JPWO2002051643A1 - Authenticity printed matter and authenticity identification method - Google Patents

Authenticity printed matter and authenticity identification method Download PDF

Info

Publication number
JPWO2002051643A1
JPWO2002051643A1 JP2002552765A JP2002552765A JPWO2002051643A1 JP WO2002051643 A1 JPWO2002051643 A1 JP WO2002051643A1 JP 2002552765 A JP2002552765 A JP 2002552765A JP 2002552765 A JP2002552765 A JP 2002552765A JP WO2002051643 A1 JPWO2002051643 A1 JP WO2002051643A1
Authority
JP
Japan
Prior art keywords
infrared
reflectance
image
printed
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002552765A
Other languages
Japanese (ja)
Other versions
JP4235968B2 (en
Inventor
丸山 誠二
福浦 朝生
佐藤 大紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Printing Bureau
Original Assignee
National Printing Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Printing Bureau filed Critical National Printing Bureau
Publication of JPWO2002051643A1 publication Critical patent/JPWO2002051643A1/en
Application granted granted Critical
Publication of JP4235968B2 publication Critical patent/JP4235968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Printing Methods (AREA)
  • Credit Cards Or The Like (AREA)

Abstract

一見すると模倣可能ではあるが、一般的な磁性材料とは異なり赤外域で反射特性を有する磁性材料と、赤外域で吸収特性を有する一般的な磁性材料とを組み合わせた真偽判別印刷物と、このような真偽判別印刷物の真偽を判別する方法を提供する。図柄の少なくとも一部に少なくとも二つの印刷画像を含み、一方の印刷画像に赤外域で吸収特性を有する通常の黒色磁性材を使用し、他方の印刷画像には赤外域で反射特性を有する白色磁性材を使用する。それぞれの磁性材の量を変えることで、二つの印刷画像におけるそれぞれの赤外部の反射率及び磁性強度のうち少なくともいずれか一方が相対的に異なるようにすることで、模倣改竄が困難なものとなる。At first glance, it can be imitated, but unlike a general magnetic material, a magnetic material having a reflection characteristic in the infrared region and a true / false discrimination printed material combining a general magnetic material having an absorption characteristic in the infrared region, A method for determining the authenticity of such authenticity determination printed matter is provided. At least a part of the pattern contains at least two printed images, one of the printed images uses a normal black magnetic material having an absorption characteristic in the infrared region, and the other printed image has a white magnetic material having a reflection characteristic in the infrared region Use wood. By changing the amount of each magnetic material, at least one of the reflectance and the magnetic intensity of each infrared portion in the two printed images is relatively different, so that imitation and tampering are difficult. Become.

Description

技 術 的 背 景
本発明は、銀行券、諸証券、株券、切符や定期券等の通行券、有料道路等の回数券、旅券、収入印紙、各種チケット、その他有価証券等、金銭的価値を有するため高度な偽造防止及び真偽判別手段を必要とする印刷物において、偽造が困難であり、表面的な印刷形態を模倣及び偽造したとしても、本発明による真偽判別方法によって容易に真偽を判別し得る真偽判別印刷物及びその真偽判別方法に関するものである。
銀行券、株券或いはその他有価証券は金銭的価値を有するため、その価値及び安全性を保証・維持するべく、偽造防止、改竄防止技術を施す必要がある。そこで、このような印刷物には、用紙の透かしや特色インキ、微小文字等の印刷の図柄に特殊な技術を採用することによって偽造を困難にしたり、発光インキ等を使用することで紫外線照射により任意の情報画像を可視化する手法を盛り込んでその印刷物の安全性を確保するようにしている。
更に最近では、上述したような視覚的な偽造防止技術の他に、光学的或いは磁気的信号の検出装置の進歩に伴い、高性能の検出器を備えた真偽判別装置を用いることで、肉眼では判別することのできない機械処理対応の真偽判別技術を組み込んだ印刷物も提供されている。
例えば、特開昭63−144075号公報には、肉眼では識別が困難な赤外部反射吸収特性の異なる2種類のインキを用いた真偽判別印刷物及び真偽判別方法が提案されている。また、特開平3−252901号公報には、磁気材料により情報が書き込まれた磁気媒体の磁気特性を検出することで、この磁気媒体の真偽を判別する方法が提案されている。
しかし、これらの手法はいずれも十分な真偽判別及び偽造防止手段であるとは言えない。用紙の透かし、特色インキによる画線、微小文字を利用したセキュリティ画線は、最近の高性能なコンピュータ、スキャナ、カラーコピー機の低価格化及び一般への普及に伴い、その偽造防止効果が疑問視されつつある。また、発光インキによる真偽判別技術は、バリエーション豊かな発光材料が一般市場において流通していることを考えれば、その偽造防止、真偽判別効果は不十分である。
更に、単純な赤外領域に対して反射特性を有する印刷画線及び吸収特性を有する印刷画線を組み合わせたものや、磁気を有する画線も、現在ではセキュリティ印刷分野では一般的な技術となっている。特に、磁気画線についてはセキュリティ印刷物に利用されていることが一般の者にも公知となっており、一般市場で購買できる材料を利用することによって、本物と同程度の信号を付与させた印刷物を簡単に製造することができ、この種の偽造事件も発生している。
このように、従来の偽造防止技術や印刷物の真偽判別技術では、最近の材料及び電子技術の発達に伴い、満足し得るものではなくなっている。
本発明は上記事情に鑑み、一見すると模倣可能ではあるが、偽造が極めて困難であり、また偽造したとしても容易に真偽を判別することが可能な真偽判別印刷物及び真偽判別方法を提供することを目的とする。
発 明 の 概 要
本発明の真偽判別印刷物は、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と略同一の磁気強度を有することを特徴とする。
また、本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有することを特徴とする。
あるいは本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が高い方が相対的に高い磁気強度を有することを特徴とする。
また本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有することを特徴とする。
さらに本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と略同一の磁気強度を有し、前記所定の赤外部の透過量と略同一の性外部の透過量を有することを特徴とする。
あるいは本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有し、相対的に赤外部の反射率が低い方が相対的に少ない赤外部の透過量を有することを特徴とする。
あるいはまた、本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、前記所定の赤外部の透過量と略同一の赤外部の透過量を有し、前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が高い方が相対的に高い磁気強度を有することを特徴とする。
また本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有し、前記所定の赤外部の透過量より多い赤外部の透過量を有することを特徴とする。
本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、裏面側に赤外部の光を吸収するインクにより印刷が施されて所定の赤外部の透過量を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、前記所定の赤外部と略同一の赤外部の透過量を有し、前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有することを特徴とする。
また本発明の真偽判別印刷物は、前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有し、裏面側に赤外部の光を吸収するインクにより印刷が施されて前記所定の赤外部の透過量と略同一の赤外部の透過量を有することを特徴とする。
ここで、前記第1、第2の印刷画像は、肉眼で色彩を相対的に識別することが困難であってもよく、あるいは容易であってもよい。
本発明の印刷物の真偽判別を行う方法は、前記印刷物が、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含み、前記第1の印刷画像が、赤外部の反射率が30%以上の第1の磁性材を含有するインクを用いて形成されており、前記第2の印刷画像が、赤外部の反射率が前記第1の磁性材と10%以上の差を有する第2の磁性材を含有するインクを用いて形成されており、この印刷物に対し、前記第1、第2の印刷画像のそれぞれの赤外部の反射率及び磁気強度を検出して照合することによって、印刷物の真偽判別を行うことを特徴とする。
ここで、赤外部の反射率及び磁気強度に加えて、可視光部の光学情報を検出して照合することにより、印刷物の真偽判別を行ってもよい。
あるいは、赤外部の反射率及び磁気強度に加えて、赤外部の透過量を検出して照合することにより、印刷物の真偽判別を行ってもよい。
または、本発明の印刷物の真偽判別を行う方法は、赤外部の反射率、磁気強度、可視光部の光学情報に加えて、赤外部の透過量を検出して照合することにより、印刷物の真偽判別を行ってもよい。
発明の詳細な説明
一般的な磁性材料は、可視域において吸収特性を示すと共に、赤外域でも吸収特性を示す。このため、赤外域で反射特性を示す磁性印刷物を作成することができなかった。
従って、赤外域で反射特性を示す磁性画像領域と、赤外域で吸収特性を示す磁性画像領域とを組み合わせた印刷物は、一般的な磁性材料では実現不可能な印刷物であるため、このような印刷物を実現すると模倣偽造が極めて困難な真偽判別印刷物となる。
本発明の発明者は、通常用いられている磁性材料より赤外部の反射率が高い磁性材料を含有するインキを用いることによって、赤外部の反射率を高くすることが可能であることを見い出し、本発明の真偽判別印刷物及び真偽判別方法を提案するに至った。
以下に説明する本発明の実施例による真偽判別印刷物は、後述するように一般的な赤外域で吸収特性を有する磁性材と、反射特性を有する磁性材とを用いて、少なくとも2種類の印刷画像における赤外部の反射吸収特性と磁気強度の少なくともいずれか一方が異なるように設定されている。そして、本発明の実施例による真偽判別方法は、このような2種類の印刷画像におけるそれぞれの磁気強度、赤外部の光学情報、あるいはさらに可視光域の光学情報を測定し、予め設定された真の情報と比較照合することで、その印刷物の真偽判別を行うものである。
ここで、赤外部の反射率が高い印刷画線を形成するために用いられるインキに配合する磁性材料には、赤外部の反射率が低い、一般的な黒、黒灰色及び茶褐色系の磁性材料と異なり、相対的に赤外部の反射率が高い磁性材料を使用する。
一方、赤外部の反射率の低い印刷画線を形成するために用いられるインキに配合する磁性材料には、赤外部の反射率が低い、一般的な黒、黒灰色及び茶褐色系の磁性材料を用いる。
赤外部の反射率を低くする手法として、赤外部の反射率が低い一般的な磁性材料を用いる他に、相対的に赤外部の反射率が高い磁性材料と共に、赤外部の反射率の低い顔料を用いてもよい。
相対的に赤外部の反射率の高い磁性材料は、粒子径0.1μm〜20μmの範囲内にある磁性材料を核として、SiO、Ag、TiOで被覆加工することによって、CIE−LのLが70以上、aが−2〜2、bが0〜15にしたものが好ましい。しかし、特にこれに制限されるものではない。
また、磁性材料の核となる磁性材料は、一般に磁気信号の機械的読み取り処理方法に利用されるような磁気印刷パターンを形成する磁性印刷インキに用いることのできる磁性材料であれば良く、一般的な、ウエタイト(FeO)、マグネタイト(Fe)、鉄鉱(Fe)、ヘマタイト(α−Fe)、マグヘマタイト(γ−Fe)のような酸化鉄材料、Co含有酸化鉄、CrO、鉄等のメタル粉、Baフェライト等の磁性材料が考えられる。しかし、磁性材料の被覆核となる磁性材料は、これに制限されるものではなく、磁性を有し、印刷インキ用顔料として利用可能であればどのような材料及び形状をしたものでも構わない。
また、核となる磁性材料の周囲に被覆する材料はSiO、Ag、TiOが好ましいが、これに制限されるものではなく、その材料としては、有機顔料或いは二酸化ジルコニウム、二酸化セリウム、酸化亜鉛、酸化タルタン、酸化インジウム、酸化錫、酸化錫−酸化インジウムの混合物、酸化アルミニウム、酸化マグネシウム、金属単体材料としては、アルミニウム、チタン、ニッケル、鉄等の金属或いは、その他その合金等の無機材料が挙げられる。
また、核磁性材料を被覆材料によって被覆加工する方法は、金属アルコキシドの加水分解によるゾル−ゲル法によって行うのが最も好ましいが、被覆加工する手段はこれに制限されるものでなく、蒸着、スパッタリング、コーティング法、メッキ法等の表面処理を施す手段であれば何れでも構わない。
更に、本発明で被覆加工した材料のそれぞれの幾何学的厚みは、SiOが10〜100nm、Agが10〜100nm、TiOが0.1nm以上としたものが好ましいが、各種材料の厚みはこれに制限されるものではなく、それぞれの被覆層の数は少なくとも1層以上であれば良い。最終的に得られた磁性材料が、赤外部で30%以上の高い反射率を示すものであれば、どのような構成を有するものであってもよい。
また、印刷画像に対し、機械的磁気検出器に対して十分なSN比を有する磁気強度を付与するには、インキ中に配合する磁気材料の配合割合をインキ全量に対して5%以上とすることが望ましい。
また、2種類の印刷画像における赤外部の反射率の差は、機械処理に適した良好なSN比を得るためにも10%以上あることが好ましく、さらに赤外部の反射率が相対的に高い印刷画像においては、赤外部の反射率が30%以上であることが望ましい。2種類の印刷画像の赤外部の反射率の差が10%未満であると、検出装置の感度に依存する程度が大きくなり、検出精度の低い検出器ではその差を検出することが難しい場合がある。
更に、2種類の印刷画像は、肉眼でその色彩を容易に識別することが可能であってもよく、或いは識別が困難であってもよい。すなわち、2種類の印刷画像において、機械読み取りが可能な程度に磁気強度が略同一あるいは相対的な差があり、また赤外部の反射率の測定値が略同一あるいは相対的な差があるのであればよい。
2種類の印刷画像を形成する際に使用するインキの色彩は、何れの色であっても良い。インキに使用される顔料の種類は、例えば、青色粉体として、群青、紺青(プルシアンブルー)、コバルトブルー等の無機粉体及びフタロシアニンブルー系、スレン系、アゾ系、アントラキノン系のC.I.ピグメントブルーに属する有機顔料、または、赤色顔料として、カドミウムレッド、べんがら、モリブデンレッド等の無機顔料及びアゾ系、キナクリドン系、ペリレン系、レーキレッド等のC.I.ピグメントレッドに属する有機顔料、黄色クロムイエロー、カドミウムイエロー、チタンイエロー等の無機顔料及びキノフタロン系、アゾイソインドリン系等のC.I.ピグメントイエローに属する有機顔料、紫色顔料としては、コバルト紫、マンガン紫等の無機粉体及びオキサジン系、アゾ系、アントラキノン系等のC.I.ピグメントバイオレットに属する有機顔料、緑色顔料としては、クロムグリーン、コバルトグリーン等の無機顔料及びフタロシアニン系等のC.I.ピグメントグリーンに属する有機顔料、白色顔料としては、酸化チタン顔料、体質顔料としては、硫酸バリウム、アルミナ白、酸化珪素、燐酸カルシウム及び炭酸カルシウム系顔料を用いることができる。また、これらの粉体を数色組み合わせて任意の色調を有する色料を調整することもできる。その他、一般の印刷で使用するオフセットインキ、グラビアインキ等の公知の有色インキも有色材料として用いることができる。しかし、相対的に赤外部の反射率が高い画像の形成に用いるインキに使用する顔料は、赤外部の反射率を考慮して用いる必要があり、赤外部の反射率の低い顔料を用いることは望ましくない。
更に、本発明で使用するインキ用バインダーとなるワニスは、前記顔料等を分散し、印刷画線を形成するものであって、その種類については特に制限はなく、公知の塗料用及びインキ用樹脂を用いることができる。このようなインキワニス用として用いる樹脂としては、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、ロジン変性フェノール樹脂、シリコン樹脂、フッ素樹脂を基本樹脂に、必要に応じてアミノ樹脂またはイソシアネート化合物等の架橋剤を混合してなる熱可塑性樹脂を挙げることができる。更に、エポキシ環、オキセタニル基、アクリロイル基及びメタクリロイル基を有する紫外線、即ち、UV硬化性及び電子線、即ち、EB硬化性樹脂が存在する。その他にも、常温で乾燥又は硬化する2液型ポリウレタン樹脂、2液型シリコン樹脂など塗料用樹脂等も使用できる。これらのワニスは、1種類単独で使用しても良いし、2種類以上組み合わせて用いても良い。
また、2種類の印刷画像を形成する際に磁気画線を作成する方法は、皮膜を形成する手段で有ればいずれを用いてもよい。例えば、グラビア印刷、オフセット印刷、スクリーン印刷、凹版印刷、フレキソ印刷、その他公知の印刷方式をはじめ、板金塗装等に用いられるスプレー方式、プレス方式等皮膜を形成する方法等、いずれの方法も用いることができる。
以下に、各実施例による印刷物について図面を参照して説明する。ここで、印刷方式については限定するものでない。
(実施例1)
実施例1において、2種類の印刷画像に用いるそれぞれのインキ(赤外域吸収タイプ、赤外域反射タイプ)の配合を図1に示す。この2種類のインキは、赤外部の反射吸収特性は異なるが、磁性強度はほぼ同程度であり、視覚的に容易には色彩を互いに識別できない暗緑色系凹版インキである。
(実施例2)
実施例2において、2種類の印刷画像に用いるそれぞれのインキ(赤外域吸収タイプ、赤外域反射タイプ)の配合を図2に示す。この2種類のインキは、赤外部の反射吸収特性は異なるが、磁性強度はほぼ同程度で、視覚的に容易に色彩を互いに識別できる茶褐色系赤外吸収凹版インキ及び暗緑色系赤外反射タイプ凹版インキである。
(実施例3)
実施例3において、2種類の印刷画像に用いるそれぞれのインキ(赤外域吸収タイプ、赤外域反射タイプ)の配合を図3に示す。この2種類のインキは、赤外部の反射吸収特性において相違し、また磁性強度において相違する。相対的に赤外部の反射率が高いインキの方がより磁性強度が高く、視覚的に容易には色彩を互いに識別できない暗緑色系凹版インキである。
(実施例4)
実施例4において、2種類の印刷画像に用いるそれぞれのインキ(赤外域吸収タイプ、赤外域反射タイプ)の配合を図4に示す。この2種類のインキは、赤外部の反射吸収特性及び磁性強度において共に異なり、相対的に赤外部の反射率が高い方がより磁性強度が高く、視覚的に容易に色彩を互いに識別できる茶褐色系赤外吸収凹版インキ及び暗緑色系赤外反射タイプ凹版インキである。
次に、上記実施例1〜4に対して、分光反射率、磁性強度をそれぞれ測定した結果について説明する。
(ベタの反射率)
各実施例において、皮膜厚さ約40μmのベタインキ皮膜を分光光度計で測定した。
(印刷画線の反射率)
凹版インキを用いて、図5に示された真偽判別凹版印刷物1を作製した。この真偽判別凹版印刷物1は、磁性画像2及び3を有する。それぞれの画像2及び3に対して、分光反射率を測定した。
画像2及び3には、それぞれ異なる磁性凹版インキを使用し、共に画線幅100μm、画線ピッチ300μm、画線深度100μmの凹版版面により凹版画線が印刷されている。
(磁性強度)
画像2及び3におけるそれぞれの凹版画線の磁性強度を磁気検出ヘッドで検出し、電気信号に変換して相対値を得た。
各実施例における測定データを図6〜図21に示し、図22に各実施例と測定結果をまとめて示す。
これらの結果から、各実施例とも分光反射率については、25%程度以上差があり、機械処理によって十分差を検出できることがわかった。一方、実施例1及び2は磁性強度がほぼ同程度であり、実施例3及び4は大きく異なっていることが示されている。
従来の赤外部の反射率が非常に低い磁性材料では、実施例1〜4の赤外反射タイプの赤外部の高い反射率と高い磁性強度を得ることは不可能であった。しかし、本発明では、赤外部の反射率が高い特殊な白色磁性材料を使用することによって、高い磁気強度を有する赤外反射タイプのインキを可能とし、そのことによって、実施例1〜4の印刷物が可能となった。
仮に、本実施例の真偽判別凹版印刷物について、第三者が赤外部の反射吸収特性の異なる2種類の機械読み取り可能な磁気強度を有する凹版画像をある程度推測して、市販の磁気材料によって磁気を付与したとしても、その2種類の凹版画像の赤外部における反射吸収特性を模倣することは不可能である。また、市販の顔料によって、2種類の凹版画像に施してある赤外部の反射率の差を施したとしても、その2種類の凹版画像に同時に磁気強度を付与することは不可能である。
上記本発明の実施例による真偽判別印刷物及び真偽判別方法によれば、コンピュータ、スキャナ等により外見的には模倣可能であるが、一般的な磁性材料では不可能な赤外域の反射吸収特性と磁気特性とを組み合わせることで、容易に真偽判別が可能となる。
さらに、本発明の実施例5〜8による真偽判別印刷物と、各実施例の真偽判別印刷物を用いた判別方法について説明する。
(実施例5)
実施例5で用いたインキ配合を図23に示す。この実施例5によって形成された凹版画像の特長は次の通りである。赤外部の反射吸収特性がほぼ同程度であり、互いの磁性強度が明らかに異なり、視覚的に容易には色彩を互いに識別できない暗緑系色の赤外反射タイプの凹版インキで印刷されている。
このような凹版インキを用いて、図5に示す画線2、3をそれぞれ作製した。
本実施例で用いたインキにおける、ベタインキ(皮膜厚さ約40μm)の分光反射率を図24の曲線28及び29に示す。
本実施例で作製した凹版磁性画像の分光反射率を、図25の曲線30及び31に示す。
本実施例で作製した、相対的に磁性強度が小さい赤外反射タイプの凹版磁性画像の磁気強度の相対値を図26の32に示し、相対的に磁性強度が大きい赤外反射タイプの凹版磁性画像の磁気強度相対値を図27の33に示す。
この測定結果から、凹版磁性画像の分光反射率については、殆ど同じであり、機械処理によって十分可視域、赤外域が同じと認識される。
一方、磁気強度については明らかに異なっており、機械処理によって十分相対的な差を検知できることがわかる。
従来の赤外部の反射率が非常に低い磁性材料では、赤外反射タイプの赤外部の高い反射率と高い磁性強度を得ることは不可能であった。そのため、本実施例に示すような赤外域の反射率が高く、かつ磁性強度に明確な差を有するような2種類以上の凹版画像を形成することは不可能であった。
これに対し、本実施例によれば、赤外部の反射率が高い特殊な白色系の磁性材料を使用することによって、高い磁気強度を有する赤外反射タイプのインキを可能とし、これにより従来不可能であった赤外域の反射率が高く、かつ磁性強度に明確な差を有するような2種類以上の凹版画像を形成することが可能である。
仮に、本実施例の真偽判別凹版印刷物について、第三者が赤外部の反射率が高く且つ磁性強度が高い凹版画像をある程度推測して、市販の磁気材料等によって磁気を付与したとしても、その2種類の凹版画像の赤外部における反射特性を模倣することは不可能である。
また、市販の顔料を用いて、2種類の凹版画像に施してある赤外部の反射率を施したとしても、その2種類の凹版画像に同時に本実施例と同様の磁気強度を施すことは極めて困難である。よって、上記実施例によれば、模倣偽造が極めて困難な真偽判別印刷物を得ることができる。
(実施例6)
実施例6で用いたインキ配合を図28に示す。実施例6は、上記実施例5と反射特性及び磁気強度は同様であり、異色系である点で相違する。
本実施例によって形成された凹版画像の特長は、次の通りである。
赤外部の反射吸収特性がほぼ同一であり、互いの磁性強度が明らかに異なり、視覚的に容易に色彩を互いに識別できる茶褐色系の赤外反射タイプの凹版インキ及び暗緑色系の赤外反射タイプの凹版インキで印刷されている。
このような凹版インキを用いて、実施例5と同様に図5に示す画像2及び3を作製した。
本実施例で用いたインキにおける、ベタインキ(皮膜厚さ約40μm)の分光反射率を図29の曲線34及び35に示す。
本実施例で作製した凹版磁性画像の分光反射率を図30の曲線36及び37に示す。
本実施例で作製した相対的に磁性強度が小さい赤外反射タイプの凹版磁性画像の磁気強度相対値を図31の38に示し、相対的に磁性強度が大きい赤外反射タイプの凹版磁性画像の磁気強度相対値を図32の39に示す。
本実施例の測定結果より、凹版磁性画像の赤外部の分光反射率については殆ど同じであり、機械処理によって十分赤外域が高く同じと認識される。
一方、磁気強度については相対的に大きく異なっており、機械処理によって十分差を検知できることがわかる。
従来の赤外部の反射率が非常に低い磁性材料では、上述したように、赤外反射タイプの赤外部の高い反射率と高い磁性強度を得ることは不可能であった。そのため、本実施例に示すような赤外域の反射率が高く、磁性強度に明確な差を有するような2種類以上の凹版画像を形成することは不可能であった。
本実施例によれば、赤外部の反射率が高い特殊な白色系の磁性材料を使用することによって、高い磁気強度を有する赤外反射タイプのインキが可能であるので、赤外域の反射率が高く、磁性強度に明確な差を有するような2種類以上の凹版画像を形成することが可能である。
本実施例の真偽判別凹版印刷物に対し、第三者が赤外部の反射率が高く且つ磁性強度が高い凹版画像をある程度推測し、市販の磁気材料等を用いて磁気を付与したとしても、この2種類の凹版画像の赤外部における反射特性を模倣することは不可能である。
また、市販の顔料により、2種類の凹版画像に施してある赤外部の反射率を施したとしても、この2種類の凹版画像に同時に本実施例と同様の磁気強度を施すことは困難である。
従って、本実施例によれば、一般的な磁性材料では不可能な赤外域の反射特性と磁気特性とを組み合わせた偽造防止効果の高い印刷物を得ることができる。
(実施例7)
本実施例において、表面における印刷画像を形成するために用いたインキ配合を図33に示す。
本実施例によって形成された凹版印刷物の特長は次の通りである。赤外部の反射吸収特性と磁性強度とが共に相対的に異なり、相対的に赤外部の反射率が高い凹版画像の方が低い磁性強度を示し、さらに視覚的に容易には色彩を互いに識別できない2種類の暗緑色系の凹版インキで印刷されている。
更に、磁気強度が相対的に低く赤外部の反射率の高い凹版印刷画像の裏面には、図34に示す黒色系のインキによってベタ印刷が施されている。
このような凹版インキを用いて、図35A、図35Bに示す凹版印刷物を作製した。表面において、画線40及び41が形成され、さらに表面の印刷画線41の裏面にベタ印刷42が形成され、表面の印刷画線41の裏面の領域43には印刷が形成されていない。
本実施例で作製した凹版磁性画像の分光反射率を、図36の曲線44及び45に示す。
本実施例で作製した、相対的に磁性強度が大きく赤外部の反射率が相対的に低い凹版磁性画像の磁気強度相対値を図37の46に、相対的に磁性強度が小さく赤外部の反射率が相対的に高い凹版磁性画像の磁気強度相対値を図38の47に示す。
本実施例の測定結果には、2種類の凹版磁性画像の赤外部の分光反射率は25%以上の差があり、また磁気強度は大きく異なっていることが示されており、機械処理によって十分相対的な差を検出することが可能である。
本実施例による印刷物は、磁性が相対的に低く且つ赤外部の反射率が相対的に高い凹版磁性画像の裏面に、図34に示された赤外部の光を吸収する黒色系インキをベタ印刷することによって、2種類の凹版磁性画像における赤外部の反射吸収特性、磁性強度、更には赤外部の透過特性を所望の特性が得られるように組み合わせたものである。
このような本実施例に従って作成された真偽判別凹版印刷物に対し、第三者がある程度推測して、市販の材料等によって模倣しようとしても、表裏の印刷画像の赤外部の反射吸収特性、磁性強度、赤外部の透過特性の組合せを簡単且つ完全に模倣することは極めて困難である。よって、本実施例によれば、偽造防止効果の高い印刷物を得ることが可能である。
(実施例8)
実施例8に用いた表面の印刷画像を形成するために用いたインキ配合を図23に示す。
本実施例によって形成された凹版印刷物の特長は次の通りである。
赤外部の反射率がほぼ同じであり、互いの磁性強度が明らかに異なり、視覚的に容易には色彩を互いに識別できない暗緑系色の赤外反射タイプの凹版インキで印刷されている。
更に、磁気強度が相対的に低い印刷画像の裏面に、図34に示す黒色系のインキによってベタ印刷が施されている。
上記凹版インキを用いて、上記実施例7と同様に、図35A、図35Bに示す凹版画線を作製した。
本実施例で作製した2種類の凹版磁性画像の分光反射率を、図25の曲線30及び31に示す。
さらに本実施例で作製した相対的に磁性強度が小さい赤外部の反射率が高い凹版磁性画像の磁気強度相対値を図26の32に、相対的に磁性強度が大きく赤外部の反射率が高い凹版磁性画像の磁気強度相対値を図27の33に示す。
本実施例の印刷物において、2種類の凹版磁性画像の赤外部の分光反射率は共に50%以上を示し、磁気強度は相対的に大きく異なっていることから、機械処理によって十分その差を検出することができる。
更に、本実施例による印刷物は、磁性が相対的に低く赤外部の反射率が高い凹版画像の裏面に、図34に示された赤外部の吸収性を示す黒色系インキを印刷することにより、凹版画像の赤外部の反射吸収特性、磁性強度及び赤外部の透過特性を、所望の特性が得られるように組み合わせたものである。
本実施例の真偽判別凹版印刷物について、第三者がある程度推測して、市販の材料等によって模倣しようとしても、従来の赤外部の反射率が非常に低い磁性材料では、赤外部の反射率が高く且つ高い磁性強度を持つ凹版磁性画像を得ることは従来の技術では不可能である。
更に、表面に施してある2種類の凹版画像の赤外部の反射特性及び磁気特性を推測して、市販の材料によって2種類の凹版画像に施してある赤外部の反射特性及び磁気特性を施したとしても、本実施例では磁性が相対的に低く赤外部の反射率が高い凹版画の裏面に黒色系インキを印刷することによって、その印刷画像領域の赤外部の透過特性を変化させているため、表裏の画像の赤外反射、磁気、赤外透過特性の組合せを簡単且つ完全に模倣することが困難である。従って、本実施例によれば、偽造防止効果の高い印刷物を得ることができる。
上記実施例は様々に変形が可能である。例えば、上記実施例7では、赤外部の反射吸収特性と磁性強度とが共に相対的に異なり、相対的に赤外部の反射率が高い凹版画像の方が低い磁性強度を示し、さらに視覚的に容易には色彩を互いに識別できない2種類の暗緑色系の凹版インキで印刷されている。
更に、磁気強度が相対的に低く赤外部の反射率の高い凹版印刷画像の裏面には、黒色系のインキによってベタ印刷が施されている。
これに対し、実施例9として示した印刷物では、図39に示すようなインクが用いられており、赤外部の反射吸収特性と磁性強度とが共に相対的に異なり、相対的に赤外部の反射率が高い凹版画像の方が低い磁性強度を示し、さらに視覚的に容易に色彩を互いに識別することができる2種類の茶褐色系及び暗緑色系の凹版インキで印刷されている。
更に、磁気強度が相対的に低く赤外部の反射率の高い凹版印刷画像の裏面には、黒色系のインキによってベタ印刷が施されている。
次に、上記実施例による印刷物を用いて真偽判別を行う方法について説明する。この真偽判別方法は、真偽判別印刷物に形成された2種類の画像におけるそれぞれの赤外部の反射率の差、赤外部の透過率の差及び磁気強度の差を検出し照合することによって、印刷物の真偽判別を行うものである。
(実施例1の印刷物に対する真偽判別)
上記実施例1による印刷物における2種類の凹版画像の赤外部の反射率を図7の曲線6及び7に、磁性特性の測定値を図8の8、図9の9に示す。更に、2種類の凹版画像の赤外部の透過特性を評価した結果を図40の48及び49に示す。
ここで、凹版画像領域の赤外部の透過特性は、以下のようなIR透過光学特性測定法を用いて評価した。
透過赤外LED(940nm)を発光させ、測定対象物を透過したIRの光量をイメージセンサによって採取し、画像表示させてその赤外部の透過特性を評価する。イメージセンサによって採取された赤外部の透過画像信号を増幅させ、アナログ/ディジタル変換を行ってディジタルデータに変換し、コンピュータのモニタ画像に表示する。データの表示は、例えば0〜255階調とする。赤外LEDのIR光が完全に透過する場合、255/255階調で白色の画像として表示され、完全に遮蔽される場合は0/255階調で黒色の画像として表示される。
赤外部の透過性の評価に用いる測定値は、それぞれの凹版画線が施されている5mm×5mm領域内の平均値とした。
測定値をA/D変換して得られたディジタルデータが、150/255以上のモノクロ階調を示す場合、その画線領域は赤外部透過性を示すと定義し、それ以下の場合は赤外部吸収性(非透過性)を示すと定義した。
上述した各実施例に従って作成した凹版印刷物に含まれる2種類の凹版画像のうち、相対的に赤外部の反射率が低い凹版画線領域の赤外部の透過画像は116/255のモノクロ階調として表示される。一方、相対的に赤外部の反射率が高い凹版画線領域の赤外部の透過画像は、125/255のモノクロ階調として表示される。従って、この場合の2種類の凹版画像は、両者とも赤外部非透過性画像として識別されることになる。
このように、予め真正の印刷物に含まれる2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶しておき、判別の対象物である印刷物に含まれる2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し、記憶した真正の印刷物のデータと比較照合することによって、印刷物の真偽判別を行うことで、第三者が模倣した偽造印刷物と真正の印刷物とを高い精度で選別することができる。
(実施例2の印刷物に対する真偽判別)
上記実施例2に含まれる2種類の凹版画像の赤外部の反射率を図11の曲線12及び13に示し、磁性特性の測定値を図12の14及び図13の15に示す。さらに、2種類の凹版画像の赤外部の透過特性を評価した結果を図41の50及び51に示す。
実施例で得られた凹版印刷物の2種類の凹版画像の中で、相対的に赤外部の反射率が低い凹版画線領域の赤外部の透過画像は116/255のモノクロ階調として表示される。また、相対的に赤外部の反射率が高い凹版画線領域のIR透過画像は、125/255のモノクロ階調として表示される。従って、実施例で得られた凹版印刷物の2種類の凹版画像は両者とも赤外部非透過性画像として識別される。
したがって、予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、上記2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することによって、第三者が模倣した偽造印刷物と真正の印刷物とを高精度で選別することができる。
(実施例3の印刷物に対する真偽判別)
上記実施例3の2種類の凹版画像の赤外部の反射率を図15の曲線18及び19、磁性特性の測定値を図16の20及び図17の21に示す。更に、2種類の凹版画像の赤外部の透過特性を評価した結果を図42の52及び53に示す。
上記実施例3に従って作成した凹版印刷物に含まれる2種類の凹版画像のうち、相対的に赤外部の反射率が低く磁性強度が小さい凹版画線領域の赤外部の透過画像は、116/255のモノクロ階調として表示される。また、相対的に赤外部の反射率が高く磁性強度が大きい凹版画線領域のIR透過画像は、125/255のモノクロ階調として表示される。従って、実施例3により得られた凹版印刷物における2種類の凹版画像は、両者とも赤外部非透過性画像として識別される。
この場合も、予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、判別対象物における2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することで、印刷物の真偽判別を高い精度で行うことができる。
(実施例4の印刷物に対する真偽判別)
上記実施例4に従って作成した印刷物における2種類の凹版画像の赤外部の反射率を図19の面線24及び25に示し、それぞれの磁性特性の測定値を図20の26及び図21の27に示す。また、2種類の凹版画像の赤外部の透過特性を評価した結果を図43の54及び55に示す。
上記実施例4で得られた凹版印刷物の2種類の凹版画像の中で、相対的に赤外部の反射率が低く磁性強度が小さい凹版画線領域の赤外部の透過画像は、116/255のモノクロ階調として表示される。また、相対的に赤外部の反射率が高く磁性強度が大きい凹版画線領域の赤外部の透過画像は、125/255のモノクロ階調として表示される。よって、上記実施例4に従って得られた凹版印刷物における2種類の凹版画像は、両者とも赤外部非透過性画像として識別される。
予め、真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶しておき、判別対象物の2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合するで、印刷物の真偽判別が可能である。
(実施例5の印刷物に対する真偽判別)
上記実施例5の2種類の凹版画像の赤外部の反射率を図24の30及び31に、磁性特性の測定値をそれぞれ図25の32、図26の33に示し、さらに赤外部の透過特性を評価した結果を図44の56及び57に示す。
実施例で得られた凹版印刷物の2種類の凹版画像のうち、相対的に磁性強度が小さい凹版画線領域の赤外部の透過画像は、165/255のモノクロ階調として表示され、相対的に磁性強度が大きい凹版画線領域の赤外部の透過画像は、120/255のモノクロ階調として表示される。従って、上記実施例5で得られた凹版印刷物の2種類の凹版画像は明らかにそれぞれ異なった赤外部透過性を有する画像として識別される。
従って、予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、上記2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することによって、印刷物の真偽判別を行うことができる。
(実施例6の印刷物に対する真偽判別)
上記実施例6の2種類の凹版画像の赤外部の反射率を図30の曲線36及び37に示し、磁性特性の測定値をそれぞれ図31の38に、図32の39に示す。さらに、2種類の凹版画像の赤外部の透過特性を評価した結果を図45の58及び59に示す。
実施例で得られた凹版印刷物の2種類の凹版画像の中で、相対的に磁性強度が小さい凹版画線領域の赤外部の透過画像は、165/255のモノクロ階調として表示され、相対的に磁性強度が大きい凹版画線領域の赤外部の透過画像は、120/255のモノクロ階調として表示される。従って、上記実施例6で得られた凹版印刷物の2種類の凹版画像は明らかにそれぞれ異なった赤外部透過性を有する画像として識別される。
従って、予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、上記2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することによって、印刷物の真偽判別を行うことができる。
(実施例7の印刷物に対する真偽判別)
実施例7に含まれる2種類の凹版画像における赤外部の反射率を図36の曲線44及び45に示し、磁性特性の測定値を図37の46及び図38の47に示す。さらに、2種類の凹版画像領域の赤外部の透過特性を評価した結果を図46の60及び61に示す。
本実施例で得られた凹版印刷物の2種類の凹版画像の中で、相対的に赤外部の反射率が低く磁性強度が大きい凹版画線領域の赤外部の透過画像は、116/255のモノクロ階調として表示される。また、相対的に赤外部の反射率が高く磁性強度が小さく、さらに裏面に図34に示すインキによって印刷が施されている凹版画線領域の赤外部の透過画像は、71/255のモノクロ階調として表示される。よって、実施例7で得られた凹版印刷物の2種類の凹版画像は、両者とも赤外部非透過性画像として識別される。
予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、判別対象物の2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することによって、真正の印刷物を選別することができる。
(実施例8の印刷物に対する真偽判別)
上記実施例8の2種類の凹版画像の赤外部の反射率の測定値を図25の曲線30及び31に示し、磁性特性の測定値を図26の32及び図27の33にそれぞれ示す。また、2種類の凹版画像領域の赤外部の透過特性を評価した結果を、図47の62及び63に示す。
上記実施例8により得られた凹版印刷物の2種類の凹版画像のうち、相対的に磁性強度が小さい凹版画線領域の赤外部の透過画像は75/255のモノクロ階調として表示され、相対的に磁性強度が大きい凹版画線領域の赤外部の透過画像は、120/255のモノクロ階調として表示される。よって、上記実施例8に従って得られた凹版印刷物の2種類の凹版画像は、両者とも赤外部非透過性画像として識別される。
即ち、予め真正の印刷物の可視光部の光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、判別対象物の2種類の印刷画像の可視光部の光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出して照合することで、印刷物の真偽判別を行うことが可能である。
(実施例9の印刷物に対する真偽判別)
実施例9に用いた印刷画像を形成するために用いたインキ配合を図39に示す。この凹版インキを用いて、図5に示される凹版印刷物1を作製した。本実施例9に従って形成された凹版印刷物1における二つの印刷画線2、3は、それぞれ赤外部の反射吸収特性と磁性強度が異なり、相対的に赤外部の反射率が高い凹版画像の方が低い磁性強度を示し、視覚的に容易には色彩を互いに識別でき32種類の茶褐色系及び暗緑色系の凹版インキで印刷されている。
この場合の凹版磁性画像の分光反射率を、図36の曲線44及び45に示す。
相対的に磁性強度が大きく赤外部の反射率が相対的に低い凹版磁性画像の磁気強度相対値を図37の37に示し、相対的に磁性強度が小さく赤外部の反射率が相対的に高い凹版磁性画像の磁気強度相対値を図38の47に示す。さらに、2種類の凹版画像の赤外部の透過特性を評価した結果を、図48の64及び65に示す。
実施例で得られた凹版印刷物の2種類の凹版画像のうち、相対的に磁性強度が高く赤外部の反射率が相対的に低い凹版磁性画像領域の赤外部の透過画像は116/255のモノクロ階調として表示され、相対的に磁性強度が低く赤外部の反射率が相対的に高い凹版磁性画像領域の赤外部の透過画像は、162/255のモノクロ階調として表示される。従って、本実施例*に従って得られた凹版印刷物の2種類の凹版画像は明らかにそれぞれ異なった赤外部透過性を有する画像として識別することができる。
よって、予め真正の印刷物の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を記憶させておき、判別対象物における2種類の印刷画像の可視光部光学情報、赤外部の反射率の差、透過率の差及び磁気強度を検出し照合することにより、第三者が模倣した偽造印刷物と真正の印刷物とを高精度で選別することが可能である。
上述した実施例はいずれも一例であり、本発明を限定するものではなく、本発明の技術的範囲内において様々に変形することが可能である。
【図面の簡単な説明】
添付図面において、
図1は、実施例1で用いるインキの配合を示す。
図2は、実施例2で用いるインキの配合を示す。
図3は、実施例3で用いるインキの配合を示す。
図4は、実施例4で用いるインキの配合を示す。
図5は、各実施例における真偽判別印刷物を示す。
図6は、実施例1のベタインキ皮膜の分光反射率を示す。
図7は、実施例1の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図8は、実施例1の赤外部吸収タイプ凹版画像の出力電圧相対値を示す。
図9は、実施例1の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図10は、実施例2のベタインキ皮膜の分光反射率を示す。
図11は、実施例2の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図12は、実施例2の赤外部吸収タイプ凹版画像の出力電圧相対値を示す。
図13は、実施例2の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図14は、実施例3のベタインキ皮膜の分光反射率を示す。
図15は、実施例3の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図16は、実施例3の赤外部吸収タイプ凹版画像の出力電圧相対値を示す。
図17は、実施例3の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図18は、実施例4のベタインキ皮膜の分光反射率を示す。
図19は、実施例4の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図20は、実施例4の赤外部吸収タイプ凹版画像の出力電圧相対値を示す。
図21は、実施例4の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図22は、実施例1〜4における反射率と磁性強度を示す。
図23は、実施例5で用いるインキの配合を示す。
図24は、実施例5のベタインキ皮膜の分光反射率を示す。
図25は、実施例5の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図26は、実施例5の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図27は、実施例6の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図28は、実施例6で用いるインキの配合を示す。
図29は、実施例6のベタインキ皮膜の分光反射率を示す。
図30は、実施例6の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図31は、実施例6の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図32は、実施例6の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図33は、実施例7で用いるインキの配合を示す。
図34は、裏面に施すIR吸収性インキの配合を示す。
図35A、35Bは、各実施例における真偽判別印刷物の正面図である。
図36は、実施例7の凹版インキによる凹版画線から構成される画像の分光反射率を示す。
図37は、実施例7の赤外部吸収タイプ凹版画像の出力電圧相対値を示す。
図38は、実施例7の赤外部反射タイプ凹版画像の出力電圧相対値を示す。
図39は、実施例9で用いるインキの配合を示す。
図40は、実施例1の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図41は、実施例2の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図42は、実施例3の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図43は、実施例1の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図44は、実施例2の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図45は、実施例6の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図46は、実施例7の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図47は、実施例8の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
図48は、実施例9の赤外部吸収タイプ及び反射タイプのインキ画線における赤外部の透過量を示す。
1 実施例の真偽判別凹版印刷物
2 磁性凹版画像
3 磁性凹版画像
4 赤外部吸収タイプの凹版磁性インキのベタインキ皮膜の分光反射率
5 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
6 赤外部吸収タイプの凹版磁性画像の分光反射率
7 赤外部反射タイプの凹版磁性画像の分光反射率
8 赤外部吸収タイプの凹版磁性画像の磁気強度相対値
9 赤外部反射タイプの凹版磁性画像の磁気強度相対値
10 赤外部吸収タイプの凹版磁性インキのベタインキ皮膜の分光反射率
11 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
12 赤外部吸収タイプの凹版磁性画像の分光反射率
13 赤外部反射タイプの凹版磁性画像の分光反射率
14 赤外部吸収タイプの凹版磁性画像の磁気強度相対値
15 赤外部反射タイプの凹版磁性画像の磁気強度相対値
16 赤外部吸収タイプの凹版磁性インキのベタインキ皮膜の分光反射率
17 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
18 赤外部吸収タイプの凹版磁性画像の分光反射率
19 赤外部反射タイプの凹版磁性画像の分光反射率
20 赤外部吸収タイプの凹版磁性画像の磁気強度相対値
21 赤外部反射タイプの凹版磁性画像の磁気強度相対値
22 赤外部吸収タイプの凹版磁性インキのベタインキ皮膜の分光反射率
23 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
24 赤外部吸収タイプの凹版磁性画像の分光反射率
25 赤外部反射タイプの凹版磁性画像の分光反射率
26 赤外部吸収タイプの凹版磁性画像の磁気強度相対値
27 赤外部反射タイプの凹版磁性画像の磁気強度相対値
28 赤外部反射タイプの凹版磁性画像の分光反射率
29 赤外部反射タイプの凹版磁性画像の分光反射率
30 赤外部反射タイプの凹版磁性画像の分光反射率
31 赤外部反射タイプの凹版磁性画像の分光反射率
32 赤外部反射タイプの凹版磁性画像の磁気強度相対値
33 赤外部反射タイプの凹版磁性画像の磁気強度相対値
34 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
35 赤外部反射タイプの凹版磁性インキのベタインキ皮膜の分光反射率
36 赤外部反射タイプの凹版磁性画像の分光反射率
37 赤外部反射タイプの凹版磁性画像の分光反射率
38 赤外部反射タイプの凹版磁性画像の磁気強度相対値
39 赤外部反射タイプの凹版磁性画像の磁気強度相対値
40 磁性凹版画像
41 磁性凹版画像
42 ベタ印刷
43 印刷のない領域
44 赤外部吸収タイプの凹版磁性画像の分光反射率
45 赤外部反射タイプの凹版磁性画像の分光反射率
46 赤外部吸収タイプの凹版磁性画像の磁気強度相対値
47 赤外部反射タイプの凹版磁性画像の磁気強度相対値
48 赤外部吸収タイプの赤外部透過量
49 赤外部反射タイプの赤外部透過量
50 赤外部吸収タイプの赤外部透過量
51 赤外部反射タイプの赤外部透過量
52 赤外部吸収タイプの赤外部透過量
53 赤外部反射タイプの赤外部透過量
54 赤外部吸収タイプの赤外部透過量
55 赤外部反射タイプの赤外部透過量
56 赤外部反射タイプの赤外部透過量
57 赤外部反射タイプの赤外部透過量
58 赤外部反射タイプの赤外部透過量
59 赤外部反射タイプの赤外部透過量
60 赤外部吸収タイプの赤外部透過量
61 赤外部反射タイプの赤外部透過量
62 赤外部反射タイプの赤外部透過量
63 赤外部反射タイプの赤外部透過量
64 赤外部吸収タイプの赤外部透過量
65 赤外部反射タイプの赤外部透過量
Technical background
The present invention has a high financial value, such as banknotes, various securities, stock certificates, pass tickets such as tickets and commuter passes, coupons on toll roads, passports, income stamps, various tickets, and other securities. Forgery is difficult in printed matter that requires prevention and authenticity determination means, and even if the superficial printing form is imitated and forged, authenticity can be easily identified by the authenticity identification method according to the present invention. The present invention relates to a discrimination print and a method of discriminating the authenticity thereof.
Banknotes, stock certificates, or other securities have a monetary value, and therefore, it is necessary to apply forgery and tampering prevention techniques to guarantee and maintain the value and security. Therefore, for such printed matter, forgery is made difficult by adopting a special technology for printing patterns such as paper watermarks, special color inks, and minute characters, or arbitrary patterns can be obtained by irradiating ultraviolet rays by using luminescent ink. In order to ensure the safety of the printed matter, a method of visualizing the information image is incorporated.
More recently, in addition to the above-described visual forgery prevention technology, with the progress of optical or magnetic signal detection devices, a true / false discrimination device equipped with a high-performance detector has been used. There is also provided a printed matter incorporating a technology for authenticity determination which cannot be distinguished by machine processing.
For example, Japanese Unexamined Patent Publication (Kokai) No. 63-144075 proposes a true / false discrimination print and a true / false discrimination method using two types of inks having different infrared reflection / absorption characteristics which are difficult to recognize with the naked eye. Japanese Patent Application Laid-Open No. 3-252901 proposes a method of detecting the magnetic characteristics of a magnetic medium on which information is written by using a magnetic material to determine the authenticity of the magnetic medium.
However, none of these methods can be said to be sufficient authenticity discrimination and forgery prevention means. With regard to watermarks on paper, images with special color inks, and security images using minute characters, the anti-counterfeiting effect is questionable as the price of modern high-performance computers, scanners, and color copiers has been reduced and spread to the general public. It is being watched. In addition, the authenticity discrimination technology using luminescent ink is insufficient in its counterfeit prevention and authenticity discrimination, considering that a variety of luminescent materials are distributed in the general market.
Furthermore, a combination of a print image having a reflection characteristic and a print image having an absorption characteristic in a simple infrared region, and an image having magnetism are now common technologies in the security printing field. ing. In particular, it is well known to the general public that magnetic streaks are used for security prints, and printed materials that are given a signal similar to the real one by using materials that can be purchased in the general market Can be easily manufactured, and this type of counterfeiting has also occurred.
As described above, the conventional forgery prevention technology and the authenticity determination technology for printed matter are no longer satisfactory with the recent development of materials and electronic technologies.
SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a genuine / authentic discriminating printed matter and a genuine / judgment discriminating method that can be imitated at first glance, but are extremely difficult to forge, and can be easily judged even if forged. The purpose is to do.
Overview of the invention
The authenticity discrimination print of the present invention is an authenticity discrimination print including at least a first print image and a second print image in at least a part of a design, wherein the first print image has an infrared reflection. Is formed using an ink containing a magnetic material having a reflectance of 30% or more, the reflectance in the infrared portion is 30% or more, the magnetic material has a predetermined magnetic intensity, and the second printed image is red. The external reflectance has a difference of 10% or more from the first printed image, and has substantially the same magnetic intensity as the predetermined magnetic intensity.
Further, in the authenticity discrimination print of the present invention, the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared part. Has a predetermined magnetic intensity of 30% or more, and the second printed image has a difference of 10% or more in reflectance of the infrared part from the first printed image, and the second magnetic image has a predetermined magnetic intensity. Have different magnetic strengths,
Among the first and second printed images, the one having a relatively low reflectance in the infrared region has a relatively high magnetic strength.
Alternatively, in the authenticity discrimination print of the present invention, since the first printed image is formed using an ink containing a magnetic material having an infrared portion reflectance of 30% or more, the reflectance of the infrared portion is reduced. The second printed image has a predetermined magnetic intensity of 30% or more, and the second printed image differs from the first magnetic image in reflectance of the infrared portion by 10% or more from the first printed image. Has magnetic strength,
Among the first and second printed images, the one having a relatively high reflectance in the infrared region has a relatively high magnetic intensity.
Further, in the authenticity discrimination print of the present invention, the first printed image is formed using an ink containing a magnetic material having an infrared reflectance of 30% or more, so that the reflectance of the infrared radiation is reduced. 30% or more, having a predetermined magnetic intensity, wherein the second printed image has substantially the same reflectance of the infrared portion as the first printed image, and has a lower magnetic intensity than the predetermined magnetic intensity. It is characterized by the following.
Further, in the authenticity discrimination print of the present invention, the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared part, so that the reflectance in the infrared part is reduced. 30% or more, having a predetermined magnetic intensity, having a predetermined infrared transmission amount, and wherein the second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more from the first printed image. And has a magnetic intensity that is substantially the same as the predetermined magnetic intensity, and has a transmission amount outside the sex that is substantially the same as the transmission amount of the predetermined infrared portion.
Alternatively, in the authenticity discrimination print of the present invention, since the first printed image is formed using an ink containing a magnetic material having an infrared portion reflectance of 30% or more, the reflectance of the infrared portion is reduced. The second printed image has a predetermined magnetic intensity of 30% or more, and the second printed image differs from the first magnetic image in reflectance of the infrared portion by 10% or more from the first printed image. Has magnetic strength,
Of the first and second print images, the one with a relatively low reflectance in the infrared part has a relatively high magnetic intensity, and the one with a relatively low reflectance in the infrared part is relatively small. It has an infrared transmission amount.
Alternatively, the authenticity discrimination printed material of the present invention is characterized in that the first printed image is formed by using an ink containing a magnetic material having a reflectance of 30% or more in the infrared part, so that the infrared part reflects the infrared part. The second print image has a reflectance of 30% or more, has a predetermined magnetic intensity, has a predetermined amount of transmission in the infrared region, and has a reflectance in the infrared region of 10% or more that of the first print image. Having a magnetic intensity different from the predetermined magnetic intensity, having a transmission amount of the infrared portion substantially equal to the transmission amount of the predetermined infrared portion, and having a transmission amount of the first and second print images. Among them, the one having a relatively high reflectance in the infrared region has a relatively high magnetic intensity.
Further, in the authenticity discrimination print of the present invention, the first printed image is formed using an ink containing a magnetic material having an infrared reflectance of 30% or more, so that the reflectance of the infrared radiation is reduced. 30% or more, having a predetermined magnetic intensity, having a predetermined infrared transmission amount, and wherein the second printed image has substantially the same infrared reflectance as the first printed image, It is characterized by having a magnetic intensity lower than the predetermined magnetic intensity, and having a transmission amount of an infrared portion larger than a transmission amount of the predetermined infrared portion.
In the authenticity discrimination print of the present invention, since the first printed image is formed using an ink containing a magnetic material having an infrared portion reflectance of 30% or more, the infrared portion reflectance is 30%. % Or more, has a predetermined magnetic intensity, is printed on the back side with an ink that absorbs infrared light, has a predetermined infrared transmission amount, and the second printed image is an infrared light. Has a difference of 10% or more from the first printed image, has a magnetic intensity different from the predetermined magnetic intensity, and has a transmission amount of an infrared portion substantially the same as the predetermined infrared portion. Of the first and second print images, the one having a relatively low reflectance in the infrared region has a relatively high magnetic intensity.
Further, in the authenticity discrimination print of the present invention, the first printed image is formed using an ink containing a magnetic material having an infrared reflectance of 30% or more, so that the reflectance of the infrared radiation is reduced. 30% or more, having a predetermined magnetic intensity, having a predetermined infrared transmission amount, and wherein the second printed image has substantially the same infrared reflectance as the first printed image, It has a magnetic intensity lower than the predetermined magnetic intensity, and is printed on the back side with an ink that absorbs infrared light, and has a transmission amount of the infrared portion substantially equal to the transmission amount of the predetermined infrared portion. It is characterized by.
Here, the first and second printed images may be difficult or relatively easy to distinguish colors with the naked eye.
In the method for determining the authenticity of a printed matter according to the present invention, the printed matter includes at least a first print image and a second print image in at least a part of a design, and the first print image has an infrared portion. The second printed image is formed using an ink containing a first magnetic material having a reflectance of 30% or more, and the reflectance of an infrared portion of the first magnetic material is not less than 10% or more than that of the first magnetic material. Is formed using an ink containing a second magnetic material having the following. The reflectance and the magnetic intensity of each infrared portion of the first and second printed images are detected and collated with respect to the printed matter. Thus, the authenticity of the printed matter is determined.
Here, the authenticity of the printed matter may be determined by detecting and collating the optical information of the visible light part in addition to the reflectance and the magnetic intensity of the infrared part.
Alternatively, the authenticity of the printed matter may be determined by detecting and comparing the transmission amount of the infrared portion in addition to the reflectance and the magnetic intensity of the infrared portion.
Alternatively, the method for determining the authenticity of a printed matter according to the present invention includes detecting the reflectance of the infrared part, the magnetic intensity, and the optical information of the visible light part, and detecting and comparing the transmission amount of the infrared part. The authenticity determination may be performed.
DETAILED DESCRIPTION OF THE INVENTION
General magnetic materials exhibit absorption characteristics in the visible region and also exhibit absorption characteristics in the infrared region. For this reason, it has not been possible to produce a magnetic printed matter exhibiting reflection characteristics in the infrared region.
Therefore, a printed matter in which a magnetic image area exhibiting a reflection characteristic in the infrared region and a magnetic image area exhibiting an absorption characteristic in the infrared region are combined cannot be realized with a general magnetic material. Is realized, the printed matter becomes a true / false discrimination that is very difficult to imitate and forge.
The inventor of the present invention has found that it is possible to increase the reflectance in the infrared region by using an ink containing a magnetic material having a higher reflectance in the infrared region than a commonly used magnetic material, The authors have proposed the authenticity discrimination printed matter and the authenticity discrimination method of the present invention.
The authenticity discrimination printed matter according to the embodiment of the present invention described below uses at least two types of printing using a magnetic material having an absorption characteristic in a general infrared region and a magnetic material having a reflection characteristic as described later. At least one of the reflection and absorption characteristics and the magnetic intensity of the infrared portion in the image is set to be different. The authenticity discrimination method according to the embodiment of the present invention measures the magnetic intensity, the optical information of the infrared portion, or the optical information of the visible light region in each of the two types of print images, and sets the preset information. By comparing and comparing with the true information, the authenticity of the printed matter is determined.
Here, the magnetic material to be mixed with the ink used to form a printed image having a high reflectance in the infrared region includes general black, black-gray and brown-colored magnetic materials having a low reflectance in the infrared region. Unlike this, a magnetic material having a relatively high reflectance in the infrared region is used.
On the other hand, the magnetic material to be mixed with the ink used to form a print image having a low reflectance in the infrared region includes a general black, black-gray and brown-colored magnetic material having a low reflectance in the infrared region. Used.
As a method of lowering the reflectance in the infrared, in addition to using a general magnetic material having a low infrared reflectance, a pigment having a low infrared reflectance together with a magnetic material having a relatively high infrared reflectance is used. May be used.
The magnetic material having a relatively high reflectance in the infrared region is composed of a magnetic material having a particle diameter in a range of 0.1 μm to 20 μm as a nucleus and SiO 22, Ag, TiO2By coating with CIE-L*a*b*L*Is 70 or more, a*Is -2 to 2, b*Is preferably 0 to 15. However, there is no particular limitation.
The magnetic material serving as the core of the magnetic material may be any magnetic material that can be used for a magnetic printing ink for forming a magnetic printing pattern as generally used in a method for mechanically reading a magnetic signal. Wetite (FeO), magnetite (Fe3O4), Iron ore (Fe2O3), Hematite (α-Fe2O3), Maghematite (γ-Fe2O3), Co-containing iron oxide, CrO2, Metal powders such as iron, and magnetic materials such as Ba ferrite. However, the magnetic material serving as the coating nucleus of the magnetic material is not limited to this, and may be of any material and shape as long as it has magnetism and can be used as a pigment for printing ink.
The material to be coated around the core magnetic material is SiO.2, Ag, TiO2Is preferred, but not limited thereto, as the material thereof, organic pigments or zirconium dioxide, cerium dioxide, zinc oxide, tartan oxide, indium oxide, tin oxide, a mixture of tin oxide-indium oxide, aluminum oxide, Examples of the magnesium oxide and the simple metal material include metals such as aluminum, titanium, nickel, and iron, and inorganic materials such as alloys thereof.
Further, the method of coating the nuclear magnetic material with the coating material is most preferably performed by a sol-gel method by hydrolysis of a metal alkoxide, but the means of coating is not limited to this, and may be formed by vapor deposition, sputtering, or the like. Any means may be used as long as it performs a surface treatment such as a coating method and a plating method.
Further, the geometric thickness of each of the materials coated according to the invention is SiO 22Is 10 to 100 nm, Ag is 10 to 100 nm, TiO2Is preferably 0.1 nm or more, but the thickness of various materials is not limited thereto, and the number of each coating layer may be at least one or more. Any structure may be used as long as the finally obtained magnetic material has a high reflectance of 30% or more in the infrared region.
Further, in order to give a printed image a magnetic strength having a sufficient SN ratio with respect to a mechanical magnetic detector, the mixing ratio of a magnetic material to be mixed in the ink is set to 5% or more with respect to the total amount of the ink. It is desirable.
Further, the difference between the reflectances of the infrared portions in the two types of printed images is preferably 10% or more in order to obtain a good SN ratio suitable for mechanical processing, and the reflectance of the infrared portions is relatively high. In a printed image, it is desirable that the reflectance in the infrared region is 30% or more. If the difference between the reflectances of the infrared portions of the two types of printed images is less than 10%, the degree of dependence on the sensitivity of the detection device increases, and it may be difficult to detect the difference with a detector with low detection accuracy. is there.
Further, the colors of the two types of printed images may be easily distinguishable to the naked eye, or may be difficult to distinguish. That is, if the two types of printed images have substantially the same or relative differences in magnetic intensity to the extent that machine reading is possible, and if the measured values of the reflectance in the infrared region are substantially the same or relatively different. Just fine.
The color of the ink used when forming two types of print images may be any color. The types of pigments used in the ink include, for example, inorganic powders such as ultramarine, navy blue (Prussian blue), and cobalt blue, and phthalocyanine blue-based, sllen-based, azo-based, and anthraquinone-based C.I. I. Pigment Blue as an organic pigment or a red pigment, inorganic pigments such as cadmium red, red iron oxide, molybdenum red, and C.I. such as azo, quinacridone, perylene, and lake red. I. Pigment Red, inorganic pigments such as yellow chrome yellow, cadmium yellow, and titanium yellow, and C.I. pigments such as quinophthalone and azoisoindoline. I. Examples of organic pigments and violet pigments belonging to CI Pigment Yellow include inorganic powders such as cobalt violet and manganese violet, and C.I. I. Pigment Violet includes organic pigments and green pigments such as chromium green and cobalt green, and phthalocyanine-based C.I. I. As organic pigments and white pigments belonging to Pigment Green, titanium oxide pigments, and extender pigments include barium sulfate, alumina white, silicon oxide, calcium phosphate and calcium carbonate pigments. A colorant having an arbitrary color tone can be adjusted by combining these powders in several colors. In addition, known colored inks such as offset ink and gravure ink used in general printing can be used as the colored material. However, the pigment used for the ink used to form an image having a relatively high reflectance in the infrared region needs to be used in consideration of the reflectance in the infrared region. Not desirable.
Furthermore, the varnish used as the ink binder used in the present invention is a varnish that disperses the pigment and the like to form a print image, and the type thereof is not particularly limited, and is not particularly limited. Can be used. As a resin used for such an ink varnish, an acrylic resin, a polyester resin, an alkyd resin, a rosin-modified phenol resin, a silicone resin, and a fluororesin are mixed with a basic resin, and a crosslinking agent such as an amino resin or an isocyanate compound is mixed as necessary. Can be mentioned. In addition, there are ultraviolet, i.e., UV curable and electron beam, i.e., EB curable resins having epoxy rings, oxetanyl groups, acryloyl groups and methacryloyl groups. In addition, a coating resin such as a two-pack polyurethane resin or a two-pack silicone resin that dries or cures at room temperature can also be used. These varnishes may be used alone or in combination of two or more.
Further, as a method of creating a magnetic image when forming two types of print images, any method may be used as long as it is a means for forming a film. For example, any method such as gravure printing, offset printing, screen printing, intaglio printing, flexographic printing, and other known printing methods, such as a method of forming a film such as a spray method used for sheet metal coating, a press method, and the like, may be used. Can be.
Hereinafter, a printed material according to each embodiment will be described with reference to the drawings. Here, the printing method is not limited.
(Example 1)
FIG. 1 shows the composition of each ink (infrared absorption type and infrared reflection type) used for two types of printed images in Example 1. These two types of inks have different reflection and absorption characteristics in the infrared region, but have substantially the same magnetic strength, and are dark green intaglio inks whose colors cannot be easily distinguished visually.
(Example 2)
FIG. 2 shows the composition of each ink (infrared absorption type and infrared reflection type) used for two types of printed images in Example 2. The two types of inks have different reflection and absorption characteristics in the infrared region, but have substantially the same magnetic strength, and can be easily distinguished from each other visually. It is an intaglio ink.
(Example 3)
FIG. 3 shows the composition of each ink (infrared absorption type and infrared reflection type) used for two types of printed images in Example 3. The two types of inks differ in the reflection and absorption characteristics of the infrared region and in the magnetic strength. An ink having a relatively high reflectance in the infrared region has a higher magnetic strength and is a dark green intaglio ink in which colors cannot be easily distinguished from each other visually.
(Example 4)
FIG. 4 shows the composition of each ink (infrared absorption type and infrared reflection type) used for two types of printed images in Example 4. These two types of inks differ in the reflection and absorption characteristics and the magnetic intensity of the infrared region, and the higher the reflectance in the infrared region, the higher the magnetic intensity and the brownish color that can easily distinguish colors from each other visually. It is an infrared absorption intaglio ink and a dark green infrared reflection type intaglio ink.
Next, the results of measuring the spectral reflectance and the magnetic intensity of Examples 1 to 4 will be described.
(Solid reflectance)
In each example, a solid ink film having a film thickness of about 40 μm was measured with a spectrophotometer.
(Reflectance of printed image)
An intaglio printed matter 1 shown in FIG. 5 was produced using the intaglio ink. The authenticity intaglio printed matter 1 has magnetic images 2 and 3. The spectral reflectance of each of the images 2 and 3 was measured.
Images 2 and 3 use different magnetic intaglio inks, respectively, and have intaglio printing on an intaglio printing plate having an image width of 100 μm, an image pitch of 300 μm, and an image depth of 100 μm.
(Magnetic strength)
The magnetic intensity of each intaglio image in images 2 and 3 was detected by a magnetic detection head and converted into an electric signal to obtain a relative value.
6 to 21 show measurement data in each example, and FIG. 22 shows the results of each example and the measurement results collectively.
From these results, it was found that there was a difference of about 25% or more in the spectral reflectance in each of the examples, and that the difference could be sufficiently detected by mechanical processing. On the other hand, Examples 1 and 2 have almost the same magnetic strength, indicating that Examples 3 and 4 are significantly different.
With a conventional magnetic material having a very low reflectance in the infrared region, it was impossible to obtain a high reflectance and a high magnetic strength in the infrared region of the infrared reflection type of Examples 1 to 4. However, in the present invention, by using a special white magnetic material having a high reflectance in the infrared region, an infrared reflection type ink having a high magnetic intensity is made possible. Became possible.
Suppose, for the authenticity intaglio printed matter of the present embodiment, a third party infers to some extent intaglio images having two types of machine-readable magnetic intensities having different infrared-ray reflection / absorption characteristics, and using a commercially available magnetic material to produce a magnetic image. However, it is impossible to imitate the reflection and absorption characteristics of the two types of intaglio images in the infrared region. Further, even if the difference between the reflectances of the infrared portions applied to the two types of intaglio images is given by a commercially available pigment, it is impossible to simultaneously impart magnetic intensity to the two types of intaglio images.
According to the authenticity discrimination printed matter and the authenticity discrimination method according to the embodiment of the present invention, it is possible to imitate the appearance by a computer, a scanner, or the like, but the reflection and absorption characteristics in the infrared region, which are impossible with a general magnetic material. And magnetic characteristics, it is possible to easily determine the authenticity.
Further, the authenticity discrimination printed matter according to Examples 5 to 8 of the present invention and the discrimination method using the authenticity discrimination printed matter of each embodiment will be described.
(Example 5)
FIG. 23 shows the ink formulation used in Example 5. The features of the intaglio image formed by the fifth embodiment are as follows. The reflection and absorption characteristics of the infrared region are almost the same, the magnetic intensities are clearly different from each other, and they are printed with a dark green infrared reflection type intaglio ink whose colors cannot be easily distinguished visually. .
Objects 2 and 3 shown in FIG. 5 were produced using such an intaglio ink.
The spectral reflectances of the solid ink (film thickness: about 40 μm) in the ink used in this example are shown by curves 28 and 29 in FIG.
The spectral reflectances of the intaglio magnetic image produced in this example are shown by curves 30 and 31 in FIG.
The relative value of the magnetic intensity of the intaglio magnetic image of the infrared reflection type having a relatively small magnetic intensity produced in this example is shown in FIG. The relative values of the magnetic intensity of the image are shown at 33 in FIG.
From this measurement result, it is recognized that the spectral reflectances of the intaglio magnetic image are almost the same, and that the visible region and the infrared region are sufficiently the same by mechanical processing.
On the other hand, the magnetic intensities are clearly different, and it can be seen that the relative difference can be sufficiently detected by the mechanical treatment.
With a conventional magnetic material having a very low reflectance in the infrared region, it was impossible to obtain a high reflectance and a high magnetic strength in the infrared region of the infrared reflection type. Therefore, it was impossible to form two or more types of intaglio images having a high reflectance in the infrared region and a clear difference in magnetic strength as shown in this example.
On the other hand, according to the present embodiment, the use of a special white magnetic material having a high reflectance in the infrared region enables the use of an infrared reflection type ink having a high magnetic strength. It is possible to form two or more types of intaglio images that have a high reflectivity in the infrared region and a distinct difference in magnetic strength.
For example, even if a third party estimates the intaglio image having a high infrared portion reflectance and high magnetic strength to some extent, and imparts magnetism with a commercially available magnetic material or the like, It is impossible to imitate the reflection characteristics of the two types of intaglio images in the infrared region.
Further, even if a commercially available pigment is used to give the reflectance of the infrared portion applied to the two types of intaglio images, it is extremely difficult to apply the same magnetic intensity to the two types of intaglio images simultaneously as in this embodiment. Have difficulty. Therefore, according to the above-described embodiment, it is possible to obtain a true / false discrimination printed matter in which counterfeiting is extremely difficult.
(Example 6)
FIG. 28 shows the ink formulation used in Example 6. The sixth embodiment has the same reflection characteristics and magnetic strength as the fifth embodiment, and differs from the fifth embodiment in that the sixth embodiment is a different color system.
The features of the intaglio image formed by the present embodiment are as follows.
Infrared reflective inks of the brownish-red type and dark-greenish infrared-reflective type, which have substantially the same reflection and absorption characteristics of the infrared region, have distinct magnetic strengths, and can easily distinguish colors visually from each other. It is printed with intaglio ink.
Using these intaglio inks, images 2 and 3 shown in FIG.
The curves 34 and 35 of FIG. 29 show the spectral reflectances of the solid ink (film thickness of about 40 μm) in the ink used in this example.
The spectral reflectances of the intaglio magnetic image produced in this example are shown by curves 36 and 37 in FIG.
The relative values of the magnetic intensity of the intaglio magnetic image of the infrared reflection type having a relatively small magnetic intensity produced in this example are shown in FIG. The relative values of the magnetic intensity are shown at 39 in FIG.
From the measurement results of this example, it is recognized that the spectral reflectance of the infrared portion of the intaglio magnetic image is almost the same, and that the infrared region is sufficiently high and the same by mechanical processing.
On the other hand, the magnetic intensities are relatively different from each other, and it can be seen that the difference can be sufficiently detected by the mechanical processing.
As described above, it is impossible to obtain a high reflectance and a high magnetic strength of the infrared reflection type infrared portion using a conventional magnetic material having a very low reflectance in the infrared portion. For this reason, it was impossible to form two or more types of intaglio images having a high reflectance in the infrared region and a distinct difference in magnetic strength as shown in this example.
According to this embodiment, by using a special white magnetic material having a high reflectance in the infrared region, an infrared reflection type ink having a high magnetic intensity can be obtained. It is possible to form two or more types of intaglio images that are high and have a distinct difference in magnetic strength.
Even if a third party estimates the intaglio image having a high infrared reflectance and high magnetic strength to some extent, and imparts magnetism using a commercially available magnetic material or the like, It is impossible to imitate the reflection characteristics of these two intaglio images in the infrared region.
Further, even if the reflectance of the infrared portion applied to the two types of intaglio images is given by a commercially available pigment, it is difficult to apply the same magnetic intensity to the two types of intaglio images simultaneously as in the present embodiment. .
Therefore, according to the present embodiment, it is possible to obtain a printed matter having a high anti-counterfeiting effect by combining the reflection characteristics and the magnetic characteristics in the infrared region, which is impossible with a general magnetic material.
(Example 7)
FIG. 33 shows the ink composition used to form a printed image on the surface in this example.
The features of the intaglio printed matter formed by the present embodiment are as follows. Infrared reflection absorption characteristics and magnetic strength are relatively different, and intaglio images with relatively high infrared reflectance show lower magnetic strength, and colors cannot be easily distinguished visually. Printed with two types of dark green intaglio ink.
Further, the back side of the intaglio printing image having a relatively low magnetic intensity and a high reflectance in the infrared region is solid printed with black ink shown in FIG.
Using such an intaglio ink, intaglio printed matter shown in FIGS. 35A and 35B was produced. Objects 40 and 41 are formed on the front surface, and a solid print 42 is formed on the back surface of the print object 41 on the front surface, and no print is formed on an area 43 on the back surface of the print object 41 on the front surface.
The spectral reflectances of the intaglio magnetic image produced in this example are shown by curves 44 and 45 in FIG.
The magnetic intensity relative value of the intaglio magnetic image having a relatively large magnetic intensity and a relatively low reflectance in the infrared region produced in this example is shown in FIG. The magnetic intensity relative value of the intaglio magnetic image having a relatively high ratio is shown at 47 in FIG.
The measurement results of this example show that there is a difference of 25% or more in the spectral reflectance in the infrared region between the two types of intaglio magnetic images, and that the magnetic intensities are significantly different. It is possible to detect relative differences.
The printed matter according to the present example is a solid printing of the black ink absorbing the light in the infrared part shown in FIG. 34 on the back surface of the intaglio magnetic image having relatively low magnetism and relatively high reflectance in the infrared part. By doing so, the reflection and absorption characteristics of the infrared region, the magnetic strength, and the transmission characteristics of the infrared region in the two types of intaglio magnetic images are combined so as to obtain desired characteristics.
Even if a third party guesses to a certain degree the intellectual intaglio printed matter created in accordance with this embodiment and tries to imitate it with a commercially available material or the like, the reflection and absorption characteristics of the infrared portion of the front and back printed images, magnetic properties, It is extremely difficult to simply and completely imitate the combination of the intensity and the transmission characteristics of the infrared region. Therefore, according to the present embodiment, it is possible to obtain a printed matter having a high forgery prevention effect.
(Example 8)
FIG. 23 shows the ink formulation used for forming the printed image on the surface used in Example 8.
The features of the intaglio printed matter formed by the present embodiment are as follows.
The reflectance in the infrared region is almost the same, the magnetic intensities are clearly different from each other, and the ink is printed with a dark green infrared reflection type intaglio ink whose color cannot be easily distinguished visually.
Furthermore, solid printing is performed on the back surface of the printed image having a relatively low magnetic intensity with black ink shown in FIG.
Using the intaglio ink, intaglio objects shown in FIGS. 35A and 35B were produced in the same manner as in Example 7 above.
The spectral reflectances of the two types of intaglio magnetic images produced in this example are shown by curves 30 and 31 in FIG.
Furthermore, the magnetic intensity relative value of the intaglio magnetic image of the infrared portion having a relatively small magnetic intensity and a high reflectance in the infrared region produced in this example is shown in FIG. The magnetic intensity relative values of the intaglio magnetic image are shown at 33 in FIG.
In the printed matter of the present embodiment, the spectral reflectances of the infrared portions of the two types of intaglio magnetic images both show 50% or more, and the magnetic intensities are relatively different from each other. be able to.
Further, the printed matter according to the present embodiment is printed on the back surface of the intaglio image having a relatively low magnetism and a high reflectance in the infrared region, by printing a black ink showing the absorptivity of the infrared region shown in FIG. 34, The intaglio image is obtained by combining the reflection and absorption characteristics of the infrared portion, the magnetic intensity, and the transmission characteristics of the infrared portion so as to obtain desired characteristics.
Regarding the authenticity discrimination intaglio printed matter of the present embodiment, even if a third party guesses to some extent and tries to imitate it with a commercially available material or the like, the reflectance of the infrared part of the conventional magnetic material having a very low reflectance is It is impossible with conventional techniques to obtain an intaglio magnetic image having high magnetic strength and high magnetic strength.
Further, the reflection characteristics and the magnetic characteristics of the infrared portions of the two types of intaglio images applied to the surface were estimated, and the reflection characteristics and the magnetic characteristics of the infrared portions applied to the two types of intaglio images were applied using commercially available materials. Even in this embodiment, by printing black ink on the back surface of the intaglio having a relatively low magnetism and a relatively low reflectivity in the infrared region, the transmission characteristics of the infrared region in the print image area are changed. It is difficult to simply and completely imitate the combination of the infrared reflection, magnetic, and infrared transmission characteristics of the front and back images. Therefore, according to the present embodiment, it is possible to obtain a printed matter having a high forgery prevention effect.
The above embodiment can be variously modified. For example, in Example 7, the reflection and absorption characteristics of the infrared portion and the magnetic intensity are relatively different from each other, and the intaglio image having a relatively high reflectance in the infrared portion has a lower magnetic intensity, and is further visually visually recognized. It is printed with two types of dark green intaglio inks whose colors cannot be easily distinguished from each other.
Furthermore, solid printing is performed with black ink on the back surface of the intaglio printed image having a relatively low magnetic intensity and a high reflectance in the infrared region.
On the other hand, in the printed matter shown as the ninth embodiment, the ink as shown in FIG. 39 is used, and the reflection and absorption characteristics of the infrared part and the magnetic intensity are relatively different from each other. An intaglio image with a higher ratio has a lower magnetic strength, and is printed with two types of brown and dark green intaglio inks that can easily distinguish colors from each other visually.
Furthermore, solid printing is performed with black ink on the back surface of the intaglio printed image having a relatively low magnetic intensity and a high reflectance in the infrared region.
Next, a description will be given of a method of performing the authenticity determination using the printed matter according to the above embodiment. This authenticity discrimination method detects and compares the difference between the reflectance of the infrared portion, the difference between the transmittance of the infrared portion, and the difference between the magnetic intensities of the two types of images formed on the authenticity discriminated print, This is to determine the authenticity of the printed matter.
(True / False Determination for Printed Material of First Embodiment)
The reflectances of the two types of intaglio images in the infrared region of the printed matter according to the first embodiment are shown in curves 6 and 7 in FIG. 7, and the measured values of the magnetic properties are shown in 8 in FIG. 8 and 9 in FIG. Further, the results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio images are shown in FIGS.
Here, the transmission characteristics of the infrared portion of the intaglio image region were evaluated using the following IR transmission optical characteristics measurement method.
The transmission infrared LED (940 nm) emits light, the amount of IR transmitted through the object to be measured is collected by an image sensor, and the image is displayed to evaluate the transmission characteristics of the infrared portion. The transmitted image signal in the infrared region collected by the image sensor is amplified, converted into digital data by analog / digital conversion, and displayed on a monitor image of a computer. The data is displayed, for example, at 0 to 255 gradations. When the IR light of the infrared LED is completely transmitted, it is displayed as a white image at 255/255 gradations, and when completely blocked, it is displayed as a black image at 0/255 gradations.
The measurement value used for the evaluation of the transmittance of the infrared region was an average value in a 5 mm × 5 mm area where each intaglio image was formed.
If the digital data obtained by A / D conversion of the measured value shows a monochrome gradation of 150/255 or more, the image area is defined as exhibiting infrared transmittance, and if it is less than that, the infrared image is shown. It was defined as exhibiting absorbability (non-permeability).
Of the two types of intaglio images included in the intaglio printed matter created according to each of the above-described embodiments, the transmission image of the infrared portion in the intaglio image region where the reflectance of the infrared portion is relatively low is a monochrome gradation of 116/255. Is displayed. On the other hand, the transmission image of the infrared portion in the intaglio image region where the reflectance of the infrared portion is relatively high is displayed as 125/255 monochrome gradation. Therefore, the two types of intaglio images in this case are both identified as infrared non-transparent images.
As described above, the optical information of the visible light portion, the difference in the reflectance of the infrared portion, the difference in the transmittance, and the magnetic intensity of the two types of print images included in the genuine printed matter are stored in advance, and are the objects to be determined. By detecting the visible light optical information, the difference in reflectance in the infrared region, the difference in transmittance, and the magnetic intensity of the two types of print images contained in the print, and comparing and comparing the data with the stored authentic print data, the print By performing true / false discrimination, a fake print product imitated by a third party and a genuine print product can be selected with high accuracy.
(True / False Determination for Printed Material of Second Embodiment)
Curves 12 and 13 in FIG. 11 show the reflectivity of the two types of intaglio images included in Example 2 in the infrared region, and measured values of the magnetic properties are shown in 14 in FIG. 12 and 15 in FIG. Further, the results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio images are shown in FIGS.
Among the two types of intaglio images of the intaglio printed matter obtained in the examples, the transmission image of the infrared portion in the intaglio image region where the reflectance of the infrared portion is relatively low is displayed as a monochrome gradation of 116/255. . Further, the IR transmission image in the intaglio image region where the reflectance of the infrared portion is relatively high is displayed as 125/255 monochrome gradation. Therefore, the two intaglio images of the intaglio printed matter obtained in the examples are both identified as infrared non-transparent images.
Therefore, the visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of print images and the infrared portion of the infrared portion are stored. By detecting and comparing the difference in reflectivity, the difference in transmittance, and the magnetic intensity, it is possible to sort a fake print product imitated by a third party from a genuine print product with high accuracy.
(Determination of authenticity of printed matter of Example 3)
The reflectances of the infrared portions of the two intaglio images of Example 3 are shown in curves 18 and 19 in FIG. 15, and the measured values of the magnetic properties are shown in 20 in FIG. 16 and 21 in FIG. Further, the results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio images are shown in FIGS.
Of the two types of intaglio images included in the intaglio printed matter created in accordance with Example 3 above, the transmission image of the infrared portion of the intaglio image region in which the reflectance of the infrared portion is relatively low and the magnetic intensity is small is 116/255. Displayed as monochrome gradation. In addition, an IR transmission image in an intaglio image region having a relatively high reflectance in the infrared region and a high magnetic intensity is displayed as a monochrome gradation of 125/255. Therefore, the two types of intaglio images in the intaglio print obtained in Example 3 are both identified as infrared non-transparent images.
Also in this case, the optical information of the visible light portion of the genuine printed matter, the difference in the reflectance of the infrared portion, the difference in the transmittance, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images on the discrimination target is stored. By detecting and comparing the information, the difference in the reflectance of the infrared portion, the difference in the transmittance, and the magnetic intensity, the authenticity of the printed matter can be determined with high accuracy.
(Determination of authenticity of printed matter of Example 4)
The reflectances of the infrared portions of the two types of intaglio images in the printed matter created according to the above-described Example 4 are shown in the surface lines 24 and 25 in FIG. 19, and the measured values of the magnetic properties are shown in 26 in FIG. Show. The results of evaluating the transmission characteristics of the infrared portions of the two intaglio images are shown in FIGS.
Of the two types of intaglio images of the intaglio printed material obtained in Example 4, the transmission image of the infrared portion of the intaglio image region in which the reflectance in the infrared portion is relatively low and the magnetic intensity is small is 116/255. Displayed as monochrome gradation. In addition, the transmission image of the infrared portion in the intaglio image region where the reflectance in the infrared portion is relatively high and the magnetic strength is large is displayed as a 125/255 monochrome gradation. Therefore, the two types of intaglio images in the intaglio printed matter obtained according to Example 4 are both identified as infrared non-transparent images.
The visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images of the discrimination target, red, By detecting and comparing the difference in external reflectance, the difference in transmittance, and the magnetic intensity, it is possible to determine the authenticity of the printed matter.
(Determination of authenticity of printed matter of Example 5)
The reflectivity of the infrared portions of the two intaglio images of Example 5 is shown in 30 and 31 in FIG. 24, and the measured values of the magnetic properties are shown in 32 in FIG. 25 and 33 in FIG. 26, respectively. Are shown in 56 and 57 of FIG.
Among the two types of intaglio images of the intaglio printed matter obtained in the examples, the transmission image of the infrared portion of the intaglio image region having a relatively small magnetic intensity is displayed as 165/255 monochrome gradation, and The transmitted image of the infrared portion of the intaglio image region having a high magnetic intensity is displayed as a monochrome gradation of 120/255. Therefore, the two intaglio images of the intaglio printed matter obtained in Example 5 are clearly identified as images having different infrared transmittances.
Therefore, the visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images and the infrared portion are stored. By detecting and comparing the difference in reflectance, the difference in transmittance, and the magnetic intensity, the authenticity of the printed matter can be determined.
(Determination of authenticity of printed matter of Example 6)
The reflectances of the infrared portions of the two types of intaglio images of Example 6 are shown by curves 36 and 37 in FIG. 30, and the measured values of the magnetic properties are shown by 38 in FIG. 31 and by 39 in FIG. 32, respectively. Further, the results of evaluating the transmission characteristics of the infrared portions of the two intaglio images are shown in FIGS.
Among the two types of intaglio images of the intaglio printed matter obtained in the examples, the transmission image of the infrared portion of the intaglio image region having a relatively small magnetic strength is displayed as a monochrome gradation of 165/255. The transmitted image of the infrared portion of the intaglio image region having a large magnetic intensity is displayed as a monochrome gradation of 120/255. Therefore, the two intaglio images of the intaglio printed matter obtained in Example 6 are clearly identified as images having different infrared transmittances.
Therefore, the visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images and the infrared portion are stored. By detecting and comparing the difference in reflectance, the difference in transmittance, and the magnetic intensity, the authenticity of the printed matter can be determined.
(Determination of authenticity of printed matter of Example 7)
The reflectances of the infrared portions in the two types of intaglio images included in Example 7 are shown by curves 44 and 45 in FIG. 36, and the measured values of the magnetic properties are shown by 46 in FIG. 37 and 47 in FIG. Further, the results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio image areas are shown in FIGS.
Among the two types of intaglio images of the intaglio printed matter obtained in this example, the transmission image of the infrared portion in the intaglio image region where the reflectance of the infrared portion is relatively low and the magnetic strength is high is a monochrome of 116/255. Displayed as gradation. In addition, the reflectance of the infrared portion is relatively high, the magnetic intensity is low, and the transmission image of the infrared portion in the intaglio image region where the back surface is printed with the ink shown in FIG. 34 is a monochrome floor of 71/255. It is displayed as a key. Therefore, the two types of intaglio images of the intaglio printed matter obtained in Example 7 are both identified as infrared non-transparent images.
The visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images of the discrimination target, the infrared portion Authentic prints can be selected by detecting and comparing the difference in reflectance, the difference in transmittance, and the magnetic intensity.
(Determination of authenticity of printed matter of Example 8)
The measured values of the reflectance in the infrared region of the two types of intaglio images of Example 8 are shown by curves 30 and 31 in FIG. 25, and the measured values of the magnetic properties are shown by 32 in FIG. 26 and 33 in FIG. 27, respectively. The results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio image areas are shown in 62 and 63 in FIG.
Among the two types of intaglio images of the intaglio printed matter obtained in Example 8, the transmission image of the infrared portion of the intaglio image region having a relatively small magnetic intensity is displayed as a 75/255 monochrome gradation. The transmitted image of the infrared portion of the intaglio image region having a large magnetic intensity is displayed as a monochrome gradation of 120/255. Therefore, the two types of intaglio images of the intaglio printed matter obtained according to Example 8 are both identified as infrared non-transparent images.
That is, the optical information of the visible light portion of the genuine printed matter, the difference in reflectance between the infrared portions, the difference in transmittance, and the magnetic intensity are stored in advance, and the optical information of the visible light portion of the two types of printed images of the discrimination target is stored. It is possible to determine the authenticity of the printed matter by detecting and comparing the information, the difference in reflectance in the infrared region, the difference in transmittance, and the magnetic intensity.
(Determination of authenticity of printed matter of Example 9)
FIG. 39 shows the ink composition used to form the print image used in Example 9. Using this intaglio ink, an intaglio print 1 shown in FIG. 5 was produced. The two printing images 2 and 3 in the intaglio printed matter 1 formed according to the ninth embodiment have different reflection / absorption characteristics and magnetic intensities in the infrared portion, respectively, and the intaglio image having a relatively high reflectance in the infrared portion is better. It has a low magnetic strength and can be easily distinguished visually from each other, and is printed with 32 types of brown and dark green intaglio inks.
The spectral reflectance of the intaglio magnetic image in this case is shown by curves 44 and 45 in FIG.
The relative magnetic intensity of the intaglio magnetic image having a relatively large magnetic intensity and a relatively low reflectance in the infrared region is shown at 37 in FIG. 37. The magnetic intensity is relatively small and the reflectance in the infrared region is relatively high. The relative magnetic intensity of the intaglio magnetic image is shown at 47 in FIG. Further, the results of evaluating the transmission characteristics of the infrared portions of the two types of intaglio images are shown in FIGS.
Of the two types of intaglio images of the intaglio printed matter obtained in the examples, the transmission image of the infrared portion of the intaglio magnetic image region having relatively high magnetic intensity and relatively low reflectance of the infrared portion is a monochrome of 116/255. The transmitted image of the infrared portion of the intaglio magnetic image region, which is displayed as a gradation and has a relatively low magnetic intensity and a relatively high reflectance in the infrared portion, is displayed as a 162/255 monochrome gradation. Therefore, the two intaglio images of the intaglio printed matter obtained according to the present embodiment * can be clearly identified as images having different infrared transmittances.
Therefore, the visible light portion optical information of the genuine printed matter, the reflectance difference of the infrared portion, the transmittance difference, and the magnetic intensity are stored in advance, and the visible light portion optical information of the two types of printed images on the discrimination target are stored. By detecting and comparing the difference in the reflectance, the difference in the transmittance, and the magnetic intensity of the infrared ray, it is possible to sort a fake print product imitated by a third party from a genuine print product with high accuracy.
The above-described embodiments are merely examples, and do not limit the present invention. Various modifications can be made within the technical scope of the present invention.
[Brief description of the drawings]
In the attached drawings,
FIG. 1 shows the composition of the ink used in Example 1.
FIG. 2 shows the composition of the ink used in Example 2.
FIG. 3 shows the composition of the ink used in Example 3.
FIG. 4 shows the composition of the ink used in Example 4.
FIG. 5 shows authenticity printed matter in each embodiment.
FIG. 6 shows the spectral reflectance of the solid ink film of Example 1.
FIG. 7 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 1.
FIG. 8 shows the output voltage relative value of the infrared absorption type intaglio image of Example 1.
FIG. 9 shows the output voltage relative value of the infrared reflection type intaglio image of Example 1.
FIG. 10 shows the spectral reflectance of the solid ink film of Example 2.
FIG. 11 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 2.
FIG. 12 shows the output voltage relative value of the infrared absorption type intaglio image of Example 2.
FIG. 13 shows an output voltage relative value of the infrared reflection type intaglio image of the second embodiment.
FIG. 14 shows the spectral reflectance of the solid ink film of Example 3.
FIG. 15 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 3.
FIG. 16 shows an output voltage relative value of an infrared absorption type intaglio image of Example 3.
FIG. 17 shows the output voltage relative value of the infrared reflection type intaglio image of the third embodiment.
FIG. 18 shows the spectral reflectance of the solid ink film of Example 4.
FIG. 19 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 4.
FIG. 20 shows the output voltage relative value of the infrared absorption type intaglio image of Example 4.
FIG. 21 shows the output voltage relative value of the infrared reflection type intaglio image of Example 4.
FIG. 22 shows the reflectance and the magnetic intensity in Examples 1 to 4.
FIG. 23 shows the composition of the ink used in Example 5.
FIG. 24 shows the spectral reflectance of the solid ink film of Example 5.
FIG. 25 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 5.
FIG. 26 shows an output voltage relative value of the infrared reflection type intaglio image of the fifth embodiment.
FIG. 27 shows the output voltage relative value of the infrared reflection type intaglio image of Example 6.
FIG. 28 shows the composition of the ink used in Example 6.
FIG. 29 shows the spectral reflectance of the solid ink film of Example 6.
FIG. 30 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 6.
FIG. 31 shows the output voltage relative value of the infrared reflection type intaglio image of the sixth embodiment.
FIG. 32 shows an output voltage relative value of the infrared reflection type intaglio image of the sixth embodiment.
FIG. 33 shows the composition of the ink used in Example 7.
FIG. 34 shows the composition of the IR absorbing ink applied to the back surface.
35A and 35B are front views of the authenticity discrimination printed matter in each embodiment.
FIG. 36 shows the spectral reflectance of an image composed of an intaglio image with the intaglio ink of Example 7.
FIG. 37 shows an output voltage relative value of an infrared absorption type intaglio image of Example 7.
FIG. 38 shows the output voltage relative values of the infrared reflection type intaglio image of Example 7.
FIG. 39 shows the composition of the ink used in Example 9.
FIG. 40 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 1.
FIG. 41 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 2.
FIG. 42 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 3.
FIG. 43 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 1.
FIG. 44 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 2.
FIG. 45 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 6.
FIG. 46 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 7.
FIG. 47 shows the transmission amount of the infrared part in the ink image of the infrared absorption type and the reflection type in Example 8.
FIG. 48 shows the transmission amounts of the infrared portions in the ink images of the infrared absorption type and the reflection type in Example 9.
1 Inventive Intaglio Print of Example
2 Magnetic intaglio image
3 Magnetic intaglio image
4 Spectral reflectance of solid ink film of intaglio magnetic ink of infrared absorption type
5 Spectral reflectance of solid ink film of intaglio magnetic ink of infrared part reflection type
6 Spectral reflectance of intaglio magnetic image of infrared absorption type
7 Spectral reflectance of intaglio magnetic image of infrared reflection type
Magnetic intensity relative value of intaglio magnetic image of 8 infrared absorption type
9 Relative magnetic intensity of intaglio magnetic image of infrared reflection type
Spectral reflectance of solid ink film of intaglio magnetic ink of 10 ° infrared absorption type
11 Spectral reflectance of solid ink film of intaglio magnetic ink of infrared reflection type
Spectral reflectance of 12 の infrared absorption type intaglio magnetic image
13 Infrared Reflection Type Spectral Reflectance of Intaglio Magnetic Image
Magnetic intensity relative value of intaglio magnetic image of 14 infrared absorption type
15 Relative magnetic strength of intaglio magnetic image of infrared reflection type
Spectral reflectance of solid ink film of 16 皮膜 infrared absorption type intaglio magnetic ink
17 Spectral reflectance of solid ink film of intaglio magnetic ink of infrared reflection type
Spectral reflectance of intaglio magnetic image of 18 ° infrared absorption type
Spectral reflectance of intaglio magnetic image of 19 ° infrared reflection type
Magnetic intensity relative value of intaglio magnetic image of 20 ° infrared absorption type
21 Relative magnetic intensity of intaglio magnetic image of infrared reflection type
22. Spectral reflectance of solid ink film of intaglio magnetic ink of infrared absorption type
23. Spectral reflectance of solid ink film of intaglio magnetic ink of infrared reflection type
Spectral reflectance of intaglio magnetic image of 24 ° infrared absorption type
Spectral reflectance of intaglio magnetic image of 25 ° infrared reflection type
Magnetic intensity relative value of 26 infrared absorption type intaglio magnetic image
Magnetic intensity relative value of 27 ° infrared reflection type intaglio magnetic image
Spectral reflectance of intaglio magnetic image of 28 ° infrared reflection type
Spectral reflectance of intaglio magnetic image of 29 ° infrared reflection type
Spectral reflectance of intaglio magnetic image of 30 ° infrared reflection type
Spectral reflectance of intaglio magnetic image of 31 ° infrared reflection type
Magnetic intensity relative value of intaglio magnetic image of 32 infrared reflection type
Magnetic intensity relative value of intaglio magnetic image of 33 ° infrared reflection type
34. Spectral reflectance of solid ink film of intaglio magnetic ink of infrared reflection type
Spectral reflectance of solid ink film of 35 ° infrared reflection type intaglio magnetic ink
Spectral reflectance of intaglio magnetic image of 36 ° infrared reflection type
Spectral reflectance of intaglio magnetic image of 37 ° infrared reflection type
Magnetic intensity relative value of 38 ° infrared reflection type intaglio magnetic image
Magnetic intensity relative value of intaglio magnetic image of 39 ° infrared reflection type
40 ° magnetic intaglio image
41 magnetic intaglio image
42 solid printing
43 area without printing
Spectral reflectance of intaglio magnetic image of 44 ° infrared absorption type
Spectral reflectance of 45 ° infrared reflection type intaglio magnetic image
Magnetic intensity relative value of intaglio magnetic image of 46 infrared absorption type
Magnetic intensity relative value of intaglio magnetic image of 47 ° infrared reflection type
48 ° infrared transmission of infrared absorption type
49 Infrared transmission through the infrared reflection type
Infrared transmission of 50 ° infrared absorption type
51 Infrared transmission through the infrared reflection type
52 Infrared transmission amount of infrared absorption type
53 Infrared transmission through the infrared reflection type
54 Infrared transmission through infrared absorption type
55 ° Infrared transmission amount of infrared reflection type
56 Infrared transmission through the infrared reflection type
57 Infrared transmission through the infrared reflection type
58 Infrared transmission through the infrared reflection type
59 Infrared transmission through the infrared reflection type
60 ° infrared transmission of infrared absorption type
61 Infrared transmission through the infrared reflection type
62 Infrared transmission through the infrared reflection type
63 Infrared transmission through the infrared reflection type
Infrared transmission of 64 infrared absorption type
65 Infrared transmission through the infrared reflection type

Claims (16)

図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と略同一の磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Have
Wherein the second print image has a difference in reflectance of an infrared portion of the first print image of 10% or more and has substantially the same magnetic intensity as the predetermined magnetic intensity. Discrimination printed matter.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Have
The second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more from the first printed image, and has a magnetic intensity different from the predetermined magnetic intensity.
The authenticity discrimination printed matter, wherein, of the first and second print images, one having a relatively lower reflectance in the infrared portion has a relatively higher magnetic intensity.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が高い方が相対的に高い磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Have
The second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more from the first printed image, and has a magnetic intensity different from the predetermined magnetic intensity.
The authenticity discrimination printed matter, wherein, of the first and second print images, the one having a relatively high reflectance in the infrared region has a relatively high magnetic strength.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Have
The authenticity discrimination printed matter, wherein the second print image has substantially the same reflectance of the infrared portion as the first print image, and has a magnetic intensity lower than the predetermined magnetic intensity.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と略同一の磁気強度を有し、前記所定の赤外部の透過量と略同一の性外部の透過量を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Has a predetermined infrared transmission amount,
The second printed image has a reflectance of the infrared portion which is different from the first printed image by 10% or more, has substantially the same magnetic intensity as the predetermined magnetic intensity, and has the predetermined infrared portion. A printed matter having a transmission amount outside the gender which is substantially the same as the transmission amount.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有し、相対的に赤外部の反射率が低い方が相対的に少ない赤外部の透過量を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Have
The second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more from the first printed image, and has a magnetic intensity different from the predetermined magnetic intensity.
Of the first and second print images, the one with a relatively low reflectance in the infrared part has a relatively high magnetic intensity, and the one with a relatively low reflectance in the infrared part is relatively small. A true / false discrimination printed matter having an infrared transmission amount.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、前記所定の赤外部の透過量と略同一の赤外部の透過量を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が高い方が相対的に高い磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Has a predetermined infrared transmission amount,
The second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more from the first printed image, a magnetic intensity different from the predetermined magnetic intensity, and a transmission of the predetermined infrared portion. Has the same amount of transmission in the infrared region as the amount,
The authenticity discrimination printed matter, wherein, of the first and second print images, the one having a relatively high reflectance in the infrared region has a relatively high magnetic strength.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有し、前記所定の赤外部の透過量より多い赤外部の透過量を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Has a predetermined infrared transmission amount,
The second printed image has a reflectivity of an infrared portion substantially equal to that of the first printed image, has a lower magnetic intensity than the predetermined magnetic intensity, and has a red intensity larger than a transmission amount of the predetermined infrared portion. An authenticity discrimination printed matter having an external transmission amount.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、裏面側に赤外部の光を吸収するインクにより印刷が施されて所定の赤外部の透過量を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と10%以上の差を有し、前記所定の磁気強度と異なる磁気強度を有し、前記所定の赤外部と略同一の赤外部の透過量を有し、
前記第1、第2の印刷画像のうち、相対的に赤外部の反射率が低い方が相対的に高い磁気強度を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Having a predetermined amount of transmission of the infrared portion is printed on the back side with ink that absorbs light of the infrared portion,
The second printed image has a difference in reflectance of the infrared portion of the first printed image of 10% or more, a magnetic intensity different from the predetermined magnetic intensity, and is substantially equal to the predetermined infrared portion. Have the same infrared transmission amount,
The authenticity discrimination printed matter, wherein, of the first and second print images, one having a relatively lower reflectance in the infrared portion has a relatively higher magnetic intensity.
図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含む真偽判別印刷物であって、
前記第1の印刷画像が、赤外部の反射率が30%以上の磁性材を含有するインクを用いて形成されていることにより、赤外部の反射率が30%以上で、所定の磁気強度を有し、所定の赤外部の透過量を有し、
前記第2の印刷画像が、赤外部の反射率が前記第1の印刷画像と略同一であり、前記所定の磁気強度より低い磁気強度を有し、裏面側に赤外部の光を吸収するインクにより印刷が施されて前記所定の赤外部の透過量と略同一の赤外部の透過量を有することを特徴とする真偽判別印刷物。
A true / false discrimination print containing at least a first print image and a second print image on at least a part of the design,
Since the first printed image is formed using an ink containing a magnetic material having a reflectance of 30% or more in the infrared portion, the reflectance of the infrared portion is 30% or more, and a predetermined magnetic intensity is obtained. Has a predetermined infrared transmission amount,
The second print image has an infrared portion whose reflectance is substantially the same as that of the first print image, has a magnetic intensity lower than the predetermined magnetic intensity, and has an infrared-absorbing light on the back surface side. Wherein the printed matter has a transmission amount of the infrared portion substantially equal to the transmission amount of the predetermined infrared portion.
前記第1、第2の印刷画像は、肉眼で色彩を相対的に識別することが困難であることを特徴とする請求項1乃至10のいずれかに記載の真偽判別印刷物。The authenticity discrimination printed matter according to any one of claims 1 to 10, wherein it is difficult for the first and second print images to relatively distinguish colors with the naked eye. 前記第1、第2の印刷画像は、肉眼で色彩を相対的に識別することが容易であることを特徴とする請求項1乃至10のいずれかに記載の真偽判別印刷物。The authenticity discrimination printed matter according to any one of claims 1 to 10, wherein the first and second print images are relatively easily distinguishable in color with the naked eye. 印刷物の真偽判別を行う方法において、
前記印刷物が、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含み、前記第1の印刷画像が、赤外部の反射率が30%以上の第1の磁性材を含有するインクを用いて形成されており、前記第2の印刷画像が、赤外部の反射率が前記第1の磁性材と10%以上の差を有する第2の磁性材を含有するインクを用いて形成されており、この印刷物に対し、前記第1、第2の印刷画像のそれぞれの赤外部の反射率及び磁気強度を検出して照合することによって、印刷物の真偽判別を行うことを特徴とする真偽判別方法。
In the method of determining the authenticity of a printed matter,
The printed material includes at least a first print image and a second print image in at least a part of a design, and the first print image includes a first magnetic material having an infrared reflectance of 30% or more. The second printed image is formed by using an ink containing a second magnetic material having a difference of 10% or more in reflectance of an infrared part from the first magnetic material. The printed matter is authenticated by detecting and comparing the reflectance and magnetic intensity of the infrared portion of each of the first and second printed images, and performing collation. True / false judgment method.
印刷物の真偽判別を行う方法において、
前記印刷物が、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含み、前記第1の印刷画像が、赤外部の反射率が30%以上の第1の磁性材を含有するインクを用いて形成されており、前記第2の印刷画像が、赤外部の反射率が前記第1の磁性材と10%以上の差を有する第2の磁性材を含有するインクを用いて形成されており、この印刷物に対し、前記第1、第2の印刷画像のそれぞれの可視光部の光学情報、赤外部の反射率、及び磁気強度を検出して照合することによって、印刷物の真偽判別を行うことを特徴とする真偽判別方法。
In the method of determining the authenticity of a printed matter,
The printed material includes at least a first print image and a second print image in at least a part of a design, and the first print image includes a first magnetic material having an infrared reflectance of 30% or more. The second printed image is formed by using an ink containing a second magnetic material having a difference of 10% or more in reflectance of an infrared part from the first magnetic material. The printed matter is formed by detecting and comparing the optical information of the visible light portion, the reflectance of the infrared portion, and the magnetic intensity of each of the first and second print images with respect to the printed matter. A true / false judgment method characterized by performing a true / false judgment.
印刷物の真偽判別を行う方法において、
前記印刷物が、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含み、前記第1の印刷画像が、赤外部の反射率が30%以上の第1の磁性材を含有するインクを用いて形成されており、前記第2の印刷画像が、赤外部の反射率が前記第1の磁性材と10%以上の差を有する第2の磁性材を含有するインクを用いて形成されており、この印刷物に対し、前記第1、第2の印刷画像のそれぞれの赤外部の反射率、磁気強度、及び赤外部の透過量を検出して照合することによって、印刷物の真偽判別を行うことを特徴とする真偽判別方法。
In the method of determining the authenticity of a printed matter,
The printed material includes at least a first print image and a second print image in at least a part of a design, and the first print image includes a first magnetic material having an infrared reflectance of 30% or more. The second printed image is formed by using an ink containing a second magnetic material having a difference of 10% or more in reflectance of an infrared part from the first magnetic material. The reflectance of the infrared portion, the magnetic intensity, and the transmission amount of the infrared portion of each of the first and second print images are detected and collated with the printed material, thereby verifying the trueness of the printed material. A true / false determination method characterized by performing false determination.
印刷物の真偽判別を行う方法において、
前記印刷物が、図柄の少なくとも一部に、少なくとも第1の印刷画像と第2の印刷画像を含み、前記第1の印刷画像が、赤外部の反射率が30%以上の第1の磁性材を含有するインクを用いて形成されており、前記第2の印刷画像が、赤外部の反射率が前記第1の磁性材と10%以上の差を有する第2の磁性材を含有するインクを用いて形成されており、この印刷物に対し、前記第1、第2の印刷画像のそれぞれの可視光部の光学情報、赤外部の反射率、磁気強度、及び赤外部の透過量を検出して照合することによって、印刷物の真偽判別を行うことを特徴とする真偽判別方法。
In the method of determining the authenticity of a printed matter,
The printed material includes at least a first print image and a second print image in at least a part of a design, and the first print image includes a first magnetic material having an infrared reflectance of 30% or more. The second printed image is formed by using an ink containing a second magnetic material having a difference of 10% or more in reflectance of an infrared part from the first magnetic material. For this printed matter, the optical information of the visible light portion, the reflectance of the infrared portion, the magnetic intensity, and the transmission amount of the infrared portion of each of the first and second print images are detected and collated. The authenticity of the printed matter is determined.
JP2002552765A 2000-12-26 2001-12-25 Authenticity discrimination printed matter and authentication method Expired - Fee Related JP4235968B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000394811 2000-12-26
JP2000394811 2000-12-26
PCT/JP2001/011395 WO2002051643A1 (en) 2000-12-26 2001-12-25 Authenticity discriminating printed matter and authenticity discriminating method

Publications (2)

Publication Number Publication Date
JPWO2002051643A1 true JPWO2002051643A1 (en) 2004-04-22
JP4235968B2 JP4235968B2 (en) 2009-03-11

Family

ID=18860377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002552765A Expired - Fee Related JP4235968B2 (en) 2000-12-26 2001-12-25 Authenticity discrimination printed matter and authentication method

Country Status (2)

Country Link
JP (1) JP4235968B2 (en)
WO (1) WO2002051643A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142175A (en) * 2002-10-23 2004-05-20 Tokushu Paper Mfg Co Ltd Thread having truth or falsehood determining function and forgery preventive sheet using the same
JP4334329B2 (en) * 2003-12-05 2009-09-30 日立オムロンターミナルソリューションズ株式会社 recoding media
JP2005268655A (en) * 2004-03-19 2005-09-29 National Printing Bureau Magnetic printed matter
JP2005264074A (en) * 2004-03-19 2005-09-29 National Printing Bureau Magnetic ink composition and printed product of the same
JP4556599B2 (en) * 2004-09-30 2010-10-06 富士ゼロックス株式会社 Image processing apparatus and image forming apparatus
JP4863118B2 (en) * 2007-02-08 2012-01-25 独立行政法人 国立印刷局 Image forming body
JP5044841B2 (en) * 2007-06-19 2012-10-10 独立行政法人 国立印刷局 Anti-counterfeit printed matter
JP4717914B2 (en) * 2008-09-29 2011-07-06 日立オムロンターミナルソリューションズ株式会社 recoding media
JP6240910B2 (en) * 2014-04-03 2017-12-06 独立行政法人 国立印刷局 Infrared transmitting soft magnetic ink and authenticity printed matter
CN109562629B (en) * 2016-08-04 2021-02-02 默克专利股份有限公司 Method for producing an optically variable printing pattern
JP2018136742A (en) * 2017-02-22 2018-08-30 沖電気工業株式会社 Bank bill discrimination device and cash processing device
DE102019004229A1 (en) * 2019-06-13 2020-12-17 Giesecke+Devrient Currency Technology Gmbh Security element with different printing inks when illuminated with electromagnetic radiation in the infrared wavelength range
CN113096301B (en) * 2019-12-19 2023-01-13 深圳怡化电脑股份有限公司 Bill inspection method, bill inspection device, electronic device, and storage medium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536873A (en) * 1978-09-08 1980-03-14 Dainippon Printing Co Ltd Copy prevention method
JPS5640581A (en) * 1979-09-12 1981-04-16 Kyodo Printing Co Ltd Forgery protection printed matter
JPS58134782A (en) * 1982-02-05 1983-08-11 Kyodo Printing Co Ltd Reference print
JPS63144075A (en) * 1986-12-05 1988-06-16 Toppan Moore Co Ltd Printed matter capable of being discriminated genuineness
JPH01188386A (en) * 1988-01-25 1989-07-27 Dainichiseika Color & Chem Mfg Co Ltd Recording method
JPH02167771A (en) * 1988-12-22 1990-06-28 Sanyo Electric Works Ltd Laminated paper decidable between truth and fake
JPH03252901A (en) * 1990-02-28 1991-11-12 Toppan Moore Co Ltd Checking method and decoding method for magnetic recording recording medium
JPH07101190A (en) * 1993-09-30 1995-04-18 Toppan Moore Co Ltd Forgery proof forms
JPH07276779A (en) * 1994-04-11 1995-10-24 Dainippon Printing Co Ltd Recording medium
JPH1081055A (en) * 1996-09-09 1998-03-31 Dainippon Printing Co Ltd Duplication preventing medium
JP3529079B2 (en) * 1997-03-26 2004-05-24 独立行政法人 国立印刷局 Copy-prevention printed matter

Also Published As

Publication number Publication date
WO2002051643A1 (en) 2002-07-04
JP4235968B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US6987868B1 (en) Genuine/counterfeit discriminating method, genuine/counterfeit discrimination object, and genuine/counterfeit discriminating device
CA2222177C (en) Counterfeit resistant documents and methods
JP4235968B2 (en) Authenticity discrimination printed matter and authentication method
JP4686737B2 (en) Authenticity discrimination method of metameric image forming body and metameric image forming body
JP3398758B2 (en) Information carrier for forgery prevention
JP4192233B2 (en) Anti-counterfeit printed matter having flip-flop or color flip-flop
JP2003302519A (en) Film with genuineness deciding function and sheet type body having genuineness deciding function using the same
JP2825199B2 (en) Information recording card
JP2005506228A5 (en)
JP2003182202A (en) Latent image displaying medium
JP4524371B2 (en) Magnetic information recording printed matter and authenticity determination method
JPH1076745A (en) Forgery preventable print
JP4296311B2 (en) Anti-counterfeit paper, authenticity determination method and authenticity determination device
JPH09240133A (en) Printed matter
JPH04189196A (en) Information recording medium
KR100603103B1 (en) Specific security thread and security papers using the same
JP2004090387A (en) Precious printed matter
JPH10850A (en) Printed matter
JPH0410973A (en) Recorded matter for identification
JP2542651B2 (en) Magnetic card
JP2004142129A (en) Film with genuineness judging function and sheet-like object with genuineness judging function using the film
JP2765171B2 (en) Information recording card
JPH0761178A (en) Information recording medium
JP2004082656A (en) Forgery proof form
JPH06286367A (en) Display body and method for judging its genuineness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Ref document number: 4235968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees