JPS6397634A - Hydrophilic membrane and its production - Google Patents

Hydrophilic membrane and its production

Info

Publication number
JPS6397634A
JPS6397634A JP61243372A JP24337286A JPS6397634A JP S6397634 A JPS6397634 A JP S6397634A JP 61243372 A JP61243372 A JP 61243372A JP 24337286 A JP24337286 A JP 24337286A JP S6397634 A JPS6397634 A JP S6397634A
Authority
JP
Japan
Prior art keywords
membrane
water
hydrophobic
hydrophilic
hydrophilic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61243372A
Other languages
Japanese (ja)
Other versions
JPH089668B2 (en
Inventor
Yoshitada Sakai
良忠 酒井
Masaaki Shimagaki
昌明 島垣
Kazusane Tanaka
和実 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP61243372A priority Critical patent/JPH089668B2/en
Publication of JPS6397634A publication Critical patent/JPS6397634A/en
Publication of JPH089668B2 publication Critical patent/JPH089668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To obtain the title membrane which contains no soluble component and can be used immediately, by introducing a hydrophilic component into a membrane based on a hydrophobic polymer and water-insolubilizing this component by radiation and/or heating. CONSTITUTION:A hydrophilic component (e.g., collagen) is introduced into a hydrophobic membrane based on a hydrophobic polymer (e.g., PP) and having an equilibrium moisture content (as measured after being stored in an atmosphere at 20 deg.C and an RH of 65% for one week, weight of water/weight of polymer) <=5%, preferably, <=2%, and this membrane is irradiated with a radiation (e.g., gamma-rays) and/or heated to 50-200 deg.C to insolubilize the hydrophilic component.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規な親水化膜およびその製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a novel hydrophilized membrane and its manufacturing method.

[従来の技術] 従来、−過処理や透析処理で用いられる水処理用膜は、
■グリセリンなどの水溶性膜透過能維持剤を用いた状態
、■膜素材として親水性高分子を用いた状態、■水を共
存させた状態、などで供給されてきた。しかし、■では
使用に先立って膜透過能維持剤を洗浄除去する必要があ
り、即時使用ができないこと、■では一般にポアサイズ
が小さくなり、分子口数万以上の成分の分離に使える膜
ができにくいこと、■では被処理液体が血液である場合
など、共存している水を予め被処理液体に変質を与えな
い液体に置換する必要がある用途があり、即時使用でき
ないことなど、それぞれに問題がある。
[Conventional technology] Conventionally, water treatment membranes used in overtreatment and dialysis treatment are
It has been supplied in the following formats: (1) using a water-soluble membrane permeability maintenance agent such as glycerin, (2) using a hydrophilic polymer as the membrane material, and (2) coexisting with water. However, in case (2), the membrane permeability maintenance agent must be washed and removed before use, and cannot be used immediately; in case (2), the pore size is generally small, making it difficult to create a membrane that can be used to separate components with tens of thousands of molecules or more. (2) In some applications, such as when the liquid to be treated is blood, it is necessary to replace the coexisting water with a liquid that does not alter the quality of the liquid to be treated, and it cannot be used immediately. be.

一方、膜素材として、ポリエチレン、ポリプロピレン、
ポリカーボネート、ポリアクリロニトリル、ポリスルホ
ン、ポリエステル、ポリ2弗化ビニリデン、ポリ4弗化
エチレン、ポリメチルメタクリレート、セルローストリ
アセテートなどの疎水性高分子を主たる素材とした膜が
一過膜や透析膜として提供されているが、これらの疎水
性膜では■や■の状態にしておかないと直ちには本来の
透過能を発揮できず、したがって前記のように即時使用
できない問題は疎水性膜の宿命とされてきた。また、疎
水性膜に対して親水性成分を導入し、固着させることで
即時使用を可能にするという例(例えば、特開昭61−
120602、特開昭61−125405、特開昭61
−125408、特開昭61−125409、特開昭6
1−133102、特開昭61−133105など)も
みられるが、これらでは親水性高分子の固着が不充分で
、使用中に膜から親水性成分が溶出してくるなどの問題
がある。
On the other hand, polyethylene, polypropylene,
Membranes made primarily of hydrophobic polymers such as polycarbonate, polyacrylonitrile, polysulfone, polyester, polyvinylidene difluoride, polytetrafluoroethylene, polymethyl methacrylate, and cellulose triacetate are provided as transient membranes and dialysis membranes. However, these hydrophobic membranes cannot immediately exhibit their original permeability unless they are kept in the state (1) or (2), and therefore, the above-mentioned problem of not being able to use them immediately has been considered to be the fate of hydrophobic membranes. In addition, there are examples in which a hydrophilic component is introduced into a hydrophobic membrane and fixed thereon to enable immediate use (e.g.,
120602, JP-A-61-125405, JP-A-61
-125408, JP-A-61-125409, JP-A-6
1-133102, JP-A-61-133105, etc.), but these have problems such as insufficient adhesion of hydrophilic polymers and hydrophilic components eluting from the membrane during use.

[発明が解決しようとする問題点] 本発明者らは、かかる状況に鑑み、溶出性成分を伴わず
に疎水性膜を即時使えるようにするには如何にすべきか
につき鋭意検討を重ねたところ本発明に到達した。
[Problems to be Solved by the Invention] In view of the above situation, the present inventors have conducted extensive studies on how to make a hydrophobic membrane immediately usable without eluting components. We have arrived at the present invention.

[問題点を解決するための手段] 即ち、疎水性高分子を主たる素材とした疎水性膜へ、該
膜の製造工程中で放射線または/および熱により水不溶
化する親水性成分を導入することにより、溶出性成分を
伴わずに疎水性膜を即時使えるようにしうろことを見出
した。
[Means for solving the problem] That is, by introducing a hydrophilic component that becomes water-insoluble by radiation and/or heat during the manufacturing process of the membrane into a hydrophobic membrane mainly made of a hydrophobic polymer. discovered that a hydrophobic membrane can be used immediately without leaching components.

本手段を適用できる疎水性膜素材としては特に限定する
ものではないが、ポリエチレン、ポリプロピレン、ポリ
カーボネート、ポリアクリロニトリル、ポリスルホン、
ポリエステル、ポリ2弗化ビニリデン、ポリ4弗化エチ
レン、ポリメチルメタグリレート、セルローストリアセ
テート、ポリスチレン、ポリエチルアクリレート、ポリ
酢酸ビニル、ポリ塩化ビニルなど、およびこれらの誘導
体、あるいはこれら重合体の構成単量体間の共重合体、
ざらにはこれらを主体とするが共重合成分として親水性
成分を少量含む重合体などが挙げられ、本手段は平衡吸
水率(20℃、相対湿度65%の雰囲気下に1週間置い
て測定した吸水率で、水重量/ポリマー重量を%で表示
した値)が5%以下、さらに望ましくは2%以下の素材
に適用できる。
Hydrophobic membrane materials to which this method can be applied are not particularly limited, but include polyethylene, polypropylene, polycarbonate, polyacrylonitrile, polysulfone,
Polyester, polyvinylidene difluoride, polytetrafluoroethylene, polymethyl methacrylate, cellulose triacetate, polystyrene, polyethyl acrylate, polyvinyl acetate, polyvinyl chloride, etc., and derivatives thereof, or constituent units of these polymers. copolymer between molecules,
Polymers that are mainly composed of these materials but also contain a small amount of hydrophilic components as copolymer components are listed. It can be applied to materials with a water absorption rate (water weight/polymer weight expressed in %) of 5% or less, more preferably 2% or less.

親水性高分子の水不溶化手段として放射線を照射する方
法と加熱する方法とがあるが、前者ではポリエチレン、
ポリスルホン、ポリスチレン、ポリエステル、ポリエチ
ルアクリレート、ポリ酢酸ビニルなどを主成分とする耐
放射線性に優れた素材に対して、後者ではポリカーボネ
ート、ポリスルホン、ポリ2弗化ビニリデン、ポリ4弗
化エチレン、ポリエステルなどを主成分とする耐熱性に
優れた素材に対して好適に用いられる。またざらに、ポ
リスルホン、ポリエステルなどのように耐放射線性およ
び耐熱性に共に優れた素材に対しては、両手段を併用す
ることも可能である。
There are two methods of making hydrophilic polymers water insolubilizable: radiation irradiation and heating.
In contrast to materials with excellent radiation resistance whose main components are polysulfone, polystyrene, polyester, polyethyl acrylate, polyvinyl acetate, etc., the latter include polycarbonate, polysulfone, polyvinylidene difluoride, polytetrafluoroethylene, polyester, etc. It is suitably used for materials with excellent heat resistance that have as a main component. Furthermore, it is also possible to use both methods in combination for materials that have excellent radiation resistance and heat resistance, such as polysulfone and polyester.

放射線により水不溶化する親水性成分としては、ビニル
ピロリドン、ヒドロキシエチルメタクリレート、ビニル
アルコール、エヂレングリコール、メトキシポリエチレ
ングリコールメタクリレートなど、およびこれらの誘導
体の七ツマ−、オリゴマー、ポリマーおよびこれらの間
のコポリマー、あるいはペプタイド、アルブミン、コラ
ーゲンなどの蛋白などが挙げられる。熱により水不溶化
する親水性成分としては、ビニルピロリドン、ε−カプ
ロラクタム、ビニルアルコール キサイド、ヒドロキシエチルメタクリレートなど、およ
びこれらの誘導体のモノマー、オリゴマー、ポリマー、
およびこれらの間のコポリマー、あるいはペブタイド、
アルブミン、コラーゲンなどの蛋白などが挙げられる。
Hydrophilic components that become water insolubilized by radiation include vinylpyrrolidone, hydroxyethyl methacrylate, vinyl alcohol, ethylene glycol, methoxypolyethylene glycol methacrylate, etc., as well as monomers, oligomers, polymers of these derivatives, and copolymers among these; Alternatively, examples include proteins such as peptides, albumin, and collagen. Hydrophilic components that become water insolubilized by heat include vinylpyrrolidone, ε-caprolactam, vinyl alcoholoxide, hydroxyethyl methacrylate, and monomers, oligomers, and polymers of these derivatives.
and copolymers therebetween, or peptides,
Examples include proteins such as albumin and collagen.

水不溶化手段としての放射線としては、ガンマ−線、紫
外線、電子線などが用いられるが、特にガンマ−線では
浸透性が高いので単一膜だけでなく、膜集合体や膜を組
込んだモジュール状態でも親水性成分の水不溶化処理が
行なえるので好適に用いられる。水不溶化手段としての
加熱手段としては、乾熱、湿熱、温浴加熱のいずれも用
いることができる。加熱温度としては、疎水性素材の軟
化点や融点、親水性成分の熱分解温度などを考慮する必
要があるが、50℃ないし200℃が好ましい。また、
加熱処理を親水性成分を水不溶化する手段としてだけで
なく、ポアサイズの調整手段も兼ね合せた手段として用
いることも可能である。
Gamma rays, ultraviolet rays, electron beams, etc. are used as radiation for water insolubilization, but gamma rays have particularly high permeability, so they can be used not only for single membranes but also for membrane aggregates and modules incorporating membranes. It is preferably used because the hydrophilic component can be treated to become water-insolubilized even in this state. As the heating means for water insolubilization, any of dry heat, wet heat, and hot bath heating can be used. Although it is necessary to consider the softening point and melting point of the hydrophobic material, the thermal decomposition temperature of the hydrophilic component, etc., the heating temperature is preferably 50°C to 200°C. Also,
It is possible to use heat treatment not only as a means to make a hydrophilic component insoluble in water, but also as a means for adjusting pore size.

親水性成分を導入する製膜段階としては、膜素材へのブ
ロック共重合体化、製膜原液への混入、疎水性膜製膜後
の後処理など、いずれの段階でも良いが、製膜原液への
混入や後処理による導入が大きな孔を確保しやすいとい
う点、親水性成分の使用mを削減できるという点などで
有利である。
The membrane forming step for introducing hydrophilic components may be at any stage, such as block copolymerization into the membrane material, mixing into the membrane forming stock solution, or post-treatment after forming the hydrophobic membrane. It is advantageous in that it is easy to ensure large pores when mixed in or introduced through post-treatment, and that the use of hydrophilic components can be reduced.

また、放射線照射や加熱処理を膜や膜を組込んだモジュ
ールの殺菌手段を兼ねたものとすることも可能である。
It is also possible to use radiation irradiation or heat treatment as a means for sterilizing the membrane or the module incorporating the membrane.

本発明でいう膜の形態は特に限定するものではなく、例
えばシート状、中空糸状、マイクロカプセル状の膜など
が挙げられる。
The form of the membrane in the present invention is not particularly limited, and examples include sheet-like, hollow fiber-like, and microcapsule-like membranes.

以下、本発明の有効性を実施例をもって説明する。そこ
で用いた測定法は次の通りである。
Hereinafter, the effectiveness of the present invention will be explained using examples. The measurement method used there is as follows.

(1)  透水性 中空糸膜の場合は、両端に環流渋川の孔を備えたガラス
製のケースに該中空糸膜を挿入し、市販のポツティング
剤を用いて小型モジュールを作製し、37°Cに保って
中空糸内側に水圧をかけ膜を通して外側へ透過する一定
時間の水の量と有効膜面積および股間圧力差から算出す
る方法で透水性能を測定した。
(1) In the case of a water-permeable hollow fiber membrane, insert the hollow fiber membrane into a glass case with reflux holes at both ends, create a small module using a commercially available potting agent, and heat at 37°C. Water permeability was measured by a method in which water pressure was applied to the inside of the hollow fiber while maintaining the membrane at a constant temperature, and the water permeability was calculated from the amount of water that permeated to the outside through the membrane over a certain period of time, the effective membrane area, and the crotch pressure difference.

平膜の場合は、攪拌円筒セルを用いて同様にして測定し
た。
In the case of a flat membrane, measurements were made in the same manner using a stirred cylindrical cell.

(2)溶出物 膜0.5gを70’C温水50CCで1時間加熱して試
験液を調製する。試験液の波長220〜350μmにお
ける吸光度を測定する。なお、透析型人工腎臓装置承認
基準では、本条件での規格を0゜1以下としている。
(2) Prepare a test solution by heating 0.5 g of the eluate film in 50 CC of 70'C hot water for 1 hour. Measure the absorbance of the test solution at a wavelength of 220 to 350 μm. Note that the approval standards for dialysis-type artificial kidney devices set the standard under these conditions as 0°1 or less.

[実施例] 実施例1 ポリプロピレンからなる中空糸膜(透水性67Q Qm
l/hr −mmHg ・m’、以下同一単位)に0.
15%コラーゲン水溶液を浸漬含浸させ、窒素雰囲気下
’lQcmの距離をおいて、2時間、15W殺菌灯を用
いて紫外線照射した。該膜を乾燥後、透水性を測定した
ところ2500の値を得た。
[Example] Example 1 Hollow fiber membrane made of polypropylene (water permeability 67Q Qm
l/hr -mmHg ・m' (hereinafter the same unit) is 0.
The sample was impregnated with a 15% collagen aqueous solution and irradiated with ultraviolet light using a 15W germicidal lamp for 2 hours at a distance of 1Qcm under a nitrogen atmosphere. After drying the membrane, the water permeability was measured and a value of 2500 was obtained.

実施例2 ポリエチレンからなる中空糸膜(透水性5000)にポ
リエチレングリコール(#20000>20%水溶液を
浸漬含浸させ、γ線を2.5Mrad照射した。該膜を
乾燥後、透水性を測定したところ3200の値を得た。
Example 2 A hollow fiber membrane made of polyethylene (water permeability 5000) was impregnated with a 20% aqueous solution of polyethylene glycol (#20000) and irradiated with γ-rays at 2.5 Mrad. After drying the membrane, the water permeability was measured. A value of 3200 was obtained.

実施例3 ポリアクリロニトリル(分子!15,8万)からなる平
膜(透水性2300)を実施例1と同様に浸漬含浸させ
、今度は片面1時間ずつ紫外線照射した。該膜を乾燥後
、透水性を測定したところ1850の値を1qた。
Example 3 A flat membrane (water permeability 2300) made of polyacrylonitrile (molecular weight: 150,000,800) was impregnated by immersion in the same manner as in Example 1, and this time each side was irradiated with ultraviolet rays for 1 hour. After drying the membrane, the water permeability was measured and the value was 1850, which was 1q.

比較例1〜3 紫外線またはγ線照射を省いた点を除いて、実施例1,
2.3をくり返し、乾燥後、透水性能の測定をしたとこ
ろ実質上ゼロであった。
Comparative Examples 1 to 3 Example 1, except that ultraviolet or γ-ray irradiation was omitted.
2.3 was repeated, and after drying, the water permeability was measured and found to be substantially zero.

実施例4 ポリスルホン(ニーデルポリサルホンP−3500>1
5部、ポリビニルピロリドン(に−90)8部、ジメチ
ルアセトアミド75部、水2部からなる原液から製膜し
た中空糸膜を185°C11,5時間乾熱処理し、ポリ
ビニルピロリドンの水不溶化処理を施した。この完全ド
ライ膜の透水性を測定したところ15000の値を得た
。この膜の表面には0.2μm程度の孔があり、常圧で
水濡れ性の良いことから、浄水器用として利用できる。
Example 4 Polysulfone (needle polysulfone P-3500>1
A hollow fiber membrane formed from a stock solution consisting of 5 parts of polyvinylpyrrolidone (ni-90), 75 parts of dimethylacetamide, and 2 parts of water was subjected to dry heat treatment at 185°C for 11.5 hours to insolubilize polyvinylpyrrolidone in water. did. When the water permeability of this completely dry membrane was measured, a value of 15,000 was obtained. The surface of this membrane has pores of about 0.2 μm, and since it has good water wettability at normal pressure, it can be used for water purifiers.

実施例5 実施例3と同様にして製膜した中空糸膜を170℃、5
時間乾燥処理し、親水化膜を作った。木中空糸膜を膜面
積0.15m2になるよう束ね、モジュール化後、2.
5HradT線照射処理後乾燥し、ドライ膜として生血
(ヘマトクリット値40%、総タンパク濃度65g/旧
)での血漿分離性能を測定したところ、温度37℃、膜
間圧力差47 mmtla、血液流量5Qml/min
で血漿−過流ff116m1/minの性能を得た。水
がついていないため、初期からタンパク透過率(P液中
濃度/血液中濃度)が95%を越える優れたドライ採血
漿膜としての性能を認めた。
Example 5 A hollow fiber membrane produced in the same manner as in Example 3 was heated at 170°C for 5
A hydrophilic film was produced by drying for a period of time. After bundling the wooden hollow fiber membranes to have a membrane area of 0.15 m2 and making them into modules, 2.
After drying after 5 hours of T-ray irradiation, we measured the plasma separation performance of live blood (hematocrit value: 40%, total protein concentration: 65 g/old) as a dry membrane; the temperature was 37°C, the transmembrane pressure difference was 47 mmtla, and the blood flow rate was 5 Qml/dry membrane. min
A plasma flow rate of 116 m1/min was obtained. Since no water was attached to the membrane, its performance as an excellent dry plasma collection membrane was recognized with a protein permeability (concentration in P solution/concentration in blood) exceeding 95% from the beginning.

実施例6 実施例3と同様にして製膜した中空糸膜をモジュール化
後、水を充填させ、2.5HradT線照射による後処
理を施した。この膜を乾燥後、透水性能を測定したとこ
ろ11000の性能を得た。
Example 6 A hollow fiber membrane produced in the same manner as in Example 3 was modularized, filled with water, and post-treated with 2.5 Hrad T-ray irradiation. After drying this membrane, the water permeability was measured and a performance of 11,000 was obtained.

実施例7 実施例1〜6の中空糸膜の溶出物試験をしたところ、す
べて220qm〜350qmでの吸光度は0゜1以下で
あった。
Example 7 When the hollow fiber membranes of Examples 1 to 6 were tested for eluate, the absorbances at 220 qm to 350 qm were all 0°1 or less.

Claims (2)

【特許請求の範囲】[Claims] (1)疎水性成分と物理的に不溶化した親水性成分から
なる親水化膜。
(1) A hydrophilized membrane consisting of a hydrophobic component and a physically insolubilized hydrophilic component.
(2)疎水性高分子を主たる素材とした膜の製造工程中
で親水性成分を導入し該親水性成分を放射線または/お
よび熱により水不溶化することを特徴とする親水化膜の
製造法。
(2) A method for producing a hydrophilized membrane, which comprises introducing a hydrophilic component during the production process of a membrane mainly made of a hydrophobic polymer, and making the hydrophilic component water-insolubilized by radiation and/or heat.
JP61243372A 1986-10-14 1986-10-14 Hydrophilized film and method for producing the same Expired - Lifetime JPH089668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243372A JPH089668B2 (en) 1986-10-14 1986-10-14 Hydrophilized film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243372A JPH089668B2 (en) 1986-10-14 1986-10-14 Hydrophilized film and method for producing the same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP7159451A Division JPH0852471A (en) 1995-06-26 1995-06-26 Water purifier and its production
JP7159452A Division JPH0852331A (en) 1995-06-26 1995-06-26 Plasma collecting membrane and production thereof
JP09110911A Division JP3132415B2 (en) 1997-04-28 1997-04-28 Hydrophilic dialysis membrane

Publications (2)

Publication Number Publication Date
JPS6397634A true JPS6397634A (en) 1988-04-28
JPH089668B2 JPH089668B2 (en) 1996-01-31

Family

ID=17102866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243372A Expired - Lifetime JPH089668B2 (en) 1986-10-14 1986-10-14 Hydrophilized film and method for producing the same

Country Status (1)

Country Link
JP (1) JPH089668B2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641450A (en) * 1991-03-28 1997-06-24 Toray Industries, Inc. Process of making a module including a polysulphonic hollow fiber membrane
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
US6432309B1 (en) 1997-05-19 2002-08-13 Asahi Medical Co, Ltd Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
JP2005065711A (en) * 2003-08-21 2005-03-17 Toray Ind Inc Absorption material and manufacturing method of the same
JP2008543546A (en) * 2005-06-20 2008-12-04 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cross-linking treatment of polymer film
US7470368B2 (en) 2001-10-04 2008-12-30 Toray Industries, Inc. Hydrophilic substance and a production method thereof
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678063B2 (en) * 2001-12-19 2011-04-27 東レ株式会社 Hollow fiber membrane module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321270A (en) * 1976-08-10 1978-02-27 Sumitomo Electric Industries Hydrophobic porous composite structure and its manufacture
JPS53134876A (en) * 1977-04-30 1978-11-24 Sumitomo Electric Ind Ltd Production of hydrophilic composite construction
JPS562094A (en) * 1979-06-21 1981-01-10 Tokyo Shibaura Electric Co Optical measuring system using optical code plate
JPS5638333A (en) * 1979-09-04 1981-04-13 Celanese Corp Microporous film treated with hydrophilic monomer
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5321270A (en) * 1976-08-10 1978-02-27 Sumitomo Electric Industries Hydrophobic porous composite structure and its manufacture
JPS53134876A (en) * 1977-04-30 1978-11-24 Sumitomo Electric Ind Ltd Production of hydrophilic composite construction
JPS562094A (en) * 1979-06-21 1981-01-10 Tokyo Shibaura Electric Co Optical measuring system using optical code plate
JPS5638333A (en) * 1979-09-04 1981-04-13 Celanese Corp Microporous film treated with hydrophilic monomer
JPS56157437A (en) * 1980-05-07 1981-12-04 Sumitomo Electric Ind Ltd Preparation of hydrophilic porous structure

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641450A (en) * 1991-03-28 1997-06-24 Toray Industries, Inc. Process of making a module including a polysulphonic hollow fiber membrane
EP2255866A1 (en) 1997-05-19 2010-12-01 Asahi Kasei Kuraray Medical Co., Ltd. Polysulfone type hollow fiber membrane for purifying blood and process for producing the same
US6432309B1 (en) 1997-05-19 2002-08-13 Asahi Medical Co, Ltd Polysulfone-base hollow-fiber hemocathartic membrane and processes for the production thereof
WO2002038256A1 (en) * 2000-11-13 2002-05-16 Usf Filtration And Separations Group Inc. Modified membranes
US7470368B2 (en) 2001-10-04 2008-12-30 Toray Industries, Inc. Hydrophilic substance and a production method thereof
WO2004018085A1 (en) * 2002-08-21 2004-03-04 Toray Industries, Inc. Modified substrate and process for producing modified substrate
JPWO2004018085A1 (en) * 2002-08-21 2005-12-08 東レ株式会社 Modified substrate and method for producing modified substrate
JP4810827B2 (en) * 2002-08-21 2011-11-09 東レ株式会社 Modified substrate and method for producing modified substrate
EP1535657A4 (en) * 2002-08-21 2010-04-28 Toray Industries Modified substrate and process for producing modified substrate
US8057574B2 (en) 2003-07-08 2011-11-15 Siemens Industry, Inc. Membrane post treatment
US8262778B2 (en) 2003-07-08 2012-09-11 Siemens Industry, Inc. Membrane post treatment
JP2005065711A (en) * 2003-08-21 2005-03-17 Toray Ind Inc Absorption material and manufacturing method of the same
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
JP2008543546A (en) * 2005-06-20 2008-12-04 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cross-linking treatment of polymer film
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
JP2011183384A (en) * 2011-04-01 2011-09-22 Toray Ind Inc Adsorption material and manufacturing method for the same
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9868834B2 (en) 2012-09-14 2018-01-16 Evoqua Water Technologies Llc Polymer blend for membranes
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Also Published As

Publication number Publication date
JPH089668B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JPS6397634A (en) Hydrophilic membrane and its production
Dai et al. Hydrogel membranes with mesh size asymmetry based on the gradient crosslinking of poly (vinyl alcohol)
EP1775016B1 (en) Ultrafiltration membranes rendered hydrophilic by hydroxyalkyl cellulose and method of making and use of such membranes
EP0750938B1 (en) Manufacture of a polysulfone hollow fiber semipermeable membrane
US5376274A (en) Hydrophilic membrane and method for its production
EP0823281A1 (en) Polysulfone copolymer membranes and process
HU213925B (en) Composite a symmetric membrane and process for selectively removing viral particles from solutions and process for forming a composite membrane
US10994248B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP3366040B2 (en) Polysulfone-based semipermeable membrane and method for producing the same
JP3617194B2 (en) Permselective separation membrane and method for producing the same
Amanda et al. Comparison of Protein Fouling on Heat‐Treated Poly (vinyl alcohol), Poly (ether sulfone) and Regenerated Cellulose Membranes Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy
KR970000316A (en) Selective permeable membrane and manufacturing method thereof
JPS6397205A (en) Treatment of polysulfone resin semipermeable membrane
JPH1066846A (en) Hydrophilic membrane and its production
JPH0852331A (en) Plasma collecting membrane and production thereof
JPH04176330A (en) Production of charge type separation membrane
EP0476875A2 (en) Process for the purification and concentration of biologically active materials
JP4352709B2 (en) Polysulfone-based semipermeable membrane and artificial kidney using the same
JPH0852471A (en) Water purifier and its production
JP2021023928A (en) Separation membrane and method for manufacture thereof
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JP6030751B2 (en) Filter element with improved testability after dry steam treatment
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
US11155785B2 (en) Incubated platelet concentration module and method for producing platelet preparation using same
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane