JPS6411575B2 - - Google Patents

Info

Publication number
JPS6411575B2
JPS6411575B2 JP56169180A JP16918081A JPS6411575B2 JP S6411575 B2 JPS6411575 B2 JP S6411575B2 JP 56169180 A JP56169180 A JP 56169180A JP 16918081 A JP16918081 A JP 16918081A JP S6411575 B2 JPS6411575 B2 JP S6411575B2
Authority
JP
Japan
Prior art keywords
ferrous
cobalt
powder
salt
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56169180A
Other languages
Japanese (ja)
Other versions
JPS5869729A (en
Inventor
Kazuo Nakada
Tsuneo Ishikawa
Ichiro Pponma
Masaharu Hirai
Masatoshi Amano
Shinsuke Takumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP56169180A priority Critical patent/JPS5869729A/en
Publication of JPS5869729A publication Critical patent/JPS5869729A/en
Publication of JPS6411575B2 publication Critical patent/JPS6411575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、磁気記録媒体の記録素子として有用
なコバルト及び第1鉄含有強磁性酸化鉄粉末の改
良された製造方法に関する。 コバルト及び第1鉄含有磁性酸化鉄粉末は、従
来汎用されているγ−Fe2O3粉末などのコバルト
及び第1鉄を含まない磁性酸化鉄粉末に比べて高
保磁力を有しており、これを磁気記録媒体に使用
すると高密度記録ができ、高周波領域における感
度が高いなど数多くの利点がある。 近年、このようなコバルト及び第1鉄含有磁性
酸化鉄を製造する方法は種々提案されている。例
えば磁性酸化鉄粉末をコバルト塩と第1鉄塩との
混合水溶液中に分散させ、これにアルカリ水溶液
を加えて沸点以下の温度で処理し、前記粉末上に
コバルトを含有する酸化鉄層を形成させることに
よつて磁性酸化鉄粉末を製造する方法があるが、
さらに高度の磁気特性を有するものが要求され、
その製法の改良が求められている。 本発明者等は、高度の磁気特性を有する強磁性
酸化鉄粉末を得るため種々検討を重ねた結果、前
記粉末粒子表面においてはコバルト化合物より第
1鉄化合物の方が析出速度が速いことに注目し、
コバルト塩と第1鉄塩との添加割合を調節したと
ころ、得られる磁性酸化鉄が良好な磁気特性を有
するという知見を得、本発明を完成した。 すなわち、本発明は、磁性酸化鉄粉末の表面
に、コバルト化合物及び第1鉄化合物を該粉末の
分散液中で被着した強磁性酸化鉄粉末の製造方法
において、コバルト塩、第1鉄塩及びアルカリに
よるコバルト化合物及び第1鉄化合物の被着を前
段、後段に分けて行ない、前段で被着に供するコ
バルト塩及び第1鉄塩は前段、後段で添加される
全コバルト塩及び全第1鉄塩のそれぞれ50〜95重
量%及び第1鉄塩の5〜20重量%であり、また前
段で被着に供するコバルト塩及び第1鉄塩の
Co/Fe比は1を越え、かつ前段でコバルト塩及
び第1鉄塩をアルカリにより該分散液のPHを6.5
〜9として該粉末の表面に非酸化性雰囲気中で被
着を行ない、後段で残りのコバルト塩及び残りの
第1鉄塩をアルカリにより、該被着層の表面に非
酸化性覆囲気中でさらに被着を行なうことを特徴
とする強磁性酸化鉄粉末の製造方法である。 本発明に用いられる磁性酸化鉄粉末としてはγ
−Fe2O3粉末、Fe3O4粉末、又はγ−Fe2O3を適
宜の手段、例えば水素などの還元性気体中で部分
還元して得られるベルトライド化合物粉末などが
挙げられ、中でもγ−Fe2O3粉末が望ましい。コ
バルト塩としては、コバルトの無機酸塩又は有機
酸塩、例えば硫酸コバルト、塩化コバルト、酸化
コバルトなどが挙げられ、工業的には硫酸コバル
トが好ましい。第1鉄塩としては、硫酸第1鉄、
硝酸第1鉄、塩化第1鉄塩などの鉱酸の第1鉄塩
が挙げられ、工業的には硫酸第1鉄が好ましい。
アルカリとしては、アルカリ金属又はアルカリ土
類金属の水酸化物、酸化物或は炭酸塩などが用い
られ、例えば水酸化ナトリウム、水酸化カリウ
ム、酸化ナトリウム、炭酸カルシウムなどが挙げ
られる。工業的には水酸化ナトリウム、水酸化カ
リウムが好ましい。塩とアルカリによつて形成さ
れるコバルト化合物又は第1鉄化合物としては、
例えば水和水酸化物、水和酸化物、水和オキシ水
酸化物などが挙げられる。ここでいう非酸化性雰
囲気とは、できるだけ反応物が酸化されない雰囲
気のことであつて、例えば、反応容器を不活性ガ
スで置換したり、反応容器の溶液中に不活性ガス
をバブリングさせたりしてもよい。 本発明方法においては、通常磁性酸化鉄粉末
を、水、弱アルカリ水溶液、アルカリ水溶液に分
散させ、コバルト塩及び第1鉄塩とアルカリを添
加したり、前記粉末を特定の添加割合のコバルト
塩及び第1鉄塩の水溶液に分散させ、アルカリを
添加したりして、まず前段で一定量のコバルト塩
と第1鉄塩をアルカリで中和し生成したコバルト
化合物及び第1鉄化合物を前記粉末の表面に非酸
化性雰囲気中で被着し、次いで後段でこの系内に
残りのコバルト塩及び第1鉄塩を添加し中和し
て、前記被着層の表面に非酸化性雰囲気中でさら
にコバルト化合物及び第1鉄化合物の被着を行な
う。この被着物を形成する方法として、具体的に
は前記粉末を水又は弱アルカリ水溶液に分散さ
せ、この中に特定量のコバルト塩及び第1鉄塩と
これらの塩を中和するに必要なアルカリとを併行
添加し、次いで特定のOH基濃度となるまでアル
カリを追加添加し、続いて残りのコバルト塩及び
第1鉄塩とこれらの塩を中和するに必要な量のア
ルカリとを併行添加する方法、前記粉末を特定
量のコバルト塩及び第1鉄塩を含む水溶液に分散
させ、これにアルカリを添加して中和し、さらに
アルカリを追加添加して特定のOH基濃度とし、
次いで残りのコバルト塩及び第1鉄塩とこれらの
塩を中和するに必要な量のアルカリとを併行添加
する方法、前記粉末をアルカリ水溶液に分散さ
せ、特定量のコバルト塩及び第1鉄塩とこれらの
塩を中和するに必要なアルカリとを併行添加し、
次いで特定のOH基濃度となるまでアルカリを追
加添加し、続いて残りのコバルト塩及び第1鉄塩
とこれらの塩を中和するに必要な量のアルカリと
を併行添加する方法などが挙げられ、前記〜
の方法において、後段の中和に必要なアルカリを
後段の被着の前に添加してもよい。 本発明方法によつて得られる強磁性酸化鉄粉末
は、磁性酸化鉄粉末の表面に、前記粉末の鉄原子
に対して通常1〜20原子%、望ましくは2〜10原
子%、さらに望ましくは3〜7原子%のコバルト
化合物及び通常2〜30原子%、望ましくは4〜25
原子%、さらに望ましくは5〜20原子%の第1鉄
化合物を被着したものであり、コバルト化合物と
第1鉄化合物との比率は、通常0.1〜2:1、望
ましくは0.2〜1:1、さらに望ましくは0.3〜
0.5:1であるが、これに限定されるものではな
い。 本発明方法の被着において、まず前段で、添加
される全コバルト塩の50〜95重量%、望ましくは
50〜80重量%の量のコバルト塩と添加される全第
1鉄塩の5〜20重量%、望ましくは5〜15重量%
の量の第1鉄塩とをアルカリで中和して前記粉末
の表面に被着する必要がある。この添加割合が前
記範囲外の場合、例えば後記比較例1のような従
来法によるときは、それぞれの化合物が別々に析
出したり、保磁力にばらつきを生じたりして所望
の効果が得られない。これら原料の添加時間は、
被着層を形成する方法、OH基のモル濃度、被着
時の温度などにより多少異なるが一般的には15分
以上必要であり、望ましくは1〜2時間である。
前記の方法のように、前記粉末を水又は弱アル
カリ水溶液中に分散させて反応させる場合は、こ
の分散液のPHを通常7〜9、望ましくは7.5〜8.5
とするのがよい。より効果を期待する場合は、系
内のPH或はOH基のモル濃度、被着時の温度、原
料の添加方法などにより、Co/Feの添加割合を
適宜選択するべきである。前段のPH6.5〜9の場
合においてはCo/Feの添加割合を1を越えるよ
うに、望ましくは2〜8、さらに望ましくは3〜
5とするのがよく、この場合PHを7〜8.5とする
のがさらに好ましい。前記の方法において室温
で行なうのがさらに望ましい。前段の被着後、系
内のOH基濃度が0.5〜1.5mol/、望ましくは
0.7〜1.2mol/となるように、アルカリを追加
添加するのが好ましい。次いで後段で被着粉末が
分散したスラリーに残りのコバルト塩と残りの第
1鉄塩を添加しアルカリで中和して前記被着層の
表面に被着する必要がある。このアルカリは予め
系内に添加しておくか又は前記コバルト塩と第1
鉄塩とを中和するに必要な量或は少し過剰量を被
着時に添加してもよく、被着時にOH基濃度が0.7
〜1.2mol/となるように調節するのが好まし
く、中でも3種の原料を併行添加するのが好まし
い。 また、本発明方法の被着において、前記粉末の
懸濁スラリー濃度は、通常20〜200g/、望ま
しくは50〜150g/であり、被着反応温度は、
通常沸点以下、望ましくは50℃以下である。ま
た、本発明方法の被着は非酸化性雰囲気中で行な
う必要があり、非酸化性雰囲気でない場合は第1
鉄化合物が不用に酸化され、所望の効果が得られ
ない。なお、本発明方法において、コバルト塩、
第1鉄塩以外に第1マンガン塩、亜鉛塩、ニツケ
ル塩などの遷移金属塩を適宜加えてもよい。 前述の方法により得られた強磁性酸化鉄は、通
常の方法により濾過、水洗、乾燥して強磁性酸化
鉄粉末として得ることができる。この濾過の前に
100〜200℃の温度でのオートクレーブによる湿式
処理を施したり、この濾過或は乾燥の後に非酸化
性雰囲気中で120〜250℃の温度で乾式熱処理を施
したり、この濾過の後に60〜200℃の温度で水蒸
気処理を施したりすると、さらに高度の磁気特性
を有する強磁性酸化鉄粉末が得られるので望まし
い。ここでいう水蒸気処理というのは、濾過した
後の強磁性酸化鉄の湿ケーキをそのまま又は水洗
の後非酸化性雰囲気中でできるだけ低温での乾燥
を行なつたものを、密閉容器中において水蒸気の
存在下で加熱する方法、流動層中において加熱水
蒸気を存在させて接触させる方法などがある。ま
たオートクレーブによる湿式処理の後、又は水蒸
気処理後にさらに前述のような非酸化性雰囲気中
での乾式熱処理を施してもよい。本発明方法の実
施において、本発明方法の被着の後に前述したよ
うな処理の中でもオートクレーブによる湿式処理
或は水蒸気処理又はこれらの処理の後に非酢酸性
雰囲気中での乾式加熱処理を施すとより好まし
い。 前述の方法により得られた強磁性酸化鉄は、高
度な磁気特性を有し、このものを用いて製作した
磁気テープは高保磁力と同時に角形比、配向性、
飽和磁束密度に優れている。この理由については
充分明らかでないが、(1)コバルト化合物と第1鉄
化合物の析出速度が異なり、通常粉末粒子の表面
でコバルト化合物と第1鉄化合物の反応速度が不
均一となるが、本方法では、OH基濃度或はPH、
添加割合がコントロールされることからコバルト
化合物の粒成長が調節されること、(2)第1鉄化合
物の急速な析出が緩和されるため、粉末粒子の表
面へのコバルト化合物と第1鉄塩化合物の析出が
バランスよくかつ均一に行なわれることなどが推
定される。 以下の実施例及び比較例から本発明方法がより
詳しく理解されるであろう。 実施例 1 γ−Fe2O3粉末(保磁力:380Oe、平均粒子径
(長軸)0.6μ、軸比:8:1)50gを1の水に
分散させてスラリーとし、N2ガスで反応容器を
置換した後、このスラリー中に1mol/の硫酸
コバルト水溶液24ml及び0.6mol/の硫酸第1
鉄水溶液10mlと5mol/の水酸化ナトリウム水
溶液14mlとを1時間にわたつてPHを8に保ちつ
つ、併行添加し、次いで5mol/の水酸化ナト
リウム290mlを加え、30分間撹拌を行なつた。続
いて、1mol/の硫酸コバルト水溶液6ml及び
0.6mol/の硫酸第1鉄水溶液90mlと5mol/
の水酸化ナトリウム水溶液24mlとを1時間にわた
つて併行添加し、生成したスラリーを撹拌しなが
ら3時間保持した。このスラリーを常法によつて
濾過、水洗、乾燥して目的の強磁性酸化鉄粉末A
を得た。このものの保磁力を常法により測定した
ところ、570Oeであつた。 実施例 2 実施例1で用いたものと同じγ−Fe2O3350g
を水1に分散させてスラリーとし、N2ガスで
反応容器を置換した後、このスラリー中に
1mol/の硫酸コバルト水溶液24ml及び
0.6mol/の硫酸第1鉄水溶液5mlと5mol/
の水酸化ナトリウム水溶液11mlとを1時間にわた
つて併行添加し、次いで5mol/の水酸化ナト
リウム水溶液317mlを加え、30分間攪拌を行なつ
た。続いて1mol/の硫酸コバルト水溶液6ml
及び0.6mol/の硫酸第1鉄水溶液90mlを1時
間にわたつて併行添加し、生成したスラリーを攪
拌しながら3時間保持した。このスラリーを常法
によつて濾過、水洗、乾燥して目的の強磁性酸化
鉄粉末Bを得た。このものの保磁力を常法により
測定したところ、560Oeであつた。 比較例 1 実施例1で用いたものと同じγ−Fe2O350gを
水1に分散させてスラリーとし、N2ガスで反
応容器を置換した後、このスラリー中に1mol/
の硫酸コバルト水溶液30ml及び0.6mol/の
硫酸第1鉄水溶液100mlを混合し、その後5mol/
の水酸化ナトリウム水溶液36mlを1時間にわた
つて添加し、さらに5mol/の水酸化ナトリウ
ム水溶液292mlを加え、攪拌しながら3時間保持
した。このスラリーを常法によつて濾過、水洗、
乾燥して磁性酸化鉄粉末Cを得た。このものの保
磁力を常法により測定したところ、480Oeであつ
た。 前記で得られた粉末A〜Cについて、下記の配
合割合に従つて、配合物を調製し、ボールミルで
混練して磁性塗料を製造した。 (1) 磁性酸化鉄粉末A、B又はC 100重量部 (2) 大豆レシチン 1 〃 (3) 界面活性剤 4 〃 (4) 塩ビ−酢ビ共重合樹脂 15 〃 (5) ジオクチルフタレート 5 〃 (6) メチルエチルケトン 111 〃 (7) トルエン 122 〃 次いで、各々の磁性塗料をポリエステルフイル
ムに通常の方法により塗布、配向した後乾燥し
て、約9μ厚の磁性塗膜を有する磁性テープを作
成した。それぞれのテープについて通常の方法に
より、保磁力(Hc)、角形比(Br/Bm)、配向
性(OR)、飽和磁束密度(Bm)及び反転磁界分
布(SFD)を測定し、第1表の結果を得た。
The present invention relates to an improved method for producing cobalt- and ferrous-containing ferromagnetic iron oxide powders useful as recording elements in magnetic recording media. Magnetic iron oxide powder containing cobalt and ferrous iron has a higher coercive force than magnetic iron oxide powder that does not contain cobalt and ferrous iron, such as the conventionally used γ-Fe 2 O 3 powder. When used in magnetic recording media, there are many advantages such as high-density recording and high sensitivity in the high frequency range. In recent years, various methods for producing such magnetic iron oxides containing cobalt and ferrous iron have been proposed. For example, magnetic iron oxide powder is dispersed in a mixed aqueous solution of cobalt salt and ferrous salt, and an aqueous alkaline solution is added to this and treated at a temperature below the boiling point to form an iron oxide layer containing cobalt on the powder. There is a method of producing magnetic iron oxide powder by
A product with even higher magnetic properties is required,
Improvements in the manufacturing method are required. As a result of various studies in order to obtain a ferromagnetic iron oxide powder with high magnetic properties, the present inventors have noticed that the precipitation rate of ferrous compounds is faster than that of cobalt compounds on the surface of the powder particles. death,
By adjusting the addition ratio of cobalt salt and ferrous salt, it was found that the resulting magnetic iron oxide had good magnetic properties, and the present invention was completed. That is, the present invention provides a method for producing a ferromagnetic iron oxide powder, in which a cobalt compound and a ferrous compound are deposited on the surface of a magnetic iron oxide powder in a dispersion of the powder. The deposition of cobalt compounds and ferrous compounds with alkali is carried out in the first stage and second stage, and the cobalt salt and ferrous salt used for deposition in the first stage are the total cobalt salt and total ferrous salt added in the second stage. 50 to 95% by weight of the salt and 5 to 20% by weight of the ferrous salt, respectively, and the cobalt salt and ferrous salt used for deposition in the previous step.
The Co/Fe ratio exceeds 1, and the pH of the dispersion is adjusted to 6.5 by adding cobalt salt and ferrous salt to an alkali in the first stage.
In steps 9 to 9, the powder is coated on the surface of the powder in a non-oxidizing atmosphere, and in a subsequent step, the remaining cobalt salt and the remaining ferrous salt are applied to the surface of the coated layer with an alkali in a non-oxidizing atmosphere. This is a method for producing ferromagnetic iron oxide powder, characterized by further performing deposition. The magnetic iron oxide powder used in the present invention is γ
Examples include -Fe 2 O 3 powder, Fe 3 O 4 powder, or bertolide compound powder obtained by partially reducing γ-Fe 2 O 3 in a reducing gas such as hydrogen, among others. γ-Fe 2 O 3 powder is preferred. Examples of cobalt salts include inorganic and organic acid salts of cobalt, such as cobalt sulfate, cobalt chloride, and cobalt oxide, with cobalt sulfate being preferred industrially. Ferrous salts include ferrous sulfate,
Examples include ferrous salts of mineral acids such as ferrous nitrate and ferrous chloride, with ferrous sulfate being industrially preferred.
As the alkali, hydroxides, oxides, or carbonates of alkali metals or alkaline earth metals are used, and examples thereof include sodium hydroxide, potassium hydroxide, sodium oxide, and calcium carbonate. Industrially, sodium hydroxide and potassium hydroxide are preferred. Cobalt compounds or ferrous compounds formed by salts and alkalis include:
Examples include hydrated hydroxide, hydrated oxide, and hydrated oxyhydroxide. The non-oxidizing atmosphere here refers to an atmosphere in which the reactants are not oxidized as much as possible, such as replacing the reaction vessel with an inert gas or bubbling an inert gas into the solution in the reaction vessel. It's okay. In the method of the present invention, magnetic iron oxide powder is usually dispersed in water, a weak alkaline aqueous solution, or an alkaline aqueous solution, and a cobalt salt, a ferrous salt, and an alkali are added to the powder, or a cobalt salt and an alkali are added to the powder in a specific addition ratio. The cobalt compound and ferrous compound produced by neutralizing a certain amount of cobalt salt and ferrous salt with alkali in the previous stage are dispersed in an aqueous solution of ferrous salt and an alkali is added to the powder. The surface is coated in a non-oxidizing atmosphere, and then the remaining cobalt salt and ferrous salt are added to the system in a later stage to neutralize it, and the surface of the deposited layer is further coated in a non-oxidizing atmosphere. Cobalt and ferrous compounds are deposited. Specifically, the method for forming this deposit is to disperse the powder in water or a weak alkaline aqueous solution, and add specific amounts of cobalt salts and ferrous salts and the alkali necessary to neutralize these salts. and then additional alkali is added until a specific OH group concentration is reached, followed by simultaneous addition of the remaining cobalt salts and ferrous salts and the amount of alkali necessary to neutralize these salts. A method of dispersing the powder in an aqueous solution containing a specific amount of cobalt salt and ferrous salt, adding an alkali to the solution to neutralize it, and further adding an alkali to achieve a specific OH group concentration,
Next, the remaining cobalt salts and ferrous salts and an amount of alkali necessary to neutralize these salts are simultaneously added. and the necessary alkali to neutralize these salts,
Examples include a method in which an alkali is further added until a specific OH group concentration is reached, and then the remaining cobalt salt and ferrous salt are simultaneously added with an amount of alkali necessary to neutralize these salts. , said~
In the method described above, the alkali necessary for the subsequent neutralization may be added before the subsequent deposition. The ferromagnetic iron oxide powder obtained by the method of the present invention is usually 1 to 20 atomic %, preferably 2 to 10 atomic %, more preferably 3 atomic %, based on the iron atoms of the powder, on the surface of the magnetic iron oxide powder. ~7 atom % cobalt compound and usually 2 to 30 atom %, preferably 4 to 25 atom %
It is coated with a ferrous compound of atomic %, more preferably 5 to 20 atomic %, and the ratio of cobalt compound to ferrous compound is usually 0.1 to 2:1, preferably 0.2 to 1:1. , more preferably 0.3~
The ratio is 0.5:1, but is not limited to this. In the deposition of the method of the present invention, in the first step, 50 to 95% by weight of the total cobalt salt added, preferably
Cobalt salt in an amount of 50-80% by weight and 5-20% by weight of the total ferrous salts added, preferably 5-15% by weight
amount of ferrous salt must be neutralized with an alkali and deposited on the surface of the powder. If this addition ratio is outside the above range, for example when using a conventional method such as Comparative Example 1 described below, each compound may precipitate separately or the coercive force may vary, making it impossible to obtain the desired effect. . The addition time of these raw materials is
Although it varies somewhat depending on the method of forming the deposited layer, the molar concentration of OH groups, the temperature at the time of deposition, etc., it generally requires 15 minutes or more, and preferably 1 to 2 hours.
When the powder is dispersed in water or a weak alkaline aqueous solution and reacted as in the above method, the pH of the dispersion is usually 7 to 9, preferably 7.5 to 8.5.
It is better to If a better effect is expected, the ratio of Co/Fe to be added should be appropriately selected depending on the molar concentration of PH or OH groups in the system, the temperature during deposition, the method of adding raw materials, etc. In the case of PH6.5 to 9 in the first stage, the Co/Fe addition ratio is set to exceed 1, preferably 2 to 8, more preferably 3 to 8.
5, and in this case, it is more preferable to set the pH to 7 to 8.5. It is further preferred that the method is carried out at room temperature. After the first stage deposition, the OH group concentration in the system is 0.5 to 1.5 mol/, preferably
It is preferable to additionally add alkali so that the amount becomes 0.7 to 1.2 mol/. Then, in the latter stage, it is necessary to add the remaining cobalt salt and the remaining ferrous salt to the slurry in which the adhering powder is dispersed, neutralize it with an alkali, and apply it to the surface of the adhering layer. This alkali may be added to the system in advance, or the cobalt salt and the first
The amount necessary to neutralize iron salts or a slight excess amount may be added at the time of deposition, and the OH group concentration at the time of deposition is 0.7.
It is preferable to adjust the amount to ~1.2 mol/part, and it is especially preferable to add three types of raw materials in parallel. In addition, in the deposition method of the present invention, the suspension slurry concentration of the powder is usually 20 to 200 g/, preferably 50 to 150 g/, and the deposition reaction temperature is:
It is usually below the boiling point, preferably below 50°C. In addition, the deposition in the method of the present invention must be carried out in a non-oxidizing atmosphere, and if the atmosphere is not non-oxidizing, the first
The iron compound is unnecessarily oxidized and the desired effect cannot be obtained. In addition, in the method of the present invention, cobalt salt,
In addition to ferrous salts, transition metal salts such as manganese salts, zinc salts, and nickel salts may be added as appropriate. The ferromagnetic iron oxide obtained by the above method can be obtained as ferromagnetic iron oxide powder by filtration, washing with water, and drying by a conventional method. before this filtration
Wet treatment in an autoclave at a temperature of 100-200℃, or after this filtration or drying, dry heat treatment in a non-oxidizing atmosphere at a temperature of 120-250℃, or after this filtration at a temperature of 60-200℃. It is desirable to perform a steam treatment at a temperature of 100 to 100 ml, since this yields a ferromagnetic iron oxide powder with even higher magnetic properties. The steam treatment here refers to the wet cake of ferromagnetic iron oxide that has been filtered, either as it is, or after being washed with water and then dried at the lowest possible temperature in a non-oxidizing atmosphere. There are methods such as heating in the presence of heated water vapor and contacting it in the presence of heated steam in a fluidized bed. Further, after the wet treatment using an autoclave or after the steam treatment, a dry heat treatment in a non-oxidizing atmosphere as described above may be further performed. In carrying out the method of the present invention, it is preferable to perform a wet treatment in an autoclave or a steam treatment, or a dry heat treatment in a non-acetic acid atmosphere after the above-mentioned treatments after the deposition of the method of the present invention. preferable. The ferromagnetic iron oxide obtained by the above method has advanced magnetic properties, and magnetic tapes manufactured using this material have high coercive force, squareness ratio, orientation,
Excellent saturation magnetic flux density. The reasons for this are not fully clear, but (1) the precipitation rates of cobalt compounds and ferrous compounds are different, and the reaction rates of cobalt compounds and ferrous compounds are usually uneven on the surface of powder particles, but this method Then, the OH group concentration or PH,
(2) Since the addition ratio is controlled, the grain growth of the cobalt compound is regulated, and (2) the rapid precipitation of the ferrous compound is alleviated, so the cobalt compound and the ferrous salt compound are deposited on the surface of the powder particles. It is presumed that the precipitation is carried out in a well-balanced and uniform manner. The method of the present invention will be understood in more detail from the following Examples and Comparative Examples. Example 1 50 g of γ-Fe 2 O 3 powder (coercive force: 380 Oe, average particle diameter (major axis) 0.6 μ, axial ratio: 8:1) was dispersed in 1 part water to make a slurry, and reacted with N 2 gas. After replacing the container, 24 ml of 1 mol/cobalt sulfate aqueous solution and 0.6 mol/1 sulfuric acid were added to this slurry.
10 ml of an aqueous iron solution and 14 ml of a 5 mol/aqueous sodium hydroxide solution were added simultaneously over 1 hour while keeping the pH at 8, then 290 ml of 5 mol/aqueous sodium hydroxide was added, and the mixture was stirred for 30 minutes. Subsequently, 6 ml of a 1 mol/cobalt sulfate aqueous solution and
90ml of 0.6mol/ferrous sulfate aqueous solution and 5mol/
24 ml of an aqueous sodium hydroxide solution was simultaneously added over 1 hour, and the resulting slurry was held for 3 hours with stirring. This slurry is filtered, washed with water, and dried in a conventional manner to obtain the desired ferromagnetic iron oxide powder A.
I got it. The coercive force of this material was measured using a conventional method and was found to be 570 Oe. Example 2 350 g of γ-Fe 2 O 3 same as that used in Example 1
was dispersed in 1 part of water to make a slurry, and after replacing the reaction vessel with N2 gas, in this slurry
24ml of 1mol/cobalt sulfate aqueous solution and
5 ml of 0.6 mol/ferrous sulfate aqueous solution and 5 mol/
11 ml of an aqueous sodium hydroxide solution was added over 1 hour, and then 317 ml of a 5 mol/aqueous sodium hydroxide solution was added, followed by stirring for 30 minutes. Next, 6 ml of 1 mol/cobalt sulfate aqueous solution
and 90 ml of a 0.6 mol/ferrous sulfate aqueous solution were simultaneously added over 1 hour, and the resulting slurry was held for 3 hours with stirring. This slurry was filtered, washed with water, and dried in a conventional manner to obtain the desired ferromagnetic iron oxide powder B. The coercive force of this material was measured using a conventional method and was found to be 560 Oe. Comparative Example 1 50 g of γ-Fe 2 O 3, the same as that used in Example 1, was dispersed in 1 part of water to make a slurry, and after replacing the reaction vessel with N 2 gas, 1 mol/g of γ-Fe 2 O 3 was dispersed in this slurry.
30 ml of cobalt sulfate aqueous solution and 100 ml of 0.6 mol/ferrous sulfate aqueous solution, then 5 mol/
36 ml of an aqueous sodium hydroxide solution was added over 1 hour, and further 292 ml of a 5 mol/aqueous sodium hydroxide solution was added, and the mixture was maintained for 3 hours with stirring. This slurry is filtered, washed with water, and
After drying, magnetic iron oxide powder C was obtained. The coercive force of this material was measured using a conventional method and was found to be 480 Oe. A blend of the powders A to C obtained above was prepared according to the blending ratio shown below, and the mixture was kneaded in a ball mill to produce a magnetic paint. (1) Magnetic iron oxide powder A, B or C 100 parts by weight (2) Soybean lecithin 1 〃 (3) Surfactant 4 〃 (4) PVC-vinyl acetate copolymer resin 15 〃 (5) Dioctyl phthalate 5 〃 ( 6) Methyl ethyl ketone 111 〃 (7) Toluene 122 〃 Next, each magnetic coating was applied to a polyester film by a conventional method, oriented and dried to produce a magnetic tape having a magnetic coating film about 9μ thick. For each tape, the coercive force (Hc), squareness ratio (Br/Bm), orientation (OR), saturation magnetic flux density (Bm), and switching field distribution (SFD) were measured using the usual methods, and the results shown in Table 1 were measured. Got the results.

【表】 実施例 3 実施例1で得られた処理スラリー(濾過前のも
の)をオートクレーブに入れ、120℃で3時間湿
式処理し、冷却後常法により水洗、乾燥して目的
の強磁性酸化鉄粉末Dを得た。このものの保磁力
を常法により測定したところ、693Oeであつた。 実施例 4 実施例2で得られた処理スラリー(濾過前のも
の)を実施例3の場合と同様のオートクレーブに
よる湿式処理をし、冷却後常法により水洗、乾燥
して、目的の強磁性酸化鉄粉末Eを得た。このも
のの保磁力を常法により測定したところ、660Oe
であつた。 比較例 2 比較例1で得られた処理スラリー(濾過前のも
の)をオートクレーブに入れ、120℃で3時間湿
式処理し、冷却後常法により水洗、乾燥して磁性
酸化鉄粉末Fを得た。このものの保磁力を常法に
より測定したところ、552Oeであつた。 実施例 5 実施例1で得られた処理スラリー(濾過前のも
の)を常法によつて濾過、水洗の後、この湿ケー
キをオートクレーブ中に入れ、100℃で24時間水
蒸気処理(圧力1Kg/cm2)し、冷却後常法により
水洗、乾燥して目的の強磁性酸化鉄粉末Gを得
た。このものの保磁力を常法により測定したとこ
ろ640Oeであつた。 実施例 6 実施例1で得られた粉末AをN2ガス雰囲気中
で150℃で1時間乾式熱処理して目的の強磁性酸
化鉄粉末Hを得た。このものの保磁力を常法によ
り測定したところ、608Oeであつた。 前記実施例3〜6並び比較例2で得られた粉末
D〜Hについて、実施例1の場合と同様にして磁
気テープを作成し、それぞれのテープについて通
常の方法により、保磁力(Hc)、角形比(Br/
Bm)、配向性(OR)、飽和磁束密度(Bm)及び
反転磁界分布(SFD)を測定し、第2表の結果
を得た。
[Table] Example 3 The treated slurry obtained in Example 1 (before filtration) was placed in an autoclave, wet-treated at 120°C for 3 hours, cooled, washed with water and dried in a conventional manner to obtain the desired ferromagnetic oxidation. Iron powder D was obtained. The coercive force of this material was measured using a conventional method and was found to be 693 Oe. Example 4 The treated slurry obtained in Example 2 (before filtration) was subjected to wet treatment in an autoclave in the same manner as in Example 3, and after cooling, it was washed with water and dried in a conventional manner to obtain the desired ferromagnetic oxidation. Iron powder E was obtained. When the coercive force of this material was measured using a conventional method, it was found to be 660Oe.
It was hot. Comparative Example 2 The treated slurry obtained in Comparative Example 1 (before filtration) was placed in an autoclave, wet-treated at 120°C for 3 hours, cooled, washed with water and dried in a conventional manner to obtain magnetic iron oxide powder F. . The coercive force of this material was measured using a conventional method and was found to be 552 Oe. Example 5 After filtering the treated slurry (before filtration) obtained in Example 1 and washing with water, the wet cake was placed in an autoclave and treated with steam at 100°C for 24 hours (pressure: 1 kg/kg). cm 2 ), and after cooling, was washed with water and dried by a conventional method to obtain the desired ferromagnetic iron oxide powder G. The coercive force of this material was measured using a conventional method and was found to be 640 Oe. Example 6 Powder A obtained in Example 1 was dry heat treated at 150° C. for 1 hour in an N 2 gas atmosphere to obtain the desired ferromagnetic iron oxide powder H. The coercive force of this material was measured using a conventional method and was found to be 608 Oe. Magnetic tapes were prepared using the powders D to H obtained in Examples 3 to 6 and Comparative Example 2 in the same manner as in Example 1, and the coercive force (Hc), Squareness ratio (Br/
Bm), orientation (OR), saturation magnetic flux density (Bm), and switching field distribution (SFD), and the results shown in Table 2 were obtained.

【表】 実施例 7 γ−Fe2O3粉末(保磁力:390Oe、平均長軸粒
子径約0.5μ、軸比:約11)75gを水1.5に分散
させてスラリーとした。このスラリーのPHを
5mol/の水酸化ナトリウム水溶液で8.0に調整
した後、温度を25℃に保ちながら窒素ガス雰囲気
下で1mol/の硫酸コバルトが水溶液36ml(硫
酸コバルト添加総量の80%に相当)及び
0.6mol/の硫酸第1鉄水溶液15ml(硫酸第1
鉄添加総量の10%に相当)と5mol/の水酸化
ナトリウム水溶液とを1時間にわたつてPHを8.0
に保ちつつ、併行添加し、次いで10mol/の水
酸化ナトリウム水溶液194mlを加え、30分間攪拌
を行なつた。続いて、1mol/の硫酸コバルト
水溶液9ml(硫酸コバルト添加総量の20%に相
当)及び0.6mol/の硫酸第1鉄水溶液135ml
(硫酸第1鉄添加総量の90%に相当)と中和当量
分の5mol/の水酸化ナトリウム水溶液とを1
時間にわたつて併行添加した。添加完了後、該ス
ラリーを3時間攪拌熟成した後、濾過、水洗、乾
燥して目的の強磁性酸化鉄粉末()を得た。こ
のものの保磁力を常法により測定したところ、
576Oeであつた。 実施例 8 実施例7において、硫酸コバルト添加総量に対
する前段及び後段の硫酸コバルト添加量の割合を
それぞれ95%及び5%に変更したことと、前段の
PHを6.5に変更したこと以外は実施例7の場合と
同じにして目的の強磁性酸化鉄粉末(J)を得た。こ
のものの保磁力を常法により測定したところ、
584Oeであつた。 実施例 9 実施例7において、硫酸コバルト添加総量に対
する前段及び後段の硫酸コバルト添加量の割合を
ともに50%に変更したことと、前段のPHを9.0に
変更したこと以外は実施例7の場合と同じにして
目的の強磁性酸化鉄粉末(K)を得た。このものの保
磁力を常法により測定したところ、569Oeであつ
た。 実施例 10 実施例7において、硫酸第1鉄添加総量に対す
る前段及び後段の硫酸第1鉄添加量の割合をそれ
ぞれ5%及び95%に変更したことと、前段のPHを
6.5に変更したこと以外は実施例7の場合と同じ
にして目的の強磁性酸化鉄粉末(L)を得た。このも
のの保磁力を常法により測定したところ、597Oe
であつた。 実施例 11 実施例7において、硫酸第1鉄添加総量に対す
る前段及び後段の硫酸第1鉄添加量の割合をそれ
ぞれ20%及び80%に変更したことと、前段のPHを
9.0に変更したこと以外は実施例7の場合と同じ
にして目的の強磁性酸化鉄粉末(M)を得た。こ
のものの保磁力を常法により測定したところ、
560Oeであつた。 比較例 3 実施例7において前段のPHを13.5としたこと以
外は実施例7の場合と同じにして強磁性酸化鉄粉
末(N)を得た。このものの保磁力を常法により
測定したところ、586Oeであつた。 比較例 4 実施例7で用いたのと同じγ−Fe2O3粉末75g
を水1.5に分散させてスラリーとし、このスラ
リーの温度を25℃に保ちながら窒素ガス雰囲気下
で1mol/の硫酸コバルト水溶液45ml及び
0.6mol/の硫酸第1鉄水溶液150mlを加えた。
次いで該スラリーに5mol/の水酸化ナトリウ
ム水溶液54mlを60分間で添加し、更に10mol/
の水酸化ナトリウム水溶液194mlを30分間で添加
した。添加完了後、該スラリーを3時間攪拌熟成
し、濾過、水洗、乾燥して強磁性酸化鉄粉末
(O)を得た。このものの保磁力を常法により測
定したところ、505Oeであつた。 実施例7〜11及び比較例3〜4で得られた粉末
I〜Oについて、前述の場合とほぼ同様にして磁
気テープを作成し、各種磁気特性を測定して第3
表の結果を得た。なお、実施例1〜6及び比較例
1〜2の場合と、実施例7〜11及び比較例3〜4
の場合との、粉末特性としての保磁力及びテープ
特性としての保磁力の測定方法は、ともに常法に
よるものであるが、測定機種その他により、概し
て、前者の粉末特性としての保磁力は後者のそれ
に比較して高く、前手のテープ特性としての保磁
力は後者のそれに比較して低い値となつている。
[Table] Example 7 75 g of γ-Fe 2 O 3 powder (coercive force: 390 Oe, average major axis particle diameter of about 0.5 μ, axial ratio: about 11) was dispersed in 1.5 g of water to prepare a slurry. The pH of this slurry is
After adjusting the temperature to 8.0 with a 5 mol/aqueous sodium hydroxide solution, 36 ml of an aqueous solution of 1 mol/cobalt sulfate (equivalent to 80% of the total amount of cobalt sulfate added) and
15ml of 0.6mol/ferrous sulfate aqueous solution (ferrous sulfate
(equivalent to 10% of the total amount of iron added) and 5 mol/aqueous sodium hydroxide solution to bring the pH to 8.0 for 1 hour.
Then, 194 ml of a 10 mol/aqueous sodium hydroxide solution was added and stirred for 30 minutes. Next, 9 ml of a 1 mol/cobalt sulfate aqueous solution (equivalent to 20% of the total amount of cobalt sulfate added) and 135 ml of a 0.6 mol/ferrous sulfate aqueous solution.
(equivalent to 90% of the total amount of ferrous sulfate added) and 5 mol/aqueous sodium hydroxide solution equivalent to neutralization.
Additions were made in parallel over time. After the addition was completed, the slurry was stirred and aged for 3 hours, then filtered, washed with water, and dried to obtain the desired ferromagnetic iron oxide powder (). When the coercive force of this material was measured using a conventional method, it was found that
It was 576 Oe. Example 8 In Example 7, the ratio of the amount of cobalt sulfate added in the first and second stages to the total amount of added cobalt sulfate was changed to 95% and 5%, respectively, and
The desired ferromagnetic iron oxide powder (J) was obtained in the same manner as in Example 7 except that the pH was changed to 6.5. When the coercive force of this material was measured using a conventional method, it was found that
It was 584 Oe. Example 9 In Example 7, the ratio of the amount of cobalt sulfate added in the first and second stages to the total amount of added cobalt sulfate was both changed to 50%, and the pH of the first stage was changed to 9.0. The desired ferromagnetic iron oxide powder (K) was obtained in the same manner. The coercive force of this material was measured using a conventional method and was found to be 569 Oe. Example 10 In Example 7, the ratio of the amount of ferrous sulfate added in the first and second stages to the total amount of ferrous sulfate added was changed to 5% and 95%, respectively, and the pH of the first stage was changed.
The desired ferromagnetic iron oxide powder (L) was obtained in the same manner as in Example 7 except that the amount was changed to 6.5. When the coercive force of this material was measured using a conventional method, it was found to be 597Oe.
It was hot. Example 11 In Example 7, the ratio of the amount of ferrous sulfate added in the first and second stages to the total amount of ferrous sulfate added was changed to 20% and 80%, respectively, and the pH of the first stage was changed.
The desired ferromagnetic iron oxide powder (M) was obtained in the same manner as in Example 7 except that the value was changed to 9.0. When the coercive force of this material was measured using a conventional method, it was found that
It was 560 Oe. Comparative Example 3 A ferromagnetic iron oxide powder (N) was obtained in the same manner as in Example 7 except that the PH in the first stage was set to 13.5. The coercive force of this material was measured using a conventional method and was found to be 586 Oe. Comparative Example 4 75g of the same γ-Fe 2 O 3 powder used in Example 7
was dispersed in 1.5 ml of water to form a slurry, and while maintaining the temperature of this slurry at 25°C, 45 ml of a 1 mol/cobalt sulfate aqueous solution and
150 ml of 0.6 mol/ferrous sulfate aqueous solution was added.
Next, 54 ml of a 5 mol/aqueous sodium hydroxide solution was added to the slurry over 60 minutes, and an additional 10 mol/aqueous solution was added to the slurry.
194 ml of an aqueous sodium hydroxide solution was added over 30 minutes. After the addition was completed, the slurry was stirred and aged for 3 hours, filtered, washed with water, and dried to obtain ferromagnetic iron oxide powder (O). The coercive force of this material was measured using a conventional method and was found to be 505 Oe. Regarding the powders I to O obtained in Examples 7 to 11 and Comparative Examples 3 to 4, magnetic tapes were prepared in substantially the same manner as in the above case, and various magnetic properties were measured.
Obtained the results in the table. In addition, the case of Examples 1 to 6 and Comparative Examples 1 to 2, and the case of Examples 7 to 11 and Comparative Examples 3 to 4
The methods for measuring the coercive force as a powder property and the coercive force as a tape property are both conventional methods, but depending on the measurement model and other factors, the coercive force as a powder property in the former case is generally different from the coercive force in the latter case. The coercive force of the former tape is relatively high, and the coercive force of the former tape is lower than that of the latter.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 磁性酸化鉄粉末の表面に、該粉末の鉄原子に
対して1〜20原子%のコバルト化合物及び2〜30
原子%の第1鉄化合物を該粉末の分散液中で被着
した強磁性酸化鉄粉末の製造方法において、コバ
ルト塩、第1鉄塩及びアルカリによるコバルト化
合物及び第1鉄化合物の被着を前段、後段に分け
て行ない、前段で被着に供するコバルト塩及び第
1鉄塩は前段、後段で添加される全コバルト塩及
び全第1鉄塩のそれぞれ50〜95重量%及び5〜20
重量%であり、また前段で被着に供するコバルト
塩及び第1鉄塩のCo/Fe比は1を越え、かつ前
段でコバルト塩及び第1鉄塩をアルカリにより該
分散液のPHを6.5〜9として該粉末の表面に非酸
化性雰囲気中で被着を行ない、後段で残りのコバ
ルト塩及び第1鉄塩をアルカリにより、該被着層
の表面に非酸化性雰囲気中でさらに被着を行なう
ことを特徴とする強磁性酸化鉄粉末の製造方法。
1. On the surface of magnetic iron oxide powder, a cobalt compound of 1 to 20 atomic % and 2 to 30 atomic % of the iron atoms of the powder is added.
A method for producing a ferromagnetic iron oxide powder in which atomic percent of a ferrous compound is deposited in a dispersion of the powder, in which the deposition of the cobalt compound and the ferrous compound by a cobalt salt, a ferrous salt, and an alkali is performed as a preliminary step. The cobalt salt and ferrous salt used for deposition in the first stage are 50 to 95% by weight and 5 to 20% by weight of the total cobalt salt and total ferrous salt added in the first and second stages, respectively.
% by weight, and the Co/Fe ratio of the cobalt salt and ferrous salt used for deposition in the first step exceeds 1, and the pH of the dispersion is adjusted to 6.5 to 6.5 with an alkali in the first step. In step 9, the powder is coated on the surface of the powder in a non-oxidizing atmosphere, and in the latter stage, the remaining cobalt salt and ferrous salt are further coated on the surface of the coated layer with an alkali in a non-oxidizing atmosphere. 1. A method for producing ferromagnetic iron oxide powder.
JP56169180A 1981-10-22 1981-10-22 Preparation of ferromagnetic iron oxide powder Granted JPS5869729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56169180A JPS5869729A (en) 1981-10-22 1981-10-22 Preparation of ferromagnetic iron oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56169180A JPS5869729A (en) 1981-10-22 1981-10-22 Preparation of ferromagnetic iron oxide powder

Publications (2)

Publication Number Publication Date
JPS5869729A JPS5869729A (en) 1983-04-26
JPS6411575B2 true JPS6411575B2 (en) 1989-02-27

Family

ID=15881725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56169180A Granted JPS5869729A (en) 1981-10-22 1981-10-22 Preparation of ferromagnetic iron oxide powder

Country Status (1)

Country Link
JP (1) JPS5869729A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201031A (en) * 1988-02-05 1989-08-14 Ishihara Sangyo Kaisha Ltd Production of cobalt-containing ferromagnetic iron oxide powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829604B2 (en) * 1975-07-02 1983-06-23 富士写真フイルム株式会社 Kiyoji Seifun Matsuno Seiho

Also Published As

Publication number Publication date
JPS5869729A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
KR880001711B1 (en) Manufacturing method of a magnetic substance
KR890001485B1 (en) Process for producing cobalt containing ferromagnetic iron oxid
KR890001971B1 (en) Process for producing cobalt-containing magnetic iron oxide powder
EP0857693B1 (en) Processes for producing hydrated iron oxide and ferromagnetic iron oxide
US4551327A (en) Process for producing cobalt-and ferrous iron-containing ferromagnetic iron oxides
CA1132008A (en) Metallic iron particles for magnetic recording produced by reducing an iron oxide precursor coated with an antimony compound
JPS6411575B2 (en)
KR890000702B1 (en) Production for cobalt containing magnetic iron oxide power
JPS6132259B2 (en)
JPS6242858B2 (en)
JP2946375B2 (en) Method for producing composite ferrite magnetic powder
JP2946374B2 (en) Method for producing composite ferrite magnetic powder
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS6151401B2 (en)
JPS6132258B2 (en)
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JP2660714B2 (en) Method for producing cobalt-containing ferromagnetic iron oxide powder
KR100241694B1 (en) Ferromagnetic iron oxide powder and its manufacturing method
JPH0430162B2 (en)
JPH0114176B2 (en)
JPH0425686B2 (en)
JPH0425687B2 (en)
JPS5935404A (en) Manufacture of cobalt-coated magnetic iron oxide powder
JPS63265823A (en) Method for coating metal compound on fine particles of acicular iron oxyhydroxide or the like
JPH0157482B2 (en)