JPS646225B2 - - Google Patents

Info

Publication number
JPS646225B2
JPS646225B2 JP11401479A JP11401479A JPS646225B2 JP S646225 B2 JPS646225 B2 JP S646225B2 JP 11401479 A JP11401479 A JP 11401479A JP 11401479 A JP11401479 A JP 11401479A JP S646225 B2 JPS646225 B2 JP S646225B2
Authority
JP
Japan
Prior art keywords
solution
cresol
polyimide
formula
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11401479A
Other languages
Japanese (ja)
Other versions
JPS5636520A (en
Inventor
Hiroshi Wakabayashi
Kazuaki Kira
Kosaku Nagano
Kazuya Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP11401479A priority Critical patent/JPS5636520A/en
Publication of JPS5636520A publication Critical patent/JPS5636520A/en
Publication of JPS646225B2 publication Critical patent/JPS646225B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、新規なポリイミド樹脂に関するもの
であり、更に詳しくは、有機極性溶剤に可溶性の
ポリイミド樹脂、特に有機極性溶剤に可溶性の芳
香族ポリイミド樹脂に関するものである。 ポリイミド系重合体は、耐熱性、耐薬品性等に
非常に優れた性質を有していることは、既に知ら
れており、特に高温で使用される電線被覆、フイ
ルム、接着剤等の用途に非常に有用である。 従来から知られているフイルム、電線被覆用途
で重要な塗膜形成能を有するポリイミド系重合体
としては、通常芳香族のテトラカルボン酸二無水
物と芳香族のジアミンとを有機極性溶剤中で、低
温で付加反応させた高分子量のポリアミド酸が知
られている。ポリイミドは一般に溶媒に不溶性で
あり、溶融成形も困難なためこのポリアミド酸を
成形加工した後、次いで加熱等の方法により、脱
水、閉環させて、ポリイミドとして使用される。
このポリアミド酸は、すぐれた耐熱性を有する反
面、保存時の安定性が悪く、室温でも、粘度上昇
をおこしゲル化するため、低温で保存しなければ
ならないという欠点を有している。又このような
ポリアミド酸を得る重合にあつては、高分子量の
ポリアミド酸を得るため重合溶媒は、完全に脱水
する必要があり、使用するテトラカルボン酸二無
水物は、反時間加熱乾燥しなければならないとい
う欠点を有している。その他ポリアミド酸を電線
被覆、フイルムに成型加工後、脱水閉環させるた
め、加工時の作業性が悪いという本質的な問題点
もあげられる。 これらの欠点、問題点がないイミド系重合体の
製造法、加工法としては、まず高分子量の溶媒可
溶性の閉環したポリイミドを合成し、このポリイ
ミド溶液から、溶媒を除去することのみによつ
て、イミド系重合体ないし、その成形品を得る方
法が考えられる。 本発明者等は、かかる考えのもとに、研究を進
めたところ、特定の構造をもつジアミンと有機テ
トラカルボン酸又はその酸無水物とを、一定の条
件のもとに、有機溶剤中で反応させれば優れた塗
膜形成能を有する、有機極性溶剤に可溶性のポリ
イミド樹脂が生成することを見い出し、本発明に
到達した。 本発明は、下記化学構造式からなる有機極性溶
剤に可溶性の新規ポリイミド樹脂特に新規芳香族
ポリイミド樹脂に関するものである。 (式中、Rは
The present invention relates to a novel polyimide resin, and more particularly to a polyimide resin soluble in organic polar solvents, particularly an aromatic polyimide resin soluble in organic polar solvents. It is already known that polyimide polymers have excellent properties such as heat resistance and chemical resistance, and are particularly useful for applications such as wire coatings, films, and adhesives that are used at high temperatures. Very useful. Conventionally known polyimide polymers that have important coating film-forming properties for film and wire coating applications are usually prepared by mixing aromatic tetracarboxylic dianhydride and aromatic diamine in an organic polar solvent. High molecular weight polyamic acids subjected to addition reaction at low temperatures are known. Polyimide is generally insoluble in solvents and is difficult to melt-mold. Therefore, after the polyamic acid is molded, it is dehydrated and ring-closed by a method such as heating, and then used as polyimide.
Although this polyamic acid has excellent heat resistance, it has poor stability during storage, and has the disadvantage that it must be stored at low temperatures because it increases viscosity and gels even at room temperature. In addition, in polymerization to obtain such a polyamic acid, the polymerization solvent must be completely dehydrated in order to obtain a high molecular weight polyamic acid, and the tetracarboxylic dianhydride used must be dried by heating for a long time. It has the disadvantage that it must be Another inherent problem is that the polyamic acid is dehydrated and ring-closed after being formed into wire coatings and films, resulting in poor workability during processing. As a manufacturing method and a processing method for imide-based polymers that do not have these drawbacks and problems, first, a high molecular weight solvent-soluble ring-closed polyimide is synthesized, and the solvent is removed from this polyimide solution. One possible method is to obtain an imide polymer or a molded article thereof. Based on this idea, the present inventors conducted research and found that a diamine with a specific structure and an organic tetracarboxylic acid or its acid anhydride were mixed in an organic solvent under certain conditions. It was discovered that a polyimide resin soluble in an organic polar solvent, which has excellent coating film-forming ability, is produced by reaction, and the present invention was achieved based on this discovery. The present invention relates to a novel polyimide resin, particularly a novel aromatic polyimide resin, which is soluble in organic polar solvents and has the following chemical structural formula. (In the formula, R is

【式】又は[Formula] or

【式】からなる4価の有機基であ り、nはm―クレゾール又はメチルピロリドンで
20重量%溶液とし、20℃での溶液粘度が1000〜
50000cpsを示す数である。) 本発明では、イソホロン構造
A tetravalent organic group consisting of [Formula], where n is m-cresol or methylpyrrolidone.
As a 20% solution by weight, the solution viscosity at 20℃ is 1000~
This number indicates 50000cps. ) In the present invention, isophorone structure

【式】を有するジアミン又は ジイソシアネートを使用するが、一般に知られて
いる脂肪族ジアミン、ジイソシアネートを使用し
た場合に比べ、耐熱性の低下は小さく、しかも、
生成するポリイミド樹脂を、有機極性溶剤特に、
クレゾール系溶剤に可溶性にすることが可能であ
る。 本発明の前記化学構造式を有するポリイミド樹
脂は、有機テトラカルボン酸、又はその機能誘導
体と下記化学構造式のイソホロンジアミン(3―
アミノメチル―3,5,5トリメチルシクロヘキ
シル―アミン)とを反応させることにより得られ
る。 又前記化学構造式を有するポリイミド樹脂は有
機テトラカルボン酸又はその無水物と下記化学構
造式のイソホロンジイソシアネート(3―イソシ
アネートメチル―3,5,5トリメチルシクロヘ
キシル―イソシアネート)とを反応させることに
より得られる。 有機テトラカルボン酸としては、ピロメリツト
酸、ベンゾフエノンテトラカルボン酸、1,2,
5,6―ナフタレンテトラカルボン酸、2,3,
6,7―ナフタレンテトラカルボン酸、1,2,
3,4ブタンテトラカルボン酸、テトラヒドロフ
ランテトラカルボン酸等があげられる。 耐熱性の観点からは、芳香族テトラカルボン酸
が望ましい。上記テトラカルボン酸以外の誘導体
で類似の機能を有する化合物としてはそれらの二
無水物、一無水物、エステル化物、アミド化物等
の誘導体が使用されるが、望ましくは、テトラカ
ルボン酸無水物を使用するのがよい。 又、イソホロンジアミン、イソホロンジイソシ
アネートの一部を芳香族ジアミン、ジイソシアネ
ート又は、脂肪族ジアミン、ジイソシアネートに
置き換えることにより、「耐熱性」、「可撓性」を
向上させることもできる。これら化合物の例とし
ては、4,4′―ジアミノジフエニルプロパン、
4,4′―ジアミノジフエニルエーテル、ジフエニ
ルメタンジイソシアネート、ジフエニルエーテル
ジイソシアネート、ヘキサメチレンジアミン、
2,4,4トリメチルヘキサメチレンジアミン、
ヘキサメチレンジイソシアネート、2,4,4ト
リメチルヘキサメチレンジイソシアネート等があ
げられる。 本発明のポリイミド重合反応は、化学的に不活
性な有機極性溶媒存在下に実施するのが好ましい
が、例えば、N―メチルピロリドン、ジメチルア
セトアミド、ジメチルホルムアミド、ジメチルス
ルホキシド、ジメチルスルホン、N―メチルカプ
ロラウタム、レゾール酸、P―クレゾール、m―
クレゾール等が使用可能である。一般に、クレゾ
ール系溶剤は、他の極性溶剤に比較して安価なこ
とから、工業的にはクレゾール系溶剤を使用する
ことが望ましい。又、上記溶媒の混合物、上記溶
媒と少量のトルエン、キシレン、エチルベンゼン
等との混合物も使用出来る。 有機テトラカルボン酸又はその誘導体で類似の
機能を有する化合物と、イソホロンジアミン又は
イソホロンジイソシアネートとの使用モル比は、
当モルが望ましい。しかし、若干のどちらかの過
剰の下でも、温度、触媒の種類、量、圧力等特定
の条件を選べば重合することは可能である。重合
温度は50℃から300℃、好ましくは100℃から250
℃の温度範囲を選択するのが望ましい。 本発明のポリイミド樹脂は、有機極性溶剤特に
クレゾール系溶剤特にクレゾール系溶剤にも可溶
性であり、反応溶媒としてクレゾール系溶剤を使
用すればそのまま溶液の形で、コイル含浸ワニ
ス、ワイヤエナメル、ワニスクロス類等の電気絶
縁用ワニスとして用いられる。又、樹脂溶液か
ら、耐熱性と機械的強度の優れたフイルムを製造
することができ、各種応用分野に利用することが
できる。 以下実施例により、本発明を具体的に説明する
が、本発明はこれらの実施例により、限定される
ものではない。 実施例 1 撹拌機、温度計、冷却管及び窒素ガス導入管の
ついた500ml四つ口フラスコにピロメリツト酸二
無水物21.8g(0.1モル)とm―クレゾール117ml
を加え、溶解した。 次にイソホロンジアミン17.0g(0.1モル)を
加え、温度を160℃に昇温したところ、生成水を
留出しながら、増粘した。1時間で約3.6gの水
を留出した後、更に200℃で3時間加熱後、m―
クレゾールを加えて希釈した。得られた溶液は、
透明な薄い黄色の粘稠な溶液で、20℃で溶液粘度
を測定したところ28000cps(12重量%溶液)であ
つた。 次に生成した樹脂の赤外スペクトルを測定した
ところ、図―1の様なスペクトルを示し、特にイ
ミド環の特性吸収帯である1770cm-1、1700〜1720
cm-1に顕著な吸収を示し、下式のようなほぼ完全
に閉環したポリイミド構造をもつことが確認され
た。 この樹脂溶液をガラス板上に塗布し、100〜150
℃に30分間で昇温してキヤステイングフイルムを
作製した。得られたフイルムは薄い黄色をした透
明フイルムであつた。次にこのフイルムを190℃
〜280℃の雰囲気に昇温しながら、30分間置いた
後、耐熱性試験を行つた。260℃ハンダ浴中に作
製したフイルムを3秒間浸漬したところ、全く変
化はしられず期待された耐熱性を示した。 実施例 2 実施例1と同様の装置、方法でベンゾフエノン
テトラカルボン酸二無水物32.2g(0.1モル)と
m―クレゾール148mlを加え、溶解した後、イソ
ホロンジアミン17.0g(0.1モル)を添加し、加
熱した。温度が160℃になると生成水を留出しな
がら増粘した。1時間で約3.6gの水を留出した
後、更に200℃で6時間加熱後、m―クレゾール
を加えて稀釈した。得られた溶液は、暗赤色の粘
稠な溶液で20℃で溶液粘度を測定したところ、
6800cps(20重量%溶液)であつた。 次に生成した樹脂の赤外スペクトルを測定した
ところ、イミド環の特性吸収帯である1770cm
-11700〜1720cm-1に顕著な吸収を示し下式のよう
な、ほぼ完全に閉環したポリイミド構造をもつこ
とが確認された。 実施例 3 ピロメリツト酸無水物21.8g(0.1モル)のか
わりにピロメリツト酸無水物10.9g(0.05モル)
をベンゾフエノンテトラカルボン酸二無水物16.1
g(0.05モル)を使用した以外は、実施例1と同
様の装置、方法で重合を行つた。 得られた樹脂溶液は、透明な赤色の粘稠な溶液
で、20℃で粘度を測定したところ、13000cps(20
重量%溶液)であつた。 赤外スペクトルを測定した結果、実施例1,2
のスペクトルと同様イミドの特性吸収帯に吸収が
あり、ほぼ完全に閉環したポリイミド構造をもつ
ことが確認された。 実施例 4 実施例1と同様の装置、方法で、ピロメリツト
酸無水物21.8g(0.1モル)と共沸脱水したm―
クレゾール120mlを加え溶解した。次にイソホロ
ンジイソシアネート23.1g(0.104モル)を加え、
140℃〜160℃で2時間、200℃で8時間加熱撹拌
した。 得られた溶液は、暗赤色の粘稠な溶液で、20℃
で粘度を測定したところ、2000cps(25重量%)で
あつた。 得られた樹脂の赤外スペクトルを測定したとこ
ろ、実施例1で得られた樹脂と同一の赤外スペク
トルを示したところから、実施例1と同一構造の
ほぼ閉環したポリイミド構造をもつことが確認さ
れた。 実施例 5 実施例4と同一の装置、方法でピロメリツト酸
無水物21.8g(0.1モル)と無水のN―メチル―
2―ピロリドン127gを加えて、溶解した。次に
イソホロンジイソシアネート22.2g(0.1モル)
を140℃で加熱撹拌しながら2時間かけて滴下仕
込した。更に200℃に昇温して4時間反応したと
ころ、暗赤色の粘稠な溶液が得られた。この樹脂
の赤外スペクトルから、実施例1の樹脂と同一の
構造のほぼ閉環したポリイミド構造をもつことが
確認された。 実施例 6 実施例1と同様の装置、方法でピロメリツト酸
無水物のかわりにピロメリツト酸25.4g(0.1モ
ル)を使用しm―クレゾール148mlを加え、溶解
した後、イソホロンジアミン17.0g(0.1モル)
を添加し、加熱した。温度が160℃になると、生
成水を留出しながら増粘した。1時間で約7.2g
の水を留出した後、更に200℃で6時間加熱後、
m―クレゾールを加えて稀釈した。得られた溶液
は、暗赤色の粘稠な溶液で、20℃で溶液粘度を測
定したところ7200cps(20重量%溶液)であつた。 赤外スペクトルを測定した結果、実施例1,2
のスペクトルと同様イミドの特性吸収帯に吸収が
あり、ほぼ完全に閉環したポリイミド構造をもつ
ことが確認された。
Although a diamine or diisocyanate having the formula is used, the decrease in heat resistance is smaller than when using a generally known aliphatic diamine or diisocyanate.
The resulting polyimide resin is treated with an organic polar solvent, especially
It is possible to make it soluble in cresol solvents. The polyimide resin having the above chemical structural formula of the present invention comprises an organic tetracarboxylic acid or a functional derivative thereof and isophorone diamine (3-
aminomethyl-3,5,5-trimethylcyclohexyl-amine). The polyimide resin having the above chemical structural formula can be obtained by reacting an organic tetracarboxylic acid or its anhydride with isophorone diisocyanate (3-isocyanatomethyl-3,5,5-trimethylcyclohexyl-isocyanate) having the following chemical structural formula. . Examples of organic tetracarboxylic acids include pyromellitic acid, benzophenonetetracarboxylic acid, 1,2,
5,6-naphthalenetetracarboxylic acid, 2,3,
6,7-naphthalenetetracarboxylic acid, 1,2,
Examples include 3,4-butanetetracarboxylic acid and tetrahydrofurantetracarboxylic acid. From the viewpoint of heat resistance, aromatic tetracarboxylic acids are desirable. Derivatives other than the above-mentioned tetracarboxylic acids having similar functions include their dianhydrides, monoanhydrides, esters, amides, etc., but it is preferable to use tetracarboxylic anhydrides. It is better to do so. Furthermore, by replacing a part of isophorone diamine and isophorone diisocyanate with aromatic diamine, diisocyanate, or aliphatic diamine and diisocyanate, "heat resistance" and "flexibility" can be improved. Examples of these compounds include 4,4'-diaminodiphenylpropane,
4,4'-diaminodiphenyl ether, diphenylmethane diisocyanate, diphenyl ether diisocyanate, hexamethylene diamine,
2,4,4 trimethylhexamethylene diamine,
Examples include hexamethylene diisocyanate, 2,4,4 trimethylhexamethylene diisocyanate, and the like. The polyimide polymerization reaction of the present invention is preferably carried out in the presence of a chemically inert organic polar solvent, such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, dimethylsulfone, N-methylcarbon Prolautum, resolic acid, P-cresol, m-
Cresol etc. can be used. Generally, cresol solvents are inexpensive compared to other polar solvents, so it is desirable to use cresol solvents from an industrial perspective. Furthermore, mixtures of the above solvents and mixtures of the above solvents with small amounts of toluene, xylene, ethylbenzene, etc. can also be used. The molar ratio of organic tetracarboxylic acid or its derivative having a similar function to isophorone diamine or isophorone diisocyanate is:
This mole is desirable. However, even if there is a slight excess of either, it is possible to carry out polymerization by selecting specific conditions such as temperature, type and amount of catalyst, and pressure. Polymerization temperature is 50℃ to 300℃, preferably 100℃ to 250℃
It is preferable to choose a temperature range of °C. The polyimide resin of the present invention is soluble in organic polar solvents, particularly cresol solvents, and in particular cresol solvents, and if a cresol solvent is used as a reaction solvent, it can be used as a solution for coil impregnation varnish, wire enamel, varnish cloth, etc. Used as electrical insulating varnish. Furthermore, a film with excellent heat resistance and mechanical strength can be produced from the resin solution, and can be used in various applied fields. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 21.8 g (0.1 mol) of pyromellitic dianhydride and 117 ml of m-cresol were placed in a 500 ml four-necked flask equipped with a stirrer, thermometer, cooling tube, and nitrogen gas inlet tube.
was added and dissolved. Next, 17.0 g (0.1 mol) of isophoronediamine was added and the temperature was raised to 160°C, which increased the viscosity while distilling the produced water. After distilling about 3.6g of water in 1 hour, after heating at 200℃ for 3 hours, m-
Diluted by adding cresol. The obtained solution is
It was a clear, pale yellow, viscous solution, and the solution viscosity was measured at 20°C and was 28,000 cps (12% by weight solution). Next, when we measured the infrared spectrum of the resin produced, it showed a spectrum as shown in Figure 1, especially at 1770 cm -1 and 1700 to 1720 cm -1, which are the characteristic absorption bands of imide rings.
It showed remarkable absorption in cm -1 and was confirmed to have an almost completely ring-closed polyimide structure as shown in the formula below. Apply this resin solution on a glass plate and apply 100 to 150
A casting film was prepared by raising the temperature to ℃ over 30 minutes. The obtained film was a pale yellow transparent film. Next, heat this film to 190℃.
A heat resistance test was conducted after leaving the sample in an atmosphere of ~280°C for 30 minutes. When the prepared film was immersed in a 260°C solder bath for 3 seconds, no change was observed and it showed the expected heat resistance. Example 2 Using the same equipment and method as in Example 1, 32.2 g (0.1 mol) of benzophenonetetracarboxylic dianhydride and 148 ml of m-cresol were added and dissolved, and then 17.0 g (0.1 mol) of isophoronediamine was added. and heated. When the temperature reached 160°C, the viscosity increased while distilling the produced water. After distilling off about 3.6 g of water in 1 hour, the mixture was further heated at 200°C for 6 hours, and then diluted with m-cresol. The obtained solution was a dark red viscous solution, and the solution viscosity was measured at 20°C.
It was 6800 cps (20% by weight solution). Next, when we measured the infrared spectrum of the resin produced, we found that it had a characteristic absorption band of imide rings at 1770 cm.
It was confirmed that it had a nearly completely ring-closed polyimide structure as shown in the formula below, showing remarkable absorption at -1 1700 to 1720 cm -1 . Example 3 10.9 g (0.05 mol) of pyromellitic anhydride instead of 21.8 g (0.1 mol) of pyromellitic anhydride
Benzophenonetetracarboxylic dianhydride 16.1
Polymerization was carried out using the same apparatus and method as in Example 1, except that 0.05 g (0.05 mol) was used. The obtained resin solution was a transparent red viscous solution, and when the viscosity was measured at 20℃, it was 13000 cps (20
wt% solution). As a result of measuring the infrared spectrum, Examples 1 and 2
Similar to the spectrum of , there is absorption in the characteristic absorption band of imide, confirming that it has an almost completely ring-closed polyimide structure. Example 4 Using the same equipment and method as in Example 1, m-
120 ml of cresol was added and dissolved. Next, 23.1 g (0.104 mol) of isophorone diisocyanate was added,
The mixture was heated and stirred at 140°C to 160°C for 2 hours and at 200°C for 8 hours. The resulting solution is a dark red viscous solution at 20°C.
When the viscosity was measured, it was 2000 cps (25% by weight). When the infrared spectrum of the obtained resin was measured, it showed the same infrared spectrum as the resin obtained in Example 1, which confirmed that it had a substantially ring-closed polyimide structure that was the same as that of Example 1. It was done. Example 5 Using the same equipment and method as in Example 4, 21.8 g (0.1 mol) of pyromellitic anhydride and anhydrous N-methyl-
127 g of 2-pyrrolidone was added and dissolved. Next, 22.2g (0.1mol) of isophorone diisocyanate
The mixture was added dropwise over 2 hours while heating and stirring at 140°C. When the temperature was further raised to 200°C and the reaction was continued for 4 hours, a dark red viscous solution was obtained. From the infrared spectrum of this resin, it was confirmed that it had the same nearly ring-closed polyimide structure as the resin of Example 1. Example 6 Using the same equipment and method as in Example 1, 25.4 g (0.1 mol) of pyromellitic acid was used instead of pyromellitic anhydride, and 148 ml of m-cresol was added and dissolved, followed by 17.0 g (0.1 mol) of isophoronediamine.
was added and heated. When the temperature reached 160°C, the viscosity increased while distilling the produced water. Approximately 7.2g in 1 hour
After distilling off the water, after further heating at 200℃ for 6 hours,
It was diluted by adding m-cresol. The obtained solution was a dark red viscous solution, and the solution viscosity was measured at 20°C and was 7200 cps (20% by weight solution). As a result of measuring the infrared spectrum, Examples 1 and 2
Similar to the spectrum of , there is absorption in the characteristic absorption band of imide, confirming that it has an almost completely ring-closed polyimide structure.

【図面の簡単な説明】[Brief explanation of drawings]

図―1は実施例1で得られた樹脂の赤外吸収ス
ペクトルを示す。
Figure 1 shows the infrared absorption spectrum of the resin obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 下記化学構造式(1)からなる有機極性溶剤に可
溶性の新規ポリイミド樹脂。 (式中、Rは【式】又は 【式】からなる4価の有機基であ り、nはm―クレゾール又はメチルピロリドンで
20重量溶液%とし、20℃での溶液粘度が1000〜
50000cpsを示す数である。)
[Scope of Claims] 1. A novel polyimide resin soluble in organic polar solvents and having the following chemical structural formula (1). (In the formula, R is [formula] or a tetravalent organic group consisting of [formula], and n is m-cresol or methylpyrrolidone.
20% solution by weight, solution viscosity at 20℃ is 1000~
This number indicates 50000cps. )
JP11401479A 1979-09-04 1979-09-04 Organic-solvent-soluble polyimide resin and production thereof Granted JPS5636520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11401479A JPS5636520A (en) 1979-09-04 1979-09-04 Organic-solvent-soluble polyimide resin and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11401479A JPS5636520A (en) 1979-09-04 1979-09-04 Organic-solvent-soluble polyimide resin and production thereof

Publications (2)

Publication Number Publication Date
JPS5636520A JPS5636520A (en) 1981-04-09
JPS646225B2 true JPS646225B2 (en) 1989-02-02

Family

ID=14626884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11401479A Granted JPS5636520A (en) 1979-09-04 1979-09-04 Organic-solvent-soluble polyimide resin and production thereof

Country Status (1)

Country Link
JP (1) JPS5636520A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845185A (en) * 1986-04-22 1989-07-04 Nippon Steel Corporation Soluble copolyimide from 9,9-bis (4-amino phenyl) fluorene
JP4560886B2 (en) * 2000-05-01 2010-10-13 Dic株式会社 Carboxyl group-containing amideimide resin and / or carboxyl group-containing imide resin
JP5212418B2 (en) * 2010-04-12 2013-06-19 Dic株式会社 Resin production method

Also Published As

Publication number Publication date
JPS5636520A (en) 1981-04-09

Similar Documents

Publication Publication Date Title
JP2843029B2 (en) Method for producing crosslinked copolyamideimide
JPS5879018A (en) Highly soluble aromatic polyimide composition
JPH0284434A (en) Polyimide polymer and copolymer which are made by using 3,5-diaminobenzotrifluoride
JPH025774B2 (en)
US4959437A (en) Process for producing a low thermally expansive and highly adhesive silicon-containing polyimide and a precursor thereof
US4189518A (en) Cured polymeric coating material, coated substrate, and process of forming
US4101487A (en) Coating medium
US3498948A (en) Reaction products of tetracarboxylic acid dianhydrides with triamines and mixtures of triamines and diamines
JPS646225B2 (en)
US5104946A (en) Solutions of polyimidesiloxanes in butyrolactone
US4428977A (en) Ammonium salt of partially emidized polyamide acid for aqueous coating composition
JPS59199720A (en) Preparation of soluble polyimide compound
EP0418889B1 (en) Polyamic acid having three-dimensional network molecular structure, polyimide obtained therefrom and process for the preparation thereof
Zeng et al. Synthesis and characterization of polyimides from metal-containing (Ba, Sr, Pb, Zn) diamines
JP2910796B2 (en) Polyamic acid copolymer, polyimide film comprising the same, and methods for producing them
JPH0562893B2 (en)
JPH0126371B2 (en)
US3674741A (en) Copolymer of poly(quinozolone and imide) and process for producing the same
JP2831867B2 (en) Polyamic acid copolymer, polyimide copolymer comprising the same, polyimide film, and methods for producing them
JPS5952898B2 (en) Method for producing polyimide precursor
JPH08120040A (en) Heat-resistant electrical insulating material and production of heat-resistant electrical insulating film from the same
JPH0121165B2 (en)
WO1998046666A1 (en) Chemical imidization reagent for polyimide synthesis
JPH0142969B2 (en)
JPS5953287B2 (en) Manufacturing method of polyimide precursor