JPWO2007108324A1 - Glass melting method and glass melting furnace - Google Patents

Glass melting method and glass melting furnace Download PDF

Info

Publication number
JPWO2007108324A1
JPWO2007108324A1 JP2008506229A JP2008506229A JPWO2007108324A1 JP WO2007108324 A1 JPWO2007108324 A1 JP WO2007108324A1 JP 2008506229 A JP2008506229 A JP 2008506229A JP 2008506229 A JP2008506229 A JP 2008506229A JP WO2007108324 A1 JPWO2007108324 A1 JP WO2007108324A1
Authority
JP
Japan
Prior art keywords
glass
melting
tank
molten glass
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008506229A
Other languages
Japanese (ja)
Other versions
JP5231211B2 (en
Inventor
公夫 飯野
公夫 飯野
真二 村上
真二 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Taiyo Nippon Sanso Corp
Original Assignee
Ohara Inc
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc, Taiyo Nippon Sanso Corp filed Critical Ohara Inc
Priority to JP2008506229A priority Critical patent/JP5231211B2/en
Publication of JPWO2007108324A1 publication Critical patent/JPWO2007108324A1/en
Application granted granted Critical
Publication of JP5231211B2 publication Critical patent/JP5231211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • C03B5/2353Heating the glass by combustion with pure oxygen or oxygen-enriched air, e.g. using oxy-fuel burners or oxygen lances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Abstract

本発明のガラス溶融方法は、溶融槽を備えるガラス溶融炉を用い、調整槽をこの溶融槽における溶融ガラス流の下流に配置し、調整槽の温度と調整槽への導入ガス量を調整することによって、雰囲気ガスと溶融ガラス表面との界面での水分濃度の平衡状態を制御し、溶融ガラス中の水分濃度を調整する。The glass melting method of the present invention uses a glass melting furnace equipped with a melting tank, arranges the adjusting tank downstream of the molten glass flow in the melting tank, and adjusts the temperature of the adjusting tank and the amount of gas introduced into the adjusting tank. Thus, the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface is controlled to adjust the moisture concentration in the molten glass.

Description

本発明は、酸素燃焼を利用したガラス製品の製造において、ガラス製品を効率良く製造するためのガラス溶融方法およびガラス溶融炉に関する。
本願は、2006年3月16日に日本国に出願された特願2006−72235号に基づく優先権を主張し、その内容をここに援用する。
The present invention relates to a glass melting method and a glass melting furnace for efficiently manufacturing a glass product in the manufacture of a glass product using oxygen combustion.
This application claims the priority based on Japanese Patent Application No. 2006-72235 for which it applied to Japan on March 16, 2006, and uses the content here.

近年、工業的にガラスを製造するガラス溶融炉において、高温溶融を必要とする種類のガラスに対して、酸素燃焼を利用することが多くなってきている(特許文献1〜3)。特にデイタンク炉等のバッチ式溶融炉における高温溶融が必要なガラスの溶融においては、空気燃焼では熱効率が低いため、酸素燃焼を採用することが多い。   In recent years, in a glass melting furnace for industrially producing glass, oxyfuel combustion is increasingly used for types of glass that require high-temperature melting (Patent Documents 1 to 3). In particular, in the melting of glass that requires high-temperature melting in a batch-type melting furnace such as a day tank furnace, oxygen combustion is often adopted because air combustion has low thermal efficiency.

ところで、ガラスの高温溶融に酸素燃焼を用いると、その燃焼ガスに二酸化炭素や水が多く含まれることから、ガラス中の水分濃度が高くなることが懸念される。水は、ガラス中にOH基として取り込まれるが、高純度のシリカガラスや、無アルカリガラスなど、ガラスの種類よっては、この高いOH基含有率がガラス構造に影響して後段プロセスに悪影響を及ぼす可能性があり、製品収率の低下が懸念される。なお、この水分濃度は季節によって変動することもあり、水分濃度調整をガラス溶融の後段プロセスで最適化することは煩雑である。   By the way, when oxygen combustion is used for high-temperature melting of glass, since the combustion gas contains a large amount of carbon dioxide and water, there is a concern that the moisture concentration in the glass increases. Water is taken into the glass as OH groups, but depending on the type of glass, such as high-purity silica glass or non-alkali glass, this high OH group content affects the glass structure and adversely affects subsequent processes. There is a possibility that the product yield may be reduced. Note that the water concentration may vary depending on the season, and it is complicated to optimize the water concentration adjustment in a subsequent process of glass melting.

ガラス溶融炉において、気体中の水分濃度を調節する方法が特許文献4に開示されている。この方法は、二次空気ダクトに加湿器を設置し、溶融炉に供給する空気を加湿して一定の湿度に保ち、溶融炉の温度変動を防止することを目的としたものである。この方法は、空気燃焼における水蒸気濃度を増加させるものである。一方、酸素燃焼においては、空気燃焼の3倍以上の水分を発生させるため、特許文献4に記載の方法では、上記のような気体中の水分濃度の調節によるガラス中の水分濃度調整を行うことはできない。   Patent Document 4 discloses a method for adjusting the moisture concentration in a gas in a glass melting furnace. The purpose of this method is to install a humidifier in the secondary air duct and humidify the air supplied to the melting furnace to maintain a constant humidity, thereby preventing temperature fluctuations in the melting furnace. This method increases the water vapor concentration in air combustion. On the other hand, in oxyfuel combustion, the moisture content in the glass is adjusted by adjusting the moisture concentration in the gas as described above in the method described in Patent Document 4 in order to generate water three times or more that in air combustion. I can't.

ガラス溶融炉での熱源として酸素燃焼を採用した場合に、溶融ガラス中の水分濃度を適正管理できるような溶融法および溶融炉が求められている。
特開平6−24752 特開平10−316434 特開平11−11954 特開平8−268724
When oxygen combustion is employed as a heat source in a glass melting furnace, there is a need for a melting method and a melting furnace that can properly manage the water concentration in the molten glass.
JP-A-6-24752 JP 10-316434 A JP-A-11-11954 JP-A-8-268724

本発明の課題は、ガラス溶融炉でのガラス溶融熱源として酸素燃焼方式を利用する場合であっても、ガラス中水分濃度の調整が可能なガラス溶融方法およびガラス溶融炉を提供することにある。   An object of the present invention is to provide a glass melting method and a glass melting furnace capable of adjusting the moisture concentration in glass even when an oxygen combustion system is used as a glass melting heat source in the glass melting furnace.

上記課題を解決するため、本発明は、溶融槽を備えるガラス溶融炉を用いたガラス溶融方法であって、調整槽をこの溶融槽における溶融ガラス流の下流に配置し、調整槽の温度と調整槽への導入ガス量を調整することによって、雰囲気ガスと溶融ガラス表面との界面での水分濃度の平衡状態を制御し、溶融ガラス中の水分濃度を調整するガラスの溶融方法を提供する。   In order to solve the above-mentioned problems, the present invention is a glass melting method using a glass melting furnace provided with a melting tank, wherein the adjusting tank is arranged downstream of the molten glass flow in the melting tank, and the temperature and the adjusting tank are adjusted. By adjusting the amount of gas introduced into the bath, the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface is controlled, and a glass melting method for adjusting the moisture concentration in the molten glass is provided.

本発明においては、酸素バーナーを用いて原料ガラスを溶融する場合において特に効果が大きいため、前記溶融槽において酸素バーナーを用いて原料ガラスを溶融する場合に本発明を適用することが好ましい。また、溶融ガラス中の水分濃度を適切に調整するために、調整槽の圧力を正圧に保つことが好ましい。   In the present invention, since the effect is particularly great when the raw glass is melted using an oxygen burner, the present invention is preferably applied when the raw glass is melted using an oxygen burner in the melting tank. Moreover, in order to appropriately adjust the water concentration in the molten glass, it is preferable to maintain the pressure in the adjustment tank at a positive pressure.

また、本発明は、前記ガラスの溶融方法を実施するためのガラス溶融炉として、原料ガラスを溶融するガラス溶融炉であって、溶融槽と、溶融槽で溶融させたガラスの水分濃度を調整するための調整槽と、溶融槽から調整槽へ溶融ガラスを流すためのスロート部と、溶融槽の上部空間と調整槽の上部空間とを隔絶するための仕切り壁とを有し、調整槽は、仕切り壁より溶融ガラス流の下流に設けられた仕切り堰、溶融ガラス温度を調整するための溶融ガラス加熱手段、及び雰囲気ガス導入口を備えているガラス溶融炉を提供する。   Further, the present invention is a glass melting furnace for melting raw glass as a glass melting furnace for carrying out the glass melting method, and adjusts the moisture concentration of the melting tank and the glass melted in the melting tank. An adjustment tank, a throat portion for flowing molten glass from the melting tank to the adjustment tank, and a partition wall for isolating the upper space of the melting tank and the upper space of the adjustment tank, Provided is a glass melting furnace provided with a partition weir provided downstream from the partition wall in the molten glass flow, a molten glass heating means for adjusting the molten glass temperature, and an atmospheric gas inlet.

本発明においては、酸素バーナーを具備した溶融炉において特に効果が大きいため、前記溶融槽が酸素バーナーを具備している溶融炉において本発明を適用することが好ましい。
また、前記溶融ガラス加熱手段は、浸漬型電極および/もしくは電気ヒーターであることが好ましい。
さらに、前記調整槽には、雰囲気ガスの温度を調整するための雰囲気ガス加熱手段が設けてあることが好ましい。また、雰囲気ガス加熱手段は電気ヒーターであることが好ましい。
In the present invention, since the effect is particularly great in a melting furnace equipped with an oxygen burner, the present invention is preferably applied to a melting furnace in which the melting tank is equipped with an oxygen burner.
The molten glass heating means is preferably an immersion electrode and / or an electric heater.
Furthermore, it is preferable that the adjusting tank is provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas. The atmospheric gas heating means is preferably an electric heater.

本発明によれば、ガラス溶融炉において、溶融槽における溶融ガラス流の下流に調整槽を設けて溶融ガラス中の水分濃度の調整を行なうので、ガラス溶融熱源として酸素燃焼方式を用いても、溶融ガラス中の水分濃度を適正管理できる。   According to the present invention, in the glass melting furnace, an adjustment tank is provided downstream of the molten glass flow in the melting tank to adjust the moisture concentration in the molten glass. The water concentration in the glass can be properly managed.

本発明を実施するためのガラス溶融炉の断面図である。It is sectional drawing of the glass fusing furnace for implementing this invention.

符号の説明Explanation of symbols

1・・ガラス溶融炉、2・・溶融槽、3・・調整槽、4・・仕切り壁、5・・・スロート部、6・・仕切り堰、7・・調整浴、8・・酸素バーナー、10・・雰囲気ガス導入口、11・・電気ヒーター、12・・浸漬型電極、14・・ガラス取出口、22・・・原料ガラス、23・・・溶融ガラス   1 .... Glass melting furnace 2 .... Melting tank 3 .... Adjusting tank 4 .... Partition wall 5 ... Throat part 6, ... Division weir 7, ... Adjusting bath 8, ... Oxygen burner, 10 .... Atmosphere gas inlet, 11 .... Electric heater, 12 .... Immersion electrode, 14 .... Glass outlet, 22 ... Raw glass, 23 ... Molten glass

本発明の実施の形態を、図1に基づいて説明する。図1は本発明を実施するのに好適な溶融炉を模式的に表した断面図である。同図に示すように、溶融炉1は、溶融槽2と調整槽3を有する。溶融槽2と調整槽3とは、その上部空間が仕切り壁4によって隔絶されている。   An embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a melting furnace suitable for carrying out the present invention. As shown in the figure, the melting furnace 1 has a melting tank 2 and an adjusting tank 3. The upper space of the melting tank 2 and the adjustment tank 3 is isolated by the partition wall 4.

溶融槽2には、原料フィーダー21によって、原料ホッパー20中の原料ガラス22が投入される。原料ガラス22は、溶融槽2に設置された複数本の酸素バーナ8,8・・・によって溶融され、順次、溶融ガラス23となる。溶融ガラス23は、仕切り壁4下部のスロート部5を通って、調整槽3へ導入される。調整槽3には仕切り堰6が設けられており、溶融ガラス23は、この仕切り堰6をオーバーフローして調整浴7に溜められる。原料供給は、調整浴7での蓄積ガラス量が所定のレベルになるまで行われる。   The raw material glass 22 in the raw material hopper 20 is put into the melting tank 2 by the raw material feeder 21. The raw glass 22 is melted by a plurality of oxygen burners 8, 8... Installed in the melting tank 2, and sequentially becomes a molten glass 23. The molten glass 23 is introduced into the adjustment tank 3 through the throat portion 5 below the partition wall 4. The adjustment tank 3 is provided with a partition weir 6, and the molten glass 23 overflows the partition weir 6 and is stored in the adjustment bath 7. The raw material is supplied until the amount of accumulated glass in the adjustment bath 7 reaches a predetermined level.

調整槽3の上部空間には、気相中の水分濃度を調整するための雰囲気ガス投入口10が設けられている。この雰囲気ガス投入口10から乾燥窒素ガス等を導入し、雰囲気ガス中の水分濃度を溶融ガラス23中の水分濃度よりも低くすることによって、雰囲気ガスと溶融ガラス23表面の界面においてガラス中水分の雰囲気ガス中への拡散を発現させ、ガラス中の水分濃度を低下させる。なお、溶融槽2及び調整槽3の上部空間には、余分な排ガスを導出する溶融槽用排ガス口9及び調整槽用排ガス口24がそれぞれ設けられている。   In the upper space of the adjustment tank 3, an atmospheric gas inlet 10 for adjusting the moisture concentration in the gas phase is provided. By introducing dry nitrogen gas or the like from the atmosphere gas inlet 10 and making the moisture concentration in the atmosphere gas lower than the moisture concentration in the molten glass 23, the moisture content in the glass is reduced at the interface between the atmosphere gas and the surface of the molten glass 23. Diffusion into the atmospheric gas is developed, and the water concentration in the glass is lowered. In the upper space of the melting tank 2 and the adjusting tank 3, a melting tank exhaust gas port 9 and an adjusting tank exhaust gas port 24 through which excess exhaust gas is led out are provided, respectively.

調整槽3では、溶融ガラス23の熱補償を行うため、溶融ガラス加熱手段を設けることが好ましい。具体的には、調整槽3の上部空間に電気ヒーター11を設置したり、溶融ガラス23中に浸漬型電極12を設けてジュール加熱を行うことで熱補償を行う。電極12の材質は溶融ガラス23に侵食されないように白金が好ましいが、ガラス成分によってはモリブデンを用いることも可能である。また、調整槽3には、雰囲気ガスの温度を調整するため、雰囲気ガス加熱手段を設けることが好ましい。具体的には、上記電気ヒーター11が挙げられる。   In the adjustment tank 3, in order to perform heat compensation of the molten glass 23, it is preferable to provide a molten glass heating means. Specifically, heat compensation is performed by installing the electric heater 11 in the upper space of the adjustment tank 3 or by providing the immersion electrode 12 in the molten glass 23 and performing Joule heating. The electrode 12 is preferably made of platinum so as not to be eroded by the molten glass 23, but it is also possible to use molybdenum depending on the glass component. The adjustment tank 3 is preferably provided with an atmospheric gas heating means for adjusting the temperature of the atmospheric gas. Specifically, the electric heater 11 is mentioned.

仕切り堰6は、その側壁が、スロート部5側および調整浴7側ともに傾斜しており、溶融ガラス23が仕切り堰6をオーバーフローする際、滑らかに流れるような形状とすることが好ましい。このような形状の仕切り堰6を設けることで、溶融ガラス23が調整浴7側の側壁を流れ落ちる際に、雰囲気ガスとの接触面積が増える。このため、より水分濃度が調整しやすくなり、調整浴7での滞留時間を短くできるという効果がある。   It is preferable that the partition weir 6 has a shape in which the side walls are inclined on both the throat portion 5 side and the adjustment bath 7 side, and flows smoothly when the molten glass 23 overflows the partition weir 6. By providing the partition weir 6 having such a shape, the contact area with the atmospheric gas increases when the molten glass 23 flows down the side wall on the adjustment bath 7 side. For this reason, it becomes easier to adjust the water concentration, and the residence time in the adjustment bath 7 can be shortened.

また、溶融ガラスの強制的な攪拌も水分濃度調整効果を高める。そのため、溶融ガラス23中に攪拌機(図示せず)を備えたり、ガスバブリング用ガスをガスバブリング口13から導入してガスバブリングを行うと良い。このとき、ガスバブリング用ガスの水分濃度は、雰囲気ガスと同様に、溶融ガラス23中の水分濃度よりも低くすることが好ましい。調整槽3に導入する雰囲気ガスやガスバブリング用ガスは、溶融槽2から排出される燃焼排ガスとの熱交換によって予熱されたものを使用すると良い。熱交換によって、エネルギー使用量を減少させることが可能となる。   Moreover, forced stirring of the molten glass also enhances the moisture concentration adjustment effect. Therefore, it is good to provide a stirrer (not shown) in the molten glass 23 or introduce gas bubbling gas from the gas bubbling port 13 to perform gas bubbling. At this time, it is preferable that the moisture concentration of the gas bubbling gas is lower than the moisture concentration in the molten glass 23, similarly to the atmospheric gas. The atmosphere gas and gas bubbling gas introduced into the adjustment tank 3 may be preheated by heat exchange with the combustion exhaust gas discharged from the melting tank 2. The amount of energy used can be reduced by heat exchange.

調整浴7での溶融ガラス23の滞留時間は、ガラスの種類や溶融量によって異なる。よって、調整浴7の容積は、適切な滞留時間を確保できるように決定することが望ましい。   The residence time of the molten glass 23 in the adjustment bath 7 varies depending on the type of glass and the amount of melting. Therefore, it is desirable to determine the volume of the adjustment bath 7 so as to ensure an appropriate residence time.

溶融ガラス23が所望の水分濃度に調整されたら、調整浴7の底部もしくは下部に設置したガラス取出口14から、調整浴7中の溶融ガラス23が所定のレベルになるまで流出させ、次プロセスに送る。溶融ガラス23の流出後、再びガラス取出口14を閉止し、再び溶融槽2に原料ガラス22を投入し、ガラスの溶融を開始する。この作業を繰り返すことによって、水分濃度を適正に管理したガラスを製造することができる。   When the molten glass 23 is adjusted to a desired moisture concentration, the molten glass 23 in the adjustment bath 7 is allowed to flow out from the glass outlet 14 installed at the bottom or lower part of the adjustment bath 7 until the predetermined level is reached, and is then subjected to the next process. send. After the molten glass 23 flows out, the glass outlet 14 is closed again, the raw material glass 22 is charged again into the melting tank 2, and the melting of the glass is started. By repeating this operation, it is possible to manufacture a glass whose moisture concentration is appropriately controlled.

調整浴7を大きくし溶融ガラス23の流出量を管理することで、水分濃度を適切に調整する滞留時間を確保できる場合には連続製造も可能である。溶融炉1が大きくなりすぎる場合には、バッチ式の方がエネルギー効率が良い場合もある。   When the adjustment bath 7 is enlarged and the outflow amount of the molten glass 23 is managed, the continuous production is possible when the residence time for appropriately adjusting the moisture concentration can be secured. When the melting furnace 1 becomes too large, the batch type may be more energy efficient.

(実施例1) (Example 1)

ソーダライム系ガラスの溶融試験を行った。溶融量は2トン/日、調整浴7の容積は4トンである溶融炉1を用いた。   A melting test of soda-lime glass was performed. A melting furnace 1 having a melting amount of 2 tons / day and a volume of the adjusting bath 7 of 4 tons was used.

調整浴7内に溶融ガラス23が50%貯留されている状態から原料ガラス22を溶融し始め、24時間かけて所定量になるまで溶融ガラス23を貯留した。この間、熱補償のため、上部空間の電気ヒーター11による雰囲気ガス温度の調整と浸漬型の白金電極によるジュール加熱を行った。   The raw glass 22 began to melt from a state where 50% of the molten glass 23 was stored in the adjustment bath 7, and the molten glass 23 was stored until a predetermined amount was obtained over 24 hours. During this time, adjustment of the atmospheric gas temperature by the electric heater 11 in the upper space and joule heating by the immersion type platinum electrode were performed for heat compensation.

雰囲気ガスには溶融槽2からの燃焼排ガスとの熱交換によって予熱された乾燥窒素ガスを使用した。予熱温度は300℃程度であった。調整槽用排ガス口24には絞りを設け、調整槽3内を常に正圧に保つようにし、溶融槽用排ガス口9からの大気侵入を防いだ。原料ガラス22の投入を停止し、調整浴7内で24時間滞留させ、窒素ガスを導入しながら水分濃度を調整した後、ガラス取出口14から調整浴7内の溶融ガラス23の量が50%になるまで流出させて、ガラスの成型をおこなった。   As the atmospheric gas, dry nitrogen gas preheated by heat exchange with the combustion exhaust gas from the melting tank 2 was used. The preheating temperature was about 300 ° C. A restriction was provided in the exhaust gas port 24 for the adjustment tank so that the inside of the adjustment tank 3 was always kept at a positive pressure to prevent air from entering from the exhaust gas port 9 for the melting tank. After the introduction of the material glass 22 was stopped and the water content was adjusted while introducing nitrogen gas into the adjustment bath 7 for 24 hours, the amount of the molten glass 23 in the adjustment bath 7 was 50% from the glass outlet 14. It was made to flow out until it became, and the glass was molded.

原料ガラス22の投入から溶融ガラス23の流出までの工程を3回繰り返し、各回工程で得られた成型ガラスから板状サンプル(a)〜(c)を3枚ずつ切り出して、それぞれ水分濃度の測定を行った。ガラス中の水分濃度の測定は、赤外線吸収試験により行い、OH基の赤外線吸収バンド(2.8μm、3.6μm)でランバート・ビアの法則を利用して、標準サンプルとの比較から同定した。   The steps from the introduction of the raw glass 22 to the outflow of the molten glass 23 are repeated three times, and three plate samples (a) to (c) are cut out from the molded glass obtained in each step, and the moisture concentration is measured. Went. The moisture concentration in the glass was measured by an infrared absorption test, and identified from a comparison with a standard sample using Lambert-Beer's law with an infrared absorption band of OH group (2.8 μm, 3.6 μm).

1回目の工程で得られたサンプルの水分濃度は、400〜500ppmであった。1回目の工程は調整槽3内に50%蓄積させるまでの非定常状態の影響を受けている可能性があるので評価から外した。表1に2回目のサンプル2(a)〜2(c)と3回目の工程で得られたサンプル3(a)〜3(c)の水分測定結果を示す。サンプルの水分濃度は、いずれも200ppm前後まで、すなわち220ppm以下まで低減しており、溶融工程の後段での水分調整が不要であることが示された。   The water concentration of the sample obtained in the first step was 400 to 500 ppm. The first step was excluded from the evaluation because it may be affected by the unsteady state until 50% accumulation in the adjustment tank 3. Table 1 shows the moisture measurement results of the second samples 2 (a) to 2 (c) and the samples 3 (a) to 3 (c) obtained in the third step. The moisture concentration of each sample was reduced to around 200 ppm, that is, 220 ppm or less, and it was shown that moisture adjustment at the latter stage of the melting step is unnecessary.

(比較例1)
調整槽3の上部空間に、電気ヒーター11に替えて酸素バーナ8,8・・・を設置し、その他は実施例と同じ条件で溶融ガラス23のバッチ処理を行った。得られた成型ガラスから、板状サンプル3枚(C(a)〜C(c))を切り出し、実施例と同様に水分濃度を測定した。その結果を表1に示す。サンプルC(a)〜C(c)は、700ppm前後の水分濃度であった。
(Comparative Example 1)
Oxygen burners 8, 8,... Were installed in the upper space of the adjustment tank 3 in place of the electric heater 11, and the batch processing of the molten glass 23 was performed under the same conditions as in the examples. Three plate samples (C (a) to C (c)) were cut out from the obtained molded glass, and the water concentration was measured in the same manner as in the examples. The results are shown in Table 1. Samples C (a) to C (c) had a moisture concentration of around 700 ppm.

Figure 2007108324
Figure 2007108324

本発明は、ガラス溶融熱源として酸素燃焼方式を用いても、溶融ガラス23中の水分濃度を適正管理できるので、溶融工程の後段での水分調整が不要となる。よって、産業上有用である。   In the present invention, even if an oxyfuel combustion system is used as a glass melting heat source, the moisture concentration in the molten glass 23 can be properly managed, so that it is not necessary to adjust moisture at the latter stage of the melting step. Therefore, it is useful industrially.

Claims (8)

溶融槽を備えるガラス溶融炉を用いたガラス溶融方法であって、
調整槽をこの溶融槽における溶融ガラス流の下流に配置し、調整槽の温度と調整槽への導入ガス量を調整することによって、雰囲気ガスと溶融ガラス表面との界面での水分濃度の平衡状態を制御し、溶融ガラス中の水分濃度を調整する工程を有するガラス溶融方法。
A glass melting method using a glass melting furnace provided with a melting tank,
An adjustment tank is placed downstream of the molten glass flow in this melting tank, and the equilibrium state of the moisture concentration at the interface between the atmospheric gas and the molten glass surface is adjusted by adjusting the temperature of the adjusting tank and the amount of gas introduced into the adjusting tank. The glass melting method which has the process of controlling water and adjusting the water concentration in molten glass.
前記溶融槽において酸素バーナーを用いて原料ガラスを溶融する請求項1記載のガラス溶融方法。   The glass melting method according to claim 1, wherein the raw glass is melted using an oxygen burner in the melting tank. 前記調整槽を正圧に維持する請求項1記載のガラス溶融方法。   The glass melting method according to claim 1, wherein the adjustment tank is maintained at a positive pressure. 原料ガラスを溶融するガラス溶融炉であって、
溶融槽と、
該溶融槽で溶融させたガラスの水分濃度を調整するための調整槽と、
該調整槽へ前記溶融槽から溶融ガラスを流すためのスロート部と、
前記溶融槽の上部空間と前記調整槽の上部空間とを隔絶するための仕切り壁とを有し、
前記調整槽は、前記仕切り壁より溶融ガラス流の下流に設けられた仕切り堰、溶融ガラス温度を調整するための溶融ガラス加熱手段、及び雰囲気ガス導入口を備えているガラス溶融炉。
A glass melting furnace for melting raw glass,
A melting tank;
An adjustment tank for adjusting the moisture concentration of the glass melted in the melting tank;
A throat portion for flowing molten glass from the melting tank to the adjustment tank;
A partition wall for isolating the upper space of the melting tank and the upper space of the adjustment tank;
The said adjustment tank is a glass melting furnace provided with the partition weir provided in the downstream of the molten glass flow from the said partition wall, the molten glass heating means for adjusting molten glass temperature, and an atmospheric gas inlet.
前記溶融槽が酸素バーナーを具備している請求項4記載のガラス溶融炉。   The glass melting furnace according to claim 4, wherein the melting tank includes an oxygen burner. 前記溶融ガラス加熱手段が浸漬型電極および/もしくは電気ヒーターである請求項4記載のガラス溶融炉。   The glass melting furnace according to claim 4, wherein the molten glass heating means is an immersion type electrode and / or an electric heater. 前記調整槽が、雰囲気ガス加熱手段をさらに備えている請求項4記載のガラス溶融炉。   The glass melting furnace according to claim 4, wherein the adjustment tank further includes an atmospheric gas heating means. 前記雰囲気ガス加熱手段が電気ヒーターである請求項7記載のガラス溶融炉。   The glass melting furnace according to claim 7, wherein the atmospheric gas heating means is an electric heater.
JP2008506229A 2006-03-16 2007-03-07 Glass melting method and glass melting furnace Active JP5231211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506229A JP5231211B2 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006072235 2006-03-16
JP2006072235 2006-03-16
PCT/JP2007/054424 WO2007108324A1 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace
JP2008506229A JP5231211B2 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace

Publications (2)

Publication Number Publication Date
JPWO2007108324A1 true JPWO2007108324A1 (en) 2009-08-06
JP5231211B2 JP5231211B2 (en) 2013-07-10

Family

ID=38522357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008506229A Active JP5231211B2 (en) 2006-03-16 2007-03-07 Glass melting method and glass melting furnace

Country Status (4)

Country Link
JP (1) JP5231211B2 (en)
CN (1) CN101400612B (en)
MY (1) MY177056A (en)
WO (1) WO2007108324A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2690072B1 (en) * 2011-03-23 2019-12-04 AGC Inc. Float glass and process for producing same
WO2013011837A1 (en) * 2011-07-15 2013-01-24 日東紡績株式会社 Glass melting device, device for producing fiberglass, and method for producing fiberglass
JP6675588B2 (en) * 2016-11-15 2020-04-01 日本電気硝子株式会社 Apparatus and method for manufacturing glass article
CN107487983B (en) * 2017-09-08 2023-07-25 深圳凯盛科技工程有限公司 Bubbling device for electronic display glass melting furnace
JP7025720B2 (en) * 2017-12-22 2022-02-25 日本電気硝子株式会社 Manufacturing method of glass articles and glass melting furnace

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515453A (en) * 1998-01-09 2001-09-18 サン−ゴバン ビトラージュ Method for melting and refining vitrizable substances
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2004092086A2 (en) * 2003-04-15 2004-10-28 Praxair Technology, Inc. Fining glassmelts using helium bubbles
JP2005154259A (en) * 2003-10-27 2005-06-16 Nippon Electric Glass Co Ltd Glass composition and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711981B1 (en) * 1993-11-02 1996-01-05 Saint Gobain Vitrage Glass melting device.
CN1636907A (en) * 2004-12-02 2005-07-13 中国科学院上海光学精密机械研究所 Tellurate glass and its prepn process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515453A (en) * 1998-01-09 2001-09-18 サン−ゴバン ビトラージュ Method for melting and refining vitrizable substances
JP2004091307A (en) * 2002-07-10 2004-03-25 Nippon Electric Glass Co Ltd Method for producing glass
WO2004092086A2 (en) * 2003-04-15 2004-10-28 Praxair Technology, Inc. Fining glassmelts using helium bubbles
JP2005154259A (en) * 2003-10-27 2005-06-16 Nippon Electric Glass Co Ltd Glass composition and its manufacturing method

Also Published As

Publication number Publication date
CN101400612B (en) 2013-06-26
MY177056A (en) 2020-09-03
CN101400612A (en) 2009-04-01
WO2007108324A1 (en) 2007-09-27
JP5231211B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP6821603B2 (en) Equipment and methods for adjusting molten glass
JP5231211B2 (en) Glass melting method and glass melting furnace
JP7171600B2 (en) Method for reducing the lifetime of bubbles on the surface of a glass melt
KR101529753B1 (en) Apparatus and process for producing float glass
JP7025720B2 (en) Manufacturing method of glass articles and glass melting furnace
CN104995141A (en) Method for manufacturing glass plate and device for manufacturing glass plate
TW201420527A (en) Method for manufacturing glass substrate
CN1406893A (en) Manufacture of optical fiber prefabrication body and fusing apparatus
CN117326784A (en) Novel glass melting furnace system and control method thereof
TWI761524B (en) Methods for reconditioning glass manufacturing systems
KR101384375B1 (en) Method of manufacturing glass plate
CN102917988A (en) Pressure reducing and defoaming device for molten glass, molten glass manufacturing method, and glass product manufacturing method
JPWO2018110459A1 (en) Glass article manufacturing method and glass substrate group
TWI796471B (en) Apparatus and method for controlling an oxygen containing atmosphere in a glass manufacturing process
CN104245607A (en) Device for molding float glass and method producing float glass
US20180312420A1 (en) Float glass production process and installation
CN109890767B (en) Glass article manufacturing apparatus and manufacturing method thereof
JP6630217B2 (en) Manufacturing method of glass plate
WO2023021831A1 (en) Heating furnace and method for producing glass product
CN103706306B (en) Glass sand high temperature gas-solid reaction unit and reaction method thereof
TWI623504B (en) Process and device for the production of glass
KR20160082226A (en) Guide apparatus for fused glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5231211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250