JPS63955B2 - - Google Patents

Info

Publication number
JPS63955B2
JPS63955B2 JP54157692A JP15769279A JPS63955B2 JP S63955 B2 JPS63955 B2 JP S63955B2 JP 54157692 A JP54157692 A JP 54157692A JP 15769279 A JP15769279 A JP 15769279A JP S63955 B2 JPS63955 B2 JP S63955B2
Authority
JP
Japan
Prior art keywords
region
layer
semiconductor
type
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54157692A
Other languages
Japanese (ja)
Other versions
JPS5680179A (en
Inventor
Kenshin Taguchi
Katsuhiko Nishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15769279A priority Critical patent/JPS5680179A/en
Publication of JPS5680179A publication Critical patent/JPS5680179A/en
Publication of JPS63955B2 publication Critical patent/JPS63955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は光通信用装置等に用いる高速、高感
度、低暗電流で低雑音なフオトダイオード(以下
PDと呼ぶ)あるいはアバランシ・フオトダイオ
ード(以下APDと呼ぶ)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a high-speed, high-sensitivity, low-dark current, and low-noise photodiode (hereinafter referred to as
This relates to avalanche photodiodes (hereinafter referred to as APDs) or avalanche photodiodes (hereinafter referred to as APDs).

光検出器として半導体材料を用いたPDあるい
はAPDは高速かつ高感度な光通信用検出器とし
て最も重要視されており、光源としての半導体レ
ーザと共にその開発が活発に進められている。半
導体レーザの発振波長は0.8μmから1.5μmのも
の、例えばGaAS―AlGaAs系あるいはInGaAsP
―InP系などによる半導体レーザがその主流であ
り盛んに研究開発が行なわれている。現在、
GaAs―AlGaAs系レーザの主な発振波長域0.8μ
mから0.87μmに対する光検出器としてはSi単結
晶を用いたPDあるいはAPDが最も広く使われて
おり優れた特性を示しており実用されている。し
かしながらSi材料を用いた光検出器では波長1μm
以上の光を検出することは困難であり、光フアイ
バーの伝送損失の低い1.1〜1.6μm波長域では使
用することができない。また1.1μm以上の波長用
としてはGe―APDもあるが暗電流と過剰雑音が
大きいために光通信用としては最適な光検出器で
はなく、―族化合物半導体材料等による高品
質なAPDの開発が急がれている。しかしながら
化合物半導体材料では結晶成長技術や表面安定化
技術の発達が未熟でありアバランシ動作を行なわ
しめるに必要な高い逆バイアス電圧に耐えられな
いのが現状である。現在、この1.1μm〜1.6μm波
長域の光検出器としては、InGaAs、InGaAsP、
GaAlSb、GaAlAsSb等の―族多元混晶によ
る報告があり、例えばInP基板上にInGaAsある
いはInGaAsPを成長した後、亜鉛拡散等により
pn接合を上記InGaAsあるいはInGaAsP層内に形
成し、メサエツチングにより素子化した例、ある
いは拡散工程を入れない様にp+―InP基板にn型
のInGaAs層あるいはInGaAsP層を成長後メサエ
ツチングにより素子化した例、あるいは上記と同
様な方法により作製したウエーハにベリリウム等
のイオンを注入することにより選択的にp+層を
形成してpn接合し得るプレナー構造等の報告例
があるが現状では低増倍で暗電流も大きく、高い
信頼性の要求される光通信用光検出器としてはは
なはだ不満足なものしか得られていない。
PDs or APDs that use semiconductor materials as photodetectors are considered most important as high-speed and highly sensitive detectors for optical communication, and their development is being actively progressed along with semiconductor lasers as light sources. The oscillation wavelength of semiconductor lasers is from 0.8 μm to 1.5 μm, such as GaAS-AlGaAs or InGaAsP.
- InP-based semiconductor lasers are the mainstream and are being actively researched and developed. the current,
Main oscillation wavelength range of GaAs-AlGaAs laser: 0.8μ
PD or APD using Si single crystals is the most widely used photodetector for the range from m to 0.87 μm and is in practical use as it shows excellent characteristics. However, a photodetector using Si material has a wavelength of 1 μm.
It is difficult to detect light of this wavelength, and it cannot be used in the 1.1-1.6 μm wavelength range where optical fiber has low transmission loss. Ge-APDs are also available for wavelengths of 1.1 μm or more, but they are not optimal photodetectors for optical communications due to their large dark current and excessive noise, and the development of high-quality APDs made of - group compound semiconductor materials. is urgently needed. However, crystal growth technology and surface stabilization technology for compound semiconductor materials are still underdeveloped, and the current situation is that they cannot withstand the high reverse bias voltage required to perform avalanche operation. Currently, photodetectors in the 1.1 μm to 1.6 μm wavelength range include InGaAs, InGaAsP,
There are reports of - group multi-component mixed crystals such as GaAlSb and GaAlAsSb. For example, after growing InGaAs or InGaAsP on an InP substrate, zinc diffusion, etc.
An example in which a p-n junction is formed in the above InGaAs or InGaAsP layer and the device is formed by mesa etching, or a device is formed by mesa etching after growing an n-type InGaAs or InGaAsP layer on a p + -InP substrate without requiring a diffusion process. For example, there are reports of planar structures in which p-n junctions can be formed by selectively forming a p + layer by implanting ions such as beryllium into a wafer fabricated by a method similar to the above, but at present, the multiplication is low. The dark current is also large, and the results are extremely unsatisfactory as photodetectors for optical communications, which require high reliability.

本発明の目的は、高い逆バイアス電圧下での逆
方向特性、特にブレークダウン特性の向上を成
し、かつ低音電流で低雑音性に優れたブレナー型
へテロ接合光検出器(以下光検出器と略記する)
を与えるものである。本発明の光検出器は、少く
とも第1の導電型を示す第1の半導体上に、この
第1の半導体と同一導電型を示し、かつ、第1の
半導体層より禁制帯幅が広い第1の領域と第2の
導電型を示しかつ第1半導体よりも禁制帯幅の広
い第2の領域とを有する第2の半導体を形成した
層構造を含み、さらに第2の半導体の受光に供す
る領域の周囲に前記第2の領域表面から少なくと
も前記第1の領域に達深さまで高抵抗領域を形成
した構造となつている。
An object of the present invention is to improve the reverse characteristics, especially the breakdown characteristics, under high reverse bias voltage, and to provide a Brenner type heterojunction photodetector (hereinafter referred to as photodetector) that has low current and excellent low noise characteristics. )
It gives The photodetector of the present invention includes a first semiconductor layer having at least a first conductivity type, and a first semiconductor layer having the same conductivity type as the first semiconductor layer and having a wider forbidden band width than the first semiconductor layer. a layered structure in which a second semiconductor having a first region and a second region exhibiting a second conductivity type and having a wider forbidden band width than the first semiconductor; The structure is such that a high resistance region is formed around the region to a depth extending from the surface of the second region to at least the first region.

次に本発明の優れた利点について一実施例に基
づいて説明する。第1図が本発明の光検出器の一
実施例の横断面図であり、InP―InGaAs―
InGaAsPを用いた場合について説明する。(100)
面を有するn+型InP基板21の上にエピタキシヤ
ル成長法により数μm厚のn+型InP22を形成
し、次に膜厚2μm、不純物濃度2×1016cm-3のn
型In0.53Ga0.47As層23をエピタキシヤル成長す
る。
Next, the advantages of the present invention will be explained based on one embodiment. FIG. 1 is a cross-sectional view of one embodiment of the photodetector of the present invention.
A case using InGaAsP will be explained. (100)
An n + type InP 22 with a thickness of several μm is formed by epitaxial growth on an n + type InP substrate 21 having a surface, and then an n + type InP 22 with a thickness of 2 μm and an impurity concentration of 2 × 10 16 cm -3
An In 0.53 Ga 0.47 As layer 23 is epitaxially grown.

次に膜厚1μm、不純物濃度1〜2×1016cm-3
n型In0.88Ga0.12As0.26P0.74層(第1の半導体)2
4をエピタキシヤル成長した後、膜厚2μm、不
純物濃度1〜2×1016cm-3のn型InP層(第2の
半導体)25をエピタキシヤル成長する。上記の
ようにして作製したウエーハをCd3P2を拡散源と
して排気した閉管中に配し、566℃の熱処理によ
りCdを選択拡散することによりCd拡散領域(第
2の半導体の第2の領域)25aとpn接合面2
5bを得る。ここで熱処理時間は約25分行ない、
pn接合面25bをIn0.86Ga0.12As0.26P0.74層24と
InP25界面近傍に形成する。次に気相成長法や
スパツタ法等によりSi3N4やSiO2膜26を形成後
オーミツク用にリング状領域26′を除去する。
次にp型電極用金属27を形成した後n型電極用
金属29を形成する。次に、前記p+型電極27
上に金を約1μm形成後、前記p+型電極27を遮
う円状領域28及び28′を残して除去し、この
金膜をマスクとして前記Si3N4あるいはSiO2膜2
6を除去する。このウエーハにプロトン注入技術
を用いてドーズ量5×1013cm-2で加速電圧300KV
のプロトンを前記金膜をマスクとしてプロトン注
入を行ないp型InP層25aの高抵抗領域25
a′とn型InP層の高抵抗化領域25′を形成する。
次に光の導入窓28′を形成した後、ペレツトに
切断することにより光検出器が得られる。
Next, an n-type In 0.88 Ga 0.12 As 0.26 P 0.74 layer (first semiconductor) 2 with a film thickness of 1 μm and an impurity concentration of 1 to 2 × 10 16 cm -3
4, an n-type InP layer (second semiconductor) 25 having a thickness of 2 μm and an impurity concentration of 1 to 2×10 16 cm −3 is epitaxially grown. The wafer prepared as described above is placed in a closed tube that is evacuated using Cd 3 P 2 as a diffusion source, and Cd is selectively diffused by heat treatment at 566°C, thereby forming a Cd diffusion region (second region of the second semiconductor). )25a and pn junction surface 2
Get 5b. Here, the heat treatment time is about 25 minutes,
The pn junction surface 25b is connected to the In 0.86 Ga 0.12 As 0.26 P 0.74 layer 24.
Formed near the InP25 interface. Next, a Si 3 N 4 or SiO 2 film 26 is formed by vapor phase growth, sputtering, or the like, and then the ring-shaped region 26' is removed for ohmic use.
Next, after forming the p-type electrode metal 27, the n-type electrode metal 29 is formed. Next, the p + type electrode 27
After forming about 1 μm of gold on the top, it is removed leaving circular regions 28 and 28' that block the p + type electrode 27, and using this gold film as a mask, the Si 3 N 4 or SiO 2 film 2 is removed.
Remove 6. This wafer was processed using proton implantation technology at a dose of 5×10 13 cm -2 and an acceleration voltage of 300 KV.
Using the gold film as a mask, protons are implanted into the high resistance region 25 of the p-type InP layer 25a.
a' and a high resistance region 25' of the n-type InP layer are formed.
Next, after forming a light introduction window 28', a photodetector is obtained by cutting into pellets.

次にこの発明の優れた特性と特性向上の理由に
ついて説明する。前述の第1図の構造においてプ
ロトン注入マスクとしての金膜28の外径150μ
mφの光検出器において、暗電流数100pA以下で
急峻なブレークダウン特性を示し、アバランシ増
倍率103倍以上という優れた特性を示した。これ
ら本発明の優れた特性は次に示す理由により理解
できる。すなわち、本発明の構造は第1図に示し
たように高抵抗領域を設けることによりガードリ
ング効果を有し、かつ、プロトン注入等のイオン
注入技術を用いて高抵抗化するとpn接合端面が
逆メサ構造になることはよく知られた事実であり
このためpn接合面端で電界の集中が起こらず均
一なブレークダウンを示すために高増倍特性を示
す。また本発明の構造では光吸収をIn0.53Ga0.47
As層23あるいはIn0.88Ga0.12As0.26P0.74層24で
行ない、アバランシ増倍をInP層25で行なうた
めに、暗電流としては、光吸収層と比較して禁制
帯幅の広いInP層での発生再結合電流が支配的と
なり従来から報告されている禁制帯幅の狭い光吸
収にpn接合を形成した場合と比較して暗電流特
性の改善が著しい。またInPでは正孔のイオン化
率が電子のそれより大きいことが知られているの
でアバランシ領域をn型InP層として光吸収領域
と分離した本発明の構造は低雑音への寄与も大き
い。また、長波長側への感度を1.7μm程度まで有
するようにIn0.53Ga0.47Asを採用しているが、
In0.53Ga0.47As層の禁制帯幅が狭くなつたことに
よる暗電流の増加を極力避けるために比較的禁制
帯幅の大きいIn0.88Ga0.12As0.26P0.74層24をInP
25層との間に設けることにより低暗電流化を計
つたものである。
Next, the excellent characteristics of this invention and the reason for the improved characteristics will be explained. In the structure shown in FIG. 1 described above, the outer diameter of the gold film 28 as a proton injection mask is 150μ.
In the mφ photodetector, it exhibited steep breakdown characteristics with a dark current of less than 100 pA, and exhibited excellent characteristics with an avalanche multiplication factor of more than 10 3 times. These excellent characteristics of the present invention can be understood for the following reasons. In other words, the structure of the present invention has a guard ring effect by providing a high resistance region as shown in FIG. It is a well-known fact that a mesa structure is formed, and as a result, electric field concentration does not occur at the edge of the pn junction, resulting in uniform breakdown and high multiplication characteristics. In addition, in the structure of the present invention, light absorption is In 0.53 Ga 0.47
Since the As layer 23 or the In 0.88 Ga 0.12 As 0.26 P 0.74 layer 24 performs avalanche multiplication, and the InP layer 25 performs avalanche multiplication, the dark current is generated in the InP layer, which has a wider forbidden band width than the light absorption layer. The generated recombination current becomes dominant, and the dark current characteristics are significantly improved compared to the conventionally reported case in which a pn junction is formed for optical absorption with a narrow forbidden band width. Furthermore, since it is known that in InP, the ionization rate of holes is higher than that of electrons, the structure of the present invention in which the avalanche region is separated from the light absorption region by using an n-type InP layer greatly contributes to low noise. In addition, In 0.53 Ga 0.47 As is used to have sensitivity to long wavelengths up to about 1.7 μm.
In order to avoid as much as possible an increase in dark current due to the narrow band gap of the In 0.53 Ga 0.47 As layer, the In 0.88 Ga 0.12 As 0.26 P 0.74 layer 24, which has a relatively large band gap, is made of InP.
25 layers to reduce dark current.

以上InP―InGaAsP―InGaAs系を材料とする
APDの実施例について述べたが、本発明が逆バ
イアス動作する半導体装置全てに対してガードリ
ング効果を有してかつ低暗電流化する効果を有す
ることは明らかでありGaAs―GaAlAs系、GaSb
―GaAlAsSb系等に適用できることは明らかであ
る。
The above materials are InP-InGaAsP-InGaAs.
Although the embodiment of the APD has been described, it is clear that the present invention has a guard ring effect and a low dark current effect on all semiconductor devices that operate in reverse bias.
-It is clear that it can be applied to GaAlAsSb systems, etc.

また、高抵抗領域形成方法として、受光に供さ
ない領域をエツチング等の技術により除去後エピ
タキシヤル成長等の成長技術を用いて高抵抗層を
形成することによつても本発明のプレナー型へテ
ロ接合光検出器が得られることは明らかである。
In addition, as a method for forming a high resistance region, the planar type of the present invention can also be achieved by removing a region that is not used for light reception using a technique such as etching, and then forming a high resistance layer using a growth technique such as epitaxial growth. It is clear that a telojunction photodetector is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であり、21はn+
型(100)面を有するInP基板、22はn+型InPエ
ピタキシヤル層、23はn型In0.53Ga0.47Asエピ
タキシヤル層、24はn型In0.88Ga0.12As0.26P0.74
エピタキシヤル層、25はn型InPエピタキシヤ
ル層、25aはCd拡散によりp型化したInP層、
25′と25a′は高抵抗化したInP層、26は
Si3N4膜あるいはSiO2膜26′は前記26の膜を
除去した領域、27はp型電極用金属、28は金
の膜、28′は金の膜28を除去した領域であり
29はn型電極用金属である。
FIG. 1 shows an embodiment of the present invention, where 21 is n +
InP substrate having type (100) plane, 22 is n + type InP epitaxial layer, 23 is n type In 0.53 Ga 0.47 As epitaxial layer, 24 is n type In 0.88 Ga 0.12 As 0.26 P 0.74
Epitaxial layer 25 is an n-type InP epitaxial layer, 25a is an InP layer changed to p-type by Cd diffusion,
25' and 25a' are InP layers with high resistance, 26 is
The Si 3 N 4 film or SiO 2 film 26' is the region from which the film 26 has been removed, 27 is the p-type electrode metal, 28 is the gold film, 28' is the region from which the gold film 28 has been removed, and 29 is the region from which the gold film 28 has been removed. It is a metal for n-type electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型を示す第1半導体と、当該第1半
導体上に設けられ前記第1半導体よりも禁制帯幅
が大きく、かつ前記第1半導体に接する側に第1
の導電型を示す第1の領域を有し、当該第1の領
域上に第2の導電型を示す第2の領域を有する第
2半導体とを少なくとも含む層構造を有し、当該
第2半導体の受光に供する領域の周囲に前記第2
の領域表面から少なくとも前記第1の領域にまで
達する深さまで高抵抗領域を設け、さらに前記第
1半導体が禁制帯幅の大きい半導体層と禁制帯幅
が小さい半導体層の2層構造とし、前記第2半導
体側に禁制帯幅の大きい層が備えられていること
を特徴とするプレーナ型へテロ接合光検出器。
1: a first semiconductor exhibiting a first conductivity type;
a first region exhibiting a conductivity type, and a second semiconductor having a second region exhibiting a second conductivity type on the first region; The second area is placed around the area for receiving light.
A high resistance region is provided from the surface of the region to a depth reaching at least the first region, and the first semiconductor has a two-layer structure of a semiconductor layer with a large forbidden band width and a semiconductor layer with a small forbidden band width; 2. A planar heterojunction photodetector characterized in that a layer with a large forbidden band width is provided on the semiconductor side.
JP15769279A 1979-12-05 1979-12-05 Planar type hetero-junction light detector Granted JPS5680179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15769279A JPS5680179A (en) 1979-12-05 1979-12-05 Planar type hetero-junction light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15769279A JPS5680179A (en) 1979-12-05 1979-12-05 Planar type hetero-junction light detector

Publications (2)

Publication Number Publication Date
JPS5680179A JPS5680179A (en) 1981-07-01
JPS63955B2 true JPS63955B2 (en) 1988-01-09

Family

ID=15655289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15769279A Granted JPS5680179A (en) 1979-12-05 1979-12-05 Planar type hetero-junction light detector

Country Status (1)

Country Link
JP (1) JPS5680179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
US8866199B2 (en) 2009-09-07 2014-10-21 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167373A (en) * 1980-05-27 1981-12-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light sensor
JPS5723490A (en) * 1980-07-15 1982-02-06 Matsushita Electric Works Ltd Electric equipment with heater
DE3135462A1 (en) * 1981-09-08 1983-09-01 AEG-Telefunken Nachrichtentechnik GmbH, 7150 Backnang MONOLITHIC INPUT STAGE OF AN OPTICAL RECEIVER
JPS6285832A (en) * 1985-10-11 1987-04-20 Mitsubishi Cable Ind Ltd Optical type thermometer
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode
US5148251A (en) * 1991-11-25 1992-09-15 The United States Of America As Represented By The Secretary Of The Army Photoconductive avalanche GaAs switch
US5343054A (en) * 1992-09-14 1994-08-30 Kabushiki Kaisha Toshiba Semiconductor light-detection device with recombination rates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441091A (en) * 1977-09-08 1979-03-31 Matsushita Electronics Corp Semiconductor photoelectric transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441091A (en) * 1977-09-08 1979-03-31 Matsushita Electronics Corp Semiconductor photoelectric transducer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8866199B2 (en) 2009-09-07 2014-10-21 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
US9159853B2 (en) 2009-09-07 2015-10-13 Sumitomo Electric Industries, Ltd. Group III-V compound semiconductor photo detector, method of fabricating group III-V compound semiconductor photo detector, photo detector, and epitaxial wafer
JP2011109146A (en) * 2011-03-01 2011-06-02 Sumitomo Electric Ind Ltd Semiconductor light-receiving element of group iii-v compound
JP2015043466A (en) * 2014-12-01 2015-03-05 住友電気工業株式会社 Semiconductor light receiving element of group iii-v compound

Also Published As

Publication number Publication date
JPS5680179A (en) 1981-07-01

Similar Documents

Publication Publication Date Title
US4651187A (en) Avalanche photodiode
US4442444A (en) Avalanche photodiodes
EP3229279B1 (en) Avalanche photodiode
US4656494A (en) Avalanche multiplication photodiode having a buried structure
JP2970815B2 (en) Semiconductor light receiving element
EP0156156A1 (en) Avalanche photodiodes
JPS6328506B2 (en)
JPH051628B2 (en)
JPH06224463A (en) Semiconductor light-receiving device
JPS63955B2 (en)
EP0304048B1 (en) A planar type heterostructure avalanche photodiode
WO2018189898A1 (en) Semiconductor light-receiving element
JPH038117B2 (en)
JPS6244709B2 (en)
JPH08274366A (en) Semiconductor light receiving device
JPS6244432B2 (en)
JPS6244433B2 (en)
GB2029639A (en) Infra-red photodetectors
JPS59136981A (en) Semiconductor photo detector
JPS6244710B2 (en)
JPS6157716B2 (en)
JPH0621503A (en) Semiconductor photodetector and manufacture thereof
JPS6222474B2 (en)
JPS59149070A (en) Photodetector
JPH01261874A (en) Photodetector