JPWO2004046057A1 - Thermal shielding plate, method for producing the same, and liquid composition used therefor - Google Patents

Thermal shielding plate, method for producing the same, and liquid composition used therefor Download PDF

Info

Publication number
JPWO2004046057A1
JPWO2004046057A1 JP2004570342A JP2004570342A JPWO2004046057A1 JP WO2004046057 A1 JPWO2004046057 A1 JP WO2004046057A1 JP 2004570342 A JP2004570342 A JP 2004570342A JP 2004570342 A JP2004570342 A JP 2004570342A JP WO2004046057 A1 JPWO2004046057 A1 JP WO2004046057A1
Authority
JP
Japan
Prior art keywords
heat shielding
film
fine particles
ito fine
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004570342A
Other languages
Japanese (ja)
Inventor
松田 瑞穂
瑞穂 松田
井口 一行
一行 井口
神谷 和孝
和孝 神谷
辻野 敏文
敏文 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Publication of JPWO2004046057A1 publication Critical patent/JPWO2004046057A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Paints Or Removers (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明によれば、ガラス板などの基板上に、ITO微粒子を分散させた熱遮蔽膜を形成した熱遮蔽板が提供される。この膜は、ITO微粒子とともに、珪素酸化物および少なくとも2種のアルカリ金属酸化物を含み、酸素遮蔽能に優れ、ITO微粒子による熱線遮蔽能の維持、増進に適している。この熱遮蔽膜は、少なくとも2種のアルカリ珪酸塩、溶媒およびITO微粒子を含む液組成物を基板上に塗布し、乾燥させることにより、量産できる。According to the present invention, there is provided a heat shielding plate in which a heat shielding film in which ITO fine particles are dispersed is formed on a substrate such as a glass plate. This film contains silicon oxide and at least two kinds of alkali metal oxides together with ITO fine particles, is excellent in oxygen shielding ability, and is suitable for maintaining and enhancing the heat ray shielding ability by ITO fine particles. This heat shielding film can be mass-produced by applying a liquid composition containing at least two kinds of alkali silicate, a solvent and ITO fine particles on a substrate and drying it.

Description

本発明は、特に車両や建築物の窓ガラスとして有用な熱遮蔽板に関する。本発明は、さらに、この熱遮蔽板の製造方法およびそれに用いる液組成物に関する。  The present invention relates to a heat shield plate that is particularly useful as a window glass for vehicles and buildings. The present invention further relates to a method for producing the heat shielding plate and a liquid composition used therefor.

ITO(錫含有酸化インジウム:indium tin oxide)微粒子を分散させた膜は、可視域の光を透過させながら赤外域の光を遮蔽する。この膜を形成したガラス板は、車両や建築物の窓ガラスとして望ましい特性を備えている。このガラス板は、ITO微粒子に由来する導電性に基づいて、透明電極、タッチパネルなどとしても使用される。
ITO微粒子の導電性および熱線遮蔽能(遮熱性)には、ITOの酸素欠陥が寄与している。このため、特開平7−21831号公報が開示するように、加圧不活性ガス雰囲気中で熱処理すれば、ITO微粒子は低抵抗化する。
特開平7−70363号公報は、ITO微粒子を分散させた有機樹脂膜を開示している。有機樹脂膜としては、ポリ塩化ビニル樹脂、アクリル樹脂などが例示されている。しかし、有機樹脂膜は、耐候性、耐摩耗性に劣るため、膜が露出した形態での使用、例えば窓ガラスとしての使用、には適さない。
特開平8−199096号公報は、有機樹脂のようなバインダーを含まない液組成物から形成したITO微粒子含有膜を開示している。この液組成物は、ITO微粒子を分散させるためにカップリング剤を含んでいる。この膜は、低いヘイズ率と低い表面抵抗値(10〜10Ω/スクエアオーダー)とを有し、タッチパネルなどとしての使用に適している。しかし、この膜は不活性または還元性雰囲気中で焼成しなければならないため、その形成には特別の装置を必要とする。このため、この膜は、窓ガラスとして使用しうる程度に大きなガラス板上への形成には適していない。
特開平8−259279号公報は、ITO微粒子を分散させた中間膜を用いた合わせガラスを開示している。中間膜としては、ポリビニルブチラール膜、エチレン−酢酸ビニル共重合体膜が例示されている。合わせガラスとして使用すれば、有機樹脂からなる中間膜の低い耐候性は実用上問題とならない。しかし、この技術は、中間膜を使用しない単板上の成膜には適用できない。
特開平9−176527号公報は、2液型の液組成物から形成したITO微粒子含有膜を開示している。この膜は、バインダーを含まない第1液から形成された粉末層(第1層)上に、第2液としてシリカゾルを塗布することにより形成される。シリカゾルは、粉末層に含浸してITO微粒子のバインダーとなり、かつ粉末層上にシリカ層(第2層)を形成する。上記公報によれば、第1層はバインダーを含まない液組成物から形成されるため、微粒子の分散密度が高くなり、その結果、高い熱線遮蔽能が得られる。しかし、この技術は、少なくとも2回の被膜形成工程を必要とする。
上記のように、ITO微粒子を分散させるための有機樹脂以外の膜としては、バインダーを含まない液組成物から形成した膜が提案されている。しかし、バインダーを含まない液組成物を用いる場合、いずれの技術によっても、大気中における一回の成膜により実用に供しうる熱遮蔽膜を形成することはできない。
一方、ITO微粒子含有膜を形成するための液組成物ではないが、特開2002−29782号公報は、珪酸ナトリウム、珪酸リチウムおよび着色剤を含むガラス用透明着色液を開示している。この着色液には、着色剤として、無機顔料、または金もしくは銀のコロイド溶液が添加される。同公報は、ディップコーティングにより形成した厚さ約300nmの着色膜を開示している。
A film in which ITO (indium tin oxide) fine particles are dispersed shields light in the infrared region while transmitting light in the visible region. The glass plate on which this film is formed has desirable characteristics as a window glass for vehicles and buildings. This glass plate is also used as a transparent electrode, a touch panel, etc. based on the conductivity derived from the ITO fine particles.
The oxygen defect of ITO contributes to the conductivity and heat ray shielding ability (heat shielding property) of the ITO fine particles. For this reason, as disclosed in JP-A-7-21831, if heat treatment is performed in a pressurized inert gas atmosphere, the ITO fine particles have a low resistance.
Japanese Patent Laid-Open No. 7-70363 discloses an organic resin film in which ITO fine particles are dispersed. Examples of the organic resin film include polyvinyl chloride resin and acrylic resin. However, since the organic resin film is inferior in weather resistance and wear resistance, it is not suitable for use in a form in which the film is exposed, for example, as a window glass.
JP-A-8-199096 discloses an ITO fine particle-containing film formed from a liquid composition containing no binder such as an organic resin. This liquid composition contains a coupling agent in order to disperse the ITO fine particles. This film has a low haze ratio and a low surface resistance value (10 1 to 10 2 Ω / square order) and is suitable for use as a touch panel or the like. However, since this film must be baked in an inert or reducing atmosphere, a special apparatus is required for its formation. For this reason, this film | membrane is not suitable for the formation on the glass plate large to such an extent that it can be used as a window glass.
JP-A-8-259279 discloses a laminated glass using an intermediate film in which ITO fine particles are dispersed. Examples of the intermediate film include a polyvinyl butyral film and an ethylene-vinyl acetate copolymer film. When used as a laminated glass, the low weather resistance of the intermediate film made of an organic resin does not cause a problem in practice. However, this technique cannot be applied to film formation on a single plate that does not use an intermediate film.
JP-A-9-176527 discloses an ITO fine particle-containing film formed from a two-component liquid composition. This film is formed by applying silica sol as the second liquid on the powder layer (first layer) formed from the first liquid not containing the binder. The silica sol is impregnated in the powder layer to become a binder for the ITO fine particles, and forms a silica layer (second layer) on the powder layer. According to the above publication, since the first layer is formed from a liquid composition not containing a binder, the dispersion density of the fine particles is increased, and as a result, a high heat ray shielding ability is obtained. However, this technique requires at least two film forming steps.
As described above, as a film other than the organic resin for dispersing the ITO fine particles, a film formed from a liquid composition containing no binder has been proposed. However, when a liquid composition containing no binder is used, it is impossible to form a heat-shielding film that can be used practically by a single film formation in the atmosphere by any technique.
On the other hand, although it is not a liquid composition for forming an ITO fine particle-containing film, JP-A-2002-29782 discloses a transparent coloring liquid for glass containing sodium silicate, lithium silicate and a colorant. An inorganic pigment or a gold or silver colloidal solution is added to the coloring liquid as a coloring agent. This publication discloses a colored film having a thickness of about 300 nm formed by dip coating.

所望の遮熱性を付与するために必要なITO微粒子を分散させるためには、分散媒体となる膜にはある程度の厚さが求められる。しかし、例えば上記特開平9−176527号公報が開示する非有機分散媒体、即ち無機バインダーとしてのゾルゲル法によるシリカ膜は、一回の成膜工程で厚い膜を形成すると、膜にクラックが生じやすくなる。ゾルゲル法により200nmを超える膜厚に成膜したシリカ膜には微細なクラックが発生しやすい。このクラックは、膜中のITO微粒子への酸素供給路となり、それほど高温には至らないゾルゲル法に必須の加熱工程においてさえ、ITO微粒子を劣化させる。これでは、到底、窓ガラスにおいて求められることがある曲げ成形などのさらに高温への加熱を伴う処理に供することはできない。
珪酸ナトリウムなどのアルカリ珪酸塩から形成した膜では、そのアルカリ成分が空気中の炭酸ガスと結びつくと膜の透明性が損なわれる。このいわゆる白華現象(efflorescence)のため、アルカリ珪酸塩を用いたコーティング技術は、着色膜の形成など限られた分野においてのみ適用されてきた。しかし、従来着目されていなかったことではあるが、このコーティグ技術によれば、優れた酸素遮蔽能を有する膜を提供できる。従って、この技術を適用すれば、ITO微粒子を含む液組成物を用い、酸素含有雰囲気中での一回の成膜工程で、例えば0.3μmを超える程度、さらには0.4μm以上にまで厚く形成したとしても、ITO微粒子の劣化を、実用上問題とならない程度に抑制できる。従来から問題とされてきた白華現象も、膜組成、製法などを適切に選択すれば、改善することは可能である。
以上に基づき、本発明は、基板と、この基板上に形成された熱遮蔽膜とを含み、この熱遮蔽膜が、珪素酸化物、少なくとも2種のアルカリ金属酸化物、およびITO微粒子を含む熱遮蔽膜を提供する。
本発明は、その別の側面から、基板と、この基板上に形成された熱遮蔽膜とを含む熱遮蔽板の製造方法であって、基板上に、少なくとも2種のアルカリ珪酸塩、溶媒およびITO微粒子を含有する液組成物を塗布し、この液組成物から上記溶媒を除去することにより熱遮蔽膜を形成する製造方法を提供する。
本発明は、また別の側面から、少なくとも2種のアルカリ金属酸化物、溶媒、およびITO微粒子を含む熱遮蔽膜形成用液組成物を提供する。
本発明によれば、既存の量産設備を用い、ITO微粒子の熱線遮蔽能により遮熱性が付与された熱遮蔽板を製造できる。しかも、本発明によれば、ガラス板の曲げ処理などに際して必要となる高温、例えば500℃以上、の大気中で加熱しても、ITO微粒子による遮熱性が低下しない熱遮蔽板を提供することも可能である。
In order to disperse ITO fine particles necessary for imparting a desired heat shielding property, a certain degree of thickness is required for the film serving as a dispersion medium. However, for example, a non-organic dispersion medium disclosed in the above-mentioned JP-A-9-176527, that is, a silica film by a sol-gel method as an inorganic binder, tends to cause cracks when a thick film is formed in one film formation process. Become. A fine crack is likely to occur in a silica film formed to a film thickness exceeding 200 nm by the sol-gel method. This crack becomes an oxygen supply path to the ITO fine particles in the film, and deteriorates the ITO fine particles even in the heating step essential for the sol-gel method that does not reach a high temperature. In this case, it cannot be used for a process involving heating to a higher temperature such as bending, which may be required for a window glass.
In a film formed from an alkali silicate such as sodium silicate, the transparency of the film is impaired when the alkali component is combined with carbon dioxide in the air. Because of this so-called efflorescence, coating technology using alkali silicate has been applied only in limited fields such as the formation of colored films. However, although not paid attention in the past, according to this coating technique, a film having excellent oxygen shielding ability can be provided. Therefore, if this technique is applied, a liquid composition containing ITO fine particles is used, and in a single film-forming process in an oxygen-containing atmosphere, for example, the thickness exceeds 0.3 μm, and further increases to 0.4 μm or more. Even if formed, the deterioration of the ITO fine particles can be suppressed to such an extent that it does not cause a problem in practice. The white flower phenomenon, which has been regarded as a problem in the past, can be improved by appropriately selecting the film composition, production method and the like.
Based on the above, the present invention includes a substrate and a heat shielding film formed on the substrate, and the heat shielding film includes a silicon oxide, at least two alkali metal oxides, and ITO fine particles. A shielding film is provided.
Another aspect of the present invention is a method for producing a heat shielding plate including a substrate and a heat shielding film formed on the substrate, wherein at least two kinds of alkali silicate, a solvent, and Provided is a production method for forming a heat shielding film by applying a liquid composition containing ITO fine particles and removing the solvent from the liquid composition.
From another aspect, the present invention provides a liquid composition for forming a heat shielding film comprising at least two alkali metal oxides, a solvent, and ITO fine particles.
According to the present invention, it is possible to manufacture a heat shielding plate provided with heat shielding properties by the heat ray shielding ability of ITO fine particles using existing mass production equipment. Moreover, according to the present invention, it is also possible to provide a heat shielding plate in which the heat shielding property due to the ITO fine particles does not deteriorate even when heated in the atmosphere at a high temperature, for example, 500 ° C. or higher, which is necessary when the glass plate is bent. Is possible.

図1は、本発明による熱遮蔽板の一形態を示す断面図である。
図2は、本発明による熱遮蔽板の一形態であって、基板となるガラス板を曲げ加工した形態を示す断面図である。
図3は、本発明による熱遮蔽板を含む曲げ合わせガラスの一例を示す断面図である。
図4は、本発明による熱遮蔽板を含む曲げ合わせガラスの別の例を示す断面図である。
図5は、本発明による熱遮蔽板の波長1500nmにおける光線透過率(以下、「T1500」と表示する)と熱処理温度との関係を例示する図である。
図6は、ITO微粒子水分散体のみから形成した膜を有するガラス板のT1500と熱処理温度との関係を示す図である。
FIG. 1 is a cross-sectional view showing one embodiment of a heat shield plate according to the present invention.
FIG. 2 is a cross-sectional view showing an embodiment of the heat shielding plate according to the present invention, in which a glass plate serving as a substrate is bent.
FIG. 3 is a cross-sectional view showing an example of a bent laminated glass including a heat shielding plate according to the present invention.
FIG. 4 is a cross-sectional view showing another example of a bent laminated glass including a heat shielding plate according to the present invention.
FIG. 5 is a diagram illustrating the relationship between the light transmittance at a wavelength of 1500 nm (hereinafter referred to as “T1500”) and the heat treatment temperature of the heat shielding plate according to the present invention.
FIG. 6 is a diagram showing a relationship between T1500 of a glass plate having a film formed only from an ITO fine particle aqueous dispersion and a heat treatment temperature.

本発明による熱遮蔽膜は、優れた酸素遮蔽能を発揮しうる。この酸素遮蔽能は、この膜が緻密なガラス質膜であることを示唆している。この機能により、大気などの酸素含有雰囲気中でITO微粒子を分散させた熱遮蔽膜を加熱しても、酸素欠陥の減少によるITO微粒子の劣化を抑制できる。
実験により確認されたところによると、ITO微粒子は、100℃を超える温度に加熱すると顕著に劣化する。しかし、上記酸素遮蔽能によれば、例えば基板としてガラス板を含む熱遮蔽板を250℃の大気中に60分間放置したときに波長1500nmにおける光線透過率が、例えば3%、好ましくは1%を超えて上昇しない程度に、ITO微粒子の劣化を抑制することができる。
ITO微粒子による遮熱の程度は、T1500または日射透過率(Tg)により評価できる。本発明の熱遮蔽板におけるT1500は、基板がガラス板であるときに、例えば40%以下、好ましくは30%以下、より好ましくは20%以下である。日射透過率は、例えば60%以下、好ましくは50%以下、より好ましくは45%以下である。
本発明の熱遮蔽板は、上記程度の遮熱性を発揮しながら、同時に、可視域において高い光線透過率を有しうる。この透過率は、基板がガラス板であるときに、可視光透過率(Ya)により表示して、好ましくは70%以上である。この程度に高い可視光透過率は、自動車用の窓ガラスの一部に求められる基準を上回る。法規制がより高い可視光透過率、例えば75%以上、を要求する場合には、この基準を満たす可視光透過率を有する熱遮蔽板を提供することも可能である。
本発明による熱遮蔽膜の膜厚は、0.3μmを超えることが好ましく、0.4μm以上がより好ましく、0.5μm以上が特に好ましい。膜厚が薄すぎると、十分な量のITO微粒子を分散させることが困難となり、高い熱線遮蔽能が得られない。無機顔料などを分散させる着色膜とは異なり、ITO微粒子を分散させる熱遮蔽膜は、この程度の厚みに形成することが望ましい。上記程度の厚膜であっても、適切な塗布方法を採用すれば、1回の液組成物の塗布および乾燥により形成できる。
熱遮蔽膜の膜厚の上限に制限はないが、厚すぎる膜を急激に加熱すると発泡やクラックが生じることがある。熱遮蔽膜の好ましい膜厚は、0.3μmを超え3μm以下である。
上記特開平8−199096号公報が開示するように、バインダーを含まない液組成物から形成すると、膜中のITO微粒子の分散密度が高くなる。しかし、ITO微粒子を密に充填して表面抵抗値を低下させた熱遮蔽板を窓ガラスとして使用すると、室内への電波の透過に支障を来すおそれがある。これを考慮すると、熱遮蔽膜の表面抵抗値は10Ω/スクエア(Ω/□)以上、特に20×10Ω/スクエア以上、が好ましい。熱遮蔽膜の膜厚を上記程度に適切に調整すれば、表面抵抗値を高く維持しながら十分な熱線遮蔽能を得ることが可能となる。
熱遮蔽膜の組成は好ましい特性が得られる限り制限されないが、通常、質量%で表して、30〜70%の珪素酸化物、5〜30%のアルカリ金属酸化物、および1〜50%のITO微粒子を含有する膜とするとよい。
珪素酸化物(SiO)はガラス骨格を形成する。珪素酸化物が30質量%未満では膜強度が不足する。一方、珪素酸化物が70質量%を超えると成膜性が低下し、あるいは膜の酸素遮蔽能が低下する。珪素酸化物のより好ましい含有量は32〜66質量%である。珪素酸化物の高い比率は白華現象の抑制に効果がある。
アルカリ金属酸化物(RO;Rは好ましくはNa,KおよびLiから選ばれる少なくとも2種)は珪素酸化物とともに緻密なガラス質膜を形成する。アルカリ金属酸化物が5質量%未満では成膜性が低下し、あるいは膜の熱膨張係数が汎用の基板であるソーダライムシリカガラスよりも小さくなりすぎる。一方、アルカリ金属酸化物が30質量%を超えると、膜の熱膨張係数がソーダライムシリカガラスのそれよりも大きくなりすぎる。熱膨張係数の差が大きすぎると膜強度が低下する。アルカリ金属酸化物のより好ましい含有量は8〜16質量%である。
ITO微粒子の分散量は1〜50質量%、特に10〜50質量%が適当である。ITO微粒子が1質量%未満では、膜の遮熱性が低下しすぎる。一方、ITO微粒子が50質量%を超えると、膜中に微粒子が保持されにくくなり、膜強度も低下する。ITO微粒子のより好ましい含有量は20〜40質量%である。
ITO微粒子は、700〜900nmに吸収端を有し、それ以上の波長を有する赤外線を反射または吸収する特性を有し、高い可視光透過率と高い遮熱性との両立に適した材料である。好ましい光学特性の実現のために、ITO微粒子の平均一次粒径は100nm以下、例えば10nm〜100nmが好適である。膜中において、ITO微粒子は単分散状態にあることが好ましい。ITO微粒子の粒径が大きすぎたり、ITO微粒子が凝集したりすると、膜に曇りが生じてヘイズ率が高くなる要因となる。
本発明による熱遮蔽膜では、2種のアルカリ金属酸化物の存在が、熱遮蔽膜に耐湿性および化学的耐久性の改善をもたらす。このため、この熱遮蔽膜は、1種類のみのアルカリ金属酸化物を含有する膜よりも屋外での使用に適している。熱遮蔽膜は、少なくとも2種のアルカリ金属酸化物として、酸化ナトリウムと、酸化リチウムおよび酸化カリウムから選ばれる少なくとも1つとを含むことが好ましく、酸化ナトリウムと酸化リチウムとを含むことがさらに好ましい。
白華現象の抑制には、アルカリ金属酸化物における酸化リチウムの比率を相対的に高めるとよい。これを考慮すると、膜中における酸化リチウムの質量は、アルカリ金属酸化物の質量の33〜90%、さらに60〜90%、が適切である。上記特開2002−29782号公報では、珪酸塩によりリチウム比率が開示されているが、この比率の上限(珪酸リチウム/珪酸ナトリウム=8/2)は、最も汎用の珪酸塩を使用したと仮定して酸化物に換算すると、55%程度の酸化リチウム比率に相当する。
基板は、特に制限されないが、ガラス板が好適である。ガラス板の表面に予め下地膜を形成した基板を用いてもよい。本発明によれば、基板がガラス板を含み、可視光透過率(Ya)が70%以上、日射透過率(Tg)が50%以下、T1500が20%以下である熱遮蔽板を提供できる。この熱遮蔽板は、高い遮熱性と高い視認性とを有し、窓ガラスとしての使用に適している。同様に、本発明によれば、基板がガラス板を含み、ヘイズ率が5%以下である熱遮蔽板を提供できる。自動車用窓ガラスとして供する場合、熱遮蔽板のヘイズ率は2%以下、さらには1%以下が好ましい。
自動車に光ビーコンによる通信機能が搭載されている場合、その通信は、自動車の窓ガラス(主としてウインドシールド)を介して行われる。この場合、光ビーコンによる通信波長範囲(800〜900nm)を考慮した波長850nmにおける光線透過率(以下、「T850」と表記する)は30%以上が好ましい。これを実現するには、基板となるガラス板の厚み、光学特性に応じ、熱遮蔽膜の組成、厚みを適宜調整するとよい。
着色膜とは異なり、熱遮蔽膜では、分散した微粒子による可視域における光吸収はむしろ望ましくない。熱遮蔽膜は、実質的に無色であることが好ましい。ここで、実質的に無色であるとは、熱遮蔽板の透過色の色度と、用いた基板の透過色の色度とを、ハンター(Hunter)表色系によるaおよびbにより表示したときに、少なくとも小数点以下一桁まで一致することをいう。本発明による熱遮蔽膜は、無機顔料および金属着色料を実質的に含まなくてもよい。ここで、無機顔料および金属着色料とは、上記特開2002−29782号公報に例示されている材料をいい、実質的に含まないとは、詳細には含有量が0.1質量%未満であることをいう。
熱遮蔽膜は、例えば、基板上に液組成物を塗布し、液組成物から溶媒を除去することにより形成できる。液組成物は、少なくとも2種のアルカリ珪酸塩(アルカリ金属珪酸塩)、溶媒、およびITO微粒子を含むことが好ましい。液組成物には、具体的には、水ガラス、即ちアルカリ珪酸塩の濃厚水溶液を添加するとよい。代表的な水ガラスは、NaO・nSiO(n:任意の正の数、例えば0.5〜4.0)により示すことができる。水ガラス、または後述するITO微粒子水分散体を用いると、液組成物には溶媒として水が含まれることになるが、溶媒はこれに限らず、水とともに、例えばエチルアルコール,イソプロピルアルコールなどを含んでいてもよい。
酸化カリウムおよび酸化リチウムについても、アルカリ珪酸塩の水溶液から供給するとよい。これら他のアルカリ金属は、例えば、LiO・nSiO(n:任意の正の数、例えば3.5〜7.5)、KO・nSiO(n:任意の正の数、例えば2.9〜3.3)により示されるアルカリ珪酸塩の水溶液から供給できる。
アルカリ珪酸塩は、アルカリ金属酸化物および珪素酸化物の双方を供給する原料であるが、液組成物には、適切な組成範囲となるように、必要に応じ、さらにアルカリ珪酸塩、珪素酸化物を適量加えるとよい。この場合、珪素酸化物は、例えば珪素酸化物微粒子として加えることができる。珪素酸化物微粒子は、例えばコロイダルシリカから供給するとよい。珪素酸化物微粒子についても、粒径が大きすぎると膜の曇りの原因となるため、その一次粒径は200nm以下とするとよい。珪素酸化物微粒子の粒径は、液組成物に含まれるアルカリ成分により溶解させることによって小さくしてもよい。
なお、特に熱遮蔽膜を高温にまで加熱する場合には、コロイダルシリカは、有機分散体を含まないものとするとよい。分解した有機物の残渣が膜中に残存すると、熱遮蔽膜の透明性を損なうおそれがあるからである。
ITO微粒子は、例えば水分散液として液組成物に加えればよい。この水分散液において、ITO微粒子の固形分質量比率は5%以上が好ましい。固形分質量比率を5%未満とすると十分な量のITO微粒子の分散が困難になることがある。なお、この水分散液において、ITO微粒子の質量に対する分散剤の質量は40%以下、特に20%以下、が好ましい。この質量比率が40%を超えると、膜の堅牢性が損なわれるおそれがある。この質量比率の下限は特に制限されないが、分散液においてITO微粒子を均一に分散させるのに足りる量とするとよい。
液組成物は、熱遮蔽膜が上記適切な組成となるようにその成分比を調整するとよく、具体的には、その固形分が、質量%で表して30〜70%の換算した珪素酸化物、5〜30%の換算したアルカリ金属酸化物、1〜50%のITO微粒子を含有することが好ましい。液組成物の固形分濃度は、塗布方法などに応じて適宜定めるとよいが、30%以下が好ましい。この濃度が30%を超えると、均一な塗布が困難となり、乾燥中の応力によって膜にクラックが発生しやすくなる。
液組成物の塗布は、従来から公知の各種方法を用いて行えばよく、例えば、バーコーティング、スピンコーティング、スプレーコーティング、フローコーティング、ロールコーティング、ディップコーティング、刷毛塗り、スクリーン印刷、インクジェットコーティングを用いればよい。
塗布した後、液組成物から溶媒を除去するために、乾燥工程を実施する。この工程は、室温で行っても加熱下で行ってもよいが、室温で乾燥させた後、加熱してさらに乾燥することが好ましい。溶媒の除去が十分でないと、熱遮蔽膜に白華が生じやすくなるからである。
乾燥工程における加熱は、特に限定されないが、水ガラスなどのアルカリ珪酸塩から膜を形成する場合には、膜の耐久性を考慮すると液組成物を100℃以上、さらには120℃以上、にまで加熱することが好ましい。この程度の温度にまで加熱すると膜は緻密化する。この温度に上限はないが、高すぎると昇温速度によっては溶媒が急激に除去されるため、発泡が生じたり膜にクラックが発生したりすることがある。このため、乾燥工程では、加熱を300℃以下に制限するとよい。加熱時間は、加熱温度、塗布した液組成物の量などに応じ、液組成物から溶媒を十分に除去しうるに足る時間とするとよく、例えば少なくとも10分とするとよい。こうして、基板上に熱遮蔽膜が形成され、熱遮蔽板が得られる。
熱遮蔽板は、乾燥工程における温度を上回る温度にまでさらに加熱してもよい。特に基板がガラス板を含む場合には、ガラス板の加工のために、高温への加熱が必要になる場合がある。例えば、この加熱工程において、ガラス板には、強化処理および曲げ処理から選ばれる少なくとも一方の処理、例えば曲げと強化の同時処理、が施される。この処理のためには、ガラス板を、ガラス板の温度により表示して、好ましくは500℃〜730℃に加熱するとよい。こうして、熱遮蔽膜を形成した、強化ガラス、曲げガラスまたは曲げ強化ガラスを得ることができる。
本発明によれば、上記の一連の工程、即ち液組成物の塗布、乾燥、さらに高い温度への加熱、をすべて大気中で行っても、ITO微粒子の劣化を抑制できる。しかも、一回の塗布により、膜厚が0.3μmを超える程度に、例えば0.3μmを超え3.0μm以下となるように、液組成物を供給しても、ITO微粒子の劣化が抑制された熱遮蔽膜を形成できる。上記各工程は、雰囲気調整のための特別の装置を必要としないため、基本的に、既存の量産設備を用いて実施できる。
驚くべきことに、本発明による熱遮蔽膜を加熱すると、それが大気中の加熱であっても、ITO微粒子の熱線遮蔽能が改善する場合があることが確認された。これは、緻密なガラス質膜にITO微粒子を分散させて熱処理するだけで、還元処理(上記特開平7−21831号公報参照)と同様の効果が得られることを意味している。この効果は、基板がガラス板の場合には、例えばT1500の低下および/または日射透過率の低下として確認できる。ITO微粒子の特性改善は、350℃以上の雰囲気中で加熱することにより行うとよい。例えば、720℃の大気中で120秒間放置すると、T1500の低下によりITO微粒子の特性改善効果が認められる。
従って、膜を形成した後に熱遮蔽板をさらに加熱することにより、加熱する前と比較して、熱遮蔽板のT1500および日射透過率から選ばれる少なくとも一方を低下させることが好ましい。これによれば、不活性ガス雰囲気を必要とせず、ITOの特性を改善できる。加熱温度に上限はないが、膜や基板の耐熱温度を考慮すると730℃以下が好適である。この特性改善のための加熱は、ガラス板加工のための加熱と同時に行えば足りる。
以下、図面を参照して、本発明の熱遮蔽板の具体例について説明する。
図1に示す熱遮蔽板では、基板となるガラス板2上に熱遮蔽膜1が形成されている。この熱遮蔽膜1には、ITO微粒子3が分散されている。図2に示す熱遮蔽板4は、ガラス板2が凸面と凹面を有するように曲げ加工され、熱遮蔽膜3はガラス板2の凹面上に形成されている。この熱遮蔽板4は、例えば自動車のサイドウインドウに適している。サイドウインドウに用いるには、ガラス板に曲げ処理とともに強化処理を施すとよい。
図3に示すように、合わせガラスを構成するガラス板として、本発明による熱遮蔽板を用いてもよい。図3に示す合わせガラス5は、本発明による熱遮蔽板52を含んでいる。この合わせガラス5において、熱遮蔽板52は室内側のガラス板として用いられており、室外側に配置されたもう一枚のガラス板51と、ポリビニルブチラール(PVB)膜などの樹脂中間膜53により接合している。熱遮蔽膜1は、いわゆる第3面(室外側から数えて3番目のガラス表面)に形成されている。この曲げ合わせガラスは、自動車のウインドシールドに適している。
図示したように、熱遮蔽膜を合わせガラスの第2面または第3面、即ち大気に露出しない表面、に形成すると、膜が大気中の炭酸ガスに直接接しないため、白華現象が生じにくくなる。このため、大気に露出しない面に熱遮蔽膜を配置する場合には、塗布した液組成物を加熱して合わせ工程に先だって十分に溶媒を除去する工程の必要性は相対的に小さくなる。もっとも、図4に示すように、熱遮蔽膜1は、合わせガラス5の第1面または第4面(図4では第4面)に形成しても構わない。
なお、ガラス板は、無色ガラス板であっても着色ガラス板であってもよい。着色ガラス板としては、グリーン色調ガラス板、ブロンズ色調ガラス板、紫外線吸収機能を有するグリーン色調ガラス板、紫外線吸収機能を有するブロンズ色調ガラス板などを例示できる。これらを適宜組み合わせた合わせガラスとすれば、所望の光学特性の実現が容易となる。
曲げガラス上に熱遮蔽膜を形成する場合には、上記の工程に従い、まず平坦なガラス板に熱遮蔽膜を形成し、その後、ガラス板の曲げ成形を行うとよい。平坦な表面への液組成物の塗布は、均一で厚い膜の形成に有利である。ただし、予め曲げ加工したガラス板に、液組成物を塗布し、加熱して熱遮蔽膜を形成してもよい。液組成物を塗布する対象としての基板(ガラス板)は、平坦な表面を有することが好ましいが、これに限るわけではない。
The heat shielding film according to the present invention can exhibit an excellent oxygen shielding ability. This oxygen shielding ability suggests that this film is a dense glassy film. With this function, even if the heat shielding film in which ITO fine particles are dispersed is heated in an oxygen-containing atmosphere such as the air, deterioration of the ITO fine particles due to reduction of oxygen defects can be suppressed.
As confirmed by experiments, ITO fine particles deteriorate significantly when heated to a temperature exceeding 100 ° C. However, according to the oxygen shielding ability, for example, when a heat shielding plate including a glass plate as a substrate is left in the atmosphere at 250 ° C. for 60 minutes, the light transmittance at a wavelength of 1500 nm is, for example, 3%, preferably 1%. Deterioration of the ITO fine particles can be suppressed to such an extent that it does not increase.
The degree of heat shielding by the ITO fine particles can be evaluated by T1500 or solar transmittance (Tg). When the substrate is a glass plate, T1500 in the heat shielding plate of the present invention is, for example, 40% or less, preferably 30% or less, more preferably 20% or less. The solar transmittance is, for example, 60% or less, preferably 50% or less, and more preferably 45% or less.
The heat shielding plate of the present invention can have a high light transmittance in the visible region at the same time while exhibiting the above-described heat shielding properties. When the substrate is a glass plate, this transmittance is expressed by visible light transmittance (Ya), and is preferably 70% or more. Such high visible light transmittance exceeds the standard required for a part of window glass for automobiles. When legal regulations require a higher visible light transmittance, for example, 75% or more, it is also possible to provide a heat shielding plate having a visible light transmittance that satisfies this standard.
The thickness of the heat shielding film according to the present invention preferably exceeds 0.3 μm, more preferably 0.4 μm or more, and particularly preferably 0.5 μm or more. If the film thickness is too thin, it is difficult to disperse a sufficient amount of ITO fine particles, and high heat ray shielding ability cannot be obtained. Unlike a colored film that disperses an inorganic pigment or the like, it is desirable that the heat shielding film that disperses the ITO fine particles is formed to such a thickness. Even a thick film of the above degree can be formed by a single application and drying of the liquid composition if an appropriate application method is employed.
Although there is no restriction | limiting in the upper limit of the film thickness of a heat-shielding film | membrane, when a too thick film | membrane is heated rapidly, foaming and a crack may arise. The preferable film thickness of the heat shielding film is more than 0.3 μm and not more than 3 μm.
As disclosed in JP-A-8-199096, when formed from a liquid composition not containing a binder, the dispersion density of ITO fine particles in the film increases. However, if a heat shielding plate having a reduced surface resistance value that is closely packed with ITO fine particles is used as a window glass, there is a risk of hindering transmission of radio waves into the room. Considering this, the surface resistance value of the heat shielding film is preferably 10 6 Ω / square (Ω / □) or more, particularly preferably 20 × 10 6 Ω / square or more. If the thickness of the heat shielding film is appropriately adjusted to the above level, it is possible to obtain a sufficient heat ray shielding ability while maintaining a high surface resistance value.
The composition of the heat-shielding film is not limited as long as preferable characteristics are obtained, but usually expressed in terms of mass%, 30 to 70% silicon oxide, 5 to 30% alkali metal oxide, and 1 to 50% ITO. A film containing fine particles is preferable.
Silicon oxide (SiO 2 ) forms a glass skeleton. If the silicon oxide is less than 30% by mass, the film strength is insufficient. On the other hand, when the silicon oxide exceeds 70% by mass, the film formability is lowered, or the oxygen shielding ability of the film is lowered. A more preferable content of silicon oxide is 32 to 66% by mass. A high ratio of silicon oxide is effective in suppressing the white flower phenomenon.
Alkali metal oxides (R 2 O; R is preferably at least two selected from Na, K and Li) together with silicon oxide form a dense glassy film. If the alkali metal oxide is less than 5% by mass, the film formability is lowered, or the thermal expansion coefficient of the film is too small compared to soda lime silica glass which is a general-purpose substrate. On the other hand, when the alkali metal oxide exceeds 30% by mass, the thermal expansion coefficient of the film becomes too larger than that of soda lime silica glass. If the difference in thermal expansion coefficient is too large, the film strength is lowered. The more preferable content of the alkali metal oxide is 8 to 16% by mass.
The dispersion amount of the ITO fine particles is 1 to 50% by mass, particularly 10 to 50% by mass. If the ITO fine particles are less than 1% by mass, the heat shielding property of the film is too low. On the other hand, if the ITO fine particles exceed 50% by mass, the fine particles are hardly retained in the film, and the film strength is also lowered. A more preferable content of the ITO fine particles is 20 to 40% by mass.
The ITO fine particles have an absorption edge at 700 to 900 nm, have a characteristic of reflecting or absorbing infrared light having a wavelength longer than that, and are suitable for both high visible light transmittance and high heat shielding properties. In order to realize preferable optical characteristics, the average primary particle size of the ITO fine particles is preferably 100 nm or less, for example, 10 nm to 100 nm. In the film, the ITO fine particles are preferably in a monodispersed state. If the particle size of the ITO fine particles is too large or the ITO fine particles are aggregated, the film is clouded and becomes a factor of increasing the haze ratio.
In the heat shielding film according to the present invention, the presence of the two alkali metal oxides provides the heat shielding film with improved moisture resistance and chemical durability. For this reason, this heat shielding film is more suitable for outdoor use than a film containing only one kind of alkali metal oxide. The heat shielding film preferably contains sodium oxide and at least one selected from lithium oxide and potassium oxide as the at least two kinds of alkali metal oxides, and more preferably contains sodium oxide and lithium oxide.
In order to suppress the white flower phenomenon, it is preferable to relatively increase the ratio of lithium oxide in the alkali metal oxide. Considering this, the mass of lithium oxide in the film is appropriately 33 to 90%, more preferably 60 to 90% of the mass of the alkali metal oxide. In the above Japanese Patent Laid-Open No. 2002-29782, the lithium ratio is disclosed by silicate, but the upper limit of this ratio (lithium silicate / sodium silicate = 8/2) is assumed to use the most general-purpose silicate. In terms of oxide, it corresponds to a lithium oxide ratio of about 55%.
The substrate is not particularly limited, but a glass plate is preferable. A substrate having a base film previously formed on the surface of the glass plate may be used. According to the present invention, it is possible to provide a heat shield plate in which the substrate includes a glass plate, the visible light transmittance (Ya) is 70% or more, the solar radiation transmittance (Tg) is 50% or less, and T1500 is 20% or less. This heat shielding plate has high heat shielding properties and high visibility, and is suitable for use as a window glass. Similarly, according to this invention, the board | substrate contains a glass plate and can provide the heat shielding board whose haze rate is 5% or less. When used as a window glass for automobiles, the haze ratio of the heat shielding plate is preferably 2% or less, more preferably 1% or less.
When a communication function using an optical beacon is mounted on an automobile, the communication is performed through the window glass (mainly windshield) of the automobile. In this case, the light transmittance (hereinafter referred to as “T850”) at a wavelength of 850 nm considering the communication wavelength range (800 to 900 nm) by the optical beacon is preferably 30% or more. In order to realize this, the composition and thickness of the heat shielding film may be appropriately adjusted according to the thickness and optical characteristics of the glass plate serving as the substrate.
Unlike a colored film, light absorption in the visible region by dispersed fine particles is rather undesirable in a heat shielding film. The heat shielding film is preferably substantially colorless. Here, “substantially colorless” means that the chromaticity of the transmission color of the heat shielding plate and the chromaticity of the transmission color of the substrate used are displayed by a and b in the Hunter color system. And at least one digit after the decimal point. The heat shielding film according to the present invention may be substantially free of inorganic pigments and metal colorants. Here, the inorganic pigment and the metal colorant refer to materials exemplified in the above Japanese Patent Application Laid-Open No. 2002-29782, and in detail, the content is less than 0.1% by mass. Say something.
The heat shielding film can be formed, for example, by applying a liquid composition on a substrate and removing the solvent from the liquid composition. The liquid composition preferably contains at least two types of alkali silicate (alkali metal silicate), a solvent, and ITO fine particles. Specifically, water glass, that is, a concentrated aqueous solution of alkali silicate may be added to the liquid composition. A typical water glass can be represented by Na 2 O · nSiO 2 (n: any positive number, for example, 0.5 to 4.0). When water glass or an ITO fine particle aqueous dispersion described later is used, the liquid composition contains water as a solvent. However, the solvent is not limited to this, and includes, for example, ethyl alcohol, isopropyl alcohol and the like together with water. You may go out.
Potassium oxide and lithium oxide are also preferably supplied from an aqueous solution of alkali silicate. These other alkali metals are, for example, Li 2 O · nSiO 2 (n: any positive number, for example, 3.5 to 7.5), K 2 O · nSiO 2 (n: any positive number, for example, 2.9-3.3) can be supplied from an aqueous solution of alkali silicate.
Alkali silicate is a raw material that supplies both alkali metal oxides and silicon oxides. However, the liquid composition may further include alkali silicates and silicon oxides as necessary so as to have an appropriate composition range. Add an appropriate amount. In this case, the silicon oxide can be added as silicon oxide fine particles, for example. The silicon oxide fine particles may be supplied from, for example, colloidal silica. Also for silicon oxide fine particles, if the particle size is too large, the film becomes cloudy, so the primary particle size is preferably 200 nm or less. The particle diameter of the silicon oxide fine particles may be reduced by dissolving with an alkali component contained in the liquid composition.
In particular, when the heat shielding film is heated to a high temperature, the colloidal silica is preferably free from an organic dispersion. This is because if the decomposed organic residue remains in the film, the transparency of the heat shielding film may be impaired.
The ITO fine particles may be added to the liquid composition as an aqueous dispersion, for example. In this aqueous dispersion, the solid content mass ratio of the ITO fine particles is preferably 5% or more. When the solid content mass ratio is less than 5%, it may be difficult to disperse a sufficient amount of ITO fine particles. In this aqueous dispersion, the mass of the dispersant with respect to the mass of the ITO fine particles is preferably 40% or less, particularly preferably 20% or less. When this mass ratio exceeds 40%, the fastness of the film may be impaired. The lower limit of the mass ratio is not particularly limited, but may be an amount sufficient to uniformly disperse the ITO fine particles in the dispersion.
The liquid composition may be adjusted in its component ratio so that the heat shielding film has the above-mentioned proper composition. Specifically, the solid content of the silicon oxide in terms of 30% to 70% expressed in mass% is converted. It is preferable to contain 5 to 30% converted alkali metal oxide and 1 to 50% ITO fine particles. The solid content concentration of the liquid composition may be appropriately determined according to the coating method or the like, but is preferably 30% or less. If this concentration exceeds 30%, uniform coating becomes difficult and cracks are likely to occur in the film due to stress during drying.
The liquid composition may be applied using various conventionally known methods such as bar coating, spin coating, spray coating, flow coating, roll coating, dip coating, brush coating, screen printing, and inkjet coating. That's fine.
After application, a drying step is performed to remove the solvent from the liquid composition. This step may be performed at room temperature or under heating, but after drying at room temperature, it is preferable to heat and further dry. This is because if the removal of the solvent is not sufficient, white heat is likely to occur in the heat shielding film.
Heating in the drying step is not particularly limited. However, when a film is formed from an alkali silicate such as water glass, the liquid composition is heated to 100 ° C. or higher, more preferably 120 ° C. or higher in consideration of the durability of the film. It is preferable to heat. When heated to such a temperature, the film becomes dense. There is no upper limit to this temperature, but if it is too high, the solvent may be rapidly removed depending on the rate of temperature rise, and foaming may occur or cracks may occur in the film. For this reason, in a drying process, it is good to limit heating to 300 degrees C or less. The heating time may be a time sufficient to sufficiently remove the solvent from the liquid composition, depending on the heating temperature, the amount of the applied liquid composition, and the like, for example, at least 10 minutes. Thus, a heat shielding film is formed on the substrate, and a heat shielding plate is obtained.
The heat shield plate may be further heated to a temperature above the temperature in the drying step. In particular, when the substrate includes a glass plate, heating to a high temperature may be required for processing the glass plate. For example, in this heating step, the glass plate is subjected to at least one process selected from a strengthening process and a bending process, for example, a simultaneous bending and strengthening process. For this treatment, the glass plate is indicated by the temperature of the glass plate and preferably heated to 500 ° C. to 730 ° C. Thus, a tempered glass, a bent glass or a bent tempered glass having a heat shielding film can be obtained.
According to the present invention, deterioration of the ITO fine particles can be suppressed even when the above-described series of steps, that is, application of the liquid composition, drying, and heating to a higher temperature are all performed in the air. Moreover, even if the liquid composition is supplied so that the film thickness exceeds 0.3 μm, for example, more than 0.3 μm and not more than 3.0 μm by a single application, deterioration of the ITO fine particles is suppressed. A heat shielding film can be formed. Each of the above steps does not require a special device for adjusting the atmosphere, and can basically be implemented using existing mass production equipment.
Surprisingly, it was confirmed that when the heat shielding film according to the present invention is heated, the heat ray shielding ability of the ITO fine particles may be improved even when it is heated in the atmosphere. This means that the same effect as that of the reduction treatment (see the above-mentioned JP-A-7-21831) can be obtained only by dispersing ITO fine particles in a dense glassy film and performing a heat treatment. This effect can be confirmed, for example, as a decrease in T1500 and / or a decrease in solar transmittance when the substrate is a glass plate. The improvement of the characteristics of the ITO fine particles may be performed by heating in an atmosphere of 350 ° C. or higher. For example, when it is left in the atmosphere at 720 ° C. for 120 seconds, the characteristic improvement effect of the ITO fine particles is recognized due to the decrease in T1500.
Therefore, it is preferable to further heat at least one selected from T1500 of the heat shielding plate and solar transmittance by heating the heat shielding plate after forming the film, as compared to before heating. According to this, it is possible to improve the properties of ITO without requiring an inert gas atmosphere. Although there is no upper limit to the heating temperature, it is preferably 730 ° C. or lower in consideration of the heat resistance temperature of the film or substrate. The heating for improving the characteristics may be performed simultaneously with the heating for processing the glass plate.
Hereinafter, specific examples of the heat shielding plate of the present invention will be described with reference to the drawings.
In the heat shielding plate shown in FIG. 1, a heat shielding film 1 is formed on a glass plate 2 serving as a substrate. In this heat shielding film 1, ITO fine particles 3 are dispersed. The heat shielding plate 4 shown in FIG. 2 is bent so that the glass plate 2 has a convex surface and a concave surface, and the heat shielding film 3 is formed on the concave surface of the glass plate 2. This heat shielding plate 4 is suitable for a side window of an automobile, for example. In order to use for a side window, it is good to give a strengthening process with a bending process to a glass plate.
As shown in FIG. 3, the heat shielding plate according to the present invention may be used as a glass plate constituting the laminated glass. A laminated glass 5 shown in FIG. 3 includes a heat shielding plate 52 according to the present invention. In this laminated glass 5, the heat shielding plate 52 is used as a glass plate on the indoor side, and is composed of another glass plate 51 disposed on the outdoor side and a resin intermediate film 53 such as a polyvinyl butyral (PVB) film. It is joined. The heat shielding film 1 is formed on a so-called third surface (the third glass surface counted from the outdoor side). This bent laminated glass is suitable for a windshield of an automobile.
As shown in the figure, when the heat shielding film is formed on the second or third surface of the laminated glass, that is, the surface that is not exposed to the atmosphere, the film does not come into direct contact with carbon dioxide in the atmosphere, so that the white flower phenomenon hardly occurs. Become. For this reason, when arrange | positioning a heat shielding film in the surface which is not exposed to air | atmosphere, the necessity of the process of heating the apply | coated liquid composition and fully removing a solvent prior to a matching process becomes comparatively small. However, as shown in FIG. 4, the heat shielding film 1 may be formed on the first surface or the fourth surface (the fourth surface in FIG. 4) of the laminated glass 5.
The glass plate may be a colorless glass plate or a colored glass plate. Examples of the colored glass plate include a green color tone glass plate, a bronze color tone glass plate, a green color tone glass plate having an ultraviolet absorption function, and a bronze color tone glass plate having an ultraviolet absorption function. If a laminated glass in which these are appropriately combined, desired optical characteristics can be easily realized.
In the case of forming a heat shielding film on bent glass, it is preferable to first form a heat shielding film on a flat glass plate according to the above steps, and then bend the glass plate. Application of the liquid composition to a flat surface is advantageous for forming a uniform and thick film. However, the liquid composition may be applied to a glass plate that has been previously bent and heated to form a heat shielding film. The substrate (glass plate) as a target to which the liquid composition is applied preferably has a flat surface, but is not limited thereto.

以下、成分比を示す%はすべて質量%である。また、以下の操作はすべて大気中で行った。以下の実施例で得た熱遮蔽膜付きガラス板の特性の主な評価方法を以下に示す。
・透明性
ヘイズメーター(濁度計、スガ試験機製、HGM−2DP)を用いてヘイズ率を測定した。
・光線透過率
分光光度計(島津製作所製、UV−3000PC)を用い、波長850nmおよび1500nmにおける透過率(T850nm、T1500nm)と、日本工業規格(JIS(Japanese Industrial Standard)R3106に従って算出した可視光透過率(Ya)および日射透過率(Tg)とを測定した。
・膜厚
熱遮蔽膜の膜厚を、表面形状測定装置(TENCOR INSTRUMENTS製、ALPHA−STEP 200)を用いて測定した。
Hereinafter, all the percentages indicating the component ratios are mass%. The following operations were all performed in the atmosphere. The main evaluation method of the characteristic of the glass plate with a heat shielding film obtained in the following examples is shown below.
-Transparency The haze rate was measured using a haze meter (turbidimeter, Suga Test Instruments, HGM-2DP).
Light transmittance Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-3000PC), transmittance at wavelengths of 850 nm and 1500 nm (T850 nm, T1500 nm) and visible light transmittance calculated according to Japanese Industrial Standards (JIS (Japan Industrial Standard) R3106) The rate (Ya) and solar transmittance (Tg) were measured.
-Film thickness The film thickness of the heat shielding film was measured using a surface shape measuring device (manufactured by TENCOR INSTRUMENTS, ALPHA-STEP 200).

珪酸ナトリウム水溶液(水ガラス3号、キシダ化学製)、珪酸カリウム水溶液(スノーテックスK、日産化学工業製)、水分散コロイダルシリカ(KE−W10、粒径110nm、日本触媒製)、ITO微粒子水分散体(粒径50nm、住友金属鉱山製)、精製水を各所定量秤量し、混合して撹拌することにより、熱遮蔽膜形成用液組成物を得た。
この液を、洗浄したフロートガラス板(100×100×3.4mm)上に約0.2mL滴下してバーコーターにより展開塗布し、室温で乾燥させ、さらに250℃の乾燥炉中にて10分間乾燥した。
なお、上記コロイダルシリカは、SiOを15質量%含み、上記ITO微粒子水分散体は、ITO微粒子を20質量%含んでいた。また、上記ガラス板の光学特性は、Ya:83%、Tg:63%、T1500nm:59%、T850nm:47%、ヘイズ率:0%であった。
こうして得た熱遮蔽膜付きガラス板について、各種特性を測定した。液組成物に含まれる各成分の量および各成分の固形分質量比率、液組成物の塗布方法および条件、乾燥工程の温度および時間を、上記により測定した特性とともに表1に示す。以下の実施例および比較例についても、製造条件および特性を、表1および表2に示す。
Sodium silicate aqueous solution (water glass No. 3, manufactured by Kishida Chemical), potassium silicate aqueous solution (Snowtex K, manufactured by Nissan Chemical Industries), water-dispersed colloidal silica (KE-W10, particle size 110 nm, manufactured by Nippon Shokubai), ITO fine particle aqueous dispersion A liquid composition for forming a heat shielding film was obtained by weighing a predetermined amount of the body (particle size: 50 nm, manufactured by Sumitomo Metal Mining Co., Ltd.) and purified water, and mixing and stirring.
About 0.2 mL of this liquid is dropped on a washed float glass plate (100 × 100 × 3.4 mm), spread and coated by a bar coater, dried at room temperature, and further in a 250 ° C. drying oven for 10 minutes. Dried.
The colloidal silica contained 15% by mass of SiO 2, and the ITO fine particle aqueous dispersion contained 20% by mass of ITO fine particles. The optical properties of the glass plate were Ya: 83%, Tg: 63%, T1500 nm: 59%, T850 nm: 47%, and haze ratio: 0%.
Various characteristics of the glass plate with the heat shielding film thus obtained were measured. Table 1 shows the amount of each component contained in the liquid composition, the solid mass ratio of each component, the application method and conditions of the liquid composition, the temperature and time of the drying step, together with the properties measured above. Tables 1 and 2 show the production conditions and characteristics of the following examples and comparative examples.

バーコーターに代えてスピンコーターを用いた以外は、実施例1と同様にして熱遮蔽膜付きガラス板を得た。スピンコーティングは、16.6回転毎秒(=1000rpm)で5秒間の条件で実施した。
実施例1との比較により、バーコーティングよりもスピンコーティングによる成膜が厚膜の形成には適していること、膜厚の調整によりITOの濃度が同一の液組成物を用いてもYaやTgなどの光学特性を調節できること、が確認できる。
A glass plate with a heat shielding film was obtained in the same manner as in Example 1 except that a spin coater was used instead of the bar coater. Spin coating was performed at 16.6 revolutions per second (= 1000 rpm) for 5 seconds.
Compared to Example 1, film formation by spin coating is more suitable for thick film formation than bar coating, and even if a liquid composition having the same ITO concentration is used by adjusting the film thickness, Ya or Tg It can be confirmed that the optical characteristics such as can be adjusted.

実施例3〜5Examples 3-5

珪酸カリウム水溶液に代えて珪酸リチウム水溶液(LSS35、日産化学工業製)を用い、成分比を適宜変更した以外は、実施例1と同様にして熱遮蔽膜付きガラス板を得た。
ITO微粒子を増量すれば、遮熱性は向上するがYaがやや低下し、ヘイズ率がやや上昇する。
A glass plate with a heat shielding film was obtained in the same manner as in Example 1 except that a lithium silicate aqueous solution (LSS35, manufactured by Nissan Chemical Industries, Ltd.) was used instead of the potassium silicate aqueous solution, and the component ratio was appropriately changed.
If the amount of ITO fine particles is increased, the heat shielding property is improved, but Ya is slightly lowered, and the haze ratio is slightly increased.

実施例6〜7Examples 6-7

実施例3〜4で得た熱遮蔽膜付きガラス板を、720℃の焼成炉内で120秒間加熱した。この加熱により、ガラス板の温度は650℃にまで上昇した。加熱後の熱遮蔽膜付きガラス板の特性を表1に示す。
実施例3と6、実施例4と7とをそれぞれ比較すると、大気中で加熱したにもかかわらず、T1500および日射遮蔽率が低下したことが確認できる。
The glass plate with a heat shielding film obtained in Examples 3 to 4 was heated in a baking furnace at 720 ° C. for 120 seconds. By this heating, the temperature of the glass plate rose to 650 ° C. Table 1 shows the characteristics of the glass plate with the heat shielding film after heating.
Comparing Examples 3 and 6 and Examples 4 and 7, respectively, it can be confirmed that T1500 and the solar radiation shielding rate were lowered despite being heated in the atmosphere.

この実施例では、合わせガラスを作製した。まず、実施例3と同様にして熱遮蔽膜付きガラス板を得た。ただし、ガラス板の厚みを2.1mmに変更し、液組成物の塗布方法は実施例2と同じ条件のスピンコーティングとした。また、塗布した液組成物は、室温で乾燥させた後、加熱による乾燥を行わず、そのまま合わせガラス用の単板ガラスとした。
合わせ工程は、熱遮蔽膜付きガラス板と、液組成物を塗布するために用いたものと同じフロートガラスとを、PVB膜により接合することにより行った。具体的には、まず減圧状態で70℃に加熱して仮接着し、さらに140℃、14kg/cmの条件でオートクレーブを用いて本接着を行った。熱遮蔽膜はPVB膜に接するように配置した。得られた熱遮蔽膜付き合わせガラスの光学特性を表1に示す。
実施例8で用いたガラス板の大きさは、100×100×2.1mmであり、その光学特性は、Ya:84%、Tg:69%、T1550nm:66%、T850nm:60%、ヘイズ率:0%であった。
In this example, a laminated glass was produced. First, a glass plate with a heat shielding film was obtained in the same manner as in Example 3. However, the thickness of the glass plate was changed to 2.1 mm, and the coating method of the liquid composition was spin coating under the same conditions as in Example 2. Moreover, after apply | coating the liquid composition dried at room temperature, the drying by heating was not performed but it was set as the single plate glass for laminated glasses as it was.
The combining step was performed by joining a glass plate with a heat shielding film and the same float glass used for applying the liquid composition with a PVB film. Specifically, first, temporary adhesion was performed by heating to 70 ° C. under reduced pressure, and then main bonding was performed using an autoclave under the conditions of 140 ° C. and 14 kg / cm 2 . The heat shielding film was disposed in contact with the PVB film. Table 1 shows the optical characteristics of the obtained laminated glass with a heat shielding film.
The size of the glass plate used in Example 8 is 100 × 100 × 2.1 mm, and its optical characteristics are Ya: 84%, Tg: 69%, T1550 nm: 66%, T850 nm: 60%, haze ratio : 0%.

液組成物における成分比を変更して膜中の酸化リチウムの比率を高め塗布方法を5回転毎秒(=300rpm)で10秒間の条件のスピンコーティングとし、乾燥時間を1時間とした以外は、実施例3と同様にして、熱遮蔽膜付きガラス板を得た。乾燥工程におけるガラス温度は250℃に到達していた。
なお、実施例9で用いたガラス板の光学特性は、Ya:73%、Tg:45%、T1500nm:38%、T850nm:27%、ヘイズ率:0%であり、ハンター表色系による透過光の色度は、a:−8.0、b:3.3であった。
Implemented except that the component ratio in the liquid composition was changed to increase the ratio of lithium oxide in the film, and the coating method was spin coating under conditions of 10 seconds at 5 revolutions per second (= 300 rpm) and the drying time was 1 hour. In the same manner as in Example 3, a glass plate with a heat shielding film was obtained. The glass temperature in the drying process reached 250 ° C.
The optical properties of the glass plate used in Example 9 were Ya: 73%, Tg: 45%, T1500 nm: 38%, T850 nm: 27%, and haze ratio: 0%, and transmitted light by the Hunter color system. The chromaticity was a: -8.0, b: 3.3.

実施例10〜14Examples 10-14

液組成物に水分散コロイダルシリカを添加せず、アルカリ金属酸化物における酸化リチウムの比率が順次低くなるように成分比を調整した以外は、実施例9と同様にして熱遮蔽膜付きガラス板を得た。これらの実施例では、各熱遮蔽膜付きガラス板を、30〜35℃の室内に1ヶ月間放置した後のヘイズ率も測定した。
アルカリ金属酸化物における酸化リチウムの比率を高くすれば、製造後に進行する白華現象をある程度抑制できる。
A glass plate with a heat-shielding film was prepared in the same manner as in Example 9 except that the water-dispersed colloidal silica was not added to the liquid composition and the component ratio was adjusted so that the ratio of lithium oxide in the alkali metal oxide was sequentially reduced. Obtained. In these examples, the haze rate after each glass plate with a heat shielding film was left in a room at 30 to 35 ° C. for one month was also measured.
If the ratio of lithium oxide in the alkali metal oxide is increased, the white flower phenomenon that proceeds after the production can be suppressed to some extent.

実施例10と同様にして熱遮蔽膜付きガラス板を得た。ただし、この実施例では、液組成物を室温でのみ乾燥し、加熱による乾燥は実施しなかった。
実施例10と比較すると、乾燥のために250℃で加熱しても、ITO微粒子による熱線遮蔽能は実質的に影響を受けないことが確認できる。
なお、実施例10,15において得た熱遮蔽板の透過色は、用いたガラス板と同一(a:−8.0、b:3.3)であった。これにより、熱遮蔽膜が実質的に無色であることが確認できた。
さらに、実施例6,10による熱遮蔽膜の表面抵抗値を、四端子方式の抵抗率計(三菱化学社製)を用いて測定したところ、その値はいずれも20×10Ω/スクエア以上であって抵抗率計の測定限界を超えていた。
(比較例1)
テトラエトキシシランの加水分解によって得られたゾルと実施例1で用いたITO微粒子水分散体を混合することにより、液組成物を得た。この液組成物をスピンコーティングによってガラス板上に塗布し、室温で乾燥させた後、さらに250℃の乾燥炉中にて10分間乾燥させた。引き続き、この熱線遮蔽膜付きガラス板を、720℃の焼成炉内にて120秒間加熱した。T1500の値によりITO微粒子が劣化したことが確認できる。ゾルゲル法による膜は、ガラス質ではあるが孔度が高く緻密ではない。
(比較例2)
市販のエチルシリケート加水分解液(HAS10、コルコート社製)と実施例9で用いたITO微粒子水分散体を混合することにより、液組成物を得た。この液組成物をフローコーティングによって実施例9で用いたガラス板上に塗布し、室温で乾燥させ、熱遮蔽膜付きガラス板を得た。
(比較例3)
比較例2と同様にして得た熱遮蔽膜付きガラス板を、250℃の乾燥炉中にて1時間さらに加熱した。比較例2と3とを比較すると、250℃の加熱によってT1500が6%上昇したことが確認できる。膜が緻密でないと、この程度の温度でもITO微粒子は劣化する。
[熱処理温度とITO微粒子の特性との関係]
A glass plate with a heat shielding film was obtained in the same manner as in Example 10. However, in this example, the liquid composition was dried only at room temperature, and drying by heating was not performed.
As compared with Example 10, it can be confirmed that even when heated at 250 ° C. for drying, the heat ray shielding ability by the ITO fine particles is not substantially affected.
In addition, the transmitted color of the heat shielding plate obtained in Examples 10 and 15 was the same as the glass plate used (a: -8.0, b: 3.3). This confirmed that the heat shielding film was substantially colorless.
Furthermore, when the surface resistance value of the heat shielding film according to Examples 6 and 10 was measured using a four-terminal type resistivity meter (manufactured by Mitsubishi Chemical Corporation), all of the values were 20 × 10 6 Ω / square or more. And it exceeded the measurement limit of the resistivity meter.
(Comparative Example 1)
A sol obtained by hydrolysis of tetraethoxysilane and the ITO fine particle aqueous dispersion used in Example 1 were mixed to obtain a liquid composition. This liquid composition was applied onto a glass plate by spin coating, dried at room temperature, and further dried in a drying oven at 250 ° C. for 10 minutes. Subsequently, the glass plate with a heat ray shielding film was heated in a baking furnace at 720 ° C. for 120 seconds. It can be confirmed that the ITO fine particles were deteriorated by the value of T1500. The film formed by the sol-gel method is glassy but has a high porosity and is not dense.
(Comparative Example 2)
A liquid composition was obtained by mixing the commercially available ethyl silicate hydrolyzate (HAS10, manufactured by Colcoat Co.) and the ITO fine particle aqueous dispersion used in Example 9. This liquid composition was applied by flow coating onto the glass plate used in Example 9, and dried at room temperature to obtain a glass plate with a heat shielding film.
(Comparative Example 3)
The glass plate with a heat shielding film obtained in the same manner as in Comparative Example 2 was further heated in a drying furnace at 250 ° C. for 1 hour. Comparing Comparative Examples 2 and 3, it can be confirmed that T1500 increased by 6% by heating at 250 ° C. If the film is not dense, the ITO fine particles deteriorate even at this temperature.
[Relationship between heat treatment temperature and ITO fine particle properties]

以上より、本発明の熱遮蔽膜を熱処理すると、ITO微粒子の熱線遮蔽能が向上する場合があることが確認された。そこで、この改善と温度との関係を明らかにするために、表1に示した条件で上記実施例と同様にして作製した熱遮蔽膜付きガラス板を、500℃に設定した炉内に入れて基板温度が所定温度(250,300,350,400℃)に到達するまで放置し、その後T1500を測定した。なお、250℃までの加熱には70秒、400℃には277秒を要した。結果を図5に示す。
T1500は、250℃までの加熱により室温での乾燥による値(15%)をわずかに上回った(16%)。しかし、300℃までの加熱では室温と同じ15%となり、350℃では12%、400℃では11%と、350℃以上の加熱では室温での値よりもむしろ低くなった。Ya,Tg,ヘイズ率に対する乾燥温度の影響は1%以下であった。
(比較例4)
比較のため、ITO微粒子水分散体のみから膜を形成したガラス板について、乾燥温度によるT1500の変化を測定した。結果を図6に示す。図6に示したとおり、100℃以上の大気中の加熱でITO微粒子の熱線遮蔽能は低下した。
本発明による熱遮蔽膜でも、100〜250℃程度で加熱するとおそらくは膜の最表層に分散したITO微粒子が劣化する。しかし、図5より明らかなとおり、本発明による熱遮蔽膜では、この劣化が350℃以上の加熱によるITO微粒子の特性向上の効果により十分に打ち消される程度に抑制されている。

Figure 2004046057
Figure 2004046057
From the above, it was confirmed that when the heat shielding film of the present invention is heat-treated, the heat ray shielding ability of the ITO fine particles may be improved. Therefore, in order to clarify the relationship between the improvement and the temperature, a glass plate with a heat shielding film produced in the same manner as in the above example under the conditions shown in Table 1 was placed in a furnace set at 500 ° C. The substrate was left until the substrate temperature reached a predetermined temperature (250, 300, 350, 400 ° C.), and then T1500 was measured. The heating up to 250 ° C. required 70 seconds, and 400 ° C. required 277 seconds. The results are shown in FIG.
T1500 slightly exceeded (16%) the value from drying at room temperature (15%) by heating to 250 ° C. However, heating up to 300 ° C. was 15%, which is the same as room temperature, 12% at 350 ° C., 11% at 400 ° C., and lower than the value at room temperature at heating above 350 ° C. The influence of the drying temperature on Ya, Tg, and haze ratio was 1% or less.
(Comparative Example 4)
For comparison, a change in T1500 depending on the drying temperature was measured for a glass plate on which a film was formed only from the ITO fine particle aqueous dispersion. The results are shown in FIG. As shown in FIG. 6, the heat ray shielding ability of the ITO fine particles was lowered by heating in the air at 100 ° C. or higher.
Even in the heat shielding film according to the present invention, when heated at about 100 to 250 ° C., the ITO fine particles dispersed in the outermost layer of the film are likely to deteriorate. However, as is apparent from FIG. 5, in the heat shielding film according to the present invention, this deterioration is suppressed to such a degree that it can be sufficiently canceled by the effect of improving the properties of the ITO fine particles by heating at 350 ° C. or higher.
Figure 2004046057
Figure 2004046057

以上のとおり、本発明によれば、ITO微粒子により遮熱性が付与された熱遮蔽板が提供される。本発明による熱遮蔽膜は、大気中における一回の成膜工程で厚く形成しても高い酸素遮蔽能を維持し、ITO微粒子による熱線遮蔽能の維持、増進に極めて適している。この酸素遮蔽能を利用すれば、高温に加熱されても熱遮蔽板の遮熱性を維持できる。本発明により提供される熱遮蔽板は、特に車両、建築物の窓ガラスとして大きな利用価値を有する。  As described above, according to the present invention, a heat shielding plate provided with heat shielding properties by ITO fine particles is provided. The heat shielding film according to the present invention maintains a high oxygen shielding ability even if it is formed thick in a single film formation step in the atmosphere, and is extremely suitable for maintaining and enhancing the heat ray shielding ability by ITO fine particles. By utilizing this oxygen shielding ability, the heat shielding property of the heat shielding plate can be maintained even when heated to a high temperature. The heat shielding plate provided by the present invention has a great utility value especially as a window glass for vehicles and buildings.

Claims (20)

基板と、前記基板上に形成された熱遮蔽膜とを含み、
前記熱遮蔽膜が、珪素酸化物、少なくとも2種のアルカリ金属酸化物、およびITO微粒子を含む熱遮蔽板。
A substrate, and a heat shielding film formed on the substrate,
The heat shielding plate, wherein the heat shielding film contains silicon oxide, at least two alkali metal oxides, and ITO fine particles.
前記基板がガラス板であり、
前記熱遮蔽膜が酸素遮蔽能を有し、前記酸素遮蔽能により、前記熱遮蔽板を250℃の大気中に60分間放置したときに波長1500nmにおける光線透過率が3%を超えて上昇しないように、前記ITO微粒子の劣化が抑制されている請求項1に記載の熱遮蔽板。
The substrate is a glass plate;
The heat shielding film has an oxygen shielding ability, and the oxygen shielding ability prevents a light transmittance at a wavelength of 1500 nm from exceeding 3% when the heat shielding plate is left in an atmosphere of 250 ° C. for 60 minutes. The heat shielding plate according to claim 1, wherein deterioration of the ITO fine particles is suppressed.
前記熱遮蔽膜の膜厚が、0.3μmを超え3μm以下である請求項1に記載の熱遮蔽板。The heat shielding plate according to claim 1, wherein the thickness of the heat shielding film is more than 0.3 μm and not more than 3 μm. 前記熱遮蔽膜の表面抵抗値が10Ω/スクエア以上である請求項1に記載の熱遮蔽板。The heat shielding plate according to claim 1, wherein a surface resistance value of the heat shielding film is 10 6 Ω / square or more. 前記熱遮蔽膜が、質量%で表して、30〜70%の前記珪素酸化物、5〜30%の前記アルカリ金属酸化物、および1〜50%の前記ITO微粒子を含有する請求項1に記載の熱遮蔽板。2. The heat shielding film according to claim 1, comprising 30 to 70% of the silicon oxide, 5 to 30% of the alkali metal oxide, and 1 to 50% of the ITO fine particles, expressed in mass%. Heat shield plate. 前記少なくとも2種のアルカリ金属酸化物が、酸化ナトリウムと、酸化リチウムおよび酸化カリウムから選ばれる少なくとも1つとを含む請求項1に記載の熱遮蔽板。The heat shielding plate according to claim 1, wherein the at least two alkali metal oxides include sodium oxide and at least one selected from lithium oxide and potassium oxide. 前記少なくとも2種のアルカリ金属酸化物が、酸化ナトリウムと酸化リチウムとを含む請求項6に記載の熱遮蔽板。The heat shielding plate according to claim 6, wherein the at least two alkali metal oxides include sodium oxide and lithium oxide. 前記酸化リチウムの質量が、前記少なくとも2種のアルカリ金属酸化物の質量の33〜90%である請求項7に記載の熱遮蔽板。The heat shielding plate according to claim 7, wherein a mass of the lithium oxide is 33 to 90% of a mass of the at least two kinds of alkali metal oxides. 前記酸化リチウムの質量が、前記少なくとも2種のアルカリ金属酸化物の質量の60〜90%である請求項8に記載の熱遮蔽板。The heat shielding plate according to claim 8, wherein a mass of the lithium oxide is 60 to 90% of a mass of the at least two kinds of alkali metal oxides. 前記基板がガラス板を含み、
可視光透過率が70%以上、日射透過率が50%以下、波長1500nmにおける光線透過率が20%以下である請求項1に記載の熱遮蔽板。
The substrate includes a glass plate;
The heat shielding plate according to claim 1, wherein the visible light transmittance is 70% or more, the solar radiation transmittance is 50% or less, and the light transmittance at a wavelength of 1500 nm is 20% or less.
前記基板がガラス板を含み、
ヘイズ率が5%以下である請求項1に記載の熱遮蔽板。
The substrate includes a glass plate;
The heat shielding plate according to claim 1, wherein the haze ratio is 5% or less.
前記基板がガラス板を含み、
前記ガラス板が、曲げ処理および強化処理から選ばれる少なくとも一方の処理を施された請求項1に記載の熱遮蔽板。
The substrate includes a glass plate;
The heat shielding plate according to claim 1, wherein the glass plate is subjected to at least one treatment selected from a bending treatment and a strengthening treatment.
請求項1に記載の熱遮蔽板を含む合わせガラス。A laminated glass comprising the heat shielding plate according to claim 1. 基板と、前記基板上に形成された熱遮蔽膜とを含む熱遮蔽板の製造方法であって、
基板上に、少なくとも2種のアルカリ珪酸塩、溶媒およびITO微粒子を含有する液組成物を塗布し、
前記液組成物から前記溶媒を除去することにより熱遮蔽膜を形成する熱遮蔽板の製造方法。
A manufacturing method of a heat shielding plate including a substrate and a heat shielding film formed on the substrate,
On the substrate, a liquid composition containing at least two kinds of alkali silicates, a solvent and ITO fine particles is applied,
The manufacturing method of the heat shielding board which forms a heat shielding film by removing the said solvent from the said liquid composition.
前記熱遮蔽膜の膜厚が0.3μmを超え3μm以下となるように前記液組成物を塗布する請求項14に記載の熱遮蔽板の製造方法。The manufacturing method of the heat shielding board of Claim 14 which apply | coats the said liquid composition so that the film thickness of the said heat shielding film may be more than 0.3 micrometer and 3 micrometers or less. 前記基板がガラス板を含み、
前記熱遮蔽膜を形成した後、前記ガラス板に強化処理および曲げ処理から選ばれる少なくとも一方の処理を施す工程をさらに含む請求項14に記載の熱遮蔽板の製造方法。
The substrate includes a glass plate;
The method for manufacturing a heat shielding plate according to claim 14, further comprising a step of performing at least one treatment selected from a strengthening treatment and a bending treatment on the glass plate after forming the heat shielding film.
前記基板がガラス板を含み、
前記熱遮蔽膜を形成した後、前記熱遮蔽板を加熱することにより、加熱する前と比較して、前記熱遮蔽板の波長1500nmにおける光線透過率および日射透過率から選ばれる少なくとも一方を低下させる請求項14に記載の熱遮蔽板の製造方法。
The substrate includes a glass plate;
After forming the heat shielding film, heating the heat shielding plate reduces at least one selected from the light transmittance and the solar radiation transmittance at a wavelength of 1500 nm of the heat shielding plate as compared to before heating. The manufacturing method of the heat shielding board of Claim 14.
少なくとも2種のアルカリ珪酸塩、溶媒およびITO微粒子を含む熱遮蔽膜形成用液組成物。A liquid composition for forming a heat shielding film, comprising at least two types of alkali silicate, a solvent, and ITO fine particles. 珪素酸化物微粒子をさらに含む請求項18に記載の液組成物。The liquid composition according to claim 18, further comprising silicon oxide fine particles. 固形分として、質量%で表して、30〜70%の換算した珪素酸化物、5〜30%の換算したアルカリ金属酸化物、1〜50%のITO微粒子を含有する請求項18に記載の液組成物。The liquid according to claim 18, which contains 30 to 70% converted silicon oxide, 5 to 30% converted alkali metal oxide, and 1 to 50% ITO fine particles expressed as mass% in terms of solid content. Composition.
JP2004570342A 2002-11-21 2003-11-20 Thermal shielding plate, method for producing the same, and liquid composition used therefor Pending JPWO2004046057A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002337762 2002-11-21
JP2002337762 2002-11-21
JP2003133289 2003-05-12
JP2003133289 2003-05-12
PCT/JP2003/014781 WO2004046057A1 (en) 2002-11-21 2003-11-20 Thermal shielding plate and method for manufacture thereof, and fluid composition for use therein

Publications (1)

Publication Number Publication Date
JPWO2004046057A1 true JPWO2004046057A1 (en) 2006-03-16

Family

ID=32328341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004570342A Pending JPWO2004046057A1 (en) 2002-11-21 2003-11-20 Thermal shielding plate, method for producing the same, and liquid composition used therefor

Country Status (3)

Country Link
JP (1) JPWO2004046057A1 (en)
AU (1) AU2003284588A1 (en)
WO (1) WO2004046057A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338987A (en) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd Base body with vitreous film
CN102503159A (en) * 2011-09-29 2012-06-20 南京工业大学 Inorganic nanometer transparent heat insulation glass film and preparation method thereof
JP6080500B2 (en) * 2012-11-01 2017-02-15 菊水化学工業株式会社 Flame retardant coating agent composition, flame retardant organic material and flame retardant wood

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570178A (en) * 1991-09-11 1993-03-23 Asahi Glass Co Ltd Heat ray-reflecting film and its production
JPH07247445A (en) * 1994-03-14 1995-09-26 Colcoat Eng Kk Destaticizing aqueous coating composition
JPH0841441A (en) * 1994-05-25 1996-02-13 Sumitomo Metal Mining Co Ltd Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JP3154645B2 (en) * 1995-01-23 2001-04-09 セントラル硝子株式会社 Automotive laminated glass
JP2002029782A (en) * 2000-05-12 2002-01-29 Mitsuboshi Belting Ltd Transparent coloring agent for glass and method for manufacturing colored glass
JP2002146228A (en) * 2000-11-10 2002-05-22 Sumitomo Metal Mining Co Ltd Method for treating fine indium-tin oxide particle for forming sunshine-screening film and sunshine-screening film

Also Published As

Publication number Publication date
WO2004046057A1 (en) 2004-06-03
AU2003284588A1 (en) 2004-06-15

Similar Documents

Publication Publication Date Title
CN101309759B (en) Process for producing base material for forming heat shielding film
EP2657011A1 (en) Article having low reflection film
WO2011027827A1 (en) Article having low-reflection film on surface of base material
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
EP2314649A1 (en) Coating compositions and articles with formed coating films
JP6599666B2 (en) Transparent screen having light scattering coating and coating liquid for forming light scattering coating
JPH05339033A (en) Manufacture of uv shielding glass and window glass for automobile and window glass for building
EP1013726A1 (en) High solids water-based ceramic paint
EP1079413B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
JPWO2003045866A1 (en) COLORED FILM-BASED GLASS SUBSTRATE, COLORED FILM-FORMING PARTICLE-CONTAINING SOLUTION AND METHOD FOR PRODUCING COLORED FILM-BASED GLASS SUBSTRATE
JP2007277018A (en) Glass sheet with colored film and method of manufacturing the glass sheet with colored film
JP2004338985A (en) Substrate with heat ray shielding film, and its production method
EP1477465A1 (en) Substrate with film containing functional particles
JPWO2004046057A1 (en) Thermal shielding plate, method for producing the same, and liquid composition used therefor
JPH09227157A (en) Non-fogging film-forming base material, non-fogging film using the same and its production
JP3912938B2 (en) Colored film formation method
JP3094852B2 (en) Heat ray shielding glass for vehicles
JP3649596B2 (en) Substrate on which hydrophilic oxide film is formed and method for producing the same
CN112192921A (en) Heat-insulating laminated glass and preparation method thereof
JP3347467B2 (en) Coating liquid for forming colored thin film, colored thin film and method for producing the same, and glass article
JP3544687B2 (en) Coating liquid, colored film and method for producing the same
JP2004338986A (en) Method of producing substrate with heat ray shielding film, and method of producing article including electrically conductive oxide
JP2000109742A (en) Inorganic colorant composition, and coloration of inorganic base material
JP2011119626A (en) Cover glass for solar panel covered with low reflecting coating and method for manufacturing the same
CN115974420A (en) Glass pane, paste for producing a coating for a glass pane and composite comprising a glass pane