JPS645739B2 - - Google Patents

Info

Publication number
JPS645739B2
JPS645739B2 JP6040979A JP6040979A JPS645739B2 JP S645739 B2 JPS645739 B2 JP S645739B2 JP 6040979 A JP6040979 A JP 6040979A JP 6040979 A JP6040979 A JP 6040979A JP S645739 B2 JPS645739 B2 JP S645739B2
Authority
JP
Japan
Prior art keywords
electrode
electron gun
spot
electrodes
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6040979A
Other languages
Japanese (ja)
Other versions
JPS55154033A (en
Inventor
Masayoshi Misono
Kazuhiro Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6040979A priority Critical patent/JPS55154033A/en
Publication of JPS55154033A publication Critical patent/JPS55154033A/en
Publication of JPS645739B2 publication Critical patent/JPS645739B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/44Factory adjustment of completed discharge tubes or lamps to comply with desired tolerances
    • H01J9/445Aging of tubes or lamps, e.g. by "spot knocking"

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【発明の詳細な説明】 本発明は陰極線管の製造方法に係り、特にスポ
ツトノツキング処理工程に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a cathode ray tube, and more particularly to a spotting process.

陰極線管の製造工程において、排気後の一工程
でスポツトノツキング処理が行なわれることは周
知である。このスポツトノツキング処理は陰極線
管をセツトに実装した際に用いられる最高電圧よ
りさらに高い電圧を電子銃の電極に印加し、管内
でスパークを発生させて耐電圧特性の向上を計る
等を目的とするものである。
It is well known that in the manufacturing process of cathode ray tubes, a spot-knocking process is performed in one step after evacuation. This spot-knocking process applies a voltage higher than the maximum voltage used when the cathode ray tube is mounted in a set to the electrodes of the electron gun to generate sparks within the tube and improve the withstand voltage characteristics. It is something to do.

第1図は陰極線管、特にシヤドウマスク形カラ
ー受像管の一例を示す縦断面図であり、図におい
て1は外囲器(以下バルブという)、2は電子銃、
3はゲツタ、4はシヤドウマスクであり、前記ゲ
ツタ3は前記電子銃2にその一端を固定したゲツ
タサポート3aの他端側に固定され、この例では
フアンネル部1aまで延長して配置されている。
FIG. 1 is a longitudinal sectional view showing an example of a cathode ray tube, particularly a shadow mask type color picture tube. In the figure, 1 is an envelope (hereinafter referred to as a bulb), 2 is an electron gun,
3 is a getter, and 4 is a shadow mask. The getter 3 is fixed to the other end side of a getter support 3a whose one end is fixed to the electron gun 2, and in this example, it is arranged to extend to the funnel portion 1a. .

また、第2図は電子銃2の構成の一例を示して
おり、図において21はG1電極、22はG2電極、
23はG3電極、24はG4電極、25はG5電極、
26はG6電極、27はカソードで前記G1電極2
1に隣接しており、このカソード27中にはヒー
タ28が配置されている。
Further, FIG. 2 shows an example of the configuration of the electron gun 2, and in the figure, 21 is a G1 electrode, 22 is a G2 electrode,
23 is G 3 electrode, 24 is G 4 electrode, 25 is G 5 electrode,
26 is the G 6 electrode, 27 is the cathode and the G 1 electrode 2
1, and a heater 28 is arranged in this cathode 27.

このような構成のカラー受像管においては、陽
極電圧がG6電極26及びG4電極24に印加され、
この陽極電圧は現行のカラー受像管で最高で約
30KV程度であり、従つてこのような高電圧を用
いるカラー受像管においては電子銃の耐電圧特性
がカラー受像管の商品としての信頼性を保証する
重要なポイントとなつている。この耐電圧特性の
レベルは、スパーク発生頻度と、電子銃を構成す
る電極間の暗電流に起因する不良項目等で評価さ
れる。そして、これらのスパーク及び暗電流等は
前記電子銃のうち低電位電極からの電界放出によ
り発生する電子に起因することが大部分である。
従つて、耐電圧特性の改善は前記電子放出の抑制
が大きなポイントとなる。ところが、最近のカラ
ー受像管ではフオーカス特性の改善等をねらいと
して多段集束形電子銃を具備する傾向にあり、こ
れが主流を占めつつある。
In a color picture tube having such a configuration, an anode voltage is applied to the G 6 electrode 26 and the G 4 electrode 24,
This anode voltage is the highest for current color picture tubes, approximately
The voltage is about 30KV, and therefore, in color picture tubes that use such high voltages, the withstand voltage characteristics of the electron gun are an important point in ensuring the reliability of the color picture tube as a product. The level of the withstand voltage characteristics is evaluated based on the frequency of spark occurrence and defects caused by dark current between the electrodes forming the electron gun. Most of these sparks and dark currents are caused by electrons generated by field emission from the low potential electrode of the electron gun.
Therefore, suppressing the electron emission is a key point in improving the withstand voltage characteristics. However, recent color picture tubes tend to be equipped with multistage focusing electron guns in order to improve focus characteristics, and this is becoming the mainstream.

この多段集束形電子銃の特徴は、弱い集束レン
ズを多段に組合せて主レンズ系の球面収差を少な
くすることである。しかしこの結果、電極の数が
増し、これに伴なつて電位差の高い電極の対向面
積が増加することと、電極そのものが複雑化する
ことから、結果前に前記不要な電子放出が増加す
ることは避けられず、従来のカラー受像管の電子
銃と同様もしくはそれより以上に耐電圧特性の向
上が困難であつた。耐電圧特性の向上を計る方法
としては、設計的な手法及び製造的な手法がとら
れるが、製造的にはスポツトノツキングもその一
つの手法である。すなわち、使用セツトにおける
印加電圧よりもさらに高い電圧を電子銃に印加
し、管内で強制的にスパークを発生させ、耐電圧
特性を低下させる電子放出源のスパークのエネル
ギーで消散させるものである。
A feature of this multistage focusing electron gun is that weak focusing lenses are combined in multiple stages to reduce the spherical aberration of the main lens system. However, as a result of this, the number of electrodes increases, the opposing area of electrodes with a high potential difference increases, and the electrodes themselves become more complex, so it is unlikely that the unnecessary electron emission will increase before the results are obtained. Unavoidably, it has been as difficult to improve the withstand voltage characteristics as with, or even more than, conventional color picture tube electron guns. Methods for improving withstand voltage characteristics include design methods and manufacturing methods, and spot-noting is one of the manufacturing methods. That is, a voltage higher than the applied voltage in the used set is applied to the electron gun to forcibly generate sparks within the tube, which are dissipated by the energy of the spark from the electron emission source which reduces the withstand voltage characteristics.

第2図の配線はスポツトノツキング処理工程に
おける電圧印加関係を示すもので、G4電極24
及びG6電極26に正の高電圧を印加し、他の電
極はアースする構成である。この処理は電子銃を
バルブ内に封入し排気した後に行なうもので、従
つて電子銃を構成する各電極は真空中に設置した
スパークギヤツプとみなすことができ、第3図は
第2図の電極をスパークギヤツプとみたときの等
価回路であり、33〜35はスパークギヤツプを
示す。
The wiring in Fig. 2 shows the voltage application relationship in the spot-knocking process.
The configuration is such that a positive high voltage is applied to the G6 electrode 26 and the other electrodes are grounded. This process is performed after the electron gun is enclosed in a valve and evacuated. Therefore, each electrode that makes up the electron gun can be regarded as a spark gap installed in a vacuum, and Figure 3 shows the electrodes in Figure 2. This is an equivalent circuit when viewed as a spark gap, and 33 to 35 indicate spark gaps.

しかし、第2図からも明らかなように、各電極
の形状は異なるために各スパークギヤツプの放電
開始電圧は異なる。従つて、前述したような配線
で電極に高電圧を印加しても、スパークが発生す
るのは最も放電開始電圧の低いギヤツプのみで、
他はスパークしない。
However, as is clear from FIG. 2, since the shapes of each electrode are different, the discharge starting voltage of each spark gap is different. Therefore, even if a high voltage is applied to the electrodes using the wiring as described above, sparks will only occur at the gap with the lowest discharge starting voltage.
Others do not spark.

結果的にノツキングは放電開始電圧の低い電極
間のみに施されるのみである。この現象を防ぐた
め、通常は各スパークギヤツプ間の放電開始電圧
が均一になるよう、設計及び製作される。
As a result, knocking is performed only between electrodes where the discharge starting voltage is low. To prevent this phenomenon, spark gaps are usually designed and manufactured so that the discharge starting voltage is uniform between each spark gap.

しかし、この時のレベル均一化は完全に行なう
のは事実上不可能であり、かつ同一の電子放出量
でも放出源の位置により、受像管の耐電圧特性に
与える影響度は異るため、スポツトノツキングに
は位置的な選択性は要する。しかし、従来のスポ
ツトノツキングでは上記の理由から、単純にスパ
ークし易い個所のみがスパークし、不良現象の抑
制を効率的に行なうことができなかつた。
However, it is virtually impossible to completely equalize the level at this time, and even if the amount of electrons emitted is the same, the degree of influence on the withstand voltage characteristics of the picture tube varies depending on the position of the emission source. Knocking requires positional selectivity. However, due to the above-mentioned reasons, conventional spot noticing simply causes sparks only at locations where sparks are likely to occur, making it impossible to effectively suppress defective phenomena.

本発明はこのような従来の欠点を解決した優れ
たスポツトノツキング方法を可能にしたものであ
る。
The present invention enables an excellent spot-noting method that overcomes these conventional drawbacks.

真空中でのスパーク発生は、電極間に電位差を
与えた時、例え局部的ではあつても真空度が劣化
しないと生じない。真空度を劣化する原因は、
電極に付着あるいは包含している蒸気圧が高い物
質が蒸発するか、、電極自身を構成する物質が
蒸発するか、または、周囲の温度上昇で残留ガ
スの熱速度が上るかのいずれかである。しかし、
およびは例えばカラー受像管ではそのデイス
プレイとしての性能および寿命に影響するため、
極力それを抑制する材料および熱処理を行なつて
いるためこの原因による劣化は利用できない。し
かし、通常の例えばカラー受像管では極く微量で
はあるが、残留ガスは必ず存在するため、真空度
低下に利用できる。本発明はこの現象をスポツト
ノツキングに巧みに応用したものである。以下、
本発明を詳細に説明する。
Spark generation in a vacuum does not occur unless the degree of vacuum deteriorates when a potential difference is applied between the electrodes, even if it is localized. The cause of the deterioration of the vacuum level is
Either a substance with a high vapor pressure attached to or contained in the electrode evaporates, a substance constituting the electrode itself evaporates, or the thermal velocity of the residual gas increases due to an increase in the surrounding temperature. . but,
For example, in a color picture tube, since it affects the performance and lifespan of the display,
Since the materials and heat treatment are used to suppress this as much as possible, deterioration due to this cause cannot be exploited. However, in a normal color picture tube, for example, residual gas is always present, albeit in a very small amount, so it can be used to lower the degree of vacuum. The present invention skillfully applies this phenomenon to spotting. below,
The present invention will be explained in detail.

第4図は本発明の方法を説明するための一例の
図である。同図において、第2図と同様な機能を
有する個所は第2図と同一番号を符してある。第
4図において40は高周波電流を流すための電極
焼きコイルであり、同コイル40に通電した時発
生する磁束はG5電極25にうず電流を発生させ、
同電極25のG6電極26に近い個所を加熱する。
この状態ではG5電極25とG6電極26の両電極
間付近は前述の理由で真空度が劣化し、スパーク
が発生し易い状態になるため、陽極を形成する
G6電極26およびG4電極24に高電圧を印加し
ても、前記G5電極25とG6電極26の両電極間
に選択的にスパークを発生させることができる。
従つて、電極焼きコイル40の位置と形状および
高周波電流値を調整することで、局所的な真空度
劣化を発生させ、必要とする選択的なノツキング
が可能である。
FIG. 4 is an example diagram for explaining the method of the present invention. In this figure, parts having the same functions as those in FIG. 2 are designated by the same numbers as in FIG. 2. In FIG. 4, 40 is an electrode burning coil for passing high frequency current, and the magnetic flux generated when the coil 40 is energized generates an eddy current in the G5 electrode 25.
A portion of the electrode 25 near the G 6 electrode 26 is heated.
In this state, the degree of vacuum in the area between the G 5 electrode 25 and the G 6 electrode 26 deteriorates due to the above-mentioned reason, and sparks are likely to occur, so an anode is formed.
Even if a high voltage is applied to the G 6 electrode 26 and the G 4 electrode 24, sparks can be selectively generated between the G 5 electrode 25 and the G 6 electrode 26.
Therefore, by adjusting the position and shape of the electrode burning coil 40 and the high-frequency current value, it is possible to cause local vacuum deterioration and perform the necessary selective knocking.

又、実際のカラー受像管等では管内の真空度を
保持するため蒸発型のゲツターを使用する。通常
蒸発型のゲツターはBa、Al等が材料であり、仕
事関数が大変低いため、これらの蒸発物が電子銃
の電極に付着すると前記電子放出が生じ易くな
る。
Furthermore, in actual color picture tubes, etc., an evaporative getter is used to maintain the degree of vacuum inside the tube. Evaporative getters are usually made of materials such as Ba and Al, and have a very low work function, so that when these evaporated substances adhere to the electrodes of the electron gun, the electron emission is likely to occur.

このため、ゲツター源は前述した第1図で説明
したように電子銃本体から離して設置する。しか
し、ゲツターを蒸発させる際は受像管内の真空度
が一時的に劣化し、この結果ゲツター物質は電子
銃の方に飛散して付着する。この現象をバツクフ
ラツシユと呼んでいるが、現時点においてこれを
完全に抑制するのは難しい。
For this reason, the getter source is installed away from the electron gun body as explained in FIG. 1 above. However, when the getter is evaporated, the degree of vacuum inside the picture tube is temporarily degraded, and as a result, the getter material scatters and adheres to the electron gun. This phenomenon is called backflash, and it is currently difficult to completely suppress it.

従つて、前記スポツトノツキングを施す際は全
電極表面にはBa、Al等の極く薄い膜が付着して
いるのが普通である。このため、前記第4図で示
した電極加熱時に電極の温度を更に上昇させる
と、低電位側電極は例えば酸化物陰極となり、前
記電界による電子放出以外にも熱電子放出も行な
い、これらの電子が高電位側電極に衝突する際、
高電位側電極を加熱し、前記の理由からスパーク
を発生し易くなる。
Therefore, when spot-knotting is performed, a very thin film of Ba, Al, etc. is usually attached to the entire electrode surface. Therefore, if the temperature of the electrode is further increased during the electrode heating shown in FIG. When collides with the high potential side electrode,
The high potential side electrode is heated and sparks are likely to be generated for the above-mentioned reasons.

又、上記の理由から、電極表面はBa、Al等の
薄膜で覆われているが、この膜の付着を最初から
防止できれば、電極表面の仕事関数が高くなり前
記動作中に電界による電子放出を抑制でき、スポ
ツトノツキング作業そのものを軽減できる。この
考え方から、一旦電極表面に付着したのを除去す
るよりは、最初から付着させない方が効率的であ
る。このためには、通常ゲツターを蒸発させる時
に電極を高周波加熱する方法が採られているが、
これのみでは不十分であり、これにさらにスポツ
トノツキングを併用することで目的は達せられ
る。
Furthermore, for the above reasons, the electrode surface is covered with a thin film of Ba, Al, etc., but if this film could be prevented from adhering from the beginning, the work function of the electrode surface would increase and electron emission due to the electric field would be prevented during the operation. This can reduce the spot-knocking work itself. Based on this idea, it is more efficient to prevent adhesion from the beginning than to remove it once it has adhered to the electrode surface. For this purpose, a method is usually adopted in which the electrode is heated with high frequency when the getter is evaporated.
This alone is not sufficient, and the purpose can be achieved by using spot notching in addition to this.

すなわち、ゲツターフラツシユ用の高周波加熱
と、電極の高周波加熱と、スポツトノツキングを
同時に行なう方法である。
That is, this is a method in which high-frequency heating for the getter flash, high-frequency heating for the electrode, and spot-knocking are performed simultaneously.

以上は実施例としてカラー受像管でG1電極か
らG6電極まで6ケのグリツドを持つ電子銃につ
いて述べたが、本発明の方法は他の陰極線管につ
いても同様な応用が可能であり、さらに電極の加
熱方法は、高周波加熱以外の方法でも良い。
The above has described an electron gun having six grids from the G1 electrode to the G6 electrode in a color picture tube as an example, but the method of the present invention can be similarly applied to other cathode ray tubes. The electrode heating method may be a method other than high frequency heating.

以上のように、本発明の方法によれば耐電圧特
性を向上することができ、また従来問題であつた
電極間の距離が同一で、かつ特定の部分のみ効率
的にノツキングを要するものでも本発明の方法に
より選択的に処理することができるなど優れた方
法を可能にしたものである。
As described above, according to the method of the present invention, it is possible to improve the withstand voltage characteristics, and it is also possible to improve the voltage resistance characteristics even when the distance between the electrodes is the same and only a specific part requires efficient knocking, which was a problem in the past. The method of the invention enables an excellent method such as selective processing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はカラー受像管の一例を示す断面図、第
2図は電子銃構造とスポツトノツキング時の配線
を示す図、第3図は第2図の等価回路図、第4図
は本発明の方法でスポツトノツキング方法を説明
するための図である。 1……外囲器、2……電子銃、3……ゲツタ、
21〜27……電極、40……電極焼コイル。
Figure 1 is a sectional view showing an example of a color picture tube, Figure 2 is a diagram showing the electron gun structure and wiring during spot knocking, Figure 3 is an equivalent circuit diagram of Figure 2, and Figure 4 is the invention of the present invention. FIG. 2 is a diagram for explaining a spot finding method according to the method of FIG. 1...Envelope, 2...Electron gun, 3...Getsuta,
21-27...electrode, 40...electrode firing coil.

Claims (1)

【特許請求の範囲】 1 陰極線管の製造において、スポツトノツキン
グ処理を電子銃を構成する電極のうち陰極を除く
他の電極を加熱しながら行なうことを特徴とする
陰極線管の製造方法。 2 陰極線管の製造において、電子銃を構成する
電極のうち陰極を除く他の電極を加熱しながらス
ポツトノツキング処理を行なう工程中にゲツター
フラツシユを行なうことを特徴とする陰極線管の
製造方法。
[Scope of Claims] 1. A method for manufacturing a cathode ray tube, characterized in that, in manufacturing a cathode ray tube, a spot-knocking process is performed while heating electrodes other than the cathode among the electrodes constituting the electron gun. 2. A method for manufacturing a cathode ray tube, which comprises performing a getter flash during the spot-knocking process while heating the electrodes constituting the electron gun, except for the cathode. .
JP6040979A 1979-05-18 1979-05-18 Manufacture of cathode-ray tube Granted JPS55154033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6040979A JPS55154033A (en) 1979-05-18 1979-05-18 Manufacture of cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6040979A JPS55154033A (en) 1979-05-18 1979-05-18 Manufacture of cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS55154033A JPS55154033A (en) 1980-12-01
JPS645739B2 true JPS645739B2 (en) 1989-01-31

Family

ID=13141343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6040979A Granted JPS55154033A (en) 1979-05-18 1979-05-18 Manufacture of cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS55154033A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206028A (en) * 1982-05-26 1983-12-01 Hitachi Ltd Manufacturing method of cathode-ray tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916698B2 (en) * 1977-09-01 1984-04-17 三菱電機株式会社 Cathode ray tube spotting method

Also Published As

Publication number Publication date
JPS55154033A (en) 1980-12-01

Similar Documents

Publication Publication Date Title
US3751701A (en) Convergent flow hollow beam x-ray gun with high average power
US4185223A (en) Electron gun structure
US4288719A (en) CRT With means for suppressing arcing therein
JP2607654B2 (en) Indirectly heated cathode structure and electron gun structure using the same
JPS645739B2 (en)
US5952777A (en) Color cathode ray tube
JPS6318297B2 (en)
JP3095445B2 (en) Method of manufacturing color picture tube
US2776227A (en) Method of processing a photosensitive mosaic electrode
US4193016A (en) Electron gun shield cup providing tube evacuation bypass vents
JP3017815B2 (en) Cathode ray tube
KR930001212Y1 (en) Electron gun of color picture tube
KR0148784B1 (en) Crt with an improved arc suppressing means
KR0140070Y1 (en) Structure of electron gun used in a crt
KR200151012Y1 (en) An electron gun for a crt
US4045849A (en) Method for assembling a thermally-set getter spring in a CRT
JPH0676765A (en) Electromagnetic focusing type projection type cathode-ray tube
JPS5827473Y2 (en) color picture tube
JPS6329778B2 (en)
JPS6323873Y2 (en)
JPH059807Y2 (en)
JPH0373090B2 (en)
JPS5946735A (en) Manufacturing method for cathode-ray tube
JPS63114022A (en) Spot knocking method for cathode-ray tube
JPS5851443A (en) Method of exhausting cathode-ray tube