JPWO2004108860A1 - New fuel production plant and seawater desalination equipment used therefor - Google Patents

New fuel production plant and seawater desalination equipment used therefor Download PDF

Info

Publication number
JPWO2004108860A1
JPWO2004108860A1 JP2005500568A JP2005500568A JPWO2004108860A1 JP WO2004108860 A1 JPWO2004108860 A1 JP WO2004108860A1 JP 2005500568 A JP2005500568 A JP 2005500568A JP 2005500568 A JP2005500568 A JP 2005500568A JP WO2004108860 A1 JPWO2004108860 A1 JP WO2004108860A1
Authority
JP
Japan
Prior art keywords
cooling water
new fuel
fuel production
steam
seawater desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005500568A
Other languages
Japanese (ja)
Inventor
泰二 乾
乾  泰二
常久 川口
常久 川口
八木 宏
宏 八木
靖人 安藤
靖人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2004108860A1 publication Critical patent/JPWO2004108860A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

本発明の目的は、逆浸透膜方式と同等の海水取水量で蒸発法による造水装置の適用を可能にし、プラント設置場所の自由度が高く、逆浸透膜法式に比べ造水中の塩分濃度を低減し、また、メンテナンスコストが安価な蒸発法による造水装置の利点をも享受できる新燃料製造プラント及びこれに用いられる海水淡水化装置を提供することにある。新燃料製造部(100)は、原料から合成ガスを製造し、製造された合成ガスから新燃料を合成するとともに、これらの過程から出る余剰熱を回収して蒸気を発生する排熱回収ボイラ(5,8)を有する。排熱利用部(200)は、排熱回収ボイラ(5,8)で発生する蒸気で駆動する蒸気タービン(9,12,17,18,21)を含んでいる。開放循環式冷却水供給部(300)は、蒸気タービンの排気用を含むプラントの冷却水を供給するとともに、蒸発法を用いて海水を淡水化して、冷却水の補給用に淡水を供給する海水淡水化装置(38,39)を有する。海水淡水化装置38,39で製造される淡水の凝縮に開放循環式冷却水供給部から供給される冷却水を用いる。The purpose of the present invention is to enable the application of a desalination device by the evaporation method with the same amount of seawater intake as the reverse osmosis membrane method, with a high degree of freedom in the plant installation location, and to reduce the salinity concentration in the produced water compared to the reverse osmosis membrane method. Another object of the present invention is to provide a new fuel production plant that can reduce the maintenance cost and also enjoy the advantages of a water production system using an evaporation method, and a seawater desalination apparatus used therefor. The new fuel production unit (100) produces a synthesis gas from raw materials, synthesizes a new fuel from the produced synthesis gas, and recovers excess heat from these processes to generate steam to generate an exhaust heat recovery boiler ( 5, 8). The exhaust heat utilization unit (200) includes a steam turbine (9, 12, 17, 18, 21) driven by steam generated in the exhaust heat recovery boiler (5, 8). The open circulation type cooling water supply unit (300) supplies the cooling water of the plant including the exhaust for the steam turbine, desalinates the sea water using the evaporation method, and supplies the fresh water for replenishing the cooling water. It has a desalination device (38, 39). The cooling water supplied from the open circulation type cooling water supply unit is used for the condensation of the fresh water produced by the seawater desalination apparatuses 38 and 39.

Description

本発明は、新燃料を製造する新燃料製造プラント及びこれに用いられる海水淡水化装置に関する。  The present invention relates to a new fuel production plant for producing a new fuel and a seawater desalination apparatus used therefor.

最近、ガスツーリキッド(GTL)やジメチルエーテル(DME)などの新燃料を製造するプラントが注目されている。新燃料製造プラントとしては、例えば、特開平10−195008号公報に記載のように、天然ガスを原料としてジメチルエーテルを製造するものが知られている。  Recently, plants that produce new fuels such as gas-to-liquid (GTL) and dimethyl ether (DME) have attracted attention. As a new fuel production plant, for example, as described in JP-A-10-195008, a plant that produces dimethyl ether using natural gas as a raw material is known.

GTL,DMEなど新燃料製造プラント(以下、「新燃料製造プラント」又は、単に「プラント」と称する)では、燃料合成に必要な合成ガス製造に炭化水素等を原料とした部分酸化法や自己熱改質法(オートサーマルリフォーミング)等が用いられる。これら合成ガス製造法では、反応/改質炉の出口の合成ガスは非常な高温(1200〜1500℃)となる。一方後続の燃料合成のため、合成ガスを燃料合成反応器入り口で合成反応温度(200〜300℃)に冷却する必要があり、また燃料合成反応自体も発熱反応である。このことから、新燃料製造プラントでは必然的に多量の余剰熱が発生し、排熱ボイラを設置して高圧,中圧蒸気を発生させ熱回収を行う必要がある。発生した高圧,中圧蒸気は、プラント内の圧縮機,ポンプ,発電機等の駆動用蒸気タービンに用いることができる。
蒸気タービンを用いるシステムでは、蒸気の復水のため、多量の冷却水を必要とする。従来、大量の冷却水を必要とする設備では、主として経済的理由から海水を冷却水として用いる例が多かった。しかしながら、最近の環境問題の高まりから、海水の有料化や、海水冷却水温度差(海水の戻り温度と供給温度の差)の制限などの規制により海水を冷却水として使用するメリットが無くなってきつつある。海水冷却水温度差の制限により、冷却水必要量が従来の3〜5倍となる場合もあり、この場合は巨大な取水設備を設けなければならず、経済的ではなくなる場合が多い。このため、プラントの冷却水システムとして、冷却塔を設けた開放式循環冷却水システムを採用し、冷却塔からの蒸発、飛散、及び強制ブローによる損失のみを海水の淡水化で補填することによって海水使用量の最小化が計られている。
この場合、海水淡水化方式としては、残留塩分濃度が高い、海水の性状によっては設置出来ない場合がある、装置費の約1/3を占める膜の頻繁な交換が必要なためメンテナンス費が嵩むなどの問題点はあるものの、海水取水量の少なさのため、逆浸透膜方式が最初に検討される。余剰低圧蒸気の有力使用先候補でもある多段フラッシュ法や多重効用法などの蒸発法は逆浸透膜方式に比べて、従来許されていた海水の取水/放流温度差10℃の場合でも同一造水量に対し海水取水量が3〜4倍、取水/放流温度差がそれ以下に制限されればさらに多量の取水が必要となるため検討の対象外となっている。
本発明の目的は、逆浸透膜方式と同等の海水取水量で蒸発法による造水装置の適用を可能にし、プラント設置場所の自由度が高く、逆浸透膜法式に比べ造水中の塩分濃度を低減し、また、メンテナンスコストが安価な蒸発法による造水装置の利点をも享受できる新燃料製造プラント及びこれに用いられる海水淡水化装置を提供することにある。
上記目的を達成するために、本発明は、原料から合成ガスを製造し、製造された合成ガスから新燃料を合成するとともに、これらの過程から出る余剰熱を回収して蒸気を発生する排熱回収ボイラを有する新燃料製造プラントにおいて、前記排熱回収ボイラで発生する蒸気で駆動する蒸気タービンを含む排熱利用部と、この蒸気タービンの排気用を含むプラントの冷却水を供給する開放循環式冷却水供給部及びこの開放循環式冷却水の補給用に淡水を供給する蒸発法を用いた海水淡水化装置を備え、この海水淡水化装置で製造される淡水の凝縮に前記開放循環式冷却水供給部から供給される冷却水を用いるようにしたものである。
かかる構成により、逆浸透膜方式と同等の海水取水量で造水でき、逆浸透膜方式に比べ造水中の残留塩分濃度が少なくメンテナンスコストの安い冷却水の供給が可能となる。
また、上記目的を達成するために、本発明は、蒸発法を用いて海水を淡水化して、淡水を供給する海水淡水化装置において、この海水淡水化装置で製造される淡水の凝縮に開放循環式冷却水供給部から供給される冷却水を用いるようにしたものである。
かかる構成により、逆浸透膜方式と同等の海水取水量で造水でき、逆浸透膜方式に比べ造水中の残留塩分濃度が少なくメンテナンスコストの安い冷却水の供給が可能となる。
In new fuel production plants such as GTL and DME (hereinafter referred to as “new fuel production plant” or simply “plant”), a partial oxidation method using hydrocarbons or the like as a raw material for the production of synthesis gas required for fuel synthesis or self-heating A reforming method (autothermal reforming) or the like is used. In these synthesis gas production methods, the synthesis gas at the outlet of the reaction / reforming furnace is at a very high temperature (1200 to 1500 ° C.). On the other hand, for the subsequent fuel synthesis, it is necessary to cool the synthesis gas to the synthesis reaction temperature (200 to 300 ° C.) at the fuel synthesis reactor inlet, and the fuel synthesis reaction itself is an exothermic reaction. For this reason, a large amount of surplus heat is inevitably generated in the new fuel production plant, and it is necessary to install a heat exhaust boiler to generate high-pressure and intermediate-pressure steam to recover heat. The generated high-pressure and medium-pressure steam can be used for driving steam turbines such as compressors, pumps, and generators in the plant.
In a system using a steam turbine, a large amount of cooling water is required for condensing steam. Conventionally, in facilities that require a large amount of cooling water, seawater is often used as cooling water mainly for economic reasons. However, due to the recent increase in environmental problems, the benefits of using seawater as cooling water have disappeared due to restrictions such as charging for seawater and limiting the difference in seawater cooling water temperature difference (difference between seawater return temperature and supply temperature). is there. Due to the limitation of the seawater cooling water temperature difference, the required amount of cooling water may be 3 to 5 times that of the conventional case. In this case, a huge water intake facility must be provided, which is often not economical. For this reason, an open circulation cooling water system with a cooling tower is adopted as the cooling water system for the plant, and only the loss due to evaporation, scattering, and forced blow from the cooling tower is compensated by seawater desalination. The amount used is minimized.
In this case, as the seawater desalination method, the residual salinity is high, and depending on the properties of the seawater, it may not be possible to install, which requires frequent replacement of the membrane, which accounts for about 1/3 of the equipment cost, thus increasing maintenance costs. However, the reverse osmosis membrane method is considered first because of the small amount of seawater intake. Compared with the reverse osmosis membrane method, evaporation methods such as the multi-stage flash method and the multi-effect method, which are potential use candidates for surplus low-pressure steam, have the same water production even when the seawater intake / discharge temperature difference is 10 ° C. On the other hand, if the amount of seawater intake is 3 to 4 times and the difference in intake / discharge temperature is limited to this, a larger amount of water intake will be required, so this is excluded from consideration.
The purpose of the present invention is to enable the application of a desalination device by the evaporation method with the same amount of seawater intake as the reverse osmosis membrane method, with a high degree of freedom in the plant installation location, and to reduce the salinity concentration in the produced water compared to the reverse osmosis membrane method Another object of the present invention is to provide a new fuel production plant that can reduce the maintenance cost and also enjoy the advantages of a water production system using an evaporation method, and a seawater desalination apparatus used therefor.
In order to achieve the above object, the present invention produces a synthesis gas from raw materials, synthesizes a new fuel from the produced synthesis gas, and recovers surplus heat generated from these processes to generate steam. In a new fuel production plant having a recovery boiler, an exhaust heat utilization unit including a steam turbine driven by steam generated in the exhaust heat recovery boiler, and an open circulation type supplying cooling water for the plant including exhaust for the steam turbine A seawater desalination apparatus using a cooling water supply unit and an evaporation method for supplying fresh water for replenishment of the open circulation type cooling water, and the open circulation type cooling water is used for condensing fresh water produced by the seawater desalination apparatus. The cooling water supplied from the supply unit is used.
With this configuration, it is possible to produce seawater with the same amount of seawater intake as that of the reverse osmosis membrane method, and it is possible to supply cooling water with a lower residual salt concentration in the produced water and lower maintenance costs than the reverse osmosis membrane method.
In order to achieve the above object, the present invention provides a seawater desalination apparatus that desalinates seawater using an evaporation method and supplies freshwater, and opens and circulates the condensed freshwater produced by the seawater desalination apparatus. The cooling water supplied from the type cooling water supply unit is used.
With this configuration, it is possible to produce seawater with the same amount of seawater intake as that of the reverse osmosis membrane method, and it is possible to supply cooling water with a lower residual salt concentration in the produced water and lower maintenance costs than the reverse osmosis membrane method.

図1は、本発明の一実施形態による新燃料製造プラントの構成図である。  FIG. 1 is a configuration diagram of a new fuel production plant according to an embodiment of the present invention.

以下、図1を用いて、本発明の一実施形態による新燃料製造プラントの構成について説明する。
図1は、本発明の一実施形態による新燃料製造プラントの構成図である。
本実施形態による新燃料製造プラントは、新燃料製造部100と、排熱利用部200と、冷却水供給部300とから構成されている。新燃料製造部100は、原料から新燃料を製造するとともに、排熱を用いて蒸気を発生する。排熱利用部200は、新燃料製造部100で発生した蒸気を用いて、蒸気タービンを駆動し、回転機械等を駆動する。冷却水供給部300は、排熱利用部200の蒸気タービンの復水器で使用する冷却水を供給する。
新燃料製造部100は、空気圧縮機1と、空気分離装置2と、酸素昇圧装置3と、反応/改質炉4と、排熱回収ボイラ5,8と燃料合成反応器7等で構成されている。
反応/改質炉4には、配管50から原料が供給される。原料としては、石炭,石油,天然ガス等の炭化水素や、バイオマスや廃プラスチック等の使用可能な原料が供給される。なお、この例では天然ガスを原料としている。また、図示はしていないが、これら原料に加えて蒸気、炭酸ガス等を加えることもある。また、反応/改質炉4には、空気圧縮機1で空気を圧縮し、空気分離装置2にて空気を分離し、酸素昇圧装置3で昇圧された酸素が配管51を経て供給される。反応/改質炉4では、配管50から供給された原料ガスと、配管51から供給された酸素とにより、部分酸化や自己熱改質法(オートサーマルリフォーミング)等により、主として水素と一酸化炭素よりなる合成ガスを製造する。製造された合成ガスは、配管52から取り出される。
反応/改質炉4で製造された高温の合成ガスは、排熱回収ボイラ5に供給され、蒸気(ここでは、高圧蒸気)を発生させることによって減温されて、燃料合成反応器7に供給される。燃料合成反応器7において、合成ガスは触媒の働きにより新燃料に合成される。このとき発生した反応熱は、排熱回収ボイラ8により蒸気(ここでは、中圧蒸気)を発生させることによって回収される。燃料合成反応器7で合成された新燃料及び未反応ガス等は、配管53を経て、後続の液化/精製工程に送られ液化/精製される。なお、燃料合成反応の反応熱は、図示するように反応器を出たあと反応生成物から回収される場合と、反応器内から直接回収される場合がある。
これら合成ガス製造法では、反応/改質炉4の出口の合成ガスは非常な高温となる。一方、後続の燃料合成反応器7における燃料合成反応は発熱反応であり、燃料合成反応器7の入り口では合成ガスを合成反応に適した温度まで冷却する必要がある。このことから、新燃料製造プラントでは多量の余剰熱が発生するため、排熱ボイラ5,8を設置して高圧,中圧蒸気を発生して熱回収を図っている。
発生した高圧,中圧蒸気は、排熱利用部200において、プラント内の圧縮機,ポンプ,発電機等の駆動用蒸気タービンに用いられるが、低圧蒸気は燃料合成反応ガス液化/精製装置の一部のリボイラー用熱源、ボイラ給水脱気器用熱源等しか使用先が無く、余り気味である。また、蒸気タービンを効率よく使用するため、また一方では低圧蒸気の使用先が少ないため、蒸気バランス上復水タービンを多く用いると、それに応じて蒸気の復水のため、多量の冷却水が必要となる。
次に、排熱利用部200について説明する。排熱利用部200は、高圧蒸気系統と、中圧蒸気系統と、低圧蒸気系統から構成される。
高圧蒸気系統は、排熱回収ボイラ5,高圧ボイラ6,高圧蒸気ヘッダー54より構成され、排熱回収ボイラ5で発生した高圧蒸気は、原料空気圧縮機1の駆動用蒸気タービン9,酸素昇圧装置3の駆動用蒸気タービン12等で使用される。それぞれの駆動用蒸気タービン9,12の排気は、復水器10,13等でプラント循環冷却水により冷却され、復水移送ポンプ11,14等により脱気器25に戻る。高圧ボイラ給水は脱気器25より抜き出され、高圧ボイラ給水ポンプ27で所定の圧力まで昇圧されて排熱回収ボイラ5,高圧ボイラ6に供給される。また、中圧ボイラ給水は脱気器25より抜き出され、中圧ボイラ給水ポンプ26で所定の圧力まで昇圧されて排熱回収ボイラ8に供給される。なお、蒸気バランス上不足する高圧蒸気は、高圧ボイラ6により高圧蒸気ヘッダー54に供給される。
中圧蒸気系統は、排熱回収ボイラ8,中圧蒸気ヘッダー55より構成され、排熱回収ボイラ8で発生した中圧蒸気は、ポンプ駆動用蒸気タービン17,プロセスガス圧縮機駆動用蒸気タービン18,21等で使用される。蒸気バランスに基づき、ポンプ駆動用蒸気タービン17とプロセスガス圧縮機駆動用蒸気タービン18等は背圧タービンとし、低圧蒸気を低圧蒸気ヘッダー56に供給する。プロセスガス圧縮機駆動用蒸気タービン21は復水タービンとする。蒸気バランスに基づき、プロセスガス圧縮機駆動用蒸気タービン21等の排気は、復水器22等でプラント循環冷却水により冷却され、復水移送ポンプ23等により脱気器25に戻る。
ここで、蒸気タービン18としては、復水タービンを使用することも可能である。しかし、ブラインヒーター40での低圧蒸気使用量を考慮すると、プロセスガス圧縮機駆動用蒸気タービン18に復水タービンを用いると低圧蒸気の供給量が十分でないため、背圧タービンを用いて、低圧蒸気の供給量増加を図るようにしている。
また、中圧蒸気系統は、ガスタービン発電機36と、ガスタービン排熱ボイラ37とを備えている。ガスタービン排熱ボイラ37で中圧蒸気を発生させ、中圧蒸気ヘッダー55に供給している。
低圧蒸気系統は、低圧蒸気ヘッダー56より構成され、ポンプ駆動用蒸気タービン17等より受け入れた低圧蒸気をリボイラー47,脱気器25等に供給するとともに、ブラインヒーター40に供給され、蒸発法による海水淡水化装置の熱源として利用される。この場合、蒸発法による海水淡水化装置の造水率を調整することにより余剰蒸気は零としている。
次に、冷却水供給部300について説明する。冷却水供給部300は、プラント開放循環式冷却水系統と、造水系統から構成される。
プラント開放循環式冷却水系統は、冷却塔34,冷却水循環ポンプ35,冷却水循環配管59より構成される。冷却水は、冷却水循環配管59を経て、復水器10,13,22等に供給される。復水器10,13,22等で熱交換して温度が上昇した冷却水は、冷却塔34で大気により冷却されることで温度を下げ、冷却水循環ポンプ35で昇圧されて系内を循環する。冷却塔34で大気冷却により一部蒸発することで失われた冷却水は、造水系統より補給される。
造水系統は、蒸発法のうち多段フラッシュ法を用いている。造水系統は、多段フラッシュ式造水装置放熱部38,多段フラッシュ式造水装置熱回収部39,ブラインヒーター40,海水/ブライン熱交換器41,脱気槽42,ブライン循環ポンプ43,真空発生装置44より構成されている。
多段フラッシュ式造水装置放熱部38は、循環ブラインから蒸発した蒸気を冷却、凝縮させ淡水を回収する。生産された脱塩水は一旦脱塩水タンク31に貯蔵され、脱塩水供給ポンプ32でプラント循環冷却水系の補給水として供給される。多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いる。多段フラッシュ式造水装置放熱部38より出た冷却水は、配管63により冷却塔34に戻される。
海水/ブライン熱交換器41は、配管60から供給される海水と、配管61から排出される放出ブラインの熱交換を行い、ブラインの放流温度を下げるとともに、供給海水への熱回収を計る。海水/ブライン熱交換器41を経た海水は、脱気槽42で脱気された後、配管65により、配管64で循環される低温循環ブラインに供給される。
新たに海水62を補給された低温循環ブライン64は、ブライン循環ポンプ43で昇圧され、多段フラッシュ式造水装置熱回収部39に導入される。ここで、低温循環ブライン64は、高温循環ブラインより蒸発した蒸気を冷却凝縮させるとともに熱回収して自らの温度を上昇させる。
ブラインヒーター40で低圧蒸気により更に昇温されたブラインは高温循環ブライン67となり、中圧蒸気を用いた真空発生装置44により低圧となった多段フラッシュ式造水装置熱回収部39及び多段フラッシュ式造水装置放熱部38の各段(ステージ)に順次導入されてフラッシュする。高温循環ブライン67は、各ステージでフラッシュすることにより順次濃縮,降温されて、多段フラッシュ式造水装置放熱部38より配管61から一部系外にブローされ、残りは低温循環ブライン64として再循環される。
なお、造水系統に用いる蒸発法は、上述した多段フラッシュ法に限らず、多重効用法を用いることもでき、さらに、多段フラッシュ法と多重効用法を組み合わせたものを用いることもできる。
以上説明した本実施形態による新燃料製造プラントにおいて、第1の特徴は、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いることにある。例えば、造水系統において、750t/時の淡水を製造する場合、従来の逆浸透膜法による海水淡水化装置では、最も淡水回収率の高い部類の装置で、必要とされる淡水の約2倍の1500t/時の海水を取水する必要がある。一方、蒸発法では海水冷却水温度差を10℃として、逆浸透膜法の4倍の海水取水量が必要であるとすると、従来の蒸発法による海水淡水化装置では6000t/時の海水取水量となり、このうち多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として使用される海水は4500t/時、造水に必要な海水量は1500t/時となる。ここで、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いると、配管60から取水する海水の量Q1は1500t/時と逆浸透法による海水淡水化装置のそれと同等となる。近年要求される最も厳しい部類の海水冷却水温度差制限2℃が適用された場合、従来の蒸発法による海水淡水化装置では、海水取水量は24000t/時(=4500x10/2+1500)の大容量となるが、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いる場合海水取水量は海水冷却水温度差制限の影響は受けず、1500t/時のままである。冷却塔34の冷却能力にもよるが、配管66を流れる冷却水と配管63からの戻り冷却水の温度差ΔT2を10℃とすることは一般的であり、この場合、温度差が5倍となると、冷却効率も5倍となるので、配管66から多段フラッシュ式造水装置放熱部38に供給する冷却水量Q2は、4500t/時{=(24000−1500)t/時×1/5}となる。排熱利用部200に対して、冷却塔34から配管59を介して供給する冷却水量Q3は、例えば、33600t/時程度であるため、この冷却水量に比べて、配管66から多段フラッシュ式造水装置放熱部38に供給する冷却水量Q2は13%程度となる。
以上のように、本実施形態では、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いることにより、海水の取水量は、逆浸透膜法による海水淡水化装置と同等の海水取水量とすることができる。また、本実施形態によれば、多段フラッシュ式造水装置の放熱部38の管材質として、海水の塩分に対する腐食性を考慮しないでよいため、安価な材質のものを用いることができる。
また、本実施形態の第2の特徴としては、海水淡水化の造水系統に、多段フラッシュ法や多重効用法からなる蒸発法を適用することにより、多額の膜交換が不要となるため造水装置のメンテナンスコストが下がり、また、一般に、逆浸透膜法と蒸発法を比較した場合、逆浸透法に比べて蒸発法の方が、製造された淡水中の残留塩分濃度を低くすることが可能となるため冷却水系統のメンテナンスコストも安くなる。
次に、本実施形態の第3の特徴として、ブラインヒーター40での低圧蒸気使用量を賄うため、プロセスガス圧縮機駆動用蒸気タービン18として背圧タービンを用いることが上げられる。これによって、低圧蒸気の供給量を増加することができる。また、背圧タービンを用いることにより、復水タービンで使用する復水器が不要となるため、その分循環冷却水が減少する。上述したように、多段フラッシュ式造水装置放熱部38での循環冷却水量Q2が4500t/時増加するとしても、復水器を使用しないことにより、1500t/時程度循環冷却水量を少なくすることができる。
次に、本実施形態の第4の特徴として、プラントの電力供給源として、ガスタービン発電機36を設け、またガスタービン排熱ボイラ37を設けて中圧蒸気を発生させたことがある。プラントの電力供給源としては、図中の符号Xで示す位置に、蒸気タービン12と同様に、蒸気タービン発電機を備えることも可能である。しかし、プラントの電力供給源として、蒸気タービンを用いた場合には、駆動用蒸気タービン12,復水器13,復水移送ポンプ14と同様の構成とする必要があるため、復水器が必要となる。ガスタービンを使用することにより、復水器が不要であるため、その分循環冷却水が減少する。上述したように、多段フラッシュ式造水装置放熱部38での循環冷却水量Q2が例えば、4500t/時増加するとしても、復水器を使用しないことにより、3100t/時程度循環冷却水量を少なくすることができる。
結果として、蒸気タービン18に背圧タービンを使用し、また、蒸気タービン発電機の代わりにガスタービン発電機36を用いて、ガスタービン排熱ボイラ37を備えることにより、2つの復水器にて使用する冷却水量4600t/時(=1500t/時+3100t/時)の分だけ、循環冷却水量を少なくすることができる。上述したように、本実施形態では、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いた場合、配管66から供給する冷却水量Q2として4500t/時が増加したとしても、2つの復水器にて使用する冷却水量4600t/時の分だけ、循環冷却水量を少なくすることにより、全体としての循環冷却水量は、100t/時だけ低減できる。この数値は一例であるが、多段フラッシュ式造水装置放熱部38の淡水凝縮用冷却媒体として、配管66から供給されるプラント循環冷却水を用いることにより、冷却水量が増加したとしても、他の構成を変更することにより、全体としての循環冷却水量は同等若しくは低減することができる。
さらに、プラントの電力供給源としてガスタービン発電機を用いることにより、本実施形態による新燃料製造プラントの自立起動が可能となり、プラントの運用性が向上する。また、造水方式として蒸発法を用いることにより、逆浸透膜方式で必要であった大電力を消費する高圧海水ポンプ29が不要となるため、発電機の出力を約15%程度低減することができる。 また、発電機駆動機をガスタービンとすることにより、高圧蒸気必要量が減少するため、高圧ボイラの運転容量が減少する。
また、本実施形態では、第5の特徴として、排熱利用部200で発生する低圧蒸気は、多段フラッシュ式造水装置のブラインヒータ40に供給して利用される。ここで、低圧蒸気に余剰があるときは、造水装置の造水倍率を変えることにより消費可能であり、蒸気バランスを最適化して余剰蒸気をなくすことができる。なお、造水倍率の調整の場合、低圧蒸気が余って造水倍率を低い方に調整できる場合は、造水装置の段数,缶数を減らして設備費を低減することも可能となる。
また、本実施形態では、第6の特徴として、蒸発式の造水装置から放流されるブライン61と同造水装置への供給海水63を海水/ブライン熱交換器41で熱交換することにより、熱回収を計るとともに環境対策として取放水の温度差が規定された場合に放流温度を規定温度以下とすることを可能とする。
以上のようにして、一部の蒸気タービン駆動機をガスタービン駆動機に変更すること、一部の復水タービンを背圧タービンに変更すること、放流されるブラインから熱回収を計ること、蒸発法による造水装置の造水倍率を調整することにより、プラントの蒸気バランスを最適化し、プラント余剰蒸気を無くし、プラント総合熱効率を向上できる。
なお、本実施形態における海水淡水化装置は、蒸発法を用いて海水を淡水化して、冷却水の補給用に淡水を供給するものであり、この海水淡水化装置で製造される淡水の凝縮に開放循環式冷却水供給部から供給される冷却水を用いる点に特徴がある。かかる海水淡水化装置は、新燃料製造プラントにおける冷却水の供給用だけでなく、例えば、精油所,ケミカルプラント,蒸気タービン発電プラント等における淡水供給源としても用いることができる。
Hereinafter, the configuration of a new fuel production plant according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a configuration diagram of a new fuel production plant according to an embodiment of the present invention.
The new fuel production plant according to the present embodiment includes a new fuel production unit 100, an exhaust heat utilization unit 200, and a cooling water supply unit 300. The new fuel production unit 100 produces new fuel from raw materials and generates steam using exhaust heat. The exhaust heat utilization unit 200 uses the steam generated in the new fuel production unit 100 to drive a steam turbine and drive a rotating machine and the like. The cooling water supply unit 300 supplies cooling water used in the condenser of the steam turbine of the exhaust heat utilization unit 200.
The new fuel production unit 100 includes an air compressor 1, an air separation device 2, an oxygen booster 3, a reaction / reformer 4, exhaust heat recovery boilers 5 and 8, a fuel synthesis reactor 7, and the like. ing.
The raw material is supplied to the reaction / reformation furnace 4 from the pipe 50. As raw materials, usable raw materials such as hydrocarbons such as coal, oil and natural gas, biomass and waste plastics are supplied. In this example, natural gas is used as a raw material. Although not shown, steam, carbon dioxide gas or the like may be added to these raw materials. Further, the reaction / reforming furnace 4 is supplied with the oxygen compressed by the air compressor 1, separated by the air separator 2, and pressurized by the oxygen booster 3 via the pipe 51. In the reaction / reforming furnace 4, hydrogen and monoxide are mainly oxidized by the raw material gas supplied from the pipe 50 and the oxygen supplied from the pipe 51 by partial oxidation, autothermal reforming (autothermal reforming), or the like. A synthesis gas made of carbon is produced. The produced synthesis gas is taken out from the pipe 52.
The high-temperature synthesis gas produced in the reaction / reforming furnace 4 is supplied to the exhaust heat recovery boiler 5, and is reduced in temperature by generating steam (here, high-pressure steam) and supplied to the fuel synthesis reactor 7. Is done. In the fuel synthesis reactor 7, the synthesis gas is synthesized into new fuel by the action of the catalyst. The reaction heat generated at this time is recovered by generating steam (here, intermediate pressure steam) by the exhaust heat recovery boiler 8. The new fuel and unreacted gas synthesized in the fuel synthesis reactor 7 are sent to the subsequent liquefaction / purification process through the pipe 53 and liquefied / refined. The reaction heat of the fuel synthesis reaction may be recovered from the reaction product after leaving the reactor as shown in the figure, or may be recovered directly from the reactor.
In these synthesis gas production methods, the synthesis gas at the outlet of the reaction / reforming furnace 4 is very hot. On the other hand, the subsequent fuel synthesis reaction in the fuel synthesis reactor 7 is an exothermic reaction, and it is necessary to cool the synthesis gas to a temperature suitable for the synthesis reaction at the entrance of the fuel synthesis reactor 7. Therefore, since a large amount of surplus heat is generated in the new fuel production plant, exhaust heat boilers 5 and 8 are installed to generate high-pressure and intermediate-pressure steam for heat recovery.
The generated high-pressure and intermediate-pressure steam is used in the exhaust heat utilization unit 200 for driving steam turbines such as compressors, pumps, and generators in the plant. The low-pressure steam is one of the fuel synthesis reaction gas liquefaction / purification devices. Only the heat source for the reboiler and the heat source for the boiler feed water deaerator are used, so it seems to be too much. Also, because steam turbines are used efficiently and on the other hand, there are few uses of low-pressure steam, so if many condensate turbines are used for steam balance, a large amount of cooling water is required for condensing steam accordingly. It becomes.
Next, the exhaust heat utilization unit 200 will be described. The exhaust heat utilization unit 200 includes a high-pressure steam system, an intermediate-pressure steam system, and a low-pressure steam system.
The high-pressure steam system is composed of an exhaust heat recovery boiler 5, a high-pressure boiler 6, and a high-pressure steam header 54. The high-pressure steam generated in the exhaust heat recovery boiler 5 is a steam turbine 9 for driving the raw air compressor 1, an oxygen booster. 3 in the driving steam turbine 12. Exhaust gas from the driving steam turbines 9 and 12 is cooled by the plant circulating cooling water in the condensers 10 and 13 and returned to the deaerator 25 by the condensate transfer pumps 11 and 14 and the like. The high pressure boiler feed water is extracted from the deaerator 25, boosted to a predetermined pressure by the high pressure boiler feed water pump 27, and supplied to the exhaust heat recovery boiler 5 and the high pressure boiler 6. Further, the intermediate pressure boiler feed water is extracted from the deaerator 25, and is boosted to a predetermined pressure by the intermediate pressure boiler feed water pump 26 and supplied to the exhaust heat recovery boiler 8. The high-pressure steam that is insufficient in terms of the steam balance is supplied to the high-pressure steam header 54 by the high-pressure boiler 6.
The intermediate pressure steam system includes an exhaust heat recovery boiler 8 and an intermediate pressure steam header 55, and the intermediate pressure steam generated in the exhaust heat recovery boiler 8 is supplied to a pump driving steam turbine 17 and a process gas compressor driving steam turbine 18. , 21 etc. Based on the steam balance, the pump driving steam turbine 17 and the process gas compressor driving steam turbine 18 are back-pressure turbines, and supply low-pressure steam to the low-pressure steam header 56. The steam turbine 21 for driving the process gas compressor is a condensate turbine. Based on the steam balance, the exhaust from the process gas compressor driving steam turbine 21 and the like is cooled by the plant circulating cooling water in the condenser 22 and the like, and returned to the deaerator 25 by the condensate transfer pump 23 and the like.
Here, a condensate turbine may be used as the steam turbine 18. However, considering the amount of low-pressure steam used in the brine heater 40, if a condensate turbine is used as the process gas compressor driving steam turbine 18, the amount of low-pressure steam supplied is not sufficient. The increase in supply amount is planned.
The intermediate pressure steam system includes a gas turbine generator 36 and a gas turbine exhaust heat boiler 37. Intermediate pressure steam is generated by the gas turbine exhaust heat boiler 37 and supplied to the intermediate pressure steam header 55.
The low-pressure steam system is composed of a low-pressure steam header 56, and supplies low-pressure steam received from the pump driving steam turbine 17 and the like to the reboiler 47, deaerator 25, etc., and is also supplied to the brine heater 40, and the seawater by the evaporation method. Used as a heat source for desalination equipment. In this case, surplus steam is made zero by adjusting the water production rate of the seawater desalination apparatus by the evaporation method.
Next, the cooling water supply unit 300 will be described. The cooling water supply unit 300 includes a plant open circulation cooling water system and a fresh water generation system.
The plant open circulation type cooling water system includes a cooling tower 34, a cooling water circulation pump 35, and a cooling water circulation pipe 59. The cooling water is supplied to the condensers 10, 13, 22 and the like through the cooling water circulation pipe 59. The cooling water whose temperature has been increased by exchanging heat with the condensers 10, 13, 22 and the like is cooled by the cooling tower 34 by the atmosphere, and the temperature is lowered by the cooling water circulation pump 35 and circulated in the system. . Cooling water lost due to partial evaporation due to atmospheric cooling in the cooling tower 34 is supplied from the fresh water generation system.
The fresh water generation system uses a multistage flash method among the evaporation methods. The fresh water generation system is composed of a multi-stage flash-type water generator heat radiation unit 38, a multi-stage flash-type water generator heat recovery unit 39, a brine heater 40, a seawater / brine heat exchanger 41, a deaeration tank 42, a brine circulation pump 43, and vacuum generation. The apparatus 44 is configured.
The multistage flash type water freshener radiating unit 38 cools and condenses the vapor evaporated from the circulating brine and collects fresh water. The produced desalted water is once stored in the desalted water tank 31 and supplied as makeup water for the plant circulating cooling water system by the desalted water supply pump 32. The plant circulating cooling water supplied from the piping 66 is used as a cooling medium for condensing fresh water in the multistage flash type water freshener radiating unit 38. The cooling water that has exited from the multistage flash water freshener radiating unit 38 is returned to the cooling tower 34 by the pipe 63.
The seawater / brine heat exchanger 41 performs heat exchange between the seawater supplied from the pipe 60 and the discharged brine discharged from the pipe 61, lowers the discharge temperature of the brine, and measures heat recovery to the supplied seawater. Seawater that has passed through the seawater / brine heat exchanger 41 is deaerated in the deaeration tank 42, and then supplied to the low-temperature circulating brine circulated through the pipe 64 through the pipe 65.
The low-temperature circulating brine 64 newly replenished with seawater 62 is boosted by the brine circulating pump 43 and introduced into the multistage flash-type fresh water generator heat recovery unit 39. Here, the low-temperature circulation brine 64 cools and condenses the vapor evaporated from the high-temperature circulation brine and recovers heat to raise its temperature.
The brine further heated by the low-pressure steam in the brine heater 40 becomes a high-temperature circulation brine 67, and the multi-stage flash type water generator heat recovery unit 39 and the multi-stage flash type construction that have become low pressure by the vacuum generator 44 using medium-pressure steam. Sequentially introduced to each stage of the water device heat radiating section 38 to flash. The hot circulating brine 67 is sequentially concentrated and cooled by flushing at each stage, blown out of the system from the piping 61 by the multistage flash type fresh water generator radiating section 38, and the rest is recirculated as a cold circulating brine 64. Is done.
In addition, the evaporation method used for the fresh water generation system is not limited to the above-described multistage flash method, and a multi-effect method can also be used, and a combination of the multi-stage flash method and the multi-effect method can also be used.
In the new fuel production plant according to the present embodiment described above, the first feature is that the plant circulating cooling water supplied from the pipe 66 is used as a cooling medium for condensing fresh water of the multistage flash type water freshener radiating unit 38. is there. For example, when producing fresh water at 750 t / hour in a freshwater generation system, a conventional seawater desalination apparatus using a reverse osmosis membrane method is a device with the highest fresh water recovery rate, and requires about twice the required fresh water. It is necessary to take in 1500 t / hr of seawater. On the other hand, assuming that the seawater cooling water temperature difference is 10 ° C. in the evaporation method and seawater intake is 4 times that of the reverse osmosis membrane method, the seawater intake of 6000 t / hour is required in the conventional seawater desalination system using the evaporation method. Of these, seawater used as a cooling medium for condensing fresh water in the multistage flash type water freshener radiating section 38 is 4500 t / hour, and the amount of seawater necessary for the water production is 1500 t / hour. Here, when the plant circulating cooling water supplied from the pipe 66 is used as the fresh water condensation cooling medium of the multistage flash type water freshener radiating unit 38, the amount Q1 of seawater taken from the pipe 60 is reverse osmosis of 1500 t / hour. It is equivalent to that of seawater desalination equipment by law. When the most severe category of seawater cooling water temperature difference limitation of 2 ° C., which is required in recent years, is applied, the seawater desalination apparatus by the conventional evaporation method has a large capacity of 24,000 t / hour (= 4500 × 10/2 + 1500). However, when the plant circulating cooling water supplied from the pipe 66 is used as the fresh water condensing cooling medium of the multistage flash type water freshener radiating section 38, the amount of seawater intake is not affected by the temperature difference limitation of the seawater cooling water, 1500 t. / Still remains. Although it depends on the cooling capacity of the cooling tower 34, the temperature difference ΔT2 between the cooling water flowing through the pipe 66 and the return cooling water from the pipe 63 is generally set to 10 ° C. In this case, the temperature difference is five times as high. Then, since the cooling efficiency also becomes 5 times, the cooling water amount Q2 supplied from the pipe 66 to the multistage flash type water freshener radiating unit 38 is 4500 t / hour {= (24000-1500) t / hour × 1/5}. Become. The amount Q3 of cooling water supplied from the cooling tower 34 via the pipe 59 to the exhaust heat utilization unit 200 is, for example, about 33600 t / hour. The amount of cooling water Q2 supplied to the device heat radiating section 38 is about 13%.
As described above, in this embodiment, by using the plant circulating cooling water supplied from the piping 66 as the fresh water condensing cooling medium of the multistage flash type water freshener radiating unit 38, the amount of seawater intake is reverse osmosis. The seawater intake can be equivalent to that of the seawater desalination system using the membrane method. Moreover, according to this embodiment, since it is not necessary to consider the corrosiveness with respect to the salt content of seawater as a pipe | tube material of the thermal radiation part 38 of a multistage flash type fresh water generator, the thing of an inexpensive material can be used.
In addition, as a second feature of the present embodiment, by applying an evaporation method consisting of a multistage flash method or a multi-effect method to a seawater desalination freshwater generation system, a large amount of membrane exchange is not required, and The maintenance cost of the equipment is reduced, and in general, when the reverse osmosis membrane method is compared with the evaporation method, the evaporation method can lower the residual salt concentration in the produced fresh water compared to the reverse osmosis method. Therefore, the maintenance cost of the cooling water system is also reduced.
Next, as a third feature of the present embodiment, a back pressure turbine is used as the process gas compressor driving steam turbine 18 in order to cover the amount of low pressure steam used in the brine heater 40. Thereby, the supply amount of low-pressure steam can be increased. Further, by using the back pressure turbine, the condenser used in the condensing turbine becomes unnecessary, so that the circulating cooling water is reduced accordingly. As described above, even if the circulating cooling water amount Q2 in the multistage flash type water freshener radiating unit 38 increases by 4500 t / hour, the circulating cooling water amount can be reduced by about 1500 t / hour by not using the condenser. it can.
Next, as a fourth feature of the present embodiment, a gas turbine generator 36 and a gas turbine exhaust heat boiler 37 are provided as a power supply source of the plant to generate intermediate pressure steam. As a power supply source of the plant, a steam turbine generator can be provided at a position indicated by a symbol X in the drawing, similarly to the steam turbine 12. However, when a steam turbine is used as the power supply source of the plant, it is necessary to have a configuration similar to that of the driving steam turbine 12, the condenser 13, and the condensate transfer pump 14, and therefore a condenser is necessary. It becomes. By using a gas turbine, a condenser is not necessary, so the circulating cooling water is reduced accordingly. As described above, even if the circulating cooling water amount Q2 in the multi-stage flash type water freshener radiating section 38 increases, for example, 4500 t / hour, the circulating cooling water amount is reduced by about 3100 t / hour by not using the condenser. be able to.
As a result, by using a back pressure turbine for the steam turbine 18 and using a gas turbine generator 36 instead of the steam turbine generator, and including a gas turbine exhaust heat boiler 37, two condensers are used. The amount of circulating cooling water can be reduced by the amount of cooling water used 4600 t / hour (= 1500 t / hour + 3100 t / hour). As described above, in the present embodiment, when the plant circulating cooling water supplied from the pipe 66 is used as the fresh water condensing cooling medium of the multistage flash type water freshener radiating unit 38, the cooling water amount Q2 supplied from the pipe 66 is used. As a result, the total circulating cooling water amount is reduced by 100 t / hour by reducing the circulating cooling water amount by the amount of 4600 t / hour cooling water used in the two condensers. it can. Although this numerical value is an example, even if the amount of cooling water is increased by using the plant circulating cooling water supplied from the pipe 66 as a cooling medium for condensing fresh water of the multistage flash type water freshener radiating unit 38, By changing the configuration, the amount of circulating cooling water as a whole can be equalized or reduced.
Furthermore, by using a gas turbine generator as a power supply source for the plant, the new fuel production plant according to the present embodiment can be activated independently, and the operability of the plant is improved. In addition, by using the evaporation method as the fresh water generation method, the high-pressure seawater pump 29 that consumes the large amount of power required in the reverse osmosis membrane method is no longer required, so the output of the generator can be reduced by about 15%. it can. Moreover, since the generator drive machine is a gas turbine, the required amount of high-pressure steam is reduced, so the operating capacity of the high-pressure boiler is reduced.
Further, in the present embodiment, as a fifth feature, the low-pressure steam generated in the exhaust heat utilization unit 200 is supplied to the brine heater 40 of the multi-stage flash water generator. Here, when there is surplus in the low-pressure steam, it can be consumed by changing the water production ratio of the fresh water generator, and the surplus steam can be eliminated by optimizing the steam balance. In addition, in the case of adjustment of the water production ratio, if low-pressure steam is excessive and the water production ratio can be adjusted to the lower side, it is possible to reduce the equipment cost by reducing the number of stages and cans of the water production apparatus.
In the present embodiment, as a sixth feature, the brine 61 discharged from the evaporative freshwater generator and the seawater 63 supplied to the freshwater generator are heat-exchanged by the seawater / brine heat exchanger 41, In addition to measuring heat recovery, it is possible to set the discharge temperature below the specified temperature when the temperature difference of the discharged water is specified as an environmental measure.
As described above, changing some steam turbine drives to gas turbine drives, changing some condensate turbines to back pressure turbines, measuring heat recovery from the discharged brine, evaporating By adjusting the water production ratio of the fresh water generator by the method, the steam balance of the plant can be optimized, the excess steam of the plant can be eliminated, and the overall thermal efficiency of the plant can be improved.
In addition, the seawater desalination apparatus in this embodiment desalinates seawater using the evaporation method, and supplies freshwater for replenishment of cooling water. For the condensation of freshwater produced by this seawater desalination apparatus It is characterized in that the cooling water supplied from the open circulation type cooling water supply unit is used. Such a seawater desalination apparatus can be used not only for supplying cooling water in a new fuel production plant, but also as a fresh water supply source in, for example, refineries, chemical plants, steam turbine power plants and the like.

産業上の利用の可能性Industrial applicability

本発明によれば、海水使用に制限のある地域に設置される新燃料製造プラント及びこれに用いられる海水淡水化装置において、逆浸透膜方式と同等の海水取水量で蒸発法による造水装置の適用を可能にするとともに、逆浸透膜法式に比べメンテナンスコストが安い等蒸発法による造水装置の利点をも享受できる。  According to the present invention, in a new fuel production plant installed in an area where the use of seawater is restricted, and a seawater desalination apparatus used therefor, a seawater intake amount equivalent to that of a reverse osmosis membrane system is used for a freshwater production apparatus using an evaporation method. In addition to being able to be applied, it is possible to enjoy the advantages of a fresh water generation apparatus using an equievaporation method, which has a lower maintenance cost than the reverse osmosis membrane method.

Claims (7)

原料から合成ガスを製造し、製造された合成ガスから新燃料を合成するとともに、これらの過程から出る余剰熱を回収して蒸気を発生する排熱回収ボイラを有する新燃料製造プラントにおいて、
前記排熱回収ボイラで発生する蒸気で駆動する蒸気タービンを含む排熱利用部と、
この蒸気タービンの排気用を含むプラントの冷却水を供給する開放循環式冷却水供給部とこの開放循環式冷却水の補給用に淡水を供給する蒸発法を用いた海水淡水化装置とを備え、
この海水淡水化装置で製造される淡水の凝縮に前記開放循環式冷却水供給部から供給される冷却水を用いることを特徴とする新燃料製造プラント。
In a new fuel production plant having an exhaust heat recovery boiler that produces synthesis gas from raw materials, synthesizes new fuel from the produced synthesis gas, and recovers excess heat from these processes to generate steam,
An exhaust heat utilization unit including a steam turbine driven by steam generated in the exhaust heat recovery boiler;
An open circulation cooling water supply section for supplying cooling water for the plant including exhaust for the steam turbine, and a seawater desalination apparatus using an evaporation method for supplying fresh water for replenishment of the open circulation cooling water,
A new fuel production plant characterized in that the cooling water supplied from the open circulation cooling water supply unit is used for condensing fresh water produced by the seawater desalination apparatus.
請求項1記載の新燃料製造プラントにおいて、
前記海水淡水化装置の蒸発法は、多段フラッシュ法又は多重効用法若しくはこれらの組み合わせであることを特徴とする新燃料製造プラント。
In the new fuel production plant of Claim 1,
A new fuel production plant characterized in that the evaporation method of the seawater desalination apparatus is a multistage flash method, a multi-effect method or a combination thereof.
請求項1記載の新燃料製造プラントにおいて、
ガスタービンを用いて被駆動機を駆動することを特徴とする新燃料製造プラント。
In the new fuel production plant of Claim 1,
A new fuel production plant characterized in that a driven machine is driven using a gas turbine.
請求項3記載の新燃料製造プラントにおいて、
このガスタービンの排熱によって蒸気を発生するガスタービン排熱ボイラを備え、
このガスタービン排熱ボイラで発生した蒸気を前記排熱利用部に供給することを特徴とする新燃料製造プラント。
In the new fuel manufacturing plant of Claim 3,
Equipped with a gas turbine exhaust heat boiler that generates steam by the exhaust heat of this gas turbine,
A new fuel production plant characterized in that steam generated in the gas turbine exhaust heat boiler is supplied to the exhaust heat utilization section.
請求項1記載の新燃料製造プラントにおいて、
前記海水淡水化装置から放流されるブラインと前記海水淡水化装置に供給される原料海水を熱交換する熱交換器を備えることを特徴とする新燃料製造プラント。
In the new fuel production plant of Claim 1,
A new fuel production plant comprising a heat exchanger for exchanging heat between brine discharged from the seawater desalination apparatus and raw seawater supplied to the seawater desalination apparatus.
請求項1記載の新燃料製造プラントにおいて、
プラントからの余剰蒸気を前記海水淡水化装置の熱源として消費するように、前記海水淡水化設備の造水倍率を変更することを特徴とする新燃料製造プラント。
In the new fuel production plant of Claim 1,
A new fuel production plant, wherein the water production ratio of the seawater desalination facility is changed so that surplus steam from the plant is consumed as a heat source of the seawater desalination apparatus.
蒸発法を用いて海水を淡水化して、淡水を供給する海水淡水化装置において、
この海水淡水化装置で製造される淡水の凝縮に開放循環式冷却水供給部から供給される冷却水を用いることを特徴とする海水淡水化装置。
In seawater desalination equipment that desalinates seawater using the evaporation method and supplies freshwater,
A seawater desalination apparatus using cooling water supplied from an open circulation type cooling water supply unit for condensation of freshwater produced by the seawater desalination apparatus.
JP2005500568A 2003-06-09 2003-06-09 New fuel production plant and seawater desalination equipment used therefor Pending JPWO2004108860A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007263 WO2004108860A1 (en) 2003-06-09 2003-06-09 Novel fuel production plant and seawater desalination system for use therein

Publications (1)

Publication Number Publication Date
JPWO2004108860A1 true JPWO2004108860A1 (en) 2006-07-20

Family

ID=33495949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005500568A Pending JPWO2004108860A1 (en) 2003-06-09 2003-06-09 New fuel production plant and seawater desalination equipment used therefor

Country Status (5)

Country Link
US (1) US20070039324A1 (en)
EP (1) EP1645613A1 (en)
JP (1) JPWO2004108860A1 (en)
AU (1) AU2003242051A1 (en)
WO (1) WO2004108860A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024800B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US20070084077A1 (en) * 2004-07-19 2007-04-19 Gorbell Brian N Control system for gas turbine in material treatment unit
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
EP1701006B1 (en) * 2005-02-22 2016-10-05 Kabushiki Kaisha Toshiba Electric power-generating and desalination combined plant and operation method of the same
US20070163316A1 (en) * 2006-01-18 2007-07-19 Earthrenew Organics Ltd. High organic matter products and related systems for restoring organic matter and nutrients in soil
US7610692B2 (en) * 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
WO2007114250A1 (en) * 2006-03-30 2007-10-11 Nippon Steel Engineering Co., Ltd. Liquid fuel synthesis system
WO2007114279A1 (en) * 2006-03-30 2007-10-11 Nippon Steel Engineering Co., Ltd. Liquid fuel synthesis system
KR100774546B1 (en) * 2006-11-13 2007-11-08 두산중공업 주식회사 Seawater desalinating apparatus using blowdown of heat recovery steam generator
AT510279B1 (en) * 2011-02-22 2012-03-15 Klaus Dipl Ing Engelhart METHOD FOR CONVERTING ENERGY
US8920771B2 (en) * 2012-05-18 2014-12-30 Air Products And Chemicals, Inc. Water purification using energy from a steam-hydrocarbon reforming process
CN103739030A (en) * 2013-12-30 2014-04-23 众和海水淡化工程有限公司 Waste heat utilizing seawater desalination system
CN104357079B (en) * 2014-11-30 2016-04-06 东北电力大学 A kind of retrieving arrangement responding to adsorption desorption oil shale distillation gas lightweight oil
CN105174344B (en) * 2015-09-15 2017-10-31 广州中国科学院先进技术研究所 A kind of marine seawater desalination system reclaimed based on diesel residual heat
CN109162776A (en) * 2017-10-30 2019-01-08 中机国能电力工程有限公司 A kind of supply of steam power plant's black starting-up power supply and heat recovery association system and application method
JP7353163B2 (en) * 2019-12-25 2023-09-29 三菱重工業株式会社 Ammonia derivative manufacturing plant and ammonia derivative manufacturing method
CN112794283A (en) * 2020-12-31 2021-05-14 河南中氢动力研究院有限公司 Seawater hydrogen production and desalination integrated equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297051A (en) * 1976-02-09 1977-08-15 Hitachi Ltd Steam power and manufacturing palnt for fresh water
JPH02104906A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Exhaust heat recovering boiler system and its operation
JPH10195008A (en) * 1996-12-30 1998-07-28 Nkk Corp Apparatus for production of dimethyl ether
JPH10288473A (en) * 1997-04-16 1998-10-27 Mitsubishi Heavy Ind Ltd Circulating water pipe device of cooling tower
JPH11211386A (en) * 1998-01-23 1999-08-06 Kurita Water Ind Ltd Method for calculating concentration of water treating chemical and method for automatically managing the concentration
JPH11216459A (en) * 1998-01-29 1999-08-10 Nishishiba Electric Co Ltd Seawater desalting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3448013A (en) * 1966-08-10 1969-06-03 Westinghouse Electric Corp Distillate cooling means for flash evaporators
US4009575A (en) * 1975-05-12 1977-03-01 said Thomas L. Hartman, Jr. Multi-use absorption/regeneration power cycle
JPS5293900A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Purififying method and device for nuclear reactor
US4512387A (en) * 1982-05-28 1985-04-23 Rodriguez Larry A Power transformer waste heat recovery system
US5156706A (en) * 1982-09-07 1992-10-20 Sephton Hugo H Evaporation of liquids with dispersant added
HUT47173A (en) * 1988-08-19 1990-01-30 Energiagazdalkodasi Intezet Apparatus for replacing the feedwater of power plant
US5582691A (en) * 1993-12-14 1996-12-10 Flynn; Robert J. Ocean thermal energy conversion (OTEC) system
US6321539B1 (en) * 1998-09-10 2001-11-27 Ormat Industries Ltd. Retrofit equipment for reducing the consumption of fossil fuel by a power plant using solar insolation
US6804962B1 (en) * 1999-12-23 2004-10-19 Melvin L. Prueitt Solar energy desalination system
EP1413554A1 (en) * 2002-10-23 2004-04-28 Siemens Aktiengesellschaft Gas and steam power plant for desalination of water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297051A (en) * 1976-02-09 1977-08-15 Hitachi Ltd Steam power and manufacturing palnt for fresh water
JPH02104906A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Exhaust heat recovering boiler system and its operation
JPH10195008A (en) * 1996-12-30 1998-07-28 Nkk Corp Apparatus for production of dimethyl ether
JPH10288473A (en) * 1997-04-16 1998-10-27 Mitsubishi Heavy Ind Ltd Circulating water pipe device of cooling tower
JPH11211386A (en) * 1998-01-23 1999-08-06 Kurita Water Ind Ltd Method for calculating concentration of water treating chemical and method for automatically managing the concentration
JPH11216459A (en) * 1998-01-29 1999-08-10 Nishishiba Electric Co Ltd Seawater desalting device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
工業用水, vol. 343号, JPN6009011184, 1987, pages 34 - 41, ISSN: 0001270063 *
日本海水学会誌, vol. 50(4), JPN6009011181, 1996, pages 257 - 261, ISSN: 0001270062 *

Also Published As

Publication number Publication date
EP1645613A1 (en) 2006-04-12
US20070039324A1 (en) 2007-02-22
EP1645613A8 (en) 2006-07-12
WO2004108860A1 (en) 2004-12-16
AU2003242051A1 (en) 2005-01-04
AU2003242051A8 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
Razmi et al. Thermodynamic analysis of compressed air energy storage (CAES) hybridized with a multi-effect desalination (MED) system
JPWO2004108860A1 (en) New fuel production plant and seawater desalination equipment used therefor
Altmann et al. Primary energy and exergy of desalination technologies in a power-water cogeneration scheme
US8328996B2 (en) Method and apparatus for desalinating water combined with power generation
Kronenberg et al. Low-temperature distillation processes in single-and dual-purpose plants
EP1921281B1 (en) Seawater desalinating apparatus using blowdown water of heat recovery steam generator
Wang et al. Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems—Part 1: The desalination unit and its combination with a steam-injected gas turbine power system
JP2006070889A (en) Method and device for power generation and desalination
Ma et al. Assessment of a new multigeneration system based on geothermal plant and a linear Fresnel reflector-based solar unit: an effort to improve performance
JP5331890B2 (en) Cogeneration plant and biomass reforming combined power plant
Huang et al. Synthesis and dual-objective optimization of industrial combined heat and power plants compromising the water–energy nexus
US20080017498A1 (en) Seawater Desalination Plant
Deymi-Dashtebayaz et al. Energy and exergy analyses of using natural gas compressor station waste heat for cogeneration power and fresh water
Hamouda et al. Technoeconomic assessment of a concentrated solar tower-gas turbine co-generation system
Wang et al. Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems
Kronenberg Cogeneration with the LT-MED desalination process
KR20180046628A (en) Sea water desalination apparatus for gas turbine generator
Gomar et al. Techno-economics study to select optimum desalination plant for asalouyeh combined cycle power plant in iran
Nooijen et al. Optimizing and planning of seawater desalination
Szacsvay et al. Distillation desalination systems powered by waste heat from combined cycle power generation units
Manesh et al. Thermodynamic and exergoeconomic modeling and evaluation of integrated MSF and MED desalination with Qom combined-cycle plant–part 1
CN101504243A (en) Condensing liquid nitrogen deep-cooling process for turbine
US9790154B2 (en) Methanol plant and gasoline synthesis plant
Hamed et al. Prospects of improving energy consumption of the multi-stage flash distillation process
Ebrahimi et al. Polygeneration (Power, Water, Hydrogen and Heat) by a Novel Cycle Based on Solid Oxide Fuel Cell Integrated with Micro-Gas Turbine, Metal Hydride, and Desalination

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630