JPS6396940A - Macro logic array - Google Patents

Macro logic array

Info

Publication number
JPS6396940A
JPS6396940A JP61243650A JP24365086A JPS6396940A JP S6396940 A JPS6396940 A JP S6396940A JP 61243650 A JP61243650 A JP 61243650A JP 24365086 A JP24365086 A JP 24365086A JP S6396940 A JPS6396940 A JP S6396940A
Authority
JP
Japan
Prior art keywords
cell group
fet
basic cell
drain current
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61243650A
Other languages
Japanese (ja)
Other versions
JPH0783093B2 (en
Inventor
Kenichi Koyama
健一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61243650A priority Critical patent/JPH0783093B2/en
Publication of JPS6396940A publication Critical patent/JPS6396940A/en
Publication of JPH0783093B2 publication Critical patent/JPH0783093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a macro logic array of high integration density by a method wherein a refractory-metal wiring part is used after it has been formed inside an insulating film under an active layer so that various logic circuits can be realized by changing only the level of metal wiring parts at a first layer and a second layer. CONSTITUTION:FET unit arrays 28, 27 and a basic cell array 29 for a gate array are arranged on an SOI substrate. A basic cell group 1 contains 1 pieces of CMOS gate array cells. A gate 6 and a source drain 4 for an n FET and a gate 7 and a source drain 5 for a p FET are contained; a rectangular pattern 50 composed of a refractory metal is buried in an insulating film. A basic cell group 2 for a NOR array to be used for CMOS programmable logic- arrays contains m pieces of FET's and is composed of an n FET array, where a source electrode 8 and a gate electrode 11 are used in common, and a p FET array, where a gate electrode 12 is used in common. Because the channel width of the cell group 2 is narrower than that of the cell group 1, and the group 2 contains the similar refractory-metal buried layer 50, it is possible to form a connecting hole independently. In addition, there is a cell group 3 which has n pieces of n FET arrays and p FET arrays whose channel width, arrangement and connection are the same as those of the group 2. With this arrangement, it is possible to obtain various logic arrays of high integration-density by changing only the level of wiring parts.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はマスクスライス基板、特にプログラマブルロジ
ックアレーとゲートアレーを融合化しなCMOS型のマ
クロロジックアレーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mask slice substrate, and particularly to a CMOS type macro logic array that does not integrate a programmable logic array and a gate array.

〔従来の技術〕[Conventional technology]

従来、プログラマブルロジックアレー(以下PLAと略
す)とゲートアレー(以下GAと略す)を融合化したC
MOS型のマクロロジックアレー(以下MLAと略す)
は、第8図に示す様に、半導体基板に敷きつめて配置さ
れた第1.第2のMOS  FET単位列78.77か
らなる複数の単位ブロック63と0MO8構成のGAを
作製するための単位セル(以下GAセルと記す)からな
る列(以下GA用基本セルと略す)79からなるGAブ
ロック64とを有している。第1のMOS  FET単
位列78の内容を第9図に示す、第9図は作製された第
1のMOS  FET単位列78のMOS  FET配
置図、第10図は、第9図の等価回路図である。図にお
いて、51はGA用基本セル群で、nMOS  FET
、9MOSFETからなる0MO8構成のGAセルがe
個<’eは2以上)用意しである。56はnMOS  
FET用の多結晶シリコンゲート電極、57はpM。
Conventionally, C is a combination of a programmable logic array (hereinafter abbreviated as PLA) and a gate array (hereinafter abbreviated as GA).
MOS type macro logic array (hereinafter abbreviated as MLA)
As shown in FIG. 8, the first . From a plurality of unit blocks 63 consisting of second MOS FET unit columns 78 and 77 and a column (hereinafter abbreviated as GA basic cell) 79 consisting of unit cells (hereinafter referred to as GA cells) for producing a GA with 0MO8 configuration. It has a GA block 64. The contents of the first MOS FET unit row 78 are shown in FIG. 9. FIG. 9 is a MOS FET layout diagram of the manufactured first MOS FET unit row 78, and FIG. 10 is an equivalent circuit diagram of FIG. 9. It is. In the figure, 51 is a basic cell group for GA, which includes nMOS FET
, a GA cell with 0 MO8 configuration consisting of 9 MOSFETs is e
<'e is 2 or more) is ready. 56 is nMOS
Polycrystalline silicon gate electrode 57 for FET is pM.

S  FET用の多結晶シリコンゲート電極、54はn
MOs  FETのソースまたはドレイン電極、55は
9MO9FETのソースまたはドレイン電極である。
Polycrystalline silicon gate electrode for S FET, 54 is n
The source or drain electrode of the MOs FET, 55 is the source or drain electrode of the 9MO9FET.

52はCMO3lil成のPLAを作製するためのNO
Rアレー用基本セル群であり、セルは共通接続されたソ
ース電極58と、共通接続された多結晶シリコンゲート
電極61を持ったnMOS  FET列、および共通接
続されたゲート電極62を持つ9MO8FETの列から
なり、それぞれm個のnチャネル、pチャネルのMOS
  FETが用意しである。ただしGA用基本セル群5
1のMOS  FETよりチャネル幅は狭い。53は他
のNORアレー用基本セル群で、基本セル群52と同じ
チャネル幅で、同じ配置と接続をしたnM。
52 is NO for producing PLA composed of CMO3lil
This is a basic cell group for the R array, and the cells are a column of nMOS FETs having a commonly connected source electrode 58, a commonly connected polycrystalline silicon gate electrode 61, and a column of 9MO8FETs having a commonly connected gate electrode 62. consisting of m n-channel and p-channel MOSs, respectively.
FET is ready. However, GA basic cell group 5
The channel width is narrower than that of MOS FET 1. 53 is another NOR array basic cell group, nM, which has the same channel width as the basic cell group 52, and is arranged and connected in the same way.

S  FET列、9MOSFET列からなり、それぞれ
n個のMOS  FETが用意しである。
It consists of an S FET row and 9 MOSFET rows, each with n MOS FETs prepared.

第1のMOS  FET単位単位列内8内、GA用基本
セル群51、NORアレー用革用基本セル群、53がそ
れぞれ1個ずつドレイン電流と直角方向に並んでいる。
In the first MOS FET unit column 8, one GA basic cell group 51 and one NOR array leather basic cell group 53 are arranged in a direction perpendicular to the drain current.

この単位列をドレイン電流方向に複数個配置して作製し
た単位ブロック63のMOS  FET配置図およびそ
の等価回路図を第11図、第12図に示す、この時、第
1のMOS  FET単位列78をドレイン電流方向と
直角な方向に対して線対称になる様に移動させた第2の
MOS  FET単位列77と、第1のMOS  FE
T単位列78を交互にドレイン電流方向に配置する。ま
た最近接の同導電型MOSFETのソースまたはドレイ
ン電極を接続する。GA用基本セル列79は、数はとも
か<GA用基本セル群51と同様なMOS  FETの
配置を有しているが、前述の単位ブロック63と同様の
配慮をしてGAブロック64を構成する。
11 and 12 show the MOS FET arrangement diagram and its equivalent circuit diagram of a unit block 63 manufactured by arranging a plurality of these unit columns in the drain current direction. At this time, the first MOS FET unit column 78 The second MOS FET unit row 77 is moved so as to be line symmetrical with respect to the direction perpendicular to the drain current direction, and the first MOS FE
T unit rows 78 are alternately arranged in the drain current direction. Also, the source or drain electrodes of the closest MOSFETs of the same conductivity type are connected. Although the GA basic cell row 79 has the same arrangement of MOS FETs as the GA basic cell group 51, apart from the number, the GA block 64 is configured with the same consideration as the unit block 63 described above. do.

以上述べた第1.第2のMOS  FET単位列78.
77およびGA用基本セル列79が第8図の様に敷きつ
められたMLAに、第1層目、第2層目金属配線を施こ
すことで、所望の回路を作製していた。
The first point mentioned above. Second MOS FET unit row 78.
A desired circuit was fabricated by applying first and second layer metal wiring to an MLA in which 77 and GA basic cell rows 79 were laid out as shown in FIG.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のMLAでは、第1層目及び第2層目金属
配線を用いてセル間等の配線を行ない目的とする回路を
構成していた。例えば、第13図に等価回路を示した組
み合せ回路を従来方式で実現すると基本セル52内の配
線のレイアウト図は第14図に示すものとなる。これは
、NORアレー用基本セル52を用い、入力信号A、B
In the conventional MLA described above, the intended circuit is constructed by wiring between cells using the first layer and second layer metal wiring. For example, if the combinational circuit whose equivalent circuit is shown in FIG. 13 is realized using the conventional method, the layout of the wiring within the basic cell 52 will be as shown in FIG. 14. This uses the basic cell 52 for NOR array and input signals A, B.
.

C,Dに対して出力信号f、=B十り、f2 =A十C
を出力する組み合せ回路を作製した例である。この例で
は、基本セル群2を4列のみで回路を作製している。
Output signal f for C and D, = B + C, f2 = A + C
This is an example of creating a combinational circuit that outputs . In this example, a circuit is fabricated using only four columns of basic cell group 2.

図において85.86は第1層目金属配線、87.88
は第2層目金属配線、72はpM。
In the figure, 85.86 is the first layer metal wiring, 87.88
is the second layer metal wiring, and 72 is pM.

S  FET、75はnMOS  FETである。また
、基本セル群を用いPLAのAND平面NORアレーを
作製した場合、88.89は電流電源線、85は入力線
、86.87は積項線となる。
S FET 75 is an nMOS FET. Further, when a PLA AND plane NOR array is fabricated using the basic cell group, 88.89 is a current power supply line, 85 is an input line, and 86.87 is a product term line.

また、89は第1層目金属配線とMOS  FETを接
続するためのコンタクトホール、90は第1層目金属と
第2層目金属を接続するスルーホール、91はコンタク
トホールとスルーホールが同時に形成されてつくられた
穴を意味する。この場合、MLAのマスクスライス性を
保持するためには、各MOSFETの電極へのコンタク
トホール及びスルーホールが、第1層目金属配線に妨げ
られぬ様に、第1層目金属配線を配置する必要がある。
Further, 89 is a contact hole for connecting the first layer metal wiring and the MOS FET, 90 is a through hole for connecting the first layer metal and the second layer metal, and 91 is a contact hole and a through hole formed at the same time. means a hole made by In this case, in order to maintain the mask slicability of the MLA, the first layer metal wiring must be arranged so that the contact holes and through holes to the electrodes of each MOSFET are not obstructed by the first layer metal wiring. There is a need.

このため、各MOSFET間に配線領域92を設けるの
で、MLA作製に必要な面積は増大する。
Therefore, since the wiring region 92 is provided between each MOSFET, the area required for manufacturing the MLA increases.

本発明の目的は、能動層の下に位置する絶縁膜内に高融
点金属の配線を形成、使用することで、種々の論理回路
を第1層目、第2層目金属配線レベルの変更のみで実現
でき、しかも高密度のMLAを提供することにある。
The purpose of the present invention is to form and use high melting point metal wiring in the insulating film located under the active layer, so that various logic circuits can be formed by changing only the first and second layer metal wiring levels. The objective is to provide a high-density MLA that can be realized using

〔問題点を解決するための手段〕[Means for solving problems]

本発明のマクロロジックアレーは、能動層の下地となる
絶縁層内に矩形状の高融点金属層を埋込んでなるSOI
基板に半導体素子を形成してなるマクロロジックアレー
であって、前記能動層の前記高融点金属層の直上に設け
られ、前記高融点金属層の長辺方向とドレイン電流を一
致させかつゲート電極を除くデバイスサイズが前記高融
点金属層の平面形状より小さな、第1.第2導電形MI
S  FETをドレイン電流方向に配置した第1のMI
S  FET対を1個(!は任意の整数)ドレイン電流
方向と直角方向に一直線に配列した第1の基本セル群と
、前記第1のMIS  FET対と同じ構成の第2のM
IS  FET対をm個(mは任意の整数)ドレイン電
流方向と直角方向に一直線に配列し、第1導電形MIS
  FETの全てのゲート電極を相互に接続し、ゲート
電極から見て第2導電形MIS  FETと反対側に位
置する全ての電極を相互に接続し、さらに第2導電形M
IS  FETの全てのゲート電極を相互に接続した第
2の基本セル群と、前記第2の基本セル群と同じ構成で
、かつn個(nは任意の整数)の第3のMIS  FE
T対より構成される第3基本セル群とをドレイン電流方
向と直角の方向に順に一列に配列してなるMOS  F
ET単位列を複数個互いに線対称となるようにドレイン
電流方向に並べた単位ブロックを有し、さらに1個以上
の前記単位ブロックをドレイン電流方向と直角の方向に
順次配置した第1のブロックと、前記第1の基本セル群
と同じ構造を有する第4の基本セル群を前記MOSFE
T単位列と同数だけドレイン電流方向に配列した第2の
ブロックとをドレイン電流方向に直角な方向に並べた後
、最後にこれらのMIS  FETの各電極を前記高融
点金属層とA/配線により接続することにより所定の論
理回路を形成するというものである。
The macro logic array of the present invention is an SOI in which a rectangular high melting point metal layer is embedded in an insulating layer underlying an active layer.
A macro logic array formed by forming semiconductor elements on a substrate, the macro logic array being provided directly above the high melting point metal layer of the active layer, having a drain current aligned with the long side direction of the high melting point metal layer, and having a gate electrode. 1. The device size is smaller than the planar shape of the high melting point metal layer. Second conductivity type MI
The first MI in which the S FET is arranged in the drain current direction
A first basic cell group in which one S FET pair (! is an arbitrary integer) is arranged in a straight line in a direction perpendicular to the drain current direction, and a second M S FET pair having the same configuration as the first MIS FET pair.
m IS FET pairs (m is any integer) are arranged in a straight line in the direction perpendicular to the drain current direction, and the first conductivity type MIS
All the gate electrodes of the FETs are connected to each other, all the electrodes located on the opposite side of the second conductivity type MIS FET when viewed from the gate electrode are connected to each other, and further the second conductivity type M
A second basic cell group in which all the gate electrodes of IS FETs are connected to each other, and a third MIS FE having the same configuration as the second basic cell group and having n pieces (n is an arbitrary integer).
A MOS F is formed by arranging a third basic cell group consisting of T pairs in a line in a direction perpendicular to the drain current direction.
A first block having a unit block in which a plurality of ET unit rows are arranged in the drain current direction so as to be line symmetrical to each other, and further having one or more of the unit blocks sequentially arranged in a direction perpendicular to the drain current direction; , a fourth basic cell group having the same structure as the first basic cell group is connected to the MOSFE
After arranging the same number of T unit rows and second blocks arranged in the drain current direction in a direction perpendicular to the drain current direction, each electrode of these MIS FETs is finally connected to the high melting point metal layer and the A/wiring. By connecting them, a predetermined logic circuit is formed.

〔実施例〕〔Example〕

本発明を実施例を用いて説明する。 The present invention will be explained using examples.

第1図は、絶縁層上に能動層を有するSOI基板に敷き
つめた第1.第2のMOS  FET単位列28.27
と、GAセルからなるGA用基本セル列29の配置図で
ある。第2図は作製された第1MO8FET単位列のM
OS  FET配置図、第3図は第2図の等価回路図で
ある。図において、1はGA用基本セル群(第1の基本
セル群)で、nMOSFET、9MOSFETからなる
CMOS構成のGAセルが1個(lは2以上)用意しで
ある。6はnMOSFET用の多結晶シリコンゲート電
極、7は9MOSFET用の多結晶シリコンゲート電極
、4はnM。
FIG. 1 shows a first insulator layer laid out on an SOI substrate having an active layer on an insulating layer. Second MOS FET unit row 28.27
This is a layout diagram of a GA basic cell column 29 made up of GA cells. Figure 2 shows the M of the first MO8FET unit row that was fabricated.
The OS FET layout diagram, FIG. 3, is an equivalent circuit diagram of FIG. 2. In the figure, 1 is a basic cell group for GA (first basic cell group), and one GA cell (l is 2 or more) with a CMOS configuration consisting of an nMOSFET and 9 MOSFETs is prepared. 6 is a polycrystalline silicon gate electrode for nMOSFET, 7 is a polycrystalline silicon gate electrode for 9MOSFET, and 4 is nM.

S  FETのソースまたはドレイン電極、5は9MO
SFETのソースまたはドレイン電極である。また、5
0は絶縁層内に埋めこまれた高融点金属層の矩形パター
ンである。
S FET source or drain electrode, 5 is 9MO
This is the source or drain electrode of the SFET. Also, 5
0 is a rectangular pattern of a high melting point metal layer embedded in an insulating layer.

2は、C0M5楕成のPLAを作製するためのNORア
レー用基本セル群(第2の基本セル群)であり、セルは
共通接続されたソース電極8と、共通接続された多結晶
シリコンゲート電極11を持ったnMOSFET列、お
よび共通接続されたゲート電極12を持った9MOSF
ETの列からなり、それぞれm個のnチャネル、pチャ
ネルのMOS  FETが用意しである。ただしGA用
基本セル群1のMOS  FETよりチャネル幅は狭い
、また、50は絶縁層内に埋め込まれた高融点金属層か
らなる矩形パターンで、後に配線として使用できる様に
、MOS  FETとは独立にコンタクトホールを形成
できる様に配置している。3は他のNORアレー用基本
セル群2(第3の基本セル群)と同じチャネル幅で、同
じ配置と接続をしたnMOS  FET列、pMOs 
 FET列からなり、それぞれn個のMOS  FET
が用意しである。
2 is a basic cell group (second basic cell group) for a NOR array for producing a C0M5 elliptical PLA, and the cell has a commonly connected source electrode 8 and a commonly connected polycrystalline silicon gate electrode. nMOSFET array with 11 and 9 MOSF with commonly connected gate electrode 12
It consists of a row of ETs, each with m n-channel and p-channel MOS FETs. However, the channel width is narrower than that of the MOS FET in basic cell group 1 for GA, and 50 is a rectangular pattern made of a high-melting point metal layer embedded in an insulating layer, which is independent of the MOS FET so that it can be used later as wiring. It is arranged so that a contact hole can be formed in the area. 3 is an nMOS FET array and pMOS with the same channel width and the same arrangement and connection as the other NOR array basic cell group 2 (third basic cell group).
Consists of a FET array, each with n MOS FETs
is ready.

第1のMOS  FET単位単位列内8内、GA用基本
セル群1、NORアレー用基本セル群2゜3がそれぞれ
1個ずつドレイン電流と直角方向に並んでいる。この単
位列をドレイン電流方向に複数個配置して作製した単位
ブロック13のMOS  FET配置図およびその等価
回路図を第4図、第5図に示す、この時、第1のMOS
  FET単位列28をドレイン直流方向と直角な方向
に対して線対称になる様に移動させた第2のMOS  
FET単位単位列上7第1のMOS  FET単位列2
8を交互に、ドレイン電流方向に配置する。また、最近
接の同導電型MOSFETのソースまたはドレイン電極
は接続する。
Within the first MOS FET unit column 8, one GA basic cell group 1 and one NOR array basic cell group 2.3 are arranged in a direction perpendicular to the drain current. 4 and 5 show the MOS FET arrangement diagram and its equivalent circuit diagram of the unit block 13 manufactured by arranging a plurality of these unit columns in the direction of the drain current.
A second MOS in which the FET unit row 28 is moved so as to be line symmetrical with respect to the direction perpendicular to the drain DC direction.
FET unit unit row upper 7 1st MOS FET unit row 2
8 are arranged alternately in the drain current direction. Further, the source or drain electrodes of the closest MOSFETs of the same conductivity type are connected.

GA用基本セル列29は、数はともか<、GA用基本セ
ル群1と同様なMOS  FETの配置を有しているが
、前述の単位ブロック13と同様の配慮をしたGAブロ
ック14を構成する。
Although the GA basic cell row 29 has the same arrangement of MOS FETs as the GA basic cell group 1, apart from the number, the GA block 14 is configured with the same consideration as the unit block 13 described above. do.

以上述べた、第2のMOS  FET単位単位列上7び
GA用基本セル列29が第1図の様に敷きつめられたマ
スタースライス基板を使用して、任意の回路を作製する
例を次に示す。
The following is an example of fabricating an arbitrary circuit using the master slice substrate in which the second MOS FET unit column 7 and the GA basic cell column 29 are laid out as shown in FIG. 1. .

第7図は本発明の一実施例の等価回路図で、前述のNO
Rアレー用基本セル2を用い、入力信号A、B、C,D
に対して出力信号f1=B+D。
FIG. 7 is an equivalent circuit diagram of one embodiment of the present invention.
Using basic cell 2 for R array, input signals A, B, C, D
For output signal f1=B+D.

f2=A+Cを出力する組み合せ回路を作製した例を示
す。第6図は本発明の一実施例を示すレイアウト図であ
る。この例では、基本セル群2を4列のみで回路を作製
している。
An example of creating a combinational circuit that outputs f2=A+C will be shown. FIG. 6 is a layout diagram showing an embodiment of the present invention. In this example, a circuit is fabricated using only four columns of basic cell group 2.

図において、45.46.48は第1層目金属配線、4
7は第2層目金属配線、22はpM。
In the figure, 45, 46, 48 are the first layer metal wiring, 4
7 is the second layer metal wiring, 22 is pM.

S  FET、25はnMOS  FETである。また
、NORアレー用基本単位セル2を用いPLAのAND
平面NORアレイを作製した場合、48は電流電源線、
45は入力線、46.50は積項線となる。41は第1
層目金属配線とMOS  FETまたは高融点金属層を
接続するためのコンタクトホール、39はコンタクトホ
ールとスルーホールが同時に形成されてつくられた穴を
意味する。NORアレー用基本セル群3においても同様
な金属配線を行ない、任意のNOR回路を作製できる0
本発明においては、第6図に示す様に、絶縁膜内に埋め
こんだ高融点金属層からなる矩形パターンを、積項線の
一部として使用でき、第14図に示す様な、従来必要で
あったMOS  FET間に設置された配線領域92を
設けることなく、MLAにマスタースライス性を持たせ
られる。このため、MLAを作製するのに必要な面積は
減少し、回路全体の集積度は上がる。
S FET 25 is an nMOS FET. Also, using the basic unit cell 2 for NOR array, AND of PLA
When a planar NOR array is fabricated, 48 is a current power line,
45 is an input line, and 46.50 is a product term line. 41 is the first
A contact hole 39 for connecting a metal wiring layer to a MOS FET or a high melting point metal layer means a hole created by simultaneously forming a contact hole and a through hole. Similar metal wiring is performed in basic cell group 3 for NOR array, allowing any NOR circuit to be created.
In the present invention, as shown in FIG. 6, a rectangular pattern made of a high-melting point metal layer buried in an insulating film can be used as a part of the product term line, which is conventionally required as shown in FIG. The MLA can have master slicing properties without providing the wiring area 92 between the MOS FETs. Therefore, the area required to fabricate the MLA is reduced and the degree of integration of the entire circuit is increased.

本実施例において、MORアレー用基本セル群2.3内
のnMOs  FETとpMOs  FETのゲート電
極は別個に作製しているが、共通接続した多結晶シリコ
ンゲート電極を用いても問題はない。
In this embodiment, the gate electrodes of the nMOS FET and pMOS FET in the MOR array basic cell group 2.3 are fabricated separately, but there is no problem even if commonly connected polycrystalline silicon gate electrodes are used.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明は、矩形状の高融点金属層を埋
込んだ絶縁層を有するSOI基板を用いることにより、
配線領域を減らすことができるので、MOS  FET
間のすきまを従来より少なくすることができ、高集積な
マクロロジックアレーを作製できる効果がある。
As explained above, the present invention uses an SOI substrate having an insulating layer in which a rectangular high-melting point metal layer is embedded.
Since the wiring area can be reduced, MOS FET
The gap between the holes can be reduced compared to the conventional method, and a highly integrated macro logic array can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図は本発明の一実施例を説明するための図
で、第1図はGA用基本セル列の配置図、第2図及び第
3図はそれぞれ第1のMOS  FET単位列のMOS
  FET配置図及び等価回路図、第4図、第5図はそ
れぞれ単位ブロックのMOS  FET配置図及び等価
回路図、第6図及び第7図はそれぞれ本発明の一実施例
を示すで、第8図はGA用基本セル列の配置図、第9図
及び第10図はそれぞれ第1のMOS  FET単位列
のMOS  FET配置図及び等価回路図、第11図及
び第12図はそれぞれ単位ブロックのMOS  FET
配置図及び等価回路図、第13図及び第14図はそれぞ
れ従来例を示すレイアウト図及び等価回路図である。 1.51・・・GA用基本セル群、2.3.52゜53
・・・NORアレー用基本セル群、4,5,54.55
・・・ソース電極又はドレイン電極、6゜7.56.5
7・・・ゲート電極、8,9,10,58.59.60
・・・ソース電極又はドレイン電極、11.12,61
.62・・・ゲート電極、13,63・・・単位ブロッ
ク、14.64・・・GAブロック、21〜23.71
〜73・・・9MOSFET、24〜26.74〜76
−nMOSFET、27.77・・・第2のMOS  
FET単位列、28゜78−・・第1のMOS  FE
T単位列、30.80・・・NORアレーへの入力線、
31.32,81゜82・・・積項線、33.83・・
・電源線、34.84・・・GND線、38.88・・
・電源線、39.91・・・コンタクトホールとスルー
ホール、40.89・−・コンタクトホール、45,4
6,85.86・・・第1層目金属配線、47.87・
・・第2層目金属配線、48・・・第1層目金属配線、
50・・・高融点金属層、90・・・スルーホール、9
2・・・配線領域。 紹 代理人 弁理士 内 原  晋ノル星。 \、−5 芽   ノ     膠σ ノ3  卓−h1ブt1・17 i4 1?Aブυヅ7 2? θAIn基本ぞ/L列 、弗 2T!r 234hnMl)SFET#列 〃畠にぶ全域膏 井3TM −’gy、io:  V−ス*j=h YL4m8−・
l−ス1r壬2 /−Y′LAシ蓄瞳 y、 ’7. //、 /2 ニゲ゛−Y嗜Qさ茅 4
 面 17.2’B葎倖列 第5WI 察8 匣 乙3 羊A狂プロ・γ7 7154GAフ゛ロツク 7q  ケA甲謎本ビル列 第  り   四へ L−−−一一一1k」 51に411基杢セIり隼 〃羊1f/M汲FEf乎位列 ! It)  回 9sslts:  ソーズIJ三げYレイシ四陀卆ン!
2: ソース型砂 5?:「冒30セ sA、s7.N、12 : ゲニ>Si;ネジ4序/l
 図 茅 12  YIJ 63歩位フ゛口・リグ
1 to 7 are diagrams for explaining one embodiment of the present invention, in which FIG. 1 is a layout diagram of a basic cell array for GA, and FIGS. 2 and 3 are diagrams of a first MOS FET unit, respectively. row MOS
The FET layout diagram and equivalent circuit diagram, FIGS. 4 and 5 respectively show the MOS FET layout diagram and equivalent circuit diagram of a unit block, and FIGS. The figure shows the layout of the basic cell row for GA, FIGS. 9 and 10 respectively show the MOS FET layout and equivalent circuit diagram of the first MOS FET unit row, and FIGS. 11 and 12 show the MOS of the unit block, respectively. FET
A layout diagram and an equivalent circuit diagram, and FIGS. 13 and 14 are a layout diagram and an equivalent circuit diagram, respectively, showing a conventional example. 1.51...GA basic cell group, 2.3.52゜53
...Basic cell group for NOR array, 4, 5, 54.55
...Source electrode or drain electrode, 6°7.56.5
7... Gate electrode, 8, 9, 10, 58.59.60
...source electrode or drain electrode, 11.12,61
.. 62...Gate electrode, 13,63...Unit block, 14.64...GA block, 21-23.71
~73...9 MOSFET, 24~26.74~76
-nMOSFET, 27.77...second MOS
FET unit row, 28°78--first MOS FE
T unit column, 30.80...Input line to NOR array,
31.32, 81°82...product term line, 33.83...
・Power line, 34.84...GND line, 38.88...
・Power line, 39.91...Contact hole and through hole, 40.89--Contact hole, 45,4
6,85.86...1st layer metal wiring, 47.87.
...Second layer metal wiring, 48...First layer metal wiring,
50... High melting point metal layer, 90... Through hole, 9
2...Wiring area. Introducing agent and patent attorney Susumu Uchihara. \、-5 bud no glue σ ノ3 table-h1butt1・17 i4 1? A Bu υ 7 2? θAIn basics/L row, 弗 2T! r 234hnMl) SFET# row Hatanobu whole area 3TM -'gy, io: V-su*j=h YL4m8-・
l-su 1r 壬2 /-Y'LA し pupil y, '7. //, /2 Nige-Y-Ko Qsa-ka 4
Side 17.2'B 5th WI Sho 8 Box 3 Sheep A-Kyou Pro γ7 7154GA Block 7q KeA A Mystery Building Row No. 4 to L---111 1k'' 51 to 411 base Serial Hayabusa sheep 1f/M pump FEf rank row! It) Episode 9sslts: Swords IJ Sange Y Reishi Four Volumes!
2: Source mold sand 5? :``30 s.sA, s7.N, 12: Geni>Si; Neji 4th order/l
Figure 12 YIJ 63 steps figure mouth rig

Claims (1)

【特許請求の範囲】[Claims] 能動層の下地となる絶縁層内に矩形状の高融点金属層を
埋込んでなるSOI基板に半導体素子を形成してなるマ
クロロジックアレーであって、前記能動層の前記高融点
金属層の直上に設けられ、前記高融点金属層の長辺方向
とドレイン電流を一致させかつゲート電極を除くデバイ
スサイズが前記高融点金属層の平面形状より小さな、第
1、第2導電形MISFETをドレイン電流方向に配置
した第1のMISFET対をl個(lは任意の整数)ド
レイン電流方向と直角方向に一直線に配列した第1の基
本セル群と、前記第1のMISFET対と同じ構成の第
2のMISFET対をm個(mは任意の整数)ドレイン
電流方向と直角方向に一直線に配列し、第1導電形MI
SFETの全てのゲート電極を相互に接続し、ゲート電
極から見て第2導電形MISFETと反対側に位置する
全ての電極を相互に接続し、さらに第2導電形MISF
ETの全てのゲート電極を相互に接続した第2の基本セ
ル群と、前記第2の基本セル群と同じ構成で、かつn個
(nは任意の整数)の第3のMISFET対より構成さ
れる第3基本セル群とをドレイン電流方向と直角の方向
に順に一列に配列してなるMOSFET単位列を複数個
互いに線対称となるようにドレイン電流方向に並べた単
位ブロックを有し、さらに1個以上の前記単位ブロック
をドレイン電流方向と直角の方向に順次配置した第1の
ブロックと、前記第1の基本セル群と同じ構造を有する
第4の基本セル群を前記MOSFET単位列と同数だけ
ドレイン電流方向に配列した第2のブロックとをドレイ
ン電流方向に直角な方向に並べた後、最後にこれらのM
ISFETの各電極を前記高融点金属層とAl配線によ
り接続することにより所定の論理回路を形成する事を特
徴とするマクロロジックアレー。
A macro logic array in which semiconductor elements are formed on an SOI substrate in which a rectangular high melting point metal layer is embedded in an insulating layer serving as a base of an active layer, the semiconductor element being formed directly above the high melting point metal layer of the active layer. The first and second conductivity type MISFETs are arranged in the direction of the drain current, and the drain current is made to match the long side direction of the high melting point metal layer, and the device size excluding the gate electrode is smaller than the planar shape of the high melting point metal layer. a first basic cell group in which l first MISFET pairs (l is an arbitrary integer) arranged in a straight line in a direction perpendicular to the drain current direction; and a second basic cell group having the same configuration as the first MISFET pair. m MISFET pairs (m is any integer) are arranged in a straight line in the direction perpendicular to the drain current direction, and the first conductivity type MI
All the gate electrodes of the SFETs are connected to each other, all the electrodes located on the opposite side of the second conductivity type MISFET when viewed from the gate electrode are connected to each other, and further the second conductivity type MISFET is connected to each other.
A second basic cell group in which all gate electrodes of the ETs are connected to each other, and a third MISFET pair having the same configuration as the second basic cell group and n (n is any integer) third MISFETs. It has a unit block in which a plurality of MOSFET unit rows each having a third basic cell group arranged in a line in a direction perpendicular to the drain current direction are arranged in line symmetry with each other in the drain current direction; A first block in which more than one unit block is sequentially arranged in a direction perpendicular to the drain current direction, and a fourth basic cell group having the same structure as the first basic cell group in the same number as the MOSFET unit rows. After arranging the second blocks arranged in the drain current direction in the direction perpendicular to the drain current direction, finally these M blocks are arranged in the direction perpendicular to the drain current direction.
A macro logic array characterized in that a predetermined logic circuit is formed by connecting each electrode of an ISFET to the high melting point metal layer through an Al wiring.
JP61243650A 1986-10-13 1986-10-13 Macrologic array Expired - Lifetime JPH0783093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61243650A JPH0783093B2 (en) 1986-10-13 1986-10-13 Macrologic array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61243650A JPH0783093B2 (en) 1986-10-13 1986-10-13 Macrologic array

Publications (2)

Publication Number Publication Date
JPS6396940A true JPS6396940A (en) 1988-04-27
JPH0783093B2 JPH0783093B2 (en) 1995-09-06

Family

ID=17106972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61243650A Expired - Lifetime JPH0783093B2 (en) 1986-10-13 1986-10-13 Macrologic array

Country Status (1)

Country Link
JP (1) JPH0783093B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237543A (en) * 1987-03-26 1988-10-04 Hitachi Ltd Semiconductor integrated circuit device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237543A (en) * 1987-03-26 1988-10-04 Hitachi Ltd Semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPH0783093B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US5493135A (en) Symmetrical multi-layer metal logic array with continuous substrate taps and extension portions for increased gate density
JPH0997885A (en) Gate array
KR20140084017A (en) Gate array architecture with multiple programmable regions
JPS61182244A (en) Semiconductor device
JPS6396940A (en) Macro logic array
JPS586157A (en) Cmos master slice lsi
JPS60110137A (en) Semiconductor device
JPH0154861B2 (en)
JPS6135535A (en) Master slice ic device
JPS62263653A (en) Manufacture of semiconductor integrated circuit device
JPH0563944B2 (en)
JPS6254450A (en) Master slice substrate
JPS6080251A (en) Gate array lsi device
JPS5940565A (en) Semiconductor integrated circuit device
JPS6350851Y2 (en)
JP3060235B2 (en) CMOS integrated circuit
JPH0491455A (en) Gate array type lsi
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
JPH09186305A (en) Integrated circuit device
JPH1126602A (en) Semiconductor integrated circuit device
JPH05198680A (en) Semiconductor integrated circuit device
JPS6226853A (en) Complementary mos semiconductor integrated circuit device
JPS61101049A (en) Semiconductor integrated circuit device
JPS628538A (en) Semiconductor integrated circuit device
JPH061791B2 (en) Programmable logic array