JPS6394671A - Optical scanning type image scanner - Google Patents

Optical scanning type image scanner

Info

Publication number
JPS6394671A
JPS6394671A JP61240949A JP24094986A JPS6394671A JP S6394671 A JPS6394671 A JP S6394671A JP 61240949 A JP61240949 A JP 61240949A JP 24094986 A JP24094986 A JP 24094986A JP S6394671 A JPS6394671 A JP S6394671A
Authority
JP
Japan
Prior art keywords
light emitting
light
elements
image scanner
emitting part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61240949A
Other languages
Japanese (ja)
Inventor
Masakuni Itagaki
板垣 雅訓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP61240949A priority Critical patent/JPS6394671A/en
Publication of JPS6394671A publication Critical patent/JPS6394671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To obtain an equal image scanner with a low cost, a small size and a low power consumption by a method wherein a light emitting part composed of not less than two elements, a signal processing means which detects an optical signal received by a photodetecting part and a means which makes the elements of the light emitting part emit lights successively are provided on a same substrate. CONSTITUTION:A photodetecting part I and a light emitting part II are arranged in parallel to each other on a same substrate 8. A coplanar type structure which is constituted by a photoconductive layer 1 and a pair of electrodes 2 and 2 is commonly used as the photodetecting part I. An amorphous LED which is obtained by taking a laminated structure of an electrode 7 and a transparent electrode 3 made of material such as indium-tin oxide is used as the light emitting part II. Elements of the light emitting part II are lighted one after another by a scanning circuit. The lights are applied to an original surface 10 through a transparent protective film 9 made of material such as amorphous silicon nitride (SiN). The reflected lights corresponding to the reflectance of the picture on the original surface are applied to the photodetecting part I and outputted as serial signals. The reading density of the picture is determined by the diameters of spots formed by the incident lights from the light emitting elements. As a light source used for lighting is an LED device 1 only, a power consumption is small. As the output signals are the serial signals of one line only and, moreover, as a coplanar type structure is employed, a signal current can be large so that amplification can be carried out easily with a low noise.

Description

【発明の詳細な説明】 技術分野 本発明は、光走査型イメージスキャナ、より詳細には、
ファクシミリの画像読取装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an optical scanning image scanner, and more particularly, to an optical scanning image scanner.
The present invention relates to a facsimile image reading device.

従来共生 光走査型密着イメージスキャナは既に種々提案されてい
るが、従来のスキャナは、受光部と発光部とをそれぞれ
別の基板上に設けているため(例えば、信学技報、山田
誠ほか、ED86−19゜p、p 37−42) 、集
光用のロッドレンズアレイを必要とし、低コスト、コン
バク1〜化に限界があった。また、受光素子にサンドイ
ンチ型のフォトダイオードが用いられているため、出力
電流が小さく、増幅回路でのノイズが問題になっている
Various conventional symbiotic optical scanning type contact image scanners have already been proposed, but conventional scanners have a light receiving part and a light emitting part on separate substrates (for example, IEICE Technical Report, Makoto Yamada et al. , ED86-19゜p, p. 37-42), it required a rod lens array for condensing light, and there was a limit to low cost and miniaturization. Furthermore, since a sandwich-type photodiode is used as the light receiving element, the output current is small and noise in the amplifier circuit becomes a problem.

目     的 本発明は、上述のごとき実情に鑑みてなされたもので、
特に、低コスト、小型、低消費電力の光走査型イメージ
スキャナを提供することを目的としたものである。
Purpose The present invention was made in view of the above-mentioned circumstances.
In particular, the object is to provide an optical scanning image scanner that is low cost, compact, and consumes low power.

構   成 本発明は、上記目的を達成するために、同一基板上に受
光部と該受光部に平行に配列された少なくとも2個以上
の素子から成る発光部と、前記受光部が受ける光信号を
検知する少なくとも1組の信号処理手段と、前記発光部
の素子を順次発光させる手段とを有することを特徴とし
たものである。
Configuration In order to achieve the above-mentioned object, the present invention includes a light-emitting section including a light-receiving section and at least two or more elements arranged in parallel to the light-receiving section on the same substrate, and detecting an optical signal received by the light-receiving section. The device is characterized by comprising at least one set of signal processing means for processing the light emitting portion, and means for sequentially causing the elements of the light emitting section to emit light.

以下、本発明の実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

第1図は、本発明による光走査型イメージスキャナの一
実施例を説明するための部分的側断面構成図で、図中、
■は受光部、■は発光部で、これら受光部■と発光部■
は、同一基板8上に平行に配列されている。
FIG. 1 is a partial side cross-sectional configuration diagram for explaining an embodiment of an optical scanning image scanner according to the present invention.
■ is the light-receiving part, ■ is the light-emitting part, and these light-receiving part ■ and light-emitting part ■
are arranged in parallel on the same substrate 8.

第2図は、受光部Iの部分的平面構成図、第3図は、発
光部Hの部分的平面構成図で、前記受光部lとしては、
基板8上に光導電層1と対電極2゜2とから構成される
コプレナ型構造がよく用いられる。基板8としては、パ
イレクスガラス、セラミックスなどが広く用いられる。
FIG. 2 is a partial plan view of the light receiving section I, and FIG. 3 is a partial plan view of the light emitting section H.
A coplanar structure consisting of a photoconductive layer 1 and a counter electrode 2°2 on a substrate 8 is often used. As the substrate 8, Pyrex glass, ceramics, etc. are widely used.

また、光導電層1としては、膜厚0.5〜1.5μm程
度の非晶質シリコンが、電極2としては、AQ、NiC
r、Cr。
The photoconductive layer 1 is made of amorphous silicon with a film thickness of about 0.5 to 1.5 μm, and the electrode 2 is made of AQ, NiC, etc.
r, Cr.

Ni、Ti等が好ましい。一方、発光部■としては、好
ましくは、インジウム−スズ酸化物等の透明電極3.膜
厚100〜300人のp型非晶質シリコンカーバイド(
SiC)4.膜厚200〜1500人のn型非晶質シリ
コンカーバイド(SiC)5.膜厚200〜500人の
n型非晶質シリコンカーバイド(SiC)6、及び、A
fl等より成る電極7を積層構造にして得られる非晶’
[LEDが用いられる。非晶質シリコンカーバイド(S
 i C)のかわりに非晶質シリコンナイトライド(S
iN)、非晶質ダイアモンド(C)なども用いられる。
Ni, Ti, etc. are preferred. On the other hand, as the light emitting part (2), preferably a transparent electrode 3. of indium-tin oxide or the like is used. P-type amorphous silicon carbide with a film thickness of 100 to 300 people (
SiC)4. N-type amorphous silicon carbide (SiC) with a film thickness of 200 to 1500 5. N-type amorphous silicon carbide (SiC) 6 and A with a film thickness of 200 to 500 people
Amorphous ' which can be obtained by making the electrode 7 made of fl etc. into a laminated structure.
[LEDs are used. Amorphous silicon carbide (S
i C) instead of amorphous silicon nitride (S
iN), amorphous diamond (C), etc. are also used.

素子のパターン化にはプラズマエツチング等のドライプ
ロセスが好ましく用いられる1発光部■は走査回路によ
って1素子ずつ順番に点灯する。この光は、膜厚1〜1
00μm好ましくは50〜80μmの非晶質シリコンナ
イトライド(S i N)などからなる透明保護膜9を
通して原稿面10に入射し、原稿面上の画像の反射率に
応じた反射光が受光部Iに入射し、これがシリアル信号
として出力される。画像の読取り密度は、発光素子から
の入射光が原稿面につくるスポット径により決定される
が、このスポット径は50〜100μmにすることが可
能である。この実施例では、照明に用いる光源は常にL
EDI素子のみであるから、消費電力も少なく、がっ、
消費電力にともなう温度上昇も低く抑えることができる
。また、出力信号は1ラインだけのシリアル信号となり
、かつ、コプレナ型構造にしたことから信号電流も大き
いため、低ノイズで増幅処理も容易となる。なお、薄膜
LED素子のかわりにEL素子を用いることも可能であ
る。
A dry process such as plasma etching is preferably used to pattern the elements. Each light emitting section 1 is turned on one element at a time by a scanning circuit. This light has a film thickness of 1 to 1
00 μm, preferably 50 to 80 μm, is incident on the document surface 10 through a transparent protective film 9 made of amorphous silicon nitride (S i N), etc., and reflected light corresponding to the reflectance of the image on the document surface is transmitted to the light receiving portion I. is input to the serial signal, and this is output as a serial signal. The image reading density is determined by the spot diameter formed on the document surface by the incident light from the light emitting element, and this spot diameter can be set to 50 to 100 μm. In this example, the light source used for illumination is always L
Since it only uses an EDI element, power consumption is low.
Temperature rise due to power consumption can also be kept low. Further, the output signal is a serial signal of only one line, and since the signal current is large due to the coplanar structure, the amplification process is easy with low noise. Note that it is also possible to use an EL element instead of the thin film LED element.

第4図は、本発明の他の実施例を説明するための部分的
側断面図、第5図は、平面図で、図中、第1図乃至第3
図に示した実施例と同様の作用をする部分には、第1図
乃至第3図の場合と同一の参照番号が付しである。而し
て、この実施例は、発光部の各素子に一対一に対応して
受光素子を分離形成し、かつ発光部の一方の電極と受光
部の一方の電極とを相互に接続して電極11としている
FIG. 4 is a partial side sectional view for explaining another embodiment of the present invention, and FIG. 5 is a plan view.
Parts which function similarly to the embodiment shown in the figures are provided with the same reference numerals as in FIGS. 1-3. Therefore, in this embodiment, a light receiving element is separately formed in one-to-one correspondence with each element of the light emitting part, and one electrode of the light emitting part and one electrode of the light receiving part are connected to each other to form an electrode. 11.

電極11としてはAQ、Ti、NiCr、Cr。The electrode 11 is made of AQ, Ti, NiCr, or Cr.

Ni等が好適に用いられる。この実施例の構成によると
、走査回路によって発光部を1素子ずつ点灯していくと
き、発光素子と対応する受光素子にも1素子ずつ電圧が
印加されていき、画像情報はシリアル信号として出力さ
れる。従って、この実施例によると、受光素子間のクロ
ストークがなくなり、かつ、光応答速度も速くなるため
、スキャナとして駆動したとき主走査方向(受光素子列
方向)、副走査方向(受光素子列と直角方向)ともMT
Fが上がり、解像度が良くなる。これにより主・副走査
MTF50%以上が達成できた。
Ni or the like is preferably used. According to the configuration of this embodiment, when the scanning circuit turns on the light emitting parts one by one, voltage is also applied to the light receiving elements corresponding to the light emitting elements one by one, and image information is output as a serial signal. Ru. Therefore, according to this embodiment, crosstalk between the light receiving elements is eliminated and the optical response speed is also increased. Right angle direction) both MT
The F increases and the resolution improves. As a result, main/sub-scanning MTF of 50% or more was achieved.

第6図は、本発明の更に他の実施例を説明するだめの部
分的側断面構成図で、この実施例は、同一基板8上に受
光部■と発光部■を積層したもので、発光部■から発し
た光は受光部■を通して原稿画10に入射し、原稿反射
率に応じた反射光がふたたび受光部■に入射することに
より画像情報を得るものである。作動方法は前記実施例
と同様な方法がとられる。本実施例の利点は受光部には
常に発光部からの入射光がバイアス光として入っている
ため、光応答速度が速くなり、副走査MTFが上がる点
である(副走査MTF>70%)。
FIG. 6 is a partial side cross-sectional configuration diagram for explaining still another embodiment of the present invention. The light emitted from the section (2) enters the original image 10 through the light receiving section (2), and the reflected light corresponding to the reflectance of the document enters the light receiving section (2) again to obtain image information. The method of operation is similar to that of the previous embodiment. The advantage of this embodiment is that since the incident light from the light emitting section always enters the light receiving section as bias light, the optical response speed becomes faster and the sub-scanning MTF increases (sub-scanning MTF>70%).

なお、受光部lと発光部■の積層順序を逆にすることも
可能である。
Note that it is also possible to reverse the stacking order of the light receiving section 1 and the light emitting section 2.

第7図は、本発明の更に他の実施例を説明するための断
面構成図で、この実施例は、受光部lと発光部■を光透
過性基板8の別の面に配し、遮光膜12に明けられた窓
13から光を入射させるようにしたもので、このように
することにより、光によるクロストークをなくし、明暗
電流比(S/N)を向上させる効果を有し、これによっ
て、明暗電流比〉103が得られた。
FIG. 7 is a cross-sectional configuration diagram for explaining still another embodiment of the present invention. In this embodiment, the light-receiving section 1 and the light-emitting section 2 are arranged on different surfaces of the light-transmitting substrate 8, and the light-shielding Light is made to enter through the window 13 opened in the film 12. By doing so, it has the effect of eliminating crosstalk caused by light and improving the brightness/dark current ratio (S/N). A bright/dark current ratio>103 was obtained.

匁−−−釆 以上の説明から明らかなように、本発明によると、 (イ)受光部と発光部を同一基板上に配列することによ
って低コスト、小型、低消費電力の等倍イメージスキャ
ナが提供できる。
As is clear from the above description, according to the present invention, (a) a low-cost, small-sized, low-power consumption, 1x image scanner can be achieved by arranging the light-receiving section and the light-emitting section on the same substrate; Can be provided.

(ロ)素子はすべて薄膜で構成することができるので大
面積にわたって特性が均一なデバイスを提供できる。
(b) Since all the elements can be constructed of thin films, it is possible to provide a device with uniform characteristics over a large area.

等の利点がある。There are advantages such as

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による光走査型イメージスキャナの一
実施例を説明するための部分的側断面構成図、第2図は
、受光部の部分的平面構成図、第3図は、発光部の部分
的平面構成図、第4図は、本発明の他の実施例を説明す
るための部分的側断面図、第5図は、第4図に示した実
施例の部分的平面構成図、第6図及び第7図は、それぞ
れ本発明の更に他の実施例を説明するための部分的側断
面構成図である。 ■・・・受光部、■・・・発光部、1・・・光導電層、
2・・・電極、3・・・透明電極、4・・・p型SiC
,5・・・i型SiC,6・・・n型SiC,7・・・
電極、8・・・透明基板、9・・・透明保護膜、10・
・・原稿、11・・・電極。 12・・・遮光膜、13・・・窓。 特許出願人   株式会社 リコー 第 1  リ
FIG. 1 is a partial side sectional configuration diagram for explaining an embodiment of the optical scanning image scanner according to the present invention, FIG. 2 is a partial plan configuration diagram of a light receiving section, and FIG. 3 is a partial plan configuration diagram of a light receiving section. FIG. 4 is a partial side sectional view for explaining another embodiment of the present invention; FIG. 5 is a partial plan configuration diagram of the embodiment shown in FIG. 4; FIGS. 6 and 7 are partial side cross-sectional configuration diagrams for explaining still other embodiments of the present invention, respectively. ■... Light receiving part, ■... Light emitting part, 1... Photoconductive layer,
2... Electrode, 3... Transparent electrode, 4... P-type SiC
, 5... i-type SiC, 6... n-type SiC, 7...
Electrode, 8... Transparent substrate, 9... Transparent protective film, 10.
... Manuscript, 11... Electrode. 12... Light-shielding film, 13... Window. Patent applicant: Ricoh Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] (1)同一基板上に受光部と該受光部に平行に配列され
た少なくとも2個以上の素子から成る発光部と、前記受
光部が受ける光信号を検知する少なくとも1組の信号処
理手段と、前記発光部の素子を順次発光させる手段とを
有することを特徴とする光走査型イメージスキャナ
(1) a light-emitting section comprising a light-receiving section and at least two or more elements arranged in parallel to the light-receiving section on the same substrate; and at least one set of signal processing means for detecting the optical signal received by the light-receiving section; An optical scanning image scanner comprising means for sequentially causing the elements of the light emitting section to emit light.
(2)前記受光部と発光部が前記基板の同一基板面上に
平行に配列されていることを特徴とする特許請求の範囲
第(1)項に記載の光走査型イメージスキャナ。
(2) The optical scanning image scanner according to claim (1), wherein the light receiving section and the light emitting section are arranged in parallel on the same substrate surface of the substrate.
(3)前記受光部と発光部が同一基板面上に積層されて
いることを特徴とする特許請求の範囲第(1)項に記載
の光走査型イメージスキャナ。
(3) The optical scanning image scanner according to claim (1), wherein the light receiving section and the light emitting section are stacked on the same substrate surface.
(4)前記受光部と発光部が同一基板上の各々別の面上
に配列されていることを特徴とする特許請求の範囲第(
1)項に記載の光走査型イメージスキャナ。
(4) The light receiving section and the light emitting section are arranged on different surfaces of the same substrate.
The optical scanning image scanner described in item 1).
(5)前記受光部と発光部が薄膜からなることを特徴と
する特許請求の範囲第(1)項に記載の光走査型イメー
ジスキャナ。
(5) The optical scanning image scanner according to claim (1), wherein the light receiving section and the light emitting section are made of thin films.
(6)前記受光部と発光部が非晶質半導体よりなること
を特徴とする特許請求の範囲第(5)項に記載の光走査
型イメージスキャナ。
(6) The optical scanning image scanner according to claim (5), wherein the light receiving section and the light emitting section are made of an amorphous semiconductor.
JP61240949A 1986-10-08 1986-10-08 Optical scanning type image scanner Pending JPS6394671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61240949A JPS6394671A (en) 1986-10-08 1986-10-08 Optical scanning type image scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61240949A JPS6394671A (en) 1986-10-08 1986-10-08 Optical scanning type image scanner

Publications (1)

Publication Number Publication Date
JPS6394671A true JPS6394671A (en) 1988-04-25

Family

ID=17067049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61240949A Pending JPS6394671A (en) 1986-10-08 1986-10-08 Optical scanning type image scanner

Country Status (1)

Country Link
JP (1) JPS6394671A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184964A (en) * 1988-01-20 1989-07-24 Fuji Xerox Co Ltd Image sensor constructed of light-emitting element and photodetecting element
JPH0348245U (en) * 1989-09-14 1991-05-08
JP2002182839A (en) * 2000-12-12 2002-06-28 Semiconductor Energy Lab Co Ltd Information equipment
JP2005327943A (en) * 2004-05-14 2005-11-24 Nippon Hoso Kyokai <Nhk> Image input device
JP2011109133A (en) * 2000-08-10 2011-06-02 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01184964A (en) * 1988-01-20 1989-07-24 Fuji Xerox Co Ltd Image sensor constructed of light-emitting element and photodetecting element
JPH0348245U (en) * 1989-09-14 1991-05-08
JP2011109133A (en) * 2000-08-10 2011-06-02 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
US8378443B2 (en) 2000-08-10 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
US9082677B2 (en) 2000-08-10 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
US9337243B2 (en) 2000-08-10 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
US9711582B2 (en) 2000-08-10 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
US9941343B2 (en) 2000-08-10 2018-04-10 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
JP2002182839A (en) * 2000-12-12 2002-06-28 Semiconductor Energy Lab Co Ltd Information equipment
JP4671494B2 (en) * 2000-12-12 2011-04-20 株式会社半導体エネルギー研究所 Driving method of information device
JP2005327943A (en) * 2004-05-14 2005-11-24 Nippon Hoso Kyokai <Nhk> Image input device

Similar Documents

Publication Publication Date Title
JPH0510863B2 (en)
JPS6394671A (en) Optical scanning type image scanner
JPS6311833B2 (en)
JPS5846181B2 (en) Close-contact image sensor
JPH0658950B2 (en) Contact image sensor
TW488142B (en) Image sensor
JPS6215814B2 (en)
JP2769812B2 (en) Document reading device
JPS6336144B2 (en)
EP0827323A1 (en) Optical read and write systems
JPH0255478A (en) Optical sensor array
JPH0583025B2 (en)
JP2637946B2 (en) Direct reading type line image sensor
JPH09210793A (en) Color image sensor
JPH04291762A (en) Communication terminal using image reader
JPS61161758A (en) Direct reading type image sensor
JPS6236958A (en) Picture reader
JPH0568134A (en) Contact type image sensor
JPH0358478A (en) Full close contact type image sensor
JPS60244151A (en) Original reader
JPH0399576A (en) Contact type image sensor
JPH04309061A (en) Light source integrated image sensor
JPH0732246B2 (en) Image reader
JPS60165859A (en) Image sensor
JPS5880963A (en) Picture reader