 31 is appropriately appropriate for the rechargeable battery unit 30. Even if the capacity of the secondary battery 33 in the rechargeable battery unit 30 is zero, the rechargeable battery unit 30 is identified by reading this identification information with the power supply device 10, and each rechargeable battery The power corresponding to the unit 30 is transmitted to enable appropriate charging.

受給電力監視手段37は、電力受給手段32で受給する電力の受給状態を監視するもので、監視された電力の受給状態、即ちその電圧や電流を電力受給情報として受給情報送信手段38によって電力供給装置10にほぼリアルタイムに送信してフィードバックし、電力供給装置10から充電池ユニット30に適切かつ安全に電力を供給できるようする。電力受給情報は、通信手段31を介し、一例として電力伝送の際の電磁界又は電磁波に重畳され、双方向通信の実現により充電池ユニット30と電力供給装置10との間で送受信される。   The received power monitoring means 37 monitors the receiving state of the power received by the power receiving means 32, and is supplied by the receiving information transmitting means 38 with the monitored power receiving state, that is, its voltage and current as power receiving information. The power is transmitted to the device 10 in almost real time and fed back so that the power supply device 10 can supply power to the rechargeable battery unit 30 appropriately and safely. The power reception information is superimposed on an electromagnetic field or electromagnetic wave during power transmission, for example, via the communication unit 31 and is transmitted and received between the rechargeable battery unit 30 and the power supply device 10 by realizing bidirectional communication.

充電制御情報送信手段39は、充電状態監視手段35で常時監視される2次電池33の充電状態とその充電制御情報を電力供給装置10にほぼリアルタイムに送信してフィードバックし、充電池ユニット30の2次電池33をより適切かつ安全に充電できるようにする。本実施形態では、情報通信機能を充電制御ICに組み込むことも考慮し、充電制御情報を電力伝送の際の電磁界又は電磁波に重畳して送受信し、双方向通信を実現して充電に関する情報の授受が行われるようにする。これとは異なり、上記IrDA、IrSimple等の赤外線通信により充電制御情報を送受信する構成や、例えばISO/IEC14443やISO/IEC18092の近接型等の非接触ICカードにおける拡張仕様のアドホック通信モードを用いて双方向通信を実現し、これにより充電制御情報を送受信するように構成してもよい。本実施形態の通信手段31は、このように電力伝送の際の電力受給情報や充電制御情報の送受信も担っており、その際の通信媒体を、無線タグ(RFID)によるものと電力伝送の際の電磁界又は電磁波に重畳して送受信するものとに分けて構成しているが、赤外線通信や近接型等通信方式を用いて一つの方式で統一することも可能である。   The charging control information transmitting means 39 transmits the charging state of the secondary battery 33 constantly monitored by the charging state monitoring means 35 and its charging control information to the power supply device 10 in almost real time and feeds it back. The secondary battery 33 can be charged more appropriately and safely. In the present embodiment, considering that the information communication function is incorporated into the charge control IC, the charge control information is transmitted and received superimposed on the electromagnetic field or electromagnetic wave during power transmission, and bidirectional communication is realized to provide information on charging. Make sure to give and receive. In contrast to this, using a configuration in which charging control information is transmitted / received by infrared communication such as IrDA, IrSimple or the like, or an extended ad hoc communication mode in a non-contact IC card such as a proximity type of ISO / IEC14443 or ISO / IEC18092, for example. You may comprise so that bidirectional communication may be implement | achieved and charging control information may be transmitted / received by this. The communication means 31 of the present embodiment is also responsible for transmission / reception of power reception information and charge control information during power transmission as described above, and the communication medium at that time is based on a wireless tag (RFID) and at the time of power transmission. However, it is also possible to unify by one method using a communication method such as infrared communication or proximity type.

電力供給装置10は、充電池ユニット30から通信手段31を介して送信されたID(識別情報)を読み取る識別情報読み取り手段11を備えており、電力供給装置10内の制御情報保持手段14に予め登録された情報テーブル(図示せず)を参照し、充電池ユニット識別手段12によって、識別情報読み取り手段11で読み取られたIDを検索キーとして各種充電池ユニット30に対応する電力供給制御情報を得て、対応する充電池ユニット30に適切に電力伝送と電力供給を行うことができるようにしている。その際、無線周波数が異なる等の他の規格の無線タグ等にも対応できるように構成し、識別情報読み取り手段11を複数の規格に対応させて順に応答を確認するようにしても良い。   The power supply device 10 includes an identification information reading unit 11 that reads an ID (identification information) transmitted from the rechargeable battery unit 30 via the communication unit 31, and the control information holding unit 14 in the power supply device 10 is provided in advance. With reference to a registered information table (not shown), the rechargeable battery unit identification unit 12 obtains power supply control information corresponding to the various rechargeable battery units 30 using the ID read by the identification information reading unit 11 as a search key. Thus, it is possible to appropriately perform power transmission and power supply to the corresponding rechargeable battery unit 30. At that time, it may be configured to be compatible with wireless tags of other standards such as different radio frequencies, and the identification information reading unit 11 may correspond to a plurality of standards and confirm responses in order.

電力供給手段13は、電気的な接続端子を持たずに電磁界を利用して充電池ユニット30に無接点で電力を伝送し電力を供給するものであり、本実施形態では、効率面を考慮し、電力供給装置10の1次側電力供給部として1次側コイルを、充電池ユニット30の2次側電力受給部として2次側コイルを設け、1次側コイルと2次側コイルとの間の磁束の強さの変化によって生じる起電力(トランス結合)を利用して電力を伝送する電磁誘導方式を用いる。他にも伝送効率としては落ちるが、UHF帯で使用される無線タグのような電波受信方式や、実用化が期待される磁気共鳴を利用したもの等が知られており、使用環境や使用条件に応じてこれらの方式を用いることも勿論構わない。   The power supply means 13 does not have an electrical connection terminal and uses an electromagnetic field to transmit power to the rechargeable battery unit 30 in a contactless manner and supply power. In this embodiment, the efficiency is considered. In addition, a primary side coil is provided as a primary side power supply unit of the power supply device 10, and a secondary side coil is provided as a secondary side power receiving unit of the rechargeable battery unit 30, and the primary side coil and the secondary side coil are provided. An electromagnetic induction method is used in which electric power is transmitted using an electromotive force (transformer coupling) generated by a change in the strength of magnetic flux between them. There are other known transmission efficiencies, but radio wave reception methods such as wireless tags used in the UHF band and those using magnetic resonance that are expected to be put to practical use are known. Of course, these methods may be used depending on the situation.

電力供給制御手段16は、充電池ユニット識別手段12によって、識別情報読み取り手段11で読み取られたIDを検索キーとして制御情報保持手段14の情報テーブルが参照され、対応する充電池ユニット30が特定されて電力伝送の対象となる充電池ユニット30への電力供給の制御情報を得て、この電力供給制御情報を基に電力供給手段13の供給電力を制御する。   In the power supply control means 16, the rechargeable battery unit identification means 12 refers to the information table of the control information holding means 14 using the ID read by the identification information reading means 11 as a search key, and the corresponding rechargeable battery unit 30 is specified. Thus, control information for power supply to the rechargeable battery unit 30 that is the target of power transmission is obtained, and the power supplied by the power supply means 13 is controlled based on this power supply control information.

受給情報受信手段15は、充電池ユニット30の受給電力監視手段37で2次側電力受給部の電圧や電流等の受給状態が監視され、受給情報送信手段38によって充電池ユニット30から通信手段31を介し、電力伝送の際の電磁波に重畳されて送信された電力受給情報を受信するものであり、受信した電力受給情報は電力供給制御手段16にフィードバックされてほぼリアルタイムに充電池ユニット30への供給電力が制御される。   In the receiving information receiving means 15, the receiving power monitoring means 37 of the rechargeable battery unit 30 monitors the receiving state such as the voltage and current of the secondary power receiving section, and the receiving information transmitting means 38 sends the communication means 31 from the rechargeable battery unit 30. Power reception information transmitted by being superimposed on electromagnetic waves during power transmission is received, and the received power reception information is fed back to the power supply control means 16 to the rechargeable battery unit 30 in almost real time. Supply power is controlled.

充電制御情報受信手段17は、充電池ユニット30内の充電状態監視手段35で監視され充電制御情報送信手段39によって充電池ユニット30から通信手段31を介し、電力伝送の際の電磁波に重畳されて送信された2次電池33の充電状態とその充電制御情報をほぼリアルタイムに受信するものであり、受信した充電制御情報は電力供給制御手段16にフィードバックされて充電池ユニット30への電力供給制御に反映される。2次電池33に対する充電制御情報のフィードバックは、2次側電力受給部の電力受給情報のフィードバックに代わるものとして用いることもできるが、本実施形態では、電力受給状態に加えて充電状態に応じた電力を供給できるように総合的な制御を行うために用いる。   The charge control information receiving means 17 is superposed on the electromagnetic waves during power transmission from the rechargeable battery unit 30 via the communication means 31 by the charge control information transmitting means 39 monitored by the charge state monitoring means 35 in the rechargeable battery unit 30. The transmitted charge state of the secondary battery 33 and its charge control information are received almost in real time, and the received charge control information is fed back to the power supply control means 16 for power supply control to the rechargeable battery unit 30. Reflected. Although the feedback of the charging control information for the secondary battery 33 can be used as an alternative to the feedback of the power reception information of the secondary power receiving unit, in the present embodiment, in accordance with the charging state in addition to the power receiving state Used for comprehensive control so that power can be supplied.

結合度検出手段18は、1次側コイルと2次側コイルの結合度合いを検出することで、電力供給装置10に充電池ユニット30が適切に載置されたか否かを判別するだけでなく、電力伝送の対象物ではない異物等の判別にも用いられる、また同種又は異種の充電池ユニット30が複数載置された場合の判別にも使用される。結合度検出手段18の検出手法としては、識別情報読み取り手段11で読み取られたIDにより予め充電池ユニット30の種類を特定できるので、その電力供給制御情報も充電池ユニット識別手段12によって特定された充電池ユニット30毎に取得でき、これにより予め想定される範囲の結合度の値と実際に充電池ユニット30が載置されている状態での結合度の値を比較することで、充電池ユニット識別手段12で特定された充電池ユニット30が適切に載置されたか、或いは異物が載置されたことを判別することができる。   The coupling degree detection means 18 not only determines whether or not the rechargeable battery unit 30 is properly placed on the power supply device 10 by detecting the coupling degree between the primary side coil and the secondary side coil. It is also used to discriminate foreign substances that are not power transmission objects, and is also used to discriminate when a plurality of the same or different types of rechargeable battery units 30 are placed. As a detection method of the coupling degree detection means 18, since the type of the rechargeable battery unit 30 can be specified in advance by the ID read by the identification information reading means 11, its power supply control information is also specified by the rechargeable battery unit identification means 12. The rechargeable battery unit 30 can be obtained for each rechargeable battery unit 30, thereby comparing the value of the degree of coupling in a range assumed in advance with the value of the degree of coupling when the rechargeable battery unit 30 is actually placed. It can be determined whether the rechargeable battery unit 30 specified by the identification unit 12 has been properly placed or foreign matter has been placed.

また、1次側コイルは複数の駆動部即ち複数のコイルで構成され、例えば、図4に示すように、4つのコイルとそれらを取り囲む1つのコイルの計5つのコイルからなり、それぞれのコイルが独立して駆動及び制御されるように構成することができる。それぞれのコイルの結合度を検出することで、その結合度を基に充電池ユニット30が載置された位置を特定することができ、載置位置に応じて最も適切と判断されたコイルを駆動して充電池ユニット30に電力を供給することができる。これにより複数の充電池ユニット30が載置された場合に、適切に載置されていると判断された対応する各コイルを同時に或いは時分割で駆動することで、載置された複数の充電池ユニット30に同時に或いは実質同時に電力を伝送し供給することができる。同時に或いは実質同時に電力供給される複数の充電池ユニット30は同種、異種どちらにも対応できる。コイルの駆動は、同時又は時分割のどちらかに限定されるわけではなくそれらを組み合わせても良い。時分割は充電池ユニット30の組合せに応じて予め測定されたタイミングによって決定され、その情報は制御情報保持手段14の情報テーブル(図示せず)内に記録されている。これとは異なり時分割のタイミングを充電池ユニット30の種類に拘わらず固定値とすることもできる。   Further, the primary side coil is composed of a plurality of drive units, that is, a plurality of coils. For example, as shown in FIG. 4, the primary side coil is composed of four coils and one coil surrounding them. It can be configured to be driven and controlled independently. By detecting the degree of coupling of each coil, the position where the rechargeable battery unit 30 is placed can be specified based on the degree of coupling, and the coil determined to be the most appropriate according to the placement position is driven. Thus, electric power can be supplied to the rechargeable battery unit 30. Thus, when a plurality of rechargeable battery units 30 are placed, a plurality of placed rechargeable batteries are driven by simultaneously or time-divisionally driving the corresponding coils determined to be properly placed. Power can be transmitted and supplied to the unit 30 simultaneously or substantially simultaneously. The plurality of rechargeable battery units 30 that are supplied with power at the same time or substantially at the same time can support both the same type and different types. The driving of the coils is not limited to either simultaneous or time division, and they may be combined. The time division is determined by the timing measured in advance according to the combination of the rechargeable battery units 30, and the information is recorded in the information table (not shown) of the control information holding means 14. In contrast, the time division timing can be set to a fixed value regardless of the type of the rechargeable battery unit 30.

各充電池ユニット30との通信及びその情報の識別は、予め制御情報保持手段14の情報テーブルに記録された充電池ユニット30毎に固有の識別情報、或いは電力供給装置10内で発生させた乱数等を送受信の際のそれぞれのヘッダ情報に用いることで行うことができる。1次側コイルの形状は、図4のような形態に限定されず、コイルの個数も5つに限定されるわけではない。勿論駆動コイルが一つだけの形態もあり得る。また、コイルは、平面状に配置されるだけでなく、充電台の形状や、充電池ユニット30の形態に応じて様々な変形があり得る。   The communication with each rechargeable battery unit 30 and the identification of the information are identification information unique to each rechargeable battery unit 30 recorded in the information table of the control information holding means 14 in advance, or a random number generated in the power supply device 10. Etc. can be used for each header information at the time of transmission / reception. The shape of the primary coil is not limited to the form as shown in FIG. 4, and the number of coils is not limited to five. Of course, there may be a form with only one drive coil. Further, the coil is not only arranged in a planar shape, but can be variously modified depending on the shape of the charging stand and the form of the rechargeable battery unit 30.

結合度検出の具体的手法としては、1次側コイルと2次側コイルの結合度が変化することにより生じる電力供給装置10の1次側コイルの自己共振周波数やインピーダンス等の周波数特性の変化、位相の変化、充電池ユニット30毎の1次側コイルに流れる電流の想定値と実際に充電池ユニット30が載置された時の電流値との差、磁界を電気信号に変換するホール素子を用いた磁界の変化値等を数値化して利用することができる。また、結合度検出の際に充電池ユニット30の2次側コイルの負荷を変化させたり充電回路の電圧や電流を変化させたりして電力受給に関するパラメータを変化させ、結合度の変化や想定値と実際の値との差も考慮してその精度を上げるようにすることもできる。   As a specific method for detecting the coupling degree, a change in frequency characteristics such as a self-resonant frequency and impedance of the primary coil of the power supply apparatus 10 caused by a change in the coupling degree between the primary coil and the secondary coil, A change in phase, a difference between an assumed value of the current flowing in the primary coil of each rechargeable battery unit 30 and a current value when the rechargeable battery unit 30 is actually placed, a Hall element that converts a magnetic field into an electric signal The change value etc. of the used magnetic field can be digitized and used. In addition, when detecting the degree of coupling, the load-related parameters are changed by changing the load on the secondary coil of the rechargeable battery unit 30 or changing the voltage or current of the charging circuit to change the degree of coupling or the expected value. It is also possible to increase the accuracy in consideration of the difference between the actual value and the actual value.

充電池ユニット30の2次側コイルの負荷を変化させる場合は、2次電池33の容量が空の場合を想定して初期状態で予め定められた負荷がかかるように設定し、充電の経過に伴い負荷を切り替えるように構成することが望ましい。充電時にも電力供給装置10は電力伝送の際の電磁界又は電磁波を介して充電池ユニット30と通信し、2次側コイルの負荷状態を変化させて結合度に応じた電力供給制御をすることも可能である。   When changing the load of the secondary side coil of the rechargeable battery unit 30, it is set so that a predetermined load is applied in the initial state assuming that the capacity of the secondary battery 33 is empty, It is desirable that the load be switched accordingly. Even during charging, the power supply device 10 communicates with the rechargeable battery unit 30 through an electromagnetic field or electromagnetic wave during power transmission, and changes the load state of the secondary coil to control power supply according to the degree of coupling. Is also possible.

図3に充電池ユニット30の2次側コイルの負荷を変化させる回路構成の説明図を示す。充電池ユニット30は、2次電池33の容量が空の場合を想定して初期状態ではスイッチS2を導通させて予め定められた値の抵抗R2を負荷に設定し、2次電池33側の充電回路にはスイッチS1を開放して比較的大きな抵抗R1を通し電力供給を制限して2次電池33に初期充電する。このとき結合度検出手段18は初期設定時の結合度を得る。初期状態で抵抗R2を負荷として設定しておくことは、整流ダイオードや充電回路の電子部品に不用意な電圧が加わることを防止でき保護回路としての役割も果たしている。   FIG. 3 is an explanatory diagram of a circuit configuration for changing the load on the secondary coil of the rechargeable battery unit 30. The rechargeable battery unit 30 assumes that the capacity of the secondary battery 33 is empty, and in the initial state, turns on the switch S2 to set a predetermined value of the resistor R2 as a load, and charges the secondary battery 33 side. The circuit is initially charged in the secondary battery 33 by opening the switch S1 and limiting the power supply through a relatively large resistor R1. At this time, the coupling degree detection means 18 obtains the coupling degree at the time of initial setting. Setting the resistor R2 as a load in the initial state can prevent an inadvertent voltage from being applied to the electronic components of the rectifier diode and the charging circuit, and also serves as a protection circuit.

2次電池33がある程度充電されると、スイッチS2を開放しスイッチS1を導通して抵抗R1を短絡し、充電回路に電力をそのまま供給して2次電池33を本充電する。電力供給装置10は、結合度検出手段18により、本充電中も充電池ユニット30と通信してスイッチS1、S2の導通、開放を指示し、負荷状態を変化させて結合度の検出に利用することができる。なお、図3に示した抵抗R1、R2やスイッチS1、S2等は原理的な説明のために用いたもので実際には半導体によるスイッチや電流源等を組み合わせて実現する。   When the secondary battery 33 is charged to some extent, the switch S2 is opened, the switch S1 is turned on to short-circuit the resistor R1, and the secondary battery 33 is fully charged by supplying power to the charging circuit as it is. The power supply apparatus 10 communicates with the rechargeable battery unit 30 during the main charging by the coupling degree detection means 18 to instruct conduction and release of the switches S1 and S2, and changes the load state to be used for the coupling degree detection. be able to. Note that the resistors R1 and R2 and the switches S1 and S2 shown in FIG. 3 are used for the principle explanation, and are actually realized by combining a semiconductor switch and a current source.

制御情報補正手段19は、結合度検出手段18によって1次側コイルと2次側コイルの結合度を検出し、検出した結合度合いに応じて電力供給制御手段16の制御情報を補正し、充電池ユニット30の載置位置等により異なる伝送電力がなるべく同じになるように補正する。補正限界値を超え所定の効率以下になった場合は、その電力伝送を停止し、図示していないがLEDによる警告表示、ブザーによる警告音、或いはLCDやELによる文字や画像による表示、音声ガイダンス等によって正規の充電池ユニット30を正しく載置するように利用者に促す。   The control information correction unit 19 detects the coupling degree between the primary side coil and the secondary side coil by the coupling degree detection unit 18, corrects the control information of the power supply control unit 16 according to the detected coupling degree, and recharges the battery. Correction is performed so that different transmission powers are as much as possible depending on the mounting position of the unit 30 and the like. If the correction limit value is exceeded and the efficiency is less than or equal to the specified efficiency, the power transmission is stopped, and although not shown, LED warning display, buzzer warning sound, LCD or EL text or image display, voice guidance The user is urged to place the regular rechargeable battery unit 30 correctly.

電流検出手段20は、1次側コイルに流れる電流を常時監視して充電池ユニット30毎に設定された所定の電流値を超えたこと即ち過電流を検出する。検出される充電池ユニット30毎の電流値とその許容範囲は、制御情報保持手段14の情報テーブル(図示せず)内に記録されている。過電流を検出した場合は、電力伝送を停止し、警告表示、警告音、文字や画像による表示、音声ガイダンス等によって正規の充電池ユニット30を正しく載置するように利用者に促す。   The current detection means 20 constantly monitors the current flowing through the primary coil and detects an overcurrent, that is, a predetermined current value set for each rechargeable battery unit 30. The detected current value for each rechargeable battery unit 30 and its allowable range are recorded in an information table (not shown) of the control information holding means 14. When an overcurrent is detected, power transmission is stopped, and the user is prompted to correctly place the regular rechargeable battery unit 30 by warning display, warning sound, display by characters or images, voice guidance, or the like.

載置検出手段21は、電力伝送の対象となる充電池ユニット30だけでなく、何らかの物体が電力供給装置10に載置されたことを検出する。電力供給装置10の充電台はプレート等の平板状のものを想定しており、載置検出手段21としては、電子計量器やタッチパネル等に利用される動作原理のものが用いられ、この充電台に、圧電、磁気歪み、超音波、LED、レーザー、抵抗値、静電容量、温度等のいずれか或いは複数を組み合わせて利用し、その変化を検出する電子部品を埋め込み、物体が載置されたことを検出する。温度を利用する場合は、発熱、発煙、発火を防止するための安全装置として機能させることもできる。   The placement detection unit 21 detects that not only the rechargeable battery unit 30 that is a target of power transmission but also any object is placed on the power supply device 10. The charging base of the power supply device 10 is assumed to be a flat plate such as a plate, and the mounting detection means 21 is based on the principle of operation used for an electronic measuring instrument, a touch panel, and the like. In addition, an electronic component that embeds an electronic component that detects the change using any one or a combination of piezoelectric, magnetostriction, ultrasonic, LED, laser, resistance, capacitance, temperature, or the like, and the object is placed Detect that. When temperature is used, it can function as a safety device for preventing heat generation, smoke generation, and ignition.

外部通信手段22は、制御情報保持手段14で記憶され保存される各種充電池ユニット30に対応した電力供給制御のための制御情報の新規登録や更新、電力供給装置10のファームウェア、制御プログラム、ユーザインタフェース等のアプリケーションプログラムを更新するために設けられたものであり、具体的には、商用電源を介して通信ネットワークに接続されるPLC(電力線搬送波)アダプタ機能、LAN、USB、IEEE1394、IEEE802.11等の無線LAN、IEEE802.15等の無線PAN、ISO18092やISO14443のICカードインタフェース等の通信規格に準じた通信媒体、或いはメモリカード等の媒体を媒介としてその情報を得る。   The external communication means 22 is for newly registering or updating control information for power supply control corresponding to various rechargeable battery units 30 stored and stored in the control information holding means 14, firmware of the power supply apparatus 10, control program, user It is provided for updating application programs such as interfaces, and more specifically, a PLC (power line carrier) adapter function connected to a communication network via a commercial power supply, LAN, USB, IEEE 1394, IEEE 802.11. The information is obtained via a medium such as a wireless LAN such as IEEE 802.15, a wireless PAN such as IEEE 802.15, a communication medium conforming to a communication standard such as an IC card interface such as ISO18092 or ISO14443, or a medium such as a memory card.

本実施形態では、電力供給装置10が一般的にAC電源を必要とすることからPLCを介して制御情報等を取得することが望ましいが、充電池ユニット30が携帯電話である場合は、アドホック通信モードが利用できるISO18092等の無線タグ(RFID)インタフェースやIEEE802.15等の近距離無線通信、或いはUSBを介して情報の授受を行うことができる。USBの場合はPC(パーソナルコンピュータ)と接続することで容易に情報の取得や更新ができる。またメモリカードインタフェースを実装することで更に容易に情報の取得や更新が可能になる。   In the present embodiment, since the power supply device 10 generally requires an AC power supply, it is desirable to acquire control information and the like via the PLC. However, when the rechargeable battery unit 30 is a mobile phone, ad hoc communication Information can be exchanged via a wireless tag (RFID) interface such as ISO 18092 that can use the mode, short-range wireless communication such as IEEE 802.15, or USB. In the case of USB, information can be easily obtained and updated by connecting to a PC (personal computer). In addition, information can be acquired and updated more easily by installing a memory card interface.

制御情報更新手段23は、外部通信手段22を介して取得した電力供給制御手段16の制御情報を更新する手段であり、制御情報保持手段14の情報テーブル(図示せず)の電力供給制御情報を更新することで新機種として製造される充電池ユニット30や充電池ユニット30の改版に対応できるようにする。   The control information update unit 23 is a unit that updates the control information of the power supply control unit 16 acquired through the external communication unit 22. The control information update unit 23 stores the power supply control information in the information table (not shown) of the control information holding unit 14. The rechargeable battery unit 30 manufactured as a new model and the revision of the rechargeable battery unit 30 can be supported by updating.

以下、本システムを、図2に示す本発明の電力伝送システムの一実施例による構成図を参照して、より具体的に説明する。   Hereinafter, the present system will be described more specifically with reference to a configuration diagram according to an embodiment of the power transmission system of the present invention shown in FIG.

充電池ユニット30は、通信手段31に、充電のための電力伝送とは別に、電磁界を介して電力が供給されると共に電磁波を介して情報の読み取り書き換えが可能な無線タグ(RFID)を備えており、内蔵電源を必要としない無線タグには、例えばISO/IEC15693として規格化されている近傍型のものを使用する。上述したように無線タグ(RFID)に代わり、適切な電力供給制御を行うことで通信手段31を赤外線通信や近接型等通信方式を用いた一つの方式で統一することも可能である。   The rechargeable battery unit 30 includes a wireless tag (RFID) that is supplied with electric power via an electromagnetic field and can read and rewrite information via electromagnetic waves, separately from the electric power transmission for charging, to the communication unit 31. As a wireless tag that does not require a built-in power supply, for example, a proximity type standardized as ISO / IEC15693 is used. As described above, instead of the wireless tag (RFID), it is possible to unify the communication unit 31 by one method using infrared communication or a proximity communication method by performing appropriate power supply control.

電力供給装置10の充電台はどのような形でも構わないが、ここでは平板状の充電台を想定している。この充電台に充電池ユニット30を載置することで充電を行う。充電池ユニット30が電力供給装置10に載置された時に、無線タグに記録されているID(識別情報)を読み取り、電力供給装置10内のメモリ即ち制御情報保持手段14に記録されている情報テーブル(図示せず)を参照して対応する充電池ユニット30の種類等を特定する。   The charging base of the power supply apparatus 10 may have any shape, but here, a flat charging base is assumed. Charging is performed by placing the rechargeable battery unit 30 on the charging stand. When the rechargeable battery unit 30 is placed on the power supply device 10, the ID (identification information) recorded in the wireless tag is read, and the information recorded in the memory in the power supply device 10, that is, in the control information holding means 14. The type or the like of the corresponding rechargeable battery unit 30 is specified with reference to a table (not shown).

電力供給装置10から充電池ユニット30への電力伝送には電磁誘導方式を用いており、電力供給装置10の1次側コイル(1次側電力供給部:図2では送電部)101に流れる電流によって発生する磁束が充電池ユニット30の2次側コイル(2次側電力受給部:図2では受電部)301を貫通し、その磁束の強さの変化によって2次側(受電部)コイル301に電流が流れて起電力を生じること(トランス結合)を利用する。   An electromagnetic induction method is used for power transmission from the power supply device 10 to the rechargeable battery unit 30, and a current that flows in the primary side coil (primary side power supply unit: power transmission unit in FIG. 2) 101 of the power supply device 10. The magnetic flux generated by the secondary coil (secondary power receiving unit: power receiving unit in FIG. 2) 301 of the rechargeable battery unit 30 passes through the secondary side (power receiving unit) coil 301 due to the change in the strength of the magnetic flux. Is utilized to generate an electromotive force (transformer coupling).

充電池ユニット30を識別して特定するための通信手段31に、本実施例では2次電池33の容量が空の場合を想定して充電池ユニット30側に電源が不要な無線タグ方式を用いているが、赤外線通信や近接型等通信方式を用いること以外にも電力供給装置10から充電池ユニット30に電磁誘導方式により電力伝送する際の電磁界又は電磁波にその識別情報を重畳して行うことでも実現できる。   For the communication means 31 for identifying and specifying the rechargeable battery unit 30, in this embodiment, a wireless tag system that does not require a power source is used on the rechargeable battery unit 30 side assuming that the capacity of the secondary battery 33 is empty. However, the identification information is superimposed on the electromagnetic field or electromagnetic wave when power is transmitted from the power supply device 10 to the rechargeable battery unit 30 by the electromagnetic induction method, in addition to using the infrared communication or the proximity communication method. Can also be realized.

電磁誘導方式の電力伝送によって2次側(受電部)コイル301で発生した交流電圧は整流部302で整流され(図1に示す電力受給手段32)、充電制御部303によって、適切な電圧及び電流が維持されるように充電状態を監視しながらその充電制御情報に従って2次電池33に充電される。充電制御部303は、DC/DCコンバータを有し、CPUと充電制御プログラム或いは制御ロジックにより適切な電圧及び電流が供給されるように制御して2次電池33を充電する。充電制御部303は、図1に示した充電手段34、充電制御手段36、充電状態監視手段35、及び電力供給装置10から充電池ユニット30に電磁誘導方式により電力伝送する際の電磁界又は電磁波に重畳して充電時の充電制御情報を送信する充電制御情報送信手段39を備えている。情報の重畳方式は、AM、PM、FM、ASK、FSK、或いは副搬送波を利用したもの等、通信を実現できるどのような方式を用いてもよい。   The AC voltage generated in the secondary side (power receiving unit) coil 301 by the electromagnetic induction type power transmission is rectified by the rectifying unit 302 (the power receiving unit 32 shown in FIG. 1), and the charging control unit 303 sets the appropriate voltage and current. The secondary battery 33 is charged in accordance with the charge control information while monitoring the state of charge so as to be maintained. The charging control unit 303 includes a DC / DC converter, and charges the secondary battery 33 by controlling the CPU and the charging control program or control logic so that appropriate voltage and current are supplied. The charging control unit 303 is an electromagnetic field or electromagnetic wave when power is transmitted from the charging unit 34, the charging control unit 36, the charging state monitoring unit 35, and the power supply device 10 shown in FIG. Charging control information transmitting means 39 for transmitting charging control information at the time of charging superposed on the charging control information. As an information superposition method, any method capable of realizing communication such as AM, PM, FM, ASK, FSK, or a method using a subcarrier may be used.

充電制御部303は、充電制御に関する処理の他にも、図1に示したように受給電力監視手段37で2次側(受電部)の受電状態を監視し、その情報を電力伝送する際の電磁界又は電磁波に重畳して電力供給装置10に送信する受給情報送信手段38を備えている。これら充電池ユニット30側から電力供給装置10への電力供給に伴う電力受給情報や充電制御情報のフィードバックは、電力伝送の際の電磁界又は電磁波に重畳せず、上述したように赤外線通信や近接型等通信方式を用いて一つの方式で統一することも可能である。   In addition to processing related to charge control, the charge control unit 303 monitors the power reception state of the secondary side (power reception unit) by the received power monitoring unit 37 as shown in FIG. Receiving information transmitting means 38 for transmitting to the power supply apparatus 10 superimposed on an electromagnetic field or electromagnetic wave is provided. The feedback of the power reception information and the charging control information accompanying the power supply from the rechargeable battery unit 30 side to the power supply device 10 is not superimposed on the electromagnetic field or the electromagnetic wave at the time of power transmission. It is also possible to unify with one system using a communication system such as a mold.

充電池ユニット30の通信手段31で送信されるID認証情報は、充電池ユニット30をより細かく特定して充電に関する詳細な情報を得るためのもので、電力伝送の初期に送信される識別情報、即ちデジタルカメラや携帯電話、或いはノートPC(パーソナルコンピュータ)等に使用される充電池ユニット30を識別するための情報だけではなく、内蔵する2次電池の種類、セル数、電圧、最大容量、充電レート等を特定するためにも用いられる。通信手段31は、ID(識別情報)と電力供給及び充電に関する情報の送受信機能を備えており、充電池ユニット30側でも電力供給装置10を識別する機能を有し、通信手順でアクノリッジ信号が返ってこない等、適合しない電力供給装置10と判断した場合は、図示していないが、警告表示、警告音、文字や画像による表示、音声ガイダンス等によって正規の電力供給装置10を用いるように利用者に促す。本実施例で通信手段31は、電力供給装置10と電力伝送する際の電磁界又は電磁波に重畳して行われる通信機能を司る。   The ID authentication information transmitted by the communication means 31 of the rechargeable battery unit 30 is for identifying the rechargeable battery unit 30 in more detail and obtaining detailed information related to charging. Identification information transmitted at the initial stage of power transmission, That is, not only the information for identifying the rechargeable battery unit 30 used in a digital camera, a mobile phone, a notebook PC (personal computer), etc., but also the type, number of cells, voltage, maximum capacity, charge of the built-in secondary battery It is also used to specify rates and the like. The communication means 31 has a function of transmitting and receiving information on ID (identification information) and power supply and charging. The communication unit 31 also has a function of identifying the power supply device 10 on the rechargeable battery unit 30 side, and an acknowledge signal is returned in the communication procedure. If it is determined that the power supply device 10 is not suitable, such as a lever, it is not shown, but the user uses the regular power supply device 10 by warning display, warning sound, display with characters or images, voice guidance, etc. Prompt. In this embodiment, the communication unit 31 manages a communication function performed by being superimposed on an electromagnetic field or an electromagnetic wave when power is transmitted to the power supply apparatus 10.

一方、電力供給装置10は、充電池ユニットの通信手段31で送信された無線タグのIDを読み取って必要な情報を書き込むためのID送受信部102を有しており、電力供給装置10に充電池ユニット30が載置されたことを検出してその動作を開始する。ID送受信部102を間欠的に作動させて消費電力をセーブし、無線タグのIDを読み取ることができた場合に充電池ユニット30が載置されたと判断することも勿論可能である。ID送受信部102は、図1に示した識別情報読み取り手段11を有している。間欠動作は無線タグの読み取りに限らず載置検出においても行って電力供給装置10全体の待機電力を減らす。その際、使用時間に応じて間欠動作によるセンシング間隔を変更し、長時間使用しない場合にセンシング間隔を長くして待機電力がより少なくなるようにする。   On the other hand, the power supply device 10 includes an ID transmission / reception unit 102 for reading the ID of the wireless tag transmitted by the communication unit 31 of the rechargeable battery unit and writing necessary information. It detects that the unit 30 has been placed and starts its operation. Of course, it is possible to determine that the rechargeable battery unit 30 is placed when the ID transmitter / receiver 102 is intermittently operated to save power consumption and the ID of the wireless tag can be read. The ID transmitting / receiving unit 102 includes the identification information reading unit 11 shown in FIG. The intermittent operation is performed not only for reading the wireless tag but also for placement detection to reduce standby power of the entire power supply apparatus 10. At that time, the sensing interval by the intermittent operation is changed according to the usage time, and when not used for a long time, the sensing interval is lengthened so that the standby power is reduced.

ID認証・異物検出部103は、図1に示した充電池ユニット識別手段12、載置検出手段21、結合度検出手段18、電流検出手段20、及び受給情報受信手段15のそれぞれの判定部と、制御情報補正手段19を備えており、ID送受信部102で読み取った無線タグのIDや通信手段31を介して送信された他の情報等から電力伝送及び充電対象となる正規の充電池ユニット30であるか否かを識別し、応答がない場合、或いは予め記録された情報テーブル(図示せず)を参照して得られた電力供給のための制御情報と実際の制御値とを比較し、例えば実際の電力伝送の際の結合度や電流の比較値が所定の範囲内でない場合に、充電池ユニット30以外の異物、又は適合対象外の充電池ユニット30、或いは正しく載置されなかったものと判断する。   The ID authentication / foreign matter detection unit 103 includes the determination units of the rechargeable battery unit identification unit 12, the placement detection unit 21, the coupling degree detection unit 18, the current detection unit 20, and the receipt information reception unit 15 illustrated in FIG. 1. The regular rechargeable battery unit 30 that is provided with the control information correcting means 19 and is subject to power transmission and charging from the ID of the wireless tag read by the ID transmitting / receiving unit 102 or other information transmitted through the communication means 31. If there is no response, or comparing the control information for power supply obtained with reference to an information table (not shown) recorded in advance and the actual control value, For example, when the degree of coupling or the current comparison value during actual power transmission is not within a predetermined range, a foreign object other than the rechargeable battery unit 30 or a rechargeable battery unit 30 that is not applicable, or that has not been correctly placed. It is determined that the.

電流検出部104は、図1に示した電流検出手段20及び結合度検出手段18を備えており、1次側コイル101の電流や2次側コイル301との結合度を常時検出し、その電流値はID認証・異物検出部103で監視され、充電池ユニット30毎の電流値及び充電に伴うその変化値が情報テーブル(図示せず)に記録されているので、その値と比較することで過電流検出等の異常な状態を判断する。異常と判断した場合は、電力伝送を停止し、警告表示、警告音、文字や画像による表示、音声ガイダンス等によって適合対象となる正規の充電池ユニット30を正しい位置に載置するように利用者に促す。また、電流検出部104は、充電池ユニット30から送信された電力供給に伴う各種情報を電力伝送する際の電磁波及び1次側コイル101を介して受信する機能も有している。   The current detection unit 104 includes the current detection unit 20 and the coupling degree detection unit 18 illustrated in FIG. 1, and always detects the current of the primary coil 101 and the coupling degree with the secondary coil 301. The value is monitored by the ID authentication / foreign matter detection unit 103, and the current value for each rechargeable battery unit 30 and the change value associated with charging are recorded in an information table (not shown). Determine abnormal conditions such as overcurrent detection. If it is determined that there is an abnormality, the user stops the power transmission and places the proper rechargeable battery unit 30 to be applied in the correct position by warning display, warning sound, text or image display, voice guidance, etc. Prompt. In addition, the current detection unit 104 also has a function of receiving various kinds of information accompanying the power supply transmitted from the rechargeable battery unit 30 via the electromagnetic wave and the primary side coil 101 when power is transmitted.

ID認証・異物検出部103は、図1に示した制御情報補正手段19を有しており、1次側コイル101と2次側コイル301との結合度に応じて制御用信号処理回路105の制御パラメータを更新し、充電池ユニット30に供給される電力が同じになるように補正する。また、ID認証・異物検出部103は、ID送受信部102を介して、充電池ユニット30から送信された電力受給情報や充電制御情報のフィードバック制御情報を取得する。取得した電力受給情報や充電制御情報は、制御用信号処理回路105にフィードバックされてその制御パラメータに反映され、これにより効率的な充電及び電力伝送が行われる。   The ID authentication / foreign matter detection unit 103 includes the control information correction unit 19 shown in FIG. The control parameter is updated and corrected so that the power supplied to the rechargeable battery unit 30 is the same. Further, the ID authentication / foreign matter detection unit 103 acquires the power reception information and the feedback control information of the charging control information transmitted from the rechargeable battery unit 30 via the ID transmission / reception unit 102. The acquired power reception information and charging control information are fed back to the control signal processing circuit 105 and reflected in the control parameters, whereby efficient charging and power transmission are performed.

制御用信号処理回路105は、図1に示した電力供給制御手段16を実現している回路であり、ID認証・異物検出部103により補正、更新され反映された制御パラメータに基づいてドライバ制御部108及びドライブ部109を制御及び駆動し、1次側コイル101の駆動電流を制御する。1次側コイル101は上述したように複数個設けられ、対応して設けられたそれぞれのドライバ制御部108及びドライブ部109により制御及び駆動され、載置された充電池ユニット30に応じて最適な位置のドライブ部109が選択されて電力伝送される。また、独立して制御及び駆動されるドライバ制御部108及びドライブ部109を複数個設けたので異なる或いは同種の複数の充電池ユニット30を同時、時分割、或いはその組み合わせ等により実質同時に駆動することができる。   The control signal processing circuit 105 is a circuit that implements the power supply control means 16 shown in FIG. 1, and is based on the control parameter corrected, updated, and reflected by the ID authentication / foreign matter detection unit 103. 108 and the drive unit 109 are controlled and driven, and the drive current of the primary coil 101 is controlled. A plurality of primary coils 101 are provided as described above, and are controlled and driven by the corresponding driver control unit 108 and drive unit 109, and are optimal for the rechargeable battery unit 30 placed. The position drive unit 109 is selected to transmit power. In addition, since a plurality of driver control units 108 and drive units 109 that are independently controlled and driven are provided, a plurality of different or the same type of rechargeable battery units 30 can be driven substantially simultaneously by simultaneous, time-division, or a combination thereof. Can do.

各充電池ユニット30の駆動時の制御情報の識別は、予めID認証・異物検出部103(図1に示す制御情報保持手段14)に保持された充電池ユニット30毎に固有の識別情報、或いはID送受信部102で発生させた乱数等を、電力伝送の際に重畳させて送受信される信号のそれぞれのヘッダ情報に用いることで行うことができる。ここで106は商用電源のAC電源からDC電源を生成するAC/DC変換回路であり、107は電力供給装置10内の制御回路や付随する電子回路へそれぞれに適合した電圧を供給するためのDC電源である。   Identification of control information at the time of driving each rechargeable battery unit 30 is specific identification information for each rechargeable battery unit 30 held in advance in the ID authentication / foreign matter detection unit 103 (control information holding means 14 shown in FIG. 1), or The random number generated by the ID transmitting / receiving unit 102 can be used for each header information of a signal transmitted and received superimposed on power transmission. Reference numeral 106 denotes an AC / DC conversion circuit that generates a DC power source from an AC power source of a commercial power source. Reference numeral 107 denotes a DC for supplying a voltage suitable for each of the control circuit and the accompanying electronic circuit in the power supply apparatus 10. It is a power supply.

また、電力供給装置10は、図示していないが、電力供給制御用の制御情報の新規登録や更新、ファームウェア、制御プログラム、ユーザインタフェース等のアプリケーションプログラムを更新するための外部インタフェース(図1に示した外部通信手段22)を備えており、通信ネットワーク等を介してこれらの情報を取得できるようにしている。これにより新機種として製造された充電池ユニット30や改版された充電池ユニット30に対応することができるようになる。また外部インタフェースとしてUSB接続端子を備えているので、USBメモリやPCを介して情報を取得することも可能である。   Although not shown, the power supply apparatus 10 is an external interface for updating application programs such as new registration and update of control information for power supply control, firmware, control program, user interface (shown in FIG. 1). External communication means 22), and this information can be acquired via a communication network or the like. As a result, the rechargeable battery unit 30 manufactured as a new model or the rechargeable battery unit 30 can be dealt with. Further, since a USB connection terminal is provided as an external interface, it is possible to acquire information via a USB memory or a PC.

次に、図5に示す本発明の一実施形態による電力伝送方法のフロー図の一例を参照し、電力供給装置10から充電池ユニット30に電力を伝送し充電池ユニット30内の2次電池33に充電する際の電力供給装置10側の処理手順について説明する。このフロー図は、1つの充電池ユニット30を対象として正常に電力伝送される際の手順を記したものであって、複数の充電池ユニット30に電力伝送する手順、及び異常時或いはエラー時の処理については省略する。また、充電池ユニット30の識別は、無線タグ(RFID)により行われることを想定している。充電池ユニット30側のフロー図も省略する。   Next, referring to an example of a flowchart of the power transmission method according to the embodiment of the present invention shown in FIG. 5, the secondary battery 33 in the rechargeable battery unit 30 is transmitted by transmitting power from the power supply device 10 to the rechargeable battery unit 30. A processing procedure on the side of the power supply apparatus 10 when charging is described. This flow chart describes a procedure when power is normally transmitted to one rechargeable battery unit 30, and is a procedure for transmitting power to a plurality of rechargeable battery units 30, and at the time of abnormality or error The processing is omitted. Further, it is assumed that the rechargeable battery unit 30 is identified by a wireless tag (RFID). A flowchart on the rechargeable battery unit 30 side is also omitted.

電源投入により電力供給装置10の載置検出手段21が機能し、充電池ユニット30が電力供給装置10の充電台に載置されるのを待つ。充電池ユニット30が充電台に載置されたことを検出すると(ステップS11)、識別情報読み取り手段11により充電池ユニット30から通信手段31を介して送信された無線タグ(RFID)のID(識別情報)を読み取る(ステップS12)。読み取られたIDを基に、充電池ユニット識別手段12によりそのIDを有する充電池ユニット30の機種が判別され特定される(ステップS14)。   When the power is turned on, the placement detection unit 21 of the power supply device 10 functions and waits for the rechargeable battery unit 30 to be placed on the charging stand of the power supply device 10. When it is detected that the rechargeable battery unit 30 is placed on the charging stand (step S11), the ID (identification) of the wireless tag (RFID) transmitted from the rechargeable battery unit 30 via the communication means 31 by the identification information reading means 11 is identified. Information) is read (step S12). Based on the read ID, the model of the rechargeable battery unit 30 having the ID is identified and specified by the rechargeable battery unit identifying means 12 (step S14).

応答がない、或いはNACK(Negative Acknowledgment)を受信した場合等IDを読み取ることができない場合には、異物、或いは適合する充電池ユニット30ではないと判断して異常処理に移行する(ステップS13)。異常処理としては、例えば警告表示、警告音、文字や画像による表示、音声ガイダンス等によって正規の充電池ユニット30を正しく載置するように利用者に促す。   If there is no response, or if the ID cannot be read, such as when a NACK (Negative Acknowledgment) is received, it is determined that the object is not a foreign object or a suitable rechargeable battery unit 30 (step S13). As the abnormal processing, the user is prompted to correctly place the regular rechargeable battery unit 30 by, for example, warning display, warning sound, display by characters or images, voice guidance, or the like.

充電池ユニット識別手段12は、充電池ユニット30が特定されると、制御情報保持手段14の情報テーブルを参照して該当する充電池ユニット30に対する電力供給制御のための制御情報を取得し(ステップS15)、電力供給制御手段16の制御パラメータ等を設定する。電力供給制御手段16は、設定された制御情報に従い初期電力供給を開始し、結合度検出手段18により1次側コイル101と2次側コイル301の結合度を検出し(ステップS16)、同時に電流検出部104により1次側コイル101の駆動電流の監視を開始する。初期電力供給時には結合度の検出に必要な最低限度の電力を供給する。その際複数からなる1次側コイル101の結合度及び電流値から最適となる一次側のコイルを選定して電力を伝送する。   When the rechargeable battery unit 30 is specified, the rechargeable battery unit identifying unit 12 refers to the information table of the control information holding unit 14 and acquires control information for power supply control for the corresponding rechargeable battery unit 30 (step) S15), the control parameters of the power supply control means 16 are set. The power supply control means 16 starts the initial power supply in accordance with the set control information, and the coupling degree detection means 18 detects the coupling degree between the primary side coil 101 and the secondary side coil 301 (step S16), and at the same time, the current Monitoring of the drive current of the primary coil 101 is started by the detection unit 104. At the time of initial power supply, the minimum power necessary for detecting the coupling degree is supplied. At that time, an optimal primary side coil is selected from the coupling degree and current value of the plurality of primary side coils 101 to transmit power.

1次側コイル101の駆動電流は電力供給中に常時監視され、図示していないが、電流検出手段20により駆動電流が予め設定された許容値を超えて過電流と判断された場合は電力の供給を中止して異常処理に移行する。また、結合度の情報は制御情報補正手段19により電力供給制御の補正情報として反映され(ステップS17)、充電台への載置状態が多少異なっていても充電池ユニット30に供給される電力が同じになるように補正されるが、その際に予め設定された許容値を超えた場合も、電力の供給を中止して異常処理に移行する。複数の充電池ユニット30が載置された場合は、同様にしてステップS11からステップS17迄の手順をシーケンシャルに行うか、ステップS12からステップS17迄の各ステップを各充電池ユニット30に対して交互に行うか、或いは時分割でそれぞれのステップを同時に行う。   Although the drive current of the primary coil 101 is constantly monitored during power supply and is not shown in the drawing, if the current detection means 20 determines that the drive current exceeds the preset allowable value and is overcurrent, Stop supply and go to error handling. Further, the information on the degree of coupling is reflected as correction information for power supply control by the control information correction means 19 (step S17), and the power supplied to the rechargeable battery unit 30 is maintained even if the mounting state on the charging stand is slightly different. Although the corrections are made to be the same, if the preset allowable value is exceeded at that time, the power supply is stopped and the process proceeds to an abnormal process. When a plurality of rechargeable battery units 30 are placed, the procedure from step S11 to step S17 is sequentially performed in the same manner, or each step from step S12 to step S17 is alternately performed for each rechargeable battery unit 30. Or perform each step simultaneously in a time-sharing manner.

電力供給の制御パラメータが決定されると、充電台に載置された充電池ユニット30に適合する次の段階の電力供給を開始する(ステップS18)。電流検出部104で監視される1次側コイル101の電流値より、充電池ユニット30の2次電池33が或る程度充電され、充電が開始されたと想定される所定時間のウエイトを設定し(図示せず)、受給情報受信手段15によって充電池ユニット30から送信された電力受給情報の読み取りを開始する(ステップS20)。充電池ユニット30からの応答がない場合は、電力の供給及びその後の処理を中止して異常処理に移る(ステップS19)。   When the control parameter for power supply is determined, power supply for the next stage suitable for the rechargeable battery unit 30 placed on the charging stand is started (step S18). Based on the current value of the primary coil 101 monitored by the current detection unit 104, the secondary battery 33 of the rechargeable battery unit 30 is charged to some extent, and a weight for a predetermined time when charging is assumed to be started is set ( The power reception information transmitted from the rechargeable battery unit 30 is started to be read by the reception information receiving means 15 (not shown) (step S20). If there is no response from the rechargeable battery unit 30, the supply of power and the subsequent processing are stopped and the process proceeds to an abnormal process (step S19).

読み取られた電力受給情報は、随時電力供給制御手段16の制御パラメータに反映され(ステップS21)、電力受給状態が正常(ステップS22)と判断されるまで、その動作が続けられる。電力受給状態が正常か否かの判断は充電池ユニット30から送信される電力受給情報により通知されるか、予め電力供給装置10に登録された情報テーブルの制御情報に従って決定される。本実施形態では、充電池ユニット30から受電中の電力受給情報が通知されてフィードバックにより電力供給装置10の電力供給制御を行っているが、充電池ユニット30からの電力受給情報が得られない場合等を考慮し、電力供給装置10内に記憶された充電池ユニット30毎の制御情報に従って1次側コイル101の駆動電流や結合度の変化を参照しながら電力供給装置10側だけで電力制御を行うようにしてもよい。   The read power reception information is reflected in the control parameters of the power supply control means 16 as needed (step S21), and the operation is continued until it is determined that the power reception state is normal (step S22). The determination as to whether or not the power supply state is normal is notified by the power reception information transmitted from the rechargeable battery unit 30, or is determined according to the control information in the information table registered in the power supply apparatus 10 in advance. In this embodiment, the power supply information of the power supply device 10 is notified by feedback from the rechargeable battery unit 30 while receiving power reception information, but the power supply information from the rechargeable battery unit 30 is not obtained. In consideration of the above, the power control is performed only on the power supply device 10 side while referring to the drive current of the primary coil 101 and the change in the coupling degree according to the control information for each rechargeable battery unit 30 stored in the power supply device 10. You may make it perform.

電力供給の制御パラメータが決定されると、充電台に載置された充電池ユニット30に適合する次の段階の電力供給に移行し(図示せず)、充電池ユニット30の2次電池33が或る程度充電され、充電制御情報が充電池ユニット30から送信されると想定される時間のウエイトを設定し(図示せず)、充電制御情報受信手段17によって充電制御情報の読み取りを開始する(ステップS24)。充電池ユニット30からの応答がない場合は、電力の供給及びその後の処理を中止して異常処理に移る(ステップS23)。   When the control parameter for power supply is determined, the process proceeds to the next stage of power supply suitable for the rechargeable battery unit 30 placed on the charging stand (not shown), and the secondary battery 33 of the rechargeable battery unit 30 is changed. It is charged to some extent and the weight of the time when charge control information is assumed to be transmitted from the rechargeable battery unit 30 is set (not shown), and the charge control information receiving means 17 starts reading the charge control information ( Step S24). When there is no response from the rechargeable battery unit 30, the supply of electric power and the subsequent processing are stopped and the process proceeds to an abnormal process (step S23).

読み取られた充電制御情報は、随時電力供給制御手段16の制御パラメータに反映され(ステップS25)、充電完了(ステップS26)と判断されるまで、その動作が続けられる。充電完了は充電池ユニット30から送信される充電制御情報により通知されるか、予め電力供給装置に登録された情報テーブルの制御情報に従って決定される。本実施形態では、充電池ユニット30から充電中の充電制御情報が通知されてフィードバックにより電力供給装置10の電力供給制御を行っているが、充電池ユニット30からの充電情報が得られない場合等を考慮し、電力供給装置10内に記憶された充電池ユニット30毎の制御情報に従って1次側コイル101の駆動電流や結合度の変化を参照しながら電力供給装置10側だけで電力制御を行うようにしてもよい。   The read charge control information is reflected on the control parameters of the power supply control means 16 as needed (step S25), and the operation is continued until it is determined that the charge is completed (step S26). The completion of charging is notified by the charging control information transmitted from the rechargeable battery unit 30, or is determined according to the control information in the information table registered in advance in the power supply apparatus. In the present embodiment, charging control information during charging is notified from the rechargeable battery unit 30 and power supply control of the power supply apparatus 10 is performed by feedback. However, when charging information from the rechargeable battery unit 30 cannot be obtained, etc. In consideration of the above, in accordance with the control information for each rechargeable battery unit 30 stored in the power supply device 10, power control is performed only on the power supply device 10 side while referring to the change in the driving current and coupling degree of the primary coil 101. You may do it.

また、本実施形態では、電力供給装置10から充電池ユニット30へ電力伝送する際の電力供給制御を、充電池ユニット30での電力受給状態及び充電状態を電力供給装置10にフィードバックして行っているが、上述したフィードバック情報が得られない場合の処理の他にも、電力受給状態又は充電状態のどちらか一方のフィードバック制御により行うことも可能である。   Moreover, in this embodiment, the power supply control at the time of transmitting power from the power supply device 10 to the rechargeable battery unit 30 is performed by feeding back the power receiving state and the charge state in the rechargeable battery unit 30 to the power supply device 10. However, in addition to the processing in the case where the above feedback information cannot be obtained, it is also possible to perform the feedback control in either the power receiving state or the charging state.

最後に、図6に示す本発明の他の実施形態による電力伝送システムの概略構成図を参照して、充電池ユニット30以外の2次電池を持たない電子装置50を対象とした実施形態について説明する。2次電池を持たない電子装置50としては、例えば、電力供給装置10が埋め込まれたテーブル等に載置されたLED型の電気スタンド、スポットライト、電飾、卓上型の扇風機等様々なものが想定される。ここで図1と同じ構成のものには同一符号を付け、重複する機能の説明は省略する。   Finally, with reference to a schematic configuration diagram of a power transmission system according to another embodiment of the present invention shown in FIG. 6, an embodiment targeting an electronic device 50 having no secondary battery other than the rechargeable battery unit 30 will be described. To do. Examples of the electronic device 50 that does not have a secondary battery include various types such as an LED type desk lamp, a spotlight, an electric decoration, and a tabletop fan mounted on a table in which the power supply device 10 is embedded. is assumed. Here, the same components as those in FIG. 1 are denoted by the same reference numerals, and description of overlapping functions is omitted.

図6に示す電子装置50は、2次電池33、充電手段34、充電制御手段36、充電状態監視手段35、及び充電制御情報送信手段39を持たず、代わりに電子装置50内部の電子回路等に電力を供給するための電源部51を備える点で図1の充電池ユニット30と異なる。電子装置50は、図1と同様に内蔵電源がなくても読み取り可能な無線タグ(RFID)等により識別情報を送信する通信手段31有し、電力供給装置10の識別情報読み取り手段11で電子装置50の識別情報が読み取られ、電子装置識別手段52で特定された電子装置50に対応する電力供給制御情報が参照されてその制御情報に従って電力供給装置10から適切な電力が供給され、その電力は電力受給手段32によって受給される。   The electronic device 50 shown in FIG. 6 does not include the secondary battery 33, the charging unit 34, the charging control unit 36, the charging state monitoring unit 35, and the charging control information transmission unit 39, and instead, an electronic circuit or the like inside the electronic device 50 1 is different from the rechargeable battery unit 30 of FIG. 1 in that it includes a power supply unit 51 for supplying power to the battery. The electronic device 50 includes a communication unit 31 that transmits identification information by a wireless tag (RFID) or the like that can be read without an internal power source, as in FIG. 50 identification information is read, power supply control information corresponding to the electronic device 50 specified by the electronic device identification means 52 is referred to, and appropriate power is supplied from the power supply device 10 according to the control information. It is received by the power receiving means 32.

電力受給手段32は、特に専用の充電回路がなくても受給した電力をそのまま急速に充電することが可能な電気二重層キャパシタ40を備えており、電気二重層キャパシタ40に充電された電力は電源部51に供給され、これによって電源部51から電子装置50内部の電子回路等に適切な電圧や電流を安定的に供給することができるようになる。   The power receiving means 32 includes an electric double layer capacitor 40 that can rapidly charge the received electric power as it is even without a dedicated charging circuit, and the electric power charged in the electric double layer capacitor 40 is a power source. Accordingly, an appropriate voltage or current can be stably supplied from the power supply unit 51 to the electronic circuit or the like inside the electronic device 50.

電子装置50は、充電池ユニット30と異なり充電制御を必要としないので、図1に対応するものとして、電力受給手段32で受給する電力の受給状態、例えば電源部51に供給される電圧や電流を監視する受給電力監視手段37を備えており、監視された電力の受給状態、即ちその電圧や電流を電力受給情報として受給情報送信手段38によって電力供給装置10にほぼリアルタイムに送信してフィードバックし、電力供給装置10から電子装置50に適切かつ安全に電力を供給できるようする。電力受給情報は、充電池ユニット30の場合と同様、電力伝送の際の電磁界又は電磁波に重畳されるか、赤外線通信や近接型等通信方式を用いることで、双方向通信の実現により電子装置50と電力供給装置10との間で送受信される。   Since the electronic device 50 does not require charging control unlike the rechargeable battery unit 30, the power receiving state of the power received by the power receiving means 32, for example, the voltage or current supplied to the power supply unit 51, as corresponding to FIG. The received power monitoring means 37 for monitoring the power reception status, that is, the voltage and current of the monitored power is sent to the power supply apparatus 10 in real time as feedback information to the power supply apparatus 10 for feedback. The power supply device 10 can supply power to the electronic device 50 appropriately and safely. As in the case of the rechargeable battery unit 30, the power reception information is superimposed on the electromagnetic field or electromagnetic wave during power transmission, or by using a communication method such as infrared communication or proximity type, thereby realizing electronic communication by realizing bidirectional communication. 50 and the power supply device 10 are transmitted and received.

受給電力監視手段37で監視され受給情報送信手段38によって送信された電力受給情報は、電力供給装置10の受給情報受信手段15で受信され、電力供給制御手段16にフィードバックされて、ほぼリアルタイムで電子装置50への供給電力が制御される。受給情報受信手段15は、図1の充電池ユニット30の場合とその役割もほぼ同等である。電力供給装置10内のその他の各手段も図1と同様の機能を有するのでその説明は省略する。電力供給装置10の電力供給制御手段16は、上述したように複数のコイルを同時に或いは時分割等により実質同時に駆動し且つそれぞれ独立して制御することができるので、本実施形態でも同種又は異種の電子装置50に複数同時又は実質同時に電力を供給することができる。更に、一実施形態として図1に示したような充電池ユニット30が充電手段を有する場合、他の実施形態として図6に示したような充電手段を有しない場合の組合せだけでなく、両方の実施形態を組み合わせた場合でも同時に或いは実質同時に複数の電子装置50に電力を伝送して供給することができる。   The power reception information monitored by the received power monitoring unit 37 and transmitted by the reception information transmission unit 38 is received by the reception information reception unit 15 of the power supply apparatus 10 and fed back to the power supply control unit 16 to be electronically transmitted in almost real time. The power supplied to the device 50 is controlled. The receipt information receiving means 15 has substantially the same role as that of the rechargeable battery unit 30 of FIG. Other means in the power supply apparatus 10 have the same functions as those in FIG. Since the power supply control means 16 of the power supply apparatus 10 can drive a plurality of coils simultaneously or substantially simultaneously by time division or the like and control them independently as described above. A plurality of electronic devices 50 can be supplied with power simultaneously or substantially simultaneously. Furthermore, when the rechargeable battery unit 30 as shown in FIG. 1 has a charging means as one embodiment, not only the combination in the case of not having the charging means as shown in FIG. Even when the embodiments are combined, power can be transmitted and supplied to the plurality of electronic devices 50 simultaneously or substantially simultaneously.

以上、本発明の実施形態を説明したが、本発明は、上述の実施形態に限られるものではなく、本発明の技術的範囲から逸脱しない範囲内で多様に変更実施することが可能である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the technical scope of the present invention.

本発明の一実施形態による充電池ユニットとこれに用いる電力供給装置の概略構成図である。It is a schematic block diagram of the rechargeable battery unit by one Embodiment of this invention, and the electric power supply apparatus used for this. 本発明の電力伝送システムの一実施例による構成図である。It is a block diagram by one Example of the power transmission system of this invention. 充電池ユニットの2次側コイルの負荷を変化させる回路構成の説明図である。It is explanatory drawing of the circuit structure which changes the load of the secondary side coil of a rechargeable battery unit. 充電池ユニットの1次側コイルの形状及び配置を示す構成図である。It is a block diagram which shows the shape and arrangement | positioning of the primary side coil of a rechargeable battery unit. 本発明の一実施形態による電力伝送方法のフロー図である。FIG. 3 is a flowchart of a power transmission method according to an embodiment of the present invention. 本発明の他の実施形態による電力伝送システムの概略構成図である。It is a schematic block diagram of the electric power transmission system by other embodiment of this invention.

符号の説明Explanation of symbols

10 電力供給装置
11 識別情報読み取り手段
12 充電池ユニット識別手段
13 電力供給手段
14 制御情報保持手段
15 受給情報受信手段
16 電力供給制御手段
17 充電制御情報受信手段
18 結合度検出手段
19 制御情報補正手段
20 電流検出手段
21 載置検出手段
22 外部通信手段
23 制御情報更新手段
30 充電池ユニット
31 通信手段
32 電力受給手段
33 2次電池
34 充電手段
35 充電状態監視手段
36 充電制御手段
37 受給電力監視手段
38 受給情報送信手段
39 充電制御情報送信手段
40 電気二重層キャパシタ
50 電子装置
51 電源部
52 電子装置識別手段
101 1次側コイル(送電部)
102 ID送受信部
103 ID認証・異物検出部
104 電流検出部
105 制御用信号処理回路
106 AC/DC変換回路
107 DC電源
108 ドライバ制御部
109 ドライブ部
301 2次側コイル(受電部)
302 整流部
303 充電制御部
DESCRIPTION OF SYMBOLS 10 Power supply apparatus 11 Identification information reading means 12 Rechargeable battery unit identification means 13 Power supply means 14 Control information holding means 15 Receiving information receiving means 16 Power supply control means 17 Charging control information receiving means 18 Coupling degree detecting means 19 Control information correcting means 19 DESCRIPTION OF SYMBOLS 20 Current detection means 21 Mounting detection means 22 External communication means 23 Control information update means 30 Rechargeable battery unit 31 Communication means 32 Power receiving means 33 Secondary battery 34 Charging means 35 Charging state monitoring means 36 Charging control means 37 Received power monitoring means 38 Receipt Information Transmitting Means 39 Charging Control Information Transmitting Means 40 Electric Double Layer Capacitor 50 Electronic Device 51 Power Supply Unit 52 Electronic Device Identification Unit 101 Primary Coil (Power Transmission Unit)
DESCRIPTION OF SYMBOLS 102 ID transmission / reception part 103 ID authentication and a foreign material detection part 104 Current detection part 105 Control signal processing circuit 106 AC / DC conversion circuit 107 DC power supply 108 Driver control part 109 Drive part 301 Secondary coil (power reception part)
302 Rectifier 303 Charge controller

Claims (20)

電子機器に装着され、電力供給装置から無接点で電力が供給されて充電される充電池ユニットであって、
前記電池ユニットを特定するための識別情報を少なくとも含み、無線信号を用いて前記電力供給装置と電力伝送に伴う情報の授受を行う通信手段と、
前記電力供給装置から無接点で電力を受給する電力受給手段と、
前記電力受給手段で受給した電力を貯蔵する2次電池と、
前記電力受給手段で受給した電力を前記2次電池に充電する充電手段と、
前記2次電池の充電状態を監視する充電状態監視手段と、
監視された前記2次電池の充電状態に応じて前記充電手段を制御する充電制御手段と、
前記電力受給手段で受給する電力受給状態を監視する受給電力監視手段と、
監視された受給電力を該充電池ユニットに対応して適切に制御するための電力受給情報を前記電力供給装置に前記通信手段を介して送信する受給情報送信手段と、を備えることを特徴とする充電池ユニット。
A rechargeable battery unit that is mounted on an electronic device and charged by being supplied with electric power from a power supply device without contact,
Communication means including at least identification information for specifying the battery unit, and performing transmission and reception of information associated with power transmission with the power supply device using a radio signal;
Power receiving means for receiving power from the power supply device in a contactless manner;
A secondary battery for storing the power received by the power receiving means;
Charging means for charging the secondary battery with the power received by the power receiving means;
Charge state monitoring means for monitoring a charge state of the secondary battery;
Charging control means for controlling the charging means in accordance with the monitored charging state of the secondary battery;
A received power monitoring means for monitoring a power receiving state received by the power receiving means;
Receiving information transmitting means for transmitting power receiving information for appropriately controlling the monitored received power corresponding to the rechargeable battery unit to the power supply apparatus via the communication means. Rechargeable battery unit.
前記充電状態監視手段で監視された前記2次電池の充電状態に応じて前記電力供給装置から供給される電力を制御するための充電制御情報を前記電力供給装置に前記通信手段を介して送信する充電制御情報送信手段を更に備えることを特徴とする請求項1に記載の充電池ユニット。   Charge control information for controlling the power supplied from the power supply device according to the charge state of the secondary battery monitored by the charge state monitoring means is transmitted to the power supply device via the communication means. The rechargeable battery unit according to claim 1, further comprising charging control information transmitting means. 前記通信手段は、近距離無線通信、赤外線通信、及び電力伝送の際の電磁界又は電磁波を介して行う通信の中から選択されるいずれか1つ以上の通信方式により行なわれることを特徴とする請求項1に記載の充電池ユニット。   The communication means is performed by any one or more communication methods selected from short-range wireless communication, infrared communication, and communication performed via an electromagnetic field or electromagnetic wave during power transmission. The rechargeable battery unit according to claim 1. 前記2次電池に対して充電容量が単位時間当たり2倍以上となる充電率で急速充電が可能な電気二重層キャパシタを更に備え、
前記充電手段は、前記電力受給手段で受給した電力を前記電気二重層キャパシタに充電する第1充電手段と、該第1充電手段で充電された前記電気二重層キャパシタの電力を前記2次電池に充電する第2充電手段と、を含むことを特徴とする請求項1に記載の充電池ユニット。
An electric double layer capacitor capable of rapid charging at a charging rate at which the charging capacity is twice or more per unit time with respect to the secondary battery;
The charging means includes a first charging means for charging the electric double layer capacitor with the electric power received by the electric power receiving means, and an electric power of the electric double layer capacitor charged by the first charging means to the secondary battery. The rechargeable battery unit according to claim 1, further comprising: a second charging unit that charges the battery.
電力供給装置から電子機器に装着される充電池ユニットに無接点で電力を伝送し供給するシステムであって、
前記充電池ユニットは、
前記充電池ユニットを特定するための識別情報を少なくとも含み、無線信号を用いて前記電力供給装置と電力伝送に伴う情報の授受を行う通信手段と、
前記電力供給装置から無接点で電力を受給する電力受給手段と、
前記電力受給手段で受給した電力を貯蔵する2次電池と、
前記電力受給手段で受給した電力を前記2次電池に充電する充電手段と、
前記2次電池の充電状態を監視する充電状態監視手段と、
監視された前記2次電池の充電状態に応じて前記充電手段を制御する充電制御手段と、 前記電力受給手段で受給する電力受給状態を監視する受給電力監視手段と、
監視された受給電力を該充電池ユニットに対応して適切に制御するための電力受給情報を前記電力供給装置に前記通信手段を介して送信する受給情報送信手段と、を備え、
前記電力供給装置は、
前記通信手段を介して前記充電池ユニットから送信された前記識別情報を読み取る識別情報読み取り手段と、
前記識別情報読み取り手段により前記充電池ユニットの識別情報を読み取り該充電池ユニットを特定する充電池ユニット識別手段と、
前記充電池ユニットに無接点で電力を供給する電力供給手段と、
前記識別情報に対応する充電池ユニット毎の電力供給制御情報を保持する制御情報保持手段と、
前記通信手段を介して前記充電池ユニットから送信された電力受給情報を受信する受給情報受信手段と、
前記電力供給制御情報及び前記電力受給情報を基に前記電力供給手段を制御して対応する充電池ユニットに適合した電力を供給する電力供給制御手段と、を備えることを特徴とする電力伝送システム。
A system for transmitting and supplying power without contact from a power supply device to a rechargeable battery unit mounted on an electronic device,
The rechargeable battery unit is
Communication means that includes at least identification information for specifying the rechargeable battery unit, and exchanges information associated with power transmission with the power supply device using a radio signal;
Power receiving means for receiving power from the power supply device in a contactless manner;
A secondary battery for storing the power received by the power receiving means;
Charging means for charging the secondary battery with the power received by the power receiving means;
Charge state monitoring means for monitoring a charge state of the secondary battery;
Charging control means for controlling the charging means in accordance with the monitored charging state of the secondary battery; received power monitoring means for monitoring a power receiving state received by the power receiving means;
Receiving information transmitting means for transmitting power receiving information for appropriately controlling the monitored received power corresponding to the rechargeable battery unit to the power supply device via the communication means,
The power supply device
Identification information reading means for reading the identification information transmitted from the rechargeable battery unit via the communication means;
Rechargeable battery unit identification means for reading the identification information of the rechargeable battery unit by the identification information reading means and identifying the rechargeable battery unit;
Power supply means for supplying power to the rechargeable battery unit in a contactless manner;
Control information holding means for holding power supply control information for each rechargeable battery unit corresponding to the identification information;
Receiving information receiving means for receiving power receiving information transmitted from the rechargeable battery unit via the communication means;
And a power supply control unit configured to control the power supply unit based on the power supply control information and the power supply information to supply power suitable for the corresponding rechargeable battery unit.
前記充電池ユニットは、前記充電状態監視手段で監視された前記2次電池の充電状態に応じて前記電力供給装置から供給される電力を制御するための充電制御情報を前記電力供給装置に前記通信手段を介して送信する充電制御情報送信手段を更に備え、
前記電力供給装置は、前記通信手段を介して前記充電池ユニットから送信された充電制御情報を受信する充電制御情報受信手段を更に備え、
前記電力供給制御手段は、前記電力供給制御情報、前記電力受給情報、及び前記充電制御情報を基に前記電力供給手段の供給電力を制御することを特徴とする請求項5に記載の電力伝送システム。
The rechargeable battery unit communicates charge control information for controlling power supplied from the power supply device to the power supply device according to a charge state of the secondary battery monitored by the charge state monitoring means. Charging control information transmitting means for transmitting via the means,
The power supply device further includes charge control information receiving means for receiving charge control information transmitted from the rechargeable battery unit via the communication means,
6. The power transmission system according to claim 5, wherein the power supply control unit controls supply power of the power supply unit based on the power supply control information, the power reception information, and the charge control information. .
前記通信手段は、近距離無線通信、赤外線通信、及び電力伝送の際の電磁界又は電磁波を介して行う通信の中から選択されるいずれか1つ以上の通信方式により行なわれることを特徴とする請求項5に記載の電力伝送システム。   The communication means is performed by any one or more communication methods selected from short-range wireless communication, infrared communication, and communication performed via an electromagnetic field or electromagnetic wave during power transmission. The power transmission system according to claim 5. 前記充電池ユニットは、
前記2次電池に対して充電容量が単位時間当たり2倍以上となる充電率で急速充電が可能な電気二重層キャパシタを更に備え、
前記充電手段は、前記電力受給手段で受給した電力を前記電気二重層キャパシタに充電する第1充電手段と、該第1充電手段で充電された前記電気二重層キャパシタの電力を前記2次電池に充電する第2充電手段と、を含むことを特徴とする請求項5に記載の電力伝送システム。
The rechargeable battery unit is
An electric double layer capacitor capable of rapid charging at a charging rate at which the charging capacity is twice or more per unit time with respect to the secondary battery;
The charging means includes a first charging means for charging the electric double layer capacitor with the electric power received by the electric power receiving means, and an electric power of the electric double layer capacitor charged by the first charging means to the secondary battery. The power transmission system according to claim 5, further comprising second charging means for charging.
前記電力供給手段で供給される電力は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により伝送され、
前記電力供給装置は、前記1次側電力供給部と2次側電力受給部との間の結合度を検出する結合度検出手段を更に備えることを特徴とする請求項5に記載の電力伝送システム。
The power supplied by the power supply means is transmitted by electromagnetic induction between a primary power supply unit of the power supply device and a secondary power supply unit of the rechargeable battery unit,
The power transmission system according to claim 5, wherein the power supply device further includes a coupling degree detection unit that detects a coupling degree between the primary side power supply unit and the secondary side power reception unit. .
前記結合度検出手段は、前記1次側電力供給部の消費電力、周波数特性、及び位相特性の中から選択されるいずれか一つ以上の特性の変化により検出することを特徴とする請求項9に記載の電力伝送システム。   10. The coupling degree detection unit detects the change based on a change in one or more characteristics selected from power consumption, frequency characteristics, and phase characteristics of the primary power supply unit. The power transmission system described in 1. 前記電池ユニットは、前記2次側電力受給部の負荷状態を変化させる手段を有し、
前記結合度検出手段は、前記2次側電力受給部の負荷状態の変化に応じた前記1次側電力供給部の特性の変化により検出することを特徴とする請求項9に記載の電力伝送システム。
The battery unit includes means for changing a load state of the secondary power receiving unit,
The power transmission system according to claim 9, wherein the coupling degree detection unit detects the change based on a change in characteristics of the primary power supply unit according to a change in a load state of the secondary power reception unit. .
前記電力供給装置は、前記結合度検出手段により検出された前記1次側電力供給部と2次側電力受給部の結合度を基に前記電力供給制御手段の制御情報を補正する制御情報補正手段を更に備えることを特徴とする請求項9に記載の電力伝送システム。   The power supply device is a control information correction unit that corrects control information of the power supply control unit based on a coupling degree between the primary power supply unit and the secondary power reception unit detected by the coupling degree detection unit. The power transmission system according to claim 9, further comprising: 前記電力供給装置は、1次側電力供給部にそれぞれ独立して制御及び駆動が可能な複数の駆動部を有し、前記結合度検出手段は、前記それぞれの駆動部の結合度を基に前記充電池ユニットに電力を供給する駆動部を選択することを特徴とする請求項9に記載の電力伝送システム。   The power supply device has a plurality of drive units that can be controlled and driven independently of each other on the primary side power supply unit, and the coupling degree detection means is based on the coupling degree of the respective driving units. The power transmission system according to claim 9, wherein a drive unit that supplies power to the rechargeable battery unit is selected. 前記電力供給装置は、前記識別情報読み取り手段及び充電池ユニット識別手段で複数の前記充電池ユニットが特定され、前記結合度検出手段で検出された前記駆動部の結合度が前記複数の充電池ユニットに対応して所定の範囲内にある場合、前記複数の充電池ユニットに時分割で電力を伝送し供給することを特徴とする請求項9に記載の電力伝送システム。   In the power supply device, a plurality of the rechargeable battery units are specified by the identification information reading unit and the rechargeable battery unit identifying unit, and the coupling degree of the driving unit detected by the coupling degree detecting unit is the plurality of rechargeable battery units. The power transmission system according to claim 9, wherein power is transmitted and supplied to the plurality of rechargeable battery units in a time-sharing manner when the power is within a predetermined range. 前記電力供給手段で供給される電力は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により伝送され、
前記電力供給装置は、前記1次側電力供給部の電流を検出する電流検出手段を更に備えることを特徴とする請求項5に記載の電力伝送システム。
The power supplied by the power supply means is transmitted by electromagnetic induction between a primary power supply unit of the power supply device and a secondary power supply unit of the rechargeable battery unit,
The power transmission system according to claim 5, wherein the power supply device further includes a current detection unit that detects a current of the primary power supply unit.
前記電力供給装置は、該電力供給装置に物体が載置されたことを電圧、電流、抵抗値、静電容量、磁束、圧力、音、光、及び温度の中から選択されるいずれか一つ以上の変化により検出する載置検出手段を更に備えることを特徴とする請求項15に記載の電力伝送システム。   The power supply device may be selected from voltage, current, resistance value, capacitance, magnetic flux, pressure, sound, light, and temperature that an object is placed on the power supply device. The power transmission system according to claim 15, further comprising a placement detection unit that detects the change based on the above change. 前記電力供給装置は、
外部装置と情報の授受を行うための外部通信手段と、
前記外部通信手段を介し前記制御情報保持手段の電力供給制御情報を受信して更新する制御情報更新手段と、を更に備えることを特徴とする請求項5に記載の電力伝送システム。
The power supply device
An external communication means for exchanging information with an external device;
6. The power transmission system according to claim 5, further comprising control information updating means for receiving and updating power supply control information of the control information holding means via the external communication means.
識別情報を有し無線信号を用いて情報の授受を行う通信手段と2次電池及びその充電部とを具備する充電池ユニットに、電力供給装置から無接点で電力を伝送し供給する方法であって、
前記通信手段を介して前記充電池ユニットの識別情報を読み取り当該充電池ユニットを特定する充電池ユニット識別段階と、
前記2次電池の充電状態を監視しその充電状態に応じて前記電力供給装置の供給電力を制御するための充電制御情報を前記充電池ユニットから前記電力供給装置に前記通信手段を介して送信する充電制御情報送信段階と、
前記電力供給装置で前記充電池ユニットから前記通信手段を介して前記充電制御情報を受信する充電制御情報受信段階と、
前記識別情報により特定された充電池ユニット毎の電力供給制御情報及び前記充電制御情報受信段階で受信した前記充電制御情報を基に前記充電池ユニットへの供給電力を制御する電力供給制御段階と、を有することを特徴とする電力伝送方法。
It is a method of transmitting and supplying power from a power supply device in a contactless manner to a rechargeable battery unit comprising a communication means that has identification information and transmits / receives information using a radio signal, a secondary battery, and a charging unit thereof. And
A rechargeable battery unit identification stage that reads the identification information of the rechargeable battery unit via the communication means and identifies the rechargeable battery unit;
Charge control information for monitoring the charge state of the secondary battery and controlling the supply power of the power supply device according to the charge state is transmitted from the rechargeable battery unit to the power supply device via the communication means. Charging control information transmission stage;
A charging control information receiving step of receiving the charging control information from the rechargeable battery unit via the communication means in the power supply device;
A power supply control step for controlling power supplied to the rechargeable battery unit based on the power supply control information for each rechargeable battery unit specified by the identification information and the charge control information received in the charge control information reception step; A power transmission method comprising:
前記充電池ユニット識別段階で前記識別情報が読み取れず充電池ユニットを特定することができない場合、その後の処理を中止して少なくとも音又は表示出力のいずれかによって利用者に注意喚起することを特徴とする請求項18に記載の電力伝送方法。   When the identification information cannot be read at the rechargeable battery unit identification stage and the rechargeable battery unit cannot be specified, the subsequent processing is stopped and the user is alerted at least by sound or display output. The power transmission method according to claim 18. 前記電力供給装置から前記充電池ユニットへの電力供給は、前記電力供給装置の1次側電力供給部と前記充電池ユニットの2次側電力受給部との間の電磁誘導により行われ、
前記1次側電力供給部と前記2次側電力受給部との間の結合度を検出する結合度検出段階を更に有し、
前記結合度検出段階で検出された結合度と前記充電池ユニット毎に特定された電力供給制御情報の結合度とを比較した値が所定の範囲内にない場合、電力供給を中止して少なくとも音又は表示出力のいずれかによって利用者に注意喚起することを特徴とする請求項18に記載の電力伝送方法。
The power supply from the power supply device to the rechargeable battery unit is performed by electromagnetic induction between the primary power supply unit of the power supply device and the secondary power supply unit of the rechargeable battery unit,
A coupling degree detection step of detecting a coupling degree between the primary side power supply unit and the secondary side power reception unit;
If the value obtained by comparing the coupling degree detected in the coupling degree detection step and the coupling degree of the power supply control information specified for each rechargeable battery unit is not within a predetermined range, the power supply is stopped and at least sound The power transmission method according to claim 18, wherein the user is alerted by either display output or display output.
JP2009524489A 2007-07-23 2008-07-22 Rechargeable battery unit, power transmission system and power transmission method therefor Pending JPWO2009014125A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007190288 2007-07-23
JP2007190288 2007-07-23
PCT/JP2008/063143 WO2009014125A1 (en) 2007-07-23 2008-07-22 Charging battery unit, power transmission system and power transmission method for it

Publications (1)

Publication Number Publication Date
JPWO2009014125A1 true JPWO2009014125A1 (en) 2010-10-07

Family

ID=40281376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009524489A Pending JPWO2009014125A1 (en) 2007-07-23 2008-07-22 Rechargeable battery unit, power transmission system and power transmission method therefor

Country Status (2)

Country Link
JP (1) JPWO2009014125A1 (en)
WO (1) WO2009014125A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125112A (en) * 2010-12-10 2012-06-28 Hitachi Ltd Wireless power transmission system, power transmitting device, and power receiving device
JP2012143091A (en) * 2011-01-04 2012-07-26 Kimitake Utsunomiya Remotely and wirelessly driven charger

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100971748B1 (en) 2007-11-30 2010-07-22 정춘길 Wireless power transfer device for multiple wireless charging within charging area
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8772973B2 (en) 2008-09-27 2014-07-08 Witricity Corporation Integrated resonator-shield structures
US9396867B2 (en) 2008-09-27 2016-07-19 Witricity Corporation Integrated resonator-shield structures
US8937408B2 (en) 2008-09-27 2015-01-20 Witricity Corporation Wireless energy transfer for medical applications
US9601261B2 (en) 2008-09-27 2017-03-21 Witricity Corporation Wireless energy transfer using repeater resonators
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
JP5349069B2 (en) * 2009-02-09 2013-11-20 株式会社豊田自動織機 Non-contact power transmission device
EP2396796A4 (en) * 2009-02-13 2017-03-22 Witricity Corporation Wireless energy transfer in lossy environments
JP5585098B2 (en) * 2009-03-06 2014-09-10 日産自動車株式会社 Non-contact power supply apparatus and method
US8452235B2 (en) * 2009-03-28 2013-05-28 Qualcomm, Incorporated Tracking receiver devices with wireless power systems, apparatuses, and methods
CN102362408B (en) * 2009-03-30 2015-01-21 富士通株式会社 Wireless power supply system, wireless power transmission device, and wireless power receiving device
CN104539060B (en) * 2009-03-30 2017-09-05 富士通株式会社 Wireless power supply system, wireless power transmission device and wireless receiving device
JP5621203B2 (en) 2009-03-30 2014-11-12 富士通株式会社 Wireless power supply system and wireless power supply method
JP5353376B2 (en) * 2009-03-31 2013-11-27 富士通株式会社 Wireless power device and wireless power receiving method
JP5431774B2 (en) * 2009-04-14 2014-03-05 富士通テン株式会社 Wireless power transmission apparatus and wireless power transmission method
US8853995B2 (en) * 2009-06-12 2014-10-07 Qualcomm Incorporated Devices for conveying wireless power and methods of operation thereof
KR101145682B1 (en) * 2009-06-12 2012-05-24 정춘길 Non-contact charging system for vehicle and charging control method thereof
KR101050538B1 (en) * 2009-06-16 2011-07-20 (주)피티앤케이 Wireless power charging system and its charging method
DE102009033237A1 (en) 2009-07-14 2011-01-20 Conductix-Wampfler Ag Device for inductive transmission of electrical energy
JP5434330B2 (en) * 2009-07-22 2014-03-05 ソニー株式会社 Power receiving device, power transmission system, charging device, and power transmission method
US9312728B2 (en) * 2009-08-24 2016-04-12 Access Business Group International Llc Physical and virtual identification in a wireless power network
US8928284B2 (en) * 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
JP5419152B2 (en) * 2009-10-16 2014-02-19 Necカシオモバイルコミュニケーションズ株式会社 Terminal device, charging device, and program
US8547057B2 (en) * 2009-11-17 2013-10-01 Qualcomm Incorporated Systems and methods for selective wireless power transfer
US8620484B2 (en) 2010-02-08 2013-12-31 Access Business Group International Llc Input parasitic metal detection
JP5517200B2 (en) * 2010-02-17 2014-06-11 Necカシオモバイルコミュニケーションズ株式会社 Electronic device, power supply device and program
JP5352498B2 (en) * 2010-02-25 2013-11-27 アイホン株式会社 Intercom device
KR101822527B1 (en) 2010-07-28 2018-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Wireless power feeding system and wireless power feeding method
WO2012019011A1 (en) * 2010-08-04 2012-02-09 Johnson Controls Technology Company Universal wireless charging system for motor vehicles
JP5508201B2 (en) * 2010-09-16 2014-05-28 Necトーキン株式会社 Non-contact charging system, electronic device, and charging method of electronic device
KR101142746B1 (en) 2010-10-21 2012-05-04 국립대학법인 울산과학기술대학교 산학협력단 Method for wireless charging of vehicles and system thereof
JP2012095461A (en) * 2010-10-27 2012-05-17 Midori Anzen Co Ltd Non-contact charger
DE102010043154A1 (en) * 2010-10-29 2012-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Portable electronic device, external base device, method for coupling the portable electronic device to an external base device and use of the external base device for coupling the portable electronic device
US20120153739A1 (en) * 2010-12-21 2012-06-21 Cooper Emily B Range adaptation mechanism for wireless power transfer
KR101150257B1 (en) 2010-12-30 2012-07-09 한국과학기술원 Method and apparatus for providing electric power, wireless charging apparatus of electric bike
JP2012143093A (en) * 2011-01-04 2012-07-26 Kimitake Utsunomiya Proximity wireless charging ac adapter
CN103348558B (en) * 2011-01-20 2016-04-27 株式会社东芝 Semiconductor equipment, power transfer apparatus, power receiving apparatus, charging system, wireless communication system and charging method
KR101859191B1 (en) 2011-03-23 2018-05-18 삼성전자주식회사 Method and apparatus for controlling wireless power transmission and reception, and wireless power transmission system
JP5058350B1 (en) * 2011-03-30 2012-10-24 株式会社東芝 Power transmission device and power transmission system
KR20120135873A (en) * 2011-06-07 2012-12-17 삼성전자주식회사 Wireless power trasmission apparatus and system
JP5794056B2 (en) * 2011-09-12 2015-10-14 ソニー株式会社 Power supply device and power supply system
US20140225448A1 (en) * 2011-09-14 2014-08-14 Panasonic Corporation Non-contact power receiving device and non-contact power transmission device
JP2015008549A (en) * 2011-10-28 2015-01-15 パナソニック株式会社 Non-contact power transmission device
JP2013132103A (en) * 2011-12-20 2013-07-04 Nec Saitama Ltd Sheet member, charger, and charging system of portable device
WO2013111917A1 (en) * 2012-01-25 2013-08-01 엘지전자 주식회사 Method and apparatus for setting frequency of wireless power transmission
CN102832720A (en) * 2012-08-23 2012-12-19 华南理工大学 Online monitoring equipment power supply system based on wireless electric power transmission technology
KR101601352B1 (en) * 2012-09-26 2016-03-08 엘지이노텍 주식회사 Apparatus for transmitting wireless power and method for controlling power thereof
CN104885324B (en) * 2012-11-05 2019-05-28 苹果公司 Inductively electrical power transmission system
KR102053462B1 (en) 2013-02-14 2019-12-06 지이 하이브리드 테크놀로지스, 엘엘씨 Apparatus and method for detecting foreign object in wireless power transmitting system
JP6198440B2 (en) 2013-04-19 2017-09-20 キヤノン株式会社 Wireless power transmission apparatus, control method for wireless power transmission apparatus, and program
JP5686268B2 (en) * 2013-12-24 2015-03-18 富士通株式会社 Wireless power supply method and wireless power supply system
KR101599125B1 (en) * 2014-03-21 2016-03-14 한양대학교 산학협력단 Wireless charging transmitter and receiver
JP6315088B2 (en) 2014-05-22 2018-04-25 富士通株式会社 Power receiver, wireless power transmission system, and kQ value calculation method
EP3093957B1 (en) * 2015-05-15 2022-05-18 Panasonic Intellectual Property Management Co., Ltd. Foreign object detecting device, wireless power transmitting apparatus, and wireless power transfer system
KR20170034477A (en) * 2015-09-21 2017-03-29 엘지전자 주식회사 Apparatus for driving charging, Apparatus and Method for providing driving charging
JP2017064059A (en) * 2015-09-30 2017-04-06 東芝ライフスタイル株式会社 Vacuum cleaner
DE102016115053A1 (en) * 2016-08-12 2018-02-15 Alfred Kärcher Gmbh & Co. Kg Electrical energy storage device and electrical appliance
KR101952604B1 (en) * 2018-05-11 2019-02-27 삼성전자주식회사 Method and apparatus for controlling wireless power transmission and reception, and wireless power transmission system
KR102408503B1 (en) * 2020-06-05 2022-06-13 주식회사 경신 Wireless charging device
JP7476911B2 (en) 2021-02-19 2024-05-01 株式会社デンソー Wireless power supply system and power receiving device
WO2022176598A1 (en) * 2021-02-19 2022-08-25 株式会社デンソー Non-contact power supply system and power receiving device
CN115166212B (en) * 2022-09-08 2023-01-31 北京市农林科学院智能装备技术研究中心 Soil moisture monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102693A (en) * 1987-10-15 1989-04-20 Hitachi Maxell Ltd Power supply system for electromagnetically coupled recording medium
JP2003264934A (en) * 2002-03-08 2003-09-19 Denso Wave Inc Non-contact charging system, charger, and charged equipment
JP2003299255A (en) * 2002-04-02 2003-10-17 Nippon Telegr & Teleph Corp <Ntt> Portable battery charger
JP2007166763A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Wireless communication apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102693A (en) * 1987-10-15 1989-04-20 Hitachi Maxell Ltd Power supply system for electromagnetically coupled recording medium
JP2003264934A (en) * 2002-03-08 2003-09-19 Denso Wave Inc Non-contact charging system, charger, and charged equipment
JP2003299255A (en) * 2002-04-02 2003-10-17 Nippon Telegr & Teleph Corp <Ntt> Portable battery charger
JP2007166763A (en) * 2005-12-13 2007-06-28 Seiko Epson Corp Wireless communication apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125112A (en) * 2010-12-10 2012-06-28 Hitachi Ltd Wireless power transmission system, power transmitting device, and power receiving device
JP2012143091A (en) * 2011-01-04 2012-07-26 Kimitake Utsunomiya Remotely and wirelessly driven charger

Also Published As

Publication number Publication date
WO2009014125A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JPWO2009014125A1 (en) Rechargeable battery unit, power transmission system and power transmission method therefor
US11817917B2 (en) Wireless power transferring method and device therefor
EP2057730B1 (en) Non-contact charger system of wireless power transmision for battery and control method thereof
KR101243587B1 (en) Non-contract charging device, non-contact charghing system and non-contact charging method
JP5451174B2 (en) Charger and control method thereof
TWI459676B (en) Non-contact power feeding system and foreign metal matter detector for non-contact power feeding system
US8594567B2 (en) Controlled wireless charging of an accumulator in a chipcard
US9450444B2 (en) Charging apparatus
JP5111397B2 (en) Non-contact charging device provided with coil array, non-contact charging system and charging method
JP5239706B2 (en) Charging apparatus and charging method
KR20170041389A (en) Method for Guiding Alignment of Wireless Charging Device, Apparatus and System therefor
KR20130090703A (en) Wireless power charging method and apparatus
WO2016064652A1 (en) Portable radio device adapted to function as a wireless charger
JP2011045190A (en) Power transmission control unit, power transmission device, power reception control unit, power reception device, and electronic apparatus
JP2011035964A (en) Charging apparatus and charging system
JP2013115978A (en) Portable device and electric power feeding base, and power feeding method for portable device
JP6918526B2 (en) Non-contact power transmission equipment and non-contact power transmission equipment
KR20160028537A (en) The Wireless Charger
JP2016059115A (en) Non-contact power transmission device
JP2008236887A (en) Charger for portable device, charging control method of charger for portable device and program
WO2018154952A1 (en) Power feeding device, electronic device, control method and program thereof, and wireless power transmission system
US11038383B2 (en) Method and apparatus for active device recognition and elimination of cross-talk between multiple magnetic resonance chargers
US20230238836A1 (en) Apparatus and method for transmitting power wirelessly
KR101386059B1 (en) Wireless charging casing apparatus and method using electromagnetic induction and resonance magnetic induction
JP7073048B2 (en) Electronic devices, control methods and programs for electronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029