JPS6391122A - Separation of steam - Google Patents

Separation of steam

Info

Publication number
JPS6391122A
JPS6391122A JP61236458A JP23645886A JPS6391122A JP S6391122 A JPS6391122 A JP S6391122A JP 61236458 A JP61236458 A JP 61236458A JP 23645886 A JP23645886 A JP 23645886A JP S6391122 A JPS6391122 A JP S6391122A
Authority
JP
Japan
Prior art keywords
copolyimide
membrane
mol
formulas
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61236458A
Other languages
Japanese (ja)
Inventor
Yukio Yanaga
弥永 幸雄
Asaji Hayashi
浅次 林
Shizue Sakai
酒井 静枝
Tooru Imanara
今奈良 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61236458A priority Critical patent/JPS6391122A/en
Publication of JPS6391122A publication Critical patent/JPS6391122A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors

Abstract

PURPOSE:To favorably separate steam from gas by using a membrane of an unsymmetrical structure having specified aromatic copolyimide and/or specified aromatic copolyamidimide as a main constitutional material. CONSTITUTION:A membrane of an unsymmetrical structure having aromatic copolyimide obtained by allowing 3,4,3',4'-benzophenone-tetracarboxylic acid dianhydride to react with the mixture of tolylene diisocyanate and methylenebisphenyl isocyanate and/or aromatic copolyamidimide obtained by allowing 4,4'-methylenebisphenyl isocyanate to react with the mixture of trimellitic acid anhydride and isophthalic acid as a main constitutional material is used. On other words, the membrane of the unsymmetrical structure having copolyimide shown in a formula I and/or copolyamidimide shown in formulas II, III as the main constitutional structure is used. This method is widely expected in applications in industrial fields such as removal of steam incorporated in associated gas of petroleum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、3.≠、3′、≠′−ベンゾフェノンテトラ
カルポン酸二無水物をトリレンジイソシアネート及びメ
チレンビスフェニルイソシアネートの混合物と反応させ
て得られた芳香族コポリイミド及ヒ/又は、4’、4”
−メチレンピスフェニルイソシアネートをトリメリット
酸無水物及びイソフタル酸の混合物と反応させて得られ
た芳香族コポリアミドイミドを主たる構成材料とする非
対称構造の膜を用いて気体から水蒸気を分離する水蒸気
の分離方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention comprises 3. Aromatic copolyimide and/or 4', 4'' obtained by reacting ≠, 3', ≠'-benzophenone tetracarboxylic dianhydride with a mixture of tolylene diisocyanate and methylene bisphenyl isocyanate.
- Separation of water vapor by separating water vapor from gas using a membrane with an asymmetric structure mainly composed of an aromatic copolyamideimide obtained by reacting methylene pisphenyl isocyanate with a mixture of trimellitic anhydride and isophthalic acid. It is about the method.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

気体から水蒸気を分離することは、例えば空気の紛湿や
、天然ガスの脱湿等に関連して重要であり、吸着法、冷
却法、湿式吸収法等による方法が広く用いられている。
Separation of water vapor from gas is important in connection with, for example, humidification of air and dehumidification of natural gas, and methods such as adsorption, cooling, and wet absorption are widely used.

しかし、これらの方法は装置のシステムが複雑で占有面
積が大きく、冷却法の場合にはさらにエネルギー消費が
太きい等のため、いずれも有利な方法とけ言えない。
However, these methods require complicated equipment systems, occupy a large area, and consume even more energy in the case of cooling methods, so none of these methods can be said to be advantageous.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、このような事情に鑑みて、鋭意検討を行
った結果、3.μ、J’、!’−ベンゾフェノンテトラ
カルボン酸二無水物をトリレンジイソシアネート及びメ
チレンビスフェニルイソシアネートの混合物と反応させ
て得られた芳香族コポリイミド及び/又は、φ、44′
−メチレンビスフェニルイソシアネートをトリメリット
酸無水物及びイソフタル酸の混合物と反応させて得られ
た芳香族コポリアミドイミドを主たる構成材料とする非
対称構造の膜を用いることにより、有利に気体から水蒸
気を分離できることを見い出し、本発明に到達した。
In view of the above circumstances, the inventors of the present invention have conducted intensive studies and have found that 3. μ, J',! Aromatic copolyimide obtained by reacting '-benzophenone tetracarboxylic dianhydride with a mixture of tolylene diisocyanate and methylene bisphenyl isocyanate and/or φ, 44'
- Advantageous separation of water vapor from gases by using an asymmetrically structured membrane whose main constituent is an aromatic copolyamideimide obtained by reacting methylene bisphenyl isocyanate with a mixture of trimellitic anhydride and isophthalic acid. We discovered what we could do and arrived at the present invention.

す々わち、本発明の要旨は、一般式(I)の繰り返し単
位で表わされる構造を有するコポリイミドであって、上
記繰り返し単位の10〜30モルチはRが+CH2−Q
−を表わすものであり、上記繰り返し単位の2θ〜りθ
モルチであるコポリイミド、及び/又は、繰り返し単位
の9θ〜70モルチが式(II) で表わされる構造を有し、かつ繰り返し単位の10〜3
0モル饅が式(III) で表わされる構造を有するコポリアミドイミドを主たる
構成材料とする非対称構造の膜を用いて、気体から水蒸
気を分離することを特徴とする水蒸気の分離方法に存す
る。
In other words, the gist of the present invention is a copolyimide having a structure represented by repeating units of general formula (I), wherein 10 to 30 moles of the above repeating units have R +CH2-Q.
- represents 2θ to riθ of the above repeating unit.
A copolyimide which is molti and/or has a structure in which 9θ to 70 molti of the repeating unit is represented by formula (II), and 10 to 3 of the repeating unit is
A method for separating water vapor is characterized in that water vapor is separated from a gas by using a membrane with an asymmetric structure mainly composed of copolyamideimide having a structure represented by formula (III).

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において使用される芳香族コポリイミドは一般式
(1) の繰返し単位の存在を特徴とするコポリイミドであり、
ここで上記繰返し単位の/Q〜30モルチはRが+OH
t<Σ を表わすものであり、上記繰り返し単位のりO
〜70モルチはRる。
The aromatic copolyimide used in the present invention is a copolyimide characterized by the presence of a repeating unit of general formula (1),
Here, in the above repeating unit /Q~30molti, R is +OH
It represents t<Σ, and the above repeating unit glue O
~70 molti is R.

とのコポリイミドは例えばUSP 3,7tM、1As
r号に記載されているように3.3’、II、≠メーベ
ンゾフエノンテトラカルボン酸二無水物を適当なモル比
(7)4’+4”−メチレンビスフェニルイソシアネー
)(”+≠I−ジフェニルメタンジイソシアネート)お
よびトリレンジイソシアネート(,2,4を一異性体、
2.≦−異性体、あるいはそれらの混合物)とともに極
性溶媒の存在下で反応させることにより容易に得ること
ができる。
For example, copolyimides with USP 3,7tM, 1As
3.3', II, ≠ mebenzophenone tetracarboxylic dianhydride in an appropriate molar ratio (7) 4'+4''-methylene bisphenyl isocyanate (''+≠) as described in No. I-diphenylmethane diisocyanate) and tolylene diisocyanate (,2,4 monoisomer,
2. ≦-isomer, or a mixture thereof) in the presence of a polar solvent.

また、本発明において使用される芳香族コポリアミドイ
ミドは繰り返し単位の70−90モルチが式(n) で表わされる構造を有し、かつ繰り返し単位の30〜1
0モルチが式(III) で表わされる構造を有するコポリアミドイミドである。
Further, the aromatic copolyamideimide used in the present invention has a structure in which 70 to 90 moles of repeating units are represented by the formula (n), and 30 to 1 mole of repeating units
0 molti is a copolyamideimide having a structure represented by formula (III).

このコポリアミドイミドは米国特許第3.922.ご9
7号に教示の方法により容易に製造される。このような
コポリアミドイミドは、前記特許に記載の操作を用いて
約20モル係から約りθモルチ対約30モルチから約1
0モル係の割合のトリメリット酸無水物とイソフタル酸
の混合物とほぼ等量の/θθモルチ割合の≠、≠′−メ
チレンビスフェニルイソシアネートの反応から容易に得
ることができる。
This copolyamideimide is described in U.S. Patent No. 3.922. Go9
It is easily manufactured by the method taught in No. 7. Such copolyamideimides can be prepared using the procedures described in the above-mentioned patents from about 20 molar to about θ molar to about 30 molar to about 1 molar.
It can be easily obtained from the reaction of a mixture of trimellitic anhydride and isophthalic acid in a 0 molar ratio and approximately equal amounts of ≠,≠'-methylene bisphenyl isocyanate in a /θθ molar ratio.

コポリイミド又はコポリアミドイミドの重合、およびこ
れらを溶解させるのに用いられる溶媒は、極性有機溶媒
でありジメチルホルムアミド、ジメチルアセトアミド、
N−メチルピロリドン、ジメチルスルホキシド、ジメチ
ルスルホン、ヘキサメチルホスホルアミド、テトラメチ
ル尿素、ピリジンなどが例示されるが、特に限定される
ものでは々い。また、これらを混合して使用してもかま
わない。本発明においてコポリイミドに対しては、好ま
しくはジメチルホルムアミド及びN−メチルピロリドン
が用いられ、より好マシくはジメチルホルムアミドが用
いられる。
The polymerization of copolyimides or copolyamideimides and the solvents used to dissolve them are polar organic solvents such as dimethylformamide, dimethylacetamide,
Examples include N-methylpyrrolidone, dimethylsulfoxide, dimethylsulfone, hexamethylphosphoramide, tetramethylurea, and pyridine, but there are no particular limitations. Moreover, these may be used in combination. For the copolyimide in the present invention, preferably dimethylformamide and N-methylpyrrolidone are used, more preferably dimethylformamide.

コポリアミドイミドに対しては好ましくはジメチルホル
ムアミド、ジメチルアセトアミド、N−メチルピロリド
ンが用いられ、より好ましくはジメチルホルムアミドが
用いられる。
For the copolyamideimide, preferably dimethylformamide, dimethylacetamide, N-methylpyrrolidone is used, more preferably dimethylformamide is used.

上述の重合に使用する極性有機溶媒の分量は、すべての
反応体が最初に溶解するのに少なくとも十分なものであ
ることが好ましい。溶媒の使用量は求めるコポリイミド
、又はコポリアミドイミドの粘度によって調節されるも
のであり、コポリイミド、又はコポリアミドイミドの重
量%はそれほど重要で々いが、通常約5重量%から約3
5重量%までが好ましい。
Preferably, the amount of polar organic solvent used in the above polymerization is at least sufficient to initially dissolve all reactants. The amount of solvent used is adjusted depending on the desired viscosity of the copolyimide or copolyamideimide, and the weight percentage of the copolyimide or copolyamideimide is not very important, but it is usually about 5% by weight to about 3% by weight.
Up to 5% by weight is preferred.

本発明で用いられるコポリイミド又はコポリアミドイミ
ドの対数粘度(ηinh )はθ、/dl/l以上、よ
り好ましくは0.3〜弘dllt(N−メチルピロリド
ン中、O1S%、30℃で測定)の範囲から選ばれる。
The logarithmic viscosity (ηinh) of the copolyimide or copolyamide-imide used in the present invention is θ, /dl/l or more, preferably 0.3 to 100% (measured at 30°C in O1S% in N-methylpyrrolidone) selected from the range.

上記コポリイミド及び/又はコポリアミドイミドを用い
た非対称構造の膜とは、膜の断面方向に不均質な構造を
有している膜のことであり、例えば表面に緻密で薄いス
キン層、その下部に多孔化したスポンジ層が存在してい
るものであって、これらが同一素材で一体に形成されて
いるものが挙げられる。スポンジ層の中に指状構造の空
孔が形成されているものでもよい。
The above-mentioned membrane with an asymmetric structure using copolyimide and/or copolyamide-imide is a membrane that has a non-uniform structure in the cross-sectional direction of the membrane, for example, a dense and thin skin layer on the surface, and a thin skin layer below it. Examples include those in which a porous sponge layer is present, and these are integrally formed of the same material. The sponge layer may have finger-like pores formed therein.

このような非対称構造の膜では分離機能を有する部分は
スキン層の部分である。多孔層は、分離機能を有してい
ないが、裾くて機棹的強度の不十分なスキン層を支持す
るものである。非対称構造でない、いわゆる均質膜では
、薄膜化するに従ってピンホール等の欠陥が発生しやす
くなるため、実用的レベルの透過速度を有する膜を形成
することは困難であり、有利とは言えない。
In a membrane with such an asymmetric structure, the part having the separation function is the skin layer part. The porous layer does not have a separation function, but supports the skin layer, which is flimsy and has insufficient mechanical strength. In a so-called homogeneous membrane that does not have an asymmetric structure, defects such as pinholes are more likely to occur as the membrane becomes thinner, so it is difficult to form a membrane with a practical level of permeation rate, and it cannot be said to be advantageous.

膜の形状としては、シート状、スパイラル状、管状、中
空糸状等各種のものが採用できるが、中空糸状の隔膜は
単位容積当りの有効膜面積を大きくすることができ、ま
た中空糸の外周側から加圧する場合には、管壁の厚さが
小さい割に高圧に対する機械的強度が高い等の利点が得
られる。
Various membrane shapes can be adopted, such as sheet, spiral, tubular, and hollow fiber shapes.Hollow fiber membranes can increase the effective membrane area per unit volume, and the outer peripheral side of the hollow fiber In the case of pressurizing from the inside, there are advantages such as high mechanical strength against high pressure despite the small thickness of the tube wall.

このような隔膜の製造法としては、先に述べたコポリイ
ミド及び/又はコポリアミドイミドとその重合溶媒であ
る極性有機溶媒とのドープ液を、ガラス板等の平板の上
にキャスティングする方法、ロールコートする方法、ス
ピンコードする方法あるいは、表面積を大きくするため
に通常採用されている中空糸にする方法等の公知の方法
によって行うことができる。
Methods for producing such a diaphragm include a method of casting a dope solution of the above-mentioned copolyimide and/or copolyamide-imide and a polar organic solvent as its polymerization solvent onto a flat plate such as a glass plate, and a roll method. This can be carried out by a known method such as a coating method, a spin-coding method, or a method of forming a hollow fiber, which is usually employed to increase the surface area.

また、遣当な多孔質(多孔質中空糸を含む)の裏打材上
に流延して、MK対して支持体をさらに設けることもで
きる。この多孔質支持体としては膜に対する透過ガスの
通過を阻止せず、かつ膜材料、溶媒、凝固液に侵され々
いような任意の不活性多孔質材料を用いることができる
Further, it is also possible to further provide a support for the MK by casting on a suitable porous (including porous hollow fiber) backing material. The porous support may be any inert porous material that does not block the passage of permeate gas through the membrane and is susceptible to attack by the membrane material, solvent, and coagulation liquid.

この種の支持体の典型的なものとしては金属メツシュ、
多孔質セラミック、焼結ガラス、多孔質ガラス、焼結金
属、紙、多孔質非溶解性プラスチック等が好適に用いら
れ、たとえばレーヨンのような不織布、アスベスト、多
孔質ポリイミドなどが挙げられる。これらの材料は分離
に関与せず単に嘆用の支持体として作用するのみである
。ドープ液の薄膜の厚さは通常/咽以下であることが好
ましい。
Typical examples of this type of support are metal mesh,
Porous ceramics, sintered glass, porous glass, sintered metals, paper, porous non-dissolving plastics, etc. are preferably used, and examples include nonwoven fabrics such as rayon, asbestos, porous polyimide, etc. These materials do not participate in the separation and merely act as a support. It is preferable that the thickness of the thin film of the dope liquid be below the normal/pharyngeal thickness.

薄膜が形成されたら、直ちに凝固液中に浸漬させるが、
この場合、薄膜を形成し々から、又は薄膜形成後1.2
0〜/jθ℃、好ましくは≠θ〜7.2θ℃の大気中で
、2〜300秒間、好ましくは/θ〜/と0秒間、さら
に好ましくは20〜7.20秒間加熱して薄膜中の溶媒
の一部を蒸発除去してから凝固させてもよい。また上記
の範囲で熱風を吹きつけてもよい。これにより、非対称
膜の構造中の表面緻密層の厚みを変えることができ、得
られる膜の分離性能を容易にコントロールすることが可
能である。
Once a thin film is formed, it is immediately immersed in a coagulation solution.
In this case, 1.2 seconds after forming the thin film or after forming the thin film.
0 to /jθ℃, preferably ≠θ to 7.2θ℃ in the atmosphere for 2 to 300 seconds, preferably /θ to / for 0 seconds, more preferably 20 to 7.20 seconds to remove the A portion of the solvent may be removed by evaporation before solidification. Alternatively, hot air may be blown within the above range. Thereby, the thickness of the surface dense layer in the structure of the asymmetric membrane can be changed, and the separation performance of the resulting membrane can be easily controlled.

凝固液としてはドープ液との相溶性が良好なものであっ
て、コポリイミド又はコポリアミドイミドとの溶解性が
低いもの(貧溶媒)の中から適宜選ぶことができる。例
えば、水、グロパノール等の低級アルコール類、アセト
ン等のケトン類、エチレングリコール等のエーテル類、
トルエン等の芳香族類あるいはこれらの混合液等が挙げ
られるが、経済性、公害等の問題から水が好適姉用いら
れる。
The coagulating liquid can be appropriately selected from those having good compatibility with the dope liquid and having low solubility with the copolyimide or copolyamide-imide (poor solvent). For example, water, lower alcohols such as gropanol, ketones such as acetone, ethers such as ethylene glycol,
Aromatic compounds such as toluene or a mixture thereof may be used, but water is preferably used from the viewpoint of economic efficiency and pollution.

凝固液の温度は0〜100℃、好ましくはθ〜sO℃の
範囲が好適に用いられる。
The temperature of the coagulating liquid is preferably in the range of 0 to 100°C, preferably θ to sO°C.

液状、あるいは溶媒の一部を蒸発させた薄膜を凝固する
方法は公知のどのような方法であってもよい。例えば、
薄膜をその薄膜を形成されている基材とともに前記凝固
液中に浸漬する方法、又は中空糸の薄膜のみで凝固液中
に浸漬する方法等が挙げられる。
Any known method may be used to solidify the thin film in liquid form or in which a portion of the solvent has been evaporated. for example,
Examples include a method in which the thin film is immersed together with the substrate on which the thin film is formed into the coagulating liquid, or a method in which only the hollow fiber thin film is immersed in the coagulating liquid.

凝固した湿潤膜は風乾又はアルコール類・炭化水素類に
浸漬し、溶媒、凝固液を低濃度にしておくことが好まし
い。
It is preferable that the coagulated wet film is air-dried or immersed in alcohols/hydrocarbons to maintain a low concentration of the solvent and coagulating liquid.

次いでコポリイミド膜の場合はjθ〜弘θθ℃、好まし
くは100〜35θ℃の範囲、コポリアミドイミド膜の
場合は50〜350℃、好ましくは700〜300℃の
範囲で加熱乾燥して溶媒及び含浸した凝固液等を除去す
るが、その方法としては、例えば、常温よりしだいに温
度を上昇させていってもよいし、各温度範囲内で複数段
階で温度上昇させてもよい。あまり急激に加熱乾燥を行
うと発泡が生じたりして好ましくない。
Next, in the case of a copolyimide film, the solvent and impregnation are removed by heating and drying at a temperature of 100 to 350°C, preferably in the range of 100 to 350°C, and in the case of a copolyamide-imide film, at a temperature of 50 to 350°C, preferably 700 to 300°C. The solidified liquid and the like may be removed by, for example, gradually increasing the temperature from room temperature, or by increasing the temperature in multiple steps within each temperature range. Too rapid heating and drying may cause foaming, which is undesirable.

前述の凝固した湿潤膜の加熱乾燥温度、時間、及び凝固
膜厚は溶媒の種類、凝固した湿潤膜中の蒸発成分量など
によって変わるものであるので各具体例で適宜法めれば
よい。
The heating drying temperature, time, and coagulation film thickness of the coagulated wet film described above vary depending on the type of solvent, the amount of evaporated components in the coagulated wet film, etc., and may be determined as appropriate for each specific example.

上記の加熱、乾燥を行わ力い膜においても、分離膜とし
て使用することは可能であるが、上記の加熱、乾燥を行
うことにより、各種ガスの分離性能、及び引張り強度、
引張り破断伸度等の膜強度が格段に改善される。
Although it is possible to use a strong membrane after the above heating and drying as a separation membrane, by performing the above heating and drying, the separation performance of various gases, tensile strength,
Membrane strength such as tensile elongation at break is significantly improved.

この発明の方法ではドープ液中のコポリイミド又はコポ
リアミドイミドの濃度、溶媒の種類、溶媒の組合せ、膨
潤剤の添加、蒸発条件、凝固剤の種類及び凝固φ件等に
より気孔率や孔の形状、緻密層の厚みを容易にかえるこ
とが出来る。
In the method of this invention, the porosity and pore shape are determined by the concentration of copolyimide or copolyamideimide in the dope solution, the type of solvent, the combination of solvents, the addition of a swelling agent, the evaporation conditions, the type of coagulant, the coagulation diameter, etc. , the thickness of the dense layer can be easily changed.

しかし、N、N−ジメチルホルムアミド、ジメチルアセ
トアミド、N−メチルピロリドン等の極性有機溶媒に常
温で溶解しているコポリイミド又はコポリアミドイミド
は膨潤剤の添加なしでも水等の凝固剤中にて容易に多孔
質構造が得られるため特に膨潤剤を添加しなくてもよい
However, copolyimide or copolyamideimide that is dissolved in a polar organic solvent such as N,N-dimethylformamide, dimethylacetamide, or N-methylpyrrolidone at room temperature can be easily dissolved in a coagulating agent such as water without adding a swelling agent. Since a porous structure is obtained, there is no need to add a swelling agent.

コポリイミド及び/又はコポリアミドイミド分離膜の厚
さは約/〜300μ、より典型的には20μ〜/θOμ
の全体的厚さが好ましい。
The thickness of the copolyimide and/or copolyamide-imide separator membrane is about /~300μ, more typically 20μ~/θOμ
An overall thickness of is preferred.

本発明で気体とは、物質の種類に制限はなく、例えば、
酸素、窒素、水素、ヘリウム、ネオン、アルゴン、クリ
プトン、キセノン、ラドン、フッ素、塩素、臭素、−酸
化炭素、二酸化炭素、−酸化窒素、二酸化窒素、アンモ
ニア、二酸化イオウ、硫化水素、塩化水素、パラフィン
系炭化水素、オレフィン系炭化水素及びこれらの混合物
等が挙げられる。
In the present invention, the term "gas" refers to any type of substance, including, for example,
Oxygen, nitrogen, hydrogen, helium, neon, argon, krypton, xenon, radon, fluorine, chlorine, bromine, -carbon oxide, carbon dioxide, -nitrogen oxide, nitrogen dioxide, ammonia, sulfur dioxide, hydrogen sulfide, hydrogen chloride, paraffin Examples include hydrocarbons, olefin hydrocarbons, and mixtures thereof.

パラフィン系炭化水素は、飽和鎖式炭化水素、アルカン
またはメタン系炭化水素とも呼ばれ、炭素数が/のメタ
ン、コのエタン、3のプロパン、≠のブタン、jのペン
タン、gのヘキサン、2のへブタン、とのオクタン等が
好ましく挙げられる。炭素数かび以上では直鎖のノルマ
ル炭化水素のほかに側鎖をもつ異性体も含寸れる。
Paraffinic hydrocarbons are also called saturated chain hydrocarbons, alkanes, or methane hydrocarbons, and include methane with carbon numbers /, ethane with carbon atoms, propane with 3 carbon atoms, butane with ≠, pentane with j, hexane with g, and 2 carbon atoms. Preferred examples include hebutane, octane, and the like. In addition to straight-chain normal hydrocarbons, it also includes isomers with side chains when the number of carbon atoms is greater than 1.

オレフィン系炭化水素は、二重結合をひとつ有し、不飽
和鎖式炭化水素、アルケンまたはエチレン系炭化水素と
も呼ばれ、炭素数がコのエチレン、3のプロピレン、弘
のブチレン、jのアミレン等が好ましく挙げられる。
Olefinic hydrocarbons have one double bond and are also called unsaturated chain hydrocarbons, alkenes or ethylene hydrocarbons, and include ethylene with a carbon number of 1, propylene with a carbon number of 3, propylene with a carbon number of 3, amylene with a carbon number of J, etc. are preferred.

本発明による水蒸気の分離は、上記膜を使用し、気体分
離膜を用いて分離する常法によりおこなう。
Separation of water vapor according to the present invention is carried out using the above-mentioned membrane by a conventional method of separation using a gas separation membrane.

〔実施例〕〔Example〕

以下に実施例を挙げて本発明をさらに詳しく説明する。 The present invention will be explained in more detail with reference to Examples below.

製造参考例/ 米国特許第3,707,1Ajr号の実施例弘に従べら
れている手順を使用し3.3’、≠、≠!−ベンゾフェ
ノンテトラカルボン酸無水物とrθモル係のトリレンジ
イソシアネート(2,弘−異性体約♂0モルチと22g
−異性体約一〇モルチの混合物)及び2θモル係の弘、
り′−ジフェニルメタンジイソシアネートを含む混合物
より共重合ポリイミドを重合した。
Manufacturing reference example/Using the procedure followed in the example of U.S. Pat. No. 3,707,1Ajr, 3.3', ≠, ≠! - Benzophenone tetracarboxylic anhydride and rθ molar ratio of tolylene diisocyanate (2, Hiroshi - isomer approximately ♂ 0 mol and 22 g
- a mixture of about 10 mol of isomers) and 2θ mol,
A copolymerized polyimide was polymerized from a mixture containing di-diphenylmethane diisocyanate.

重合溶媒はN、N’−ジメチルホルムアミドを使用し、
樹脂物濃度は、27重量%であった。このものを濃縮器
にかけて一25重量%のコポリイミド溶液を得た。
The polymerization solvent used was N,N'-dimethylformamide,
The resin concentration was 27% by weight. This was passed through a concentrator to obtain a 25% by weight copolyimide solution.

とのコポリイミドは30℃において対数粘度(η1nh
)(ジメチルホルムアミド中θ、j%)θ、乙di/l
を崩していた。
copolyimide has a logarithmic viscosity (η1nh
) (θ in dimethylformamide, j%) θ, di/l
was breaking down.

製造参考例コ 予備乾燥した101の反応器にに/9.d’、2f(3
,20モル)のトリメリット酸無水物及び/37!、p
ot(θ、roモル)のイソフタル酸を装人した。この
反応器は温度計、凝縮器、攪拌機及び窒素入口を備えて
いた。
Production reference example /9. d', 2f(3
, 20 mol) of trimellitic anhydride and /37! , p
ot(θ, ro moles) of isophthalic acid was charged. The reactor was equipped with a thermometer, condenser, stirrer and nitrogen inlet.

stの乾燥したびん中に100θ、9ごf(≠、θモル
)のび、弘′−メチレンビスフェニルイソシアネート(
以下MDIと略称)をはかり取り、次いで4LJ弘−〇
N−メチルピロリドン(以下NMPと略称)をはかり取
ってMDIを溶解した。このMDI溶液を反応器に加え
、次いでMDIをはかり取ったびんをすすぐために31
sOstl!のNMPを加えた。
100 θ, 9 mol (≠, θ mol) of Hiromi'-methylene bisphenyl isocyanate (
MDI (hereinafter abbreviated as MDI) was weighed out, and then 4LJ Hiro-〇N-methylpyrrolidone (hereinafter abbreviated as NMP) was weighed out to dissolve MDI. Add this MDI solution to the reactor, then weigh out the MDI and rinse the bottle.
sOstl! of NMP was added.

l s rpmの攪拌速度および窒素雰囲気の下でこの
溶液を3時間弘θ分にわたって53℃から/70′C−
1で加熱しさらに/時間SS分/6り℃〜/2/℃に加
熱した。このようにして繰返し単位の約どθモルチが の構造を有し繰返し単位の約コθモルチがの構造を有す
るランダムコポリアミドイミドのNMPの、2f重量%
溶液が得られた。
The solution was stirred from 53°C to 70'C for 3 hours at a stirring rate of 1 s rpm and under a nitrogen atmosphere.
The mixture was heated at 1° C. and further heated to 6° C. to 2° C./hour SS min/6° C. In this way, 2f% by weight of NMP, a random copolyamide-imide having a structure of approximately 0 θmolti of the repeating unit and a structure of about 0 molti of the repeating unit.
A solution was obtained.

このコポリアミドイミドのJ(7’Cにおける対数粘W
(ηtnh)(N−メチルピロリドン中、o、s%)は
θ、ごOj di/ Pであった。
J (logarithmic viscosity W at 7'C) of this copolyamideimide
(ηtnh) (in N-methylpyrrolidone, o, s%) was θ, Oj di/P.

この溶液をメタノール中に加え、ポリマーを析出させた
後、750℃で3時間乾燥し、コポリアミドイミド粉末
を得た。得られたコポリアミドイミド粉末をN、N’−
ジメチルホルムアミドにて溶解し、77重量%の溶液と
した。
This solution was added to methanol to precipitate a polymer, which was then dried at 750° C. for 3 hours to obtain a copolyamide-imide powder. The obtained copolyamideimide powder is N,N'-
It was dissolved in dimethylformamide to make a 77% by weight solution.

実施例/ 製造参考例/で得たコポリイミド溶液をN、N’−ジメ
チルホルムアミドで希釈し72重i%のコポリイミド溶
液を調整し、78mのミリポアフィルタ−により濾過、
精製した。このドープ液を室温でガラス板上に流延し、
ドクターナイフで均一な厚さく/≠mit、  / m
11=2 jμm)の薄膜を形成し、直ちにコθ℃の水
の中にガラス板ごと浸漬した。10分間放置後、剥離し
た膜を金属棒に固定しSO℃の水の中で30分間放置し
た。さらに室温で約/時間放置後コθO℃、20分間加
熱、乾燥し、溶媒を除去して約/弘θμの厚さのコポリ
イミド膜を製造した。
The copolyimide solution obtained in Example/Manufacturing Reference Example/ was diluted with N,N'-dimethylformamide to prepare a 72w/i% copolyimide solution, and filtered with a 78m Millipore filter.
Purified. This dope solution was cast on a glass plate at room temperature,
Make it evenly thick with a doctor knife /≠mit, / m
A thin film of 11=2 j μm) was formed, and the glass plate was immediately immersed in water at θ°C. After being left for 10 minutes, the peeled film was fixed on a metal rod and left in SO°C water for 30 minutes. After being left at room temperature for about 1 hour, it was heated and dried at 00C for 20 minutes to remove the solvent, producing a copolyimide film with a thickness of about 000C.

とのコポリイミド膜を用いてガス透過性能を測定したと
ころ、表/の結果を得た。
When gas permeation performance was measured using a copolyimide membrane with

表7 実施例コ 製造参考例コで得たコポリアミドイミド溶液を用いたこ
と以外は実施例/と同様にしてコポリアミドイミド膜を
製造し、ガス透過性能を測定したところ、水蒸気の透過
速度は/、≦×/θ−3cdi (S T P )/1
−sec ・craHy、窒素の透過速度はム?×/θ
 cd (S T P )/crIl@sea @cm
Hyであり、水蒸気の透過速度と窒素の透過速度の比は
、23jであった。
Table 7 Example C Manufacture Reference Example A copolyamide-imide membrane was manufactured in the same manner as in Example C, except that the copolyamide-imide solution obtained in Reference Example C was used, and the gas permeation performance was measured. /, ≦×/θ−3cdi (S T P )/1
-sec ・craHy, what is the nitrogen permeation rate? ×/θ
cd (S T P )/crIl@sea @cm
Hy, and the ratio of water vapor permeation rate to nitrogen permeation rate was 23j.

実施例3 製造参考例/に従ってコポリイミド溶液を製造した。中
空糸製造用ノズルから上記コポリイミド溶液を一定流量
で押出し、同時に芯液として水とジメチルホルムアミド
をjθ/jθ(重量比)の割合で混合した液を一定流量
で押出した。
Example 3 A copolyimide solution was produced according to Production Reference Example. The above copolyimide solution was extruded at a constant flow rate from a hollow fiber manufacturing nozzle, and at the same time, a liquid mixture of water and dimethylformamide at a ratio of jθ/jθ (weight ratio) was extruded as a core liquid at a constant flow rate.

形成された中空糸状体を/、!σのエアギャップをとっ
て、水から力る凝固浴中へ導き70秒間浸漬したのち一
定速度1m1分で巻き取った。
The hollow filament formed/! After an air gap of σ was taken, the material was introduced from the water into a coagulating bath, immersed for 70 seconds, and then wound up at a constant speed of 1 ml and 1 minute.

このあと水中に5分間浸漬し、−昼夜風乾した。After this, it was immersed in water for 5 minutes and air-dried day and night.

さらにこのあと、中空糸の両端を金属棒に固定し、3θ
θ℃で30分間熱処理を行った。この中空糸を用いて水
蒸気を含有するメタンの透過テストを行った。高圧側s
 Oky / 7 G、低圧側は大気圧開放、温度は7
0℃。高圧側、低圧側、それぞれのガス組成は、ガスク
ロマトグラフにより測定した。
Furthermore, after this, both ends of the hollow fiber were fixed to metal rods, and the 3θ
Heat treatment was performed at θ°C for 30 minutes. A permeation test of methane containing water vapor was conducted using this hollow fiber. High pressure side
Oky / 7 G, low pressure side is open to atmospheric pressure, temperature is 7
0℃. The gas compositions on the high-pressure side and the low-pressure side were measured using a gas chromatograph.

透過テストの結果は、水蒸気透過温g、s、s×/θ 
crIi(8TP ) /crl−sec−cInHf
l メタン透過速度り、?×/θ−’crA(STP)
/’crl・sea @6HHyであり、水蒸気透過速
度とメタンの透過速度の比はstであった。
The results of the permeation test are the water vapor permeation temperature g, s, s×/θ
crIi(8TP)/crl-sec-cInHf
l Methane permeation rate? ×/θ−'crA(STP)
/'crl·sea @6HHy, and the ratio of the water vapor permeation rate to the methane permeation rate was st.

〔発明の効果〕〔Effect of the invention〕

本願発明は、例えば石油随伴ガス中の水蒸気の除去等、
工業分野への応用が広く期待されるものである。
The present invention is applicable to, for example, removing water vapor from petroleum-associated gas, etc.
It is expected that it will be widely applied in the industrial field.

Claims (2)

【特許請求の範囲】[Claims] (1)一般式( I ) ▲数式、化学式、表等があります▼・・・・・・( I
) の繰り返し単位で表わされる構造を有するコポリイミド
であって、上記繰り返し単位の 10〜30モル%はRが▲数式、化学式、表等がありま
す▼を 表わすものであり、上記繰り返し単位の90〜70モル
%はRが、▲数式、化学式、表等があります▼及び/又
は▲数式、化学式、表等があります▼を表わすものであ
るコポリイミド、及び/又は、繰り返し単位の90〜7
0モル%が式(II)▲数式、化学式、表等があります▼
・・・(II) で表わされる構造を有し、かつ繰り返し単位の10〜3
0モル%が式(III) ▲数式、化学式、表等があります▼・・・(III) で表わされる構造を有するコポリアミドイミドを主たる
構成材料とする非対称構造の膜を用いて、気体から水蒸
気を分離することを特徴とする水蒸気の分離方法。
(1) General formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(I
) is a copolyimide having a structure represented by repeating units, in which R represents ▲numerical formula, chemical formula, table, etc.▼ in 10 to 30 mol% of the above repeating units, and 90 to 30 mol% of the above repeating units 70 mol% is a copolyimide in which R represents ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and/or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and/or 90 to 7 repeating units
0 mol% is formula (II) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
...(II) has a structure represented by: and 10 to 3 repeating units
0 mol% is the formula (III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼... (III) Using an asymmetric membrane whose main constituent material is copolyamideimide, which has the structure represented by A water vapor separation method characterized by separating.
(2)気体の主たる成分が空気、パラフィン系炭化水素
、オレフィン系炭化水素又はこれらの混合物であること
を特徴とする特許請求の範囲第1項に記載の分離方法。
(2) The separation method according to claim 1, wherein the main component of the gas is air, paraffinic hydrocarbons, olefinic hydrocarbons, or a mixture thereof.
JP61236458A 1986-10-04 1986-10-04 Separation of steam Pending JPS6391122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61236458A JPS6391122A (en) 1986-10-04 1986-10-04 Separation of steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61236458A JPS6391122A (en) 1986-10-04 1986-10-04 Separation of steam

Publications (1)

Publication Number Publication Date
JPS6391122A true JPS6391122A (en) 1988-04-21

Family

ID=17001043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61236458A Pending JPS6391122A (en) 1986-10-04 1986-10-04 Separation of steam

Country Status (1)

Country Link
JP (1) JPS6391122A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299114A (en) * 1988-10-06 1990-04-11 Mitsubishi Kasei Corp Dehumidifying method
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
US5055116A (en) * 1989-05-22 1991-10-08 Hoechst Celanese Corp. Gas separation membranes comprising miscible blends of polyimide polymers
US5248319A (en) * 1992-09-02 1993-09-28 E. I. Du Pont De Nemours And Company Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
JP2005270846A (en) * 2004-03-25 2005-10-06 Osaka Prefecture Process for producing porous polyimide film
US7747386B2 (en) 2005-08-30 2010-06-29 Hitachi Cable, Ltd. Collision detection sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022902A (en) * 1983-07-15 1985-02-05 Mitsubishi Chem Ind Ltd Separation membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952319A (en) * 1986-12-15 1990-08-28 Mitsubishi Kasei Corporation Process for separating liquid mixture
JPH0299114A (en) * 1988-10-06 1990-04-11 Mitsubishi Kasei Corp Dehumidifying method
US5055116A (en) * 1989-05-22 1991-10-08 Hoechst Celanese Corp. Gas separation membranes comprising miscible blends of polyimide polymers
US5248319A (en) * 1992-09-02 1993-09-28 E. I. Du Pont De Nemours And Company Gas separation membranes made from blends of aromatic polyamide, polymide or polyamide-imide polymers
US5266100A (en) * 1992-09-02 1993-11-30 E. I. Du Pont De Nemours And Company Alkyl substituted polyimide, polyamide and polyamide-imide gas separation membranes
JP2005270846A (en) * 2004-03-25 2005-10-06 Osaka Prefecture Process for producing porous polyimide film
US7747386B2 (en) 2005-08-30 2010-06-29 Hitachi Cable, Ltd. Collision detection sensor

Similar Documents

Publication Publication Date Title
US4385084A (en) Process for preparing a selective permeable membrane
EP0422886B1 (en) Production of aromatic polyimide membranes
JP3581937B2 (en) Highly selective asymmetric thin film for gas separation and method for producing the same
JPH04222832A (en) Polyimide and gas separation material made by using it
JPH06269648A (en) Polyimide gas separation membrane for carbon dioxide thickening
JPH03267130A (en) Gas separation hollow-fiber membrane and its production
JPH03106426A (en) Semipermeable diaphragm formed of polyimide resin and method of separating one component from gas mixture
JPH0568859A (en) Gas separation hollow-fiber membrane and its production
JP2016503448A (en) Blend polymer membrane for gas separation containing fluorinated ethylene-propylene polymer
JPS6035091A (en) Separation of dewaxable solvent from dewaxing oil with asymmetric polyimide film in lubricating oil dewaxing process
JPH06254367A (en) Gas separating membrane of asymmetrical hollow yarn made of polyimide
US5049169A (en) Polysulfone separation membrane
JPS6391122A (en) Separation of steam
JP3020120B2 (en) Method for separating hydrogen from gas mixtures using a semipermeable membrane based on polycarbonate derived from tetrahalobisphenol
JPH0685858B2 (en) Method for manufacturing separation membrane
JPS6274411A (en) Production process for separating membrane
EP0131559B1 (en) Amorphous aryl substituted polyarylene oxide membranes
JPS60132605A (en) Preparation of asymmetric membrane
JPS6390533A (en) Separation of hydrogen
JPS63209730A (en) Process for separating steam
JPH0685860B2 (en) Separation membrane manufacturing method
JP5136667B2 (en) Asymmetric hollow fiber gas separation membrane and gas separation method
JPH0685861B2 (en) Dope liquid for separation membrane production
WO1994004253A2 (en) Polyazole polymer-based membranes for fluid separation
JPS588504A (en) Gas separation membrane comprising polysulfone hollow fiber