JPS6390765A - Squid immunoassay - Google Patents

Squid immunoassay

Info

Publication number
JPS6390765A
JPS6390765A JP23577486A JP23577486A JPS6390765A JP S6390765 A JPS6390765 A JP S6390765A JP 23577486 A JP23577486 A JP 23577486A JP 23577486 A JP23577486 A JP 23577486A JP S6390765 A JPS6390765 A JP S6390765A
Authority
JP
Japan
Prior art keywords
antigen
antibody
magnetic
specimen
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23577486A
Other languages
Japanese (ja)
Inventor
Koichi Fujiwara
幸一 藤原
Juichi Noda
野田 壽一
Hiromichi Mizutani
水谷 裕迪
Hiroko Mizutani
弘子 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP23577486A priority Critical patent/JPS6390765A/en
Publication of JPS6390765A publication Critical patent/JPS6390765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To obtain a novel immunoassay having excellent detection sensitivity by using ultrafine magnetic particles as a label for an antigen-antibody reaction and separating and removing the unreacted ultrafine magnetic particles in a magnetic field, then measuring the susceptibility of the antigen or antibody with a superconducting quantum interference device (SQUID) having extremely high sensitivity. CONSTITUTION:Ultrafine magnetic particles used as a the label are attached to a specific or unknown antigen or antibody to form a magnetic material labeled body. An antibody or antigen as specimen is then brought into the antigen-antibody reaction with the known antigen or antibody made into the solid phase; or the antibody or antigen as the specimen is directly made into the solid phase to induce the antigen-antibody reaction with the magnetic material labeled body ad thereafter, the unreacted magnetic material labeled body mentioned above is removed. The magnetic material labeled body remains without being removed from the specimen if the specimen is the antigen or antibody to induce the specific antigen-antibody reaction with the magnetic material labeled body in this case. The identification and quantitative determination of the specimen are thus permitted by knowing the presence or absence and the existing quantity of the magnetic materials labeled body in the specimen and the detection of about the same level - order of pg - as in of RIA is permitted by using SQUID in detecting susceptibility of the specimen.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は抗原抗体反応を利用した免疫測定法のうち、超
高感度の測定法に属するものであり、微量の検体から特
定の抗体又は抗原を検出可能な免疫測定法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention belongs to an ultra-sensitive measurement method among immunoassay methods that utilize antigen-antibody reactions, and is a method for detecting specific antibodies or antigens from a minute amount of sample. The present invention relates to an immunoassay method capable of detecting.

〔従来の技術〕[Conventional technology]

エイズ、成人T細胞白血病等の新型ウィルス性疾病、並
びに、各種ガンの早期検査法として、抗原抗体反応を利
用した免疫測定法の開発が、現在、世界的規模で進めら
れている。これは、抗原であるビールス等が生体に侵入
した場合に形成される抗体が、前記抗原と特異的に反応
する性質(抗原抗体反応)を利用して、抗体又は、抗原
そのものを検出しようとするものである。
The development of immunoassay methods that utilize antigen-antibody reactions is currently underway on a worldwide scale as an early detection method for new viral diseases such as AIDS and adult T-cell leukemia, as well as various cancers. This is an attempt to detect antibodies or the antigen itself by utilizing the property that antibodies formed when an antigen such as a virus invades a living body react specifically with the antigen (antigen-antibody reaction). It is something.

このための、it免疫測定法として、従来からラジオイ
ムノアッセイ (RIA)、酵素イムノアッセイ、蛍光
イムノアッセイ等が実用化されてきた。これらは、アイ
ソトープ、酵素、蛍光体で標識された抗原又は抗体を用
い、これと特異的に反応する抗体又は、抗原のを無を検
出するものである。このうちRIAは、抗原抗体反応に
寄与した検体量を、標識化されたアイソトープの放射線
量を測定することLこより定量するものであり、現在の
ところ、ピコグラム程度の超微量測定が唯一可能な方法
である。しかし、RIAは放射性物質を取り扱わなけれ
ばならないため、特殊設備が必要であり、半減期や廃棄
物処理等の点から、使用時期、場所等の制約があった。
For this purpose, radioimmunoassay (RIA), enzyme immunoassay, fluorescence immunoassay, etc. have been put to practical use as IT immunoassay methods. These techniques use antigens or antibodies labeled with isotopes, enzymes, or fluorophores to detect antibodies that specifically react with the antigens or the absence of antigens. Of these, RIA quantifies the amount of specimen that contributed to the antigen-antibody reaction by measuring the radiation dose of a labeled isotope, and is currently the only method that can measure ultra-trace amounts on the order of picograms. It is. However, since RIA must handle radioactive materials, special equipment is required, and there are restrictions on the timing and location of use due to half-life, waste disposal, etc.

又、酵素、蛍光体を用いる方法では、発色や、発光を用
いて抗原抗体反応の有無を確認するものであるため、測
定が半定量的であり、検出限界もナノグラム程度であっ
た。従って、RIAと同程度の検出感度を存し使用上の
制限のない免疫測定法が求められていた。
Furthermore, in methods using enzymes and fluorophores, the presence or absence of antigen-antibody reactions is confirmed using color development or luminescence, so the measurement is semi-quantitative and the detection limit is on the order of nanograms. Therefore, there has been a need for an immunoassay method that has a detection sensitivity comparable to that of RIA and has no restrictions on use.

〔発明の目的及び解決しようとする問題点〕本発明は、
半減期や廃棄物処理等の種々の制約を解決し、RIAと
同程度のピコグラムの検出感度を有する新しい免疫測定
法を実現しようとするものである。
[Objective of the invention and problems to be solved] The present invention has the following features:
The aim is to solve various constraints such as half-life and waste disposal, and to realize a new immunoassay method with picogram detection sensitivity comparable to that of RIA.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、磁性超微粒子を標識として用い、特定の、又
は未知の抗原又は抗体にこの標識を付けて磁性体標識体
とする。次に、検体としての抗体又は抗原を既知の固相
化された抗原又は抗体と抗原抗体反応させ、又は検体と
しての抗体又は抗原を直接固相化し、前記磁性体標識体
と抗原抗体反応を起こさせる。その後未反応の前記磁性
体標識体を除去する。この場合に前記検体が、前記磁性
体標識体と特定の抗原抗体反応を起こす抗原又は抗体で
ある場合には、磁性体標識体は検体より除去されず残存
する。それら以外の場合には、検体中に磁性体標識体は
存在しない。よって検体中の磁性体標識体の有無及び、
存在量を知ることにより検体の特定及び定量が可能とな
る。磁性体標識体の有無及び存在量は、超伝導磁束量子
干渉計(SQUID)により検体の磁化を測定すること
により知ることができる。又、検体と特異的に反応した
磁性体標識体にγ−フェライト等の磁性超微粒子をつけ
る磁気増感処理を施した後に、5QUTDにより磁化測
定を行った場合には約5倍、又検体の磁化測定を、検体
を乾燥状態、液体窒素温度等の低温下で行えば約10倍
の検出感度向上がみられた。
The present invention uses magnetic ultrafine particles as a label and attaches the label to a specific or unknown antigen or antibody to form a magnetic label. Next, the antibody or antigen as a specimen is subjected to an antigen-antibody reaction with a known immobilized antigen or antibody, or the antibody or antigen as a specimen is directly immobilized to cause an antigen-antibody reaction with the magnetic label. let Thereafter, the unreacted magnetic label is removed. In this case, if the specimen is an antigen or antibody that causes a specific antigen-antibody reaction with the magnetic label, the magnetic label remains without being removed from the specimen. In other cases, no magnetic label is present in the sample. Therefore, the presence or absence of a magnetic label in the sample and
Knowing the amount present makes it possible to identify and quantify the specimen. The presence or absence and amount of the magnetic label can be determined by measuring the magnetization of the specimen using a superconducting flux quantum interferometer (SQUID). In addition, when magnetization is measured using 5QUTD after applying magnetic sensitization treatment to attach magnetic ultrafine particles such as γ-ferrite to a magnetic label that specifically reacts with the sample, the magnetization of the sample is approximately 5 times larger. If the magnetization measurement was performed with the specimen in a dry state at a low temperature such as liquid nitrogen temperature, detection sensitivity was improved by about 10 times.

〔作用〕[Effect]

本発明は磁性超微粒子を抗原抗体反応の標識として用い
るために、未反応の磁性体標識体を磁場により検体から
分離除去することがでと、その結果未反応の磁性体標識
体の残留によるバックグランドの影響を完全に排除でき
る。また地球磁場の1010分の1の超高感度を持ち、
脳磁波、心磁波等の測定に用いられているSQUIDを
検体の磁化検出に使用したことによりRIAと同程度の
ピコグラムの検出が可能になった。本発明では、磁性超
微粒子を標識として用いているので使用時期や場所の制
限はない。
In order to use magnetic ultrafine particles as labels for antigen-antibody reactions, the present invention uses a magnetic field to separate and remove unreacted magnetic labels from the sample, resulting in a backlog due to residual unreacted magnetic labels. The influence of ground can be completely eliminated. It also has an ultra-high sensitivity of 1/1010 of the earth's magnetic field,
By using SQUID, which is used to measure electroencephalograms, magnetocardiac waves, etc., to detect the magnetization of a specimen, it has become possible to detect picograms on the same level as RIA. In the present invention, since magnetic ultrafine particles are used as labels, there are no restrictions on when or where they can be used.

本発明で、検体と磁性体標識体を反応させる処理には、
固相化された既知の抗原又は抗体と、検体としての抗体
又は抗原を反応させその後、磁性体標識体と反応させる
間接法と、検体としての抗体又は抗原を直接固相化し、
磁性体標識体と反応させる直接法がある。また、磁性体
標識体を反応させる方法としては、検体と磁性体標識体
を積極的に反応させる方法と、反応を阻害する方法(競
合阻害反応検出法)とがある。
In the present invention, the process of reacting the specimen with the magnetically labeled body includes:
An indirect method in which a known immobilized antigen or antibody is reacted with an antibody or antigen as a specimen and then reacted with a magnetic label, and an indirect method in which an antibody or antigen as a specimen is directly immobilized,
There is a direct method that involves reacting with a magnetic label. Furthermore, methods for reacting magnetically labeled substances include a method in which a specimen and a magnetically labeled substance are actively reacted, and a method in which the reaction is inhibited (competitive inhibition reaction detection method).

以下に実施例を示す。Examples are shown below.

〔実施例〕〔Example〕

爽旅■工 第1図は本発明の第1の実施例(間接法)を説明する図
であって、1は寒天より成る支持体、2はウィルス抗原
、3はウィルス抗体、4は磁性体標識ウィルス抗体、5
は磁石である。本実施例では、(a)〜(d)は検体の
調整工程を、(6)〜(f)は比較対照試料の調整工程
を示している。(a)は既知のウィルス抗体3を固相化
する工程、(b)は患者のウィルス抗原2とウィルス抗
体3を抗原抗体反応させる工程、(c)は標識となる平
均粒径50nmのマグネタイト単磁区粒子の表面にウィ
ルス抗体を結合させて得られた、磁性体標識ウィルス抗
体4をウィルス抗原2に反応させる工程、(d)は前記
工程で未反応の磁性体標識ウィルス抗体4を磁石により
捕集する工程、(e)は比較対照試料に磁性体標識ウィ
ルス抗体4を反応させる工程、(f)は未反応の磁性体
標識ウィルス抗体4を磁石により捕集する工程である。
Figure 1 is a diagram explaining the first embodiment (indirect method) of the present invention, in which 1 is a support made of agar, 2 is a virus antigen, 3 is a virus antibody, and 4 is a magnetic material. Labeled virus antibody, 5
is a magnet. In this example, (a) to (d) show the preparation steps of the specimen, and (6) to (f) show the preparation steps of the comparative sample. (a) is a step of immobilizing a known virus antibody 3, (b) is a step of causing an antigen-antibody reaction between a patient's virus antigen 2 and virus antibody 3, and (c) is a step of making a magnetite monomer with an average particle size of 50 nm as a label. (d) is a step of reacting the magnetically labeled virus antibody 4 obtained by binding the virus antibody to the surface of the magnetic domain particles with the virus antigen 2; (d) is the step of capturing the unreacted magnetically labeled virus antibody 4 in the above step with a magnet; (e) is a step of reacting the comparative control sample with the magnetically labeled virus antibody 4, and (f) is a step of collecting the unreacted magnetically labeled virus antibody 4 with a magnet.

第2図はSQUIDによる測定工程を示す。FIG. 2 shows the measurement process using SQUID.

10は第1図の(d)又は(f)の工程で得られた検体
、又は比較対照試料、6は電磁石、7はピックアンプコ
イル、8はSQUID素子、9は磁化率測定用電子回路
である。検体又は比較対照試料は電磁石6の中にセット
し、ピンクアップコイル7の中を上下に駆動した。この
際、極微弱な検体又は比較対照試料の磁化により誘起さ
れた起電流をSQUID素子8並びに磁化率測定用電子
回路9により測定した。本測定では、ピコグラム程度の
検出感度が得られた。
10 is the sample obtained in the step (d) or (f) of FIG. 1 or a comparative sample, 6 is an electromagnet, 7 is a pick amplifier coil, 8 is a SQUID element, and 9 is an electronic circuit for measuring magnetic susceptibility. be. A specimen or comparative sample was set in an electromagnet 6 and driven up and down in a pink-up coil 7. At this time, the electromotive current induced by the extremely weak magnetization of the specimen or comparative sample was measured using the SQUID element 8 and the electronic circuit 9 for measuring magnetic susceptibility. In this measurement, a detection sensitivity on the order of picograms was obtained.

本実施例では、検体の磁化測定は室温で実施したが、さ
らに感度を向上するためには、検体を乾燥させ、例えば
液体窒素温度で測定することが望ましい。水分を除去す
ることは水の磁化によるバックグランドの影響を排除す
るためであり、冷却は、常温で超常磁性の磁性体超微粒
子を強磁性体に磁気変態させることにより、検出感度を
向上させるためである。第3図はかかる処理を実施した
例であって、12はガラスセル、13は0.22ミクロ
ンのろ紙であり、工程(h)〜(j)は検体の、工程(
1)〜(n)は比較対照試料の調整工程を示している。
In this example, the magnetization measurement of the specimen was performed at room temperature, but in order to further improve the sensitivity, it is desirable to dry the specimen and perform the measurement at, for example, liquid nitrogen temperature. The purpose of removing water is to eliminate the background influence caused by the magnetization of water, and the purpose of cooling is to improve detection sensitivity by magnetically transforming ultrafine magnetic particles, which are superparamagnetic at room temperature, into ferromagnetism. It is. FIG. 3 shows an example of such a treatment, in which 12 is a glass cell, 13 is a 0.22 micron filter paper, and steps (h) to (j) are for the sample.
1) to (n) show the preparation steps for comparative samples.

(h)及び(りはそれぞれ、第1図で示した(d)及び
(f)の工程の後に得られたものである。工程(i)及
び(m)は検体及び比較対照試料の支持体であるゼラチ
ンを溶解し、水溶液中に分散させる工程であり、工程(
j)及び(n)はろ祇13により検体及び比較対照試料
をろ過する工程である。ろ過後、検体及び比較対照試料
を真空乾燥させて磁化をSQUIDで測定したところ、
第1図で示した工程で得られたものよりも検出感度が約
1桁向上した。
(h) and (ri) are obtained after the steps (d) and (f) shown in Figure 1, respectively.Steps (i) and (m) are the supports for the specimen and comparative sample. This is a process of dissolving gelatin and dispersing it in an aqueous solution, and the process (
j) and (n) are steps of filtering the specimen and comparative sample using filter 13. After filtration, the specimen and comparative sample were vacuum dried and the magnetization was measured with SQUID.
The detection sensitivity was improved by about one order of magnitude compared to that obtained by the process shown in FIG.

本実施例では、磁性体標識ウィルス抗体4として、ウィ
ルス抗原2と特異的に反応する抗体にマグネタイト超微
粒子を結合させたものを使用した。磁性超微粒子として
マグネタイトを選んだ理由はマグネタイトがウィルスや
特異抗体との親和性が良くウィルス等を標識するのに適
しているためである。また、外部磁場による分離、除去
を効率的かつ効果的に行うためには、該マグネタイトは
単磁区粒子構造が好ましく、粒子径は50nm程度が適
当であった。なお、磁性超微粒子はマグネタイトに限ら
れるものではなく、T−フェライト等の化合物磁性体、
鉄、コバルト等の金属磁性体でも勿論よい。
In this example, as the magnetically labeled virus antibody 4, an antibody that specifically reacts with the virus antigen 2 bound to ultrafine magnetite particles was used. The reason why magnetite was chosen as the magnetic ultrafine particle is that magnetite has good affinity with viruses and specific antibodies, and is suitable for labeling viruses and the like. Further, in order to efficiently and effectively perform separation and removal using an external magnetic field, the magnetite preferably has a single magnetic domain particle structure, and the particle diameter is suitably about 50 nm. The magnetic ultrafine particles are not limited to magnetite, but include compound magnetic materials such as T-ferrite,
Of course, metal magnetic materials such as iron and cobalt may also be used.

ス新l」l 第4図は本発明の第2の実施例(間接法)を説明する図
であって、lはゼラチンより成る支持体、2はウィルス
抗原、3はウィルス抗体、4゛は磁性体標識抗免疫グロ
ブリン、5は磁石である。本実施例では、(a)〜(d
)は検体の調整工程を、(e)〜(f)は比較対照試料
の調整工程を示している。(a)は既知のウィルス抗原
2を固相化する工程、(b)は患者のウィルス抗体3と
ウィルス抗原2を抗原抗体反応させる工程、(c)は標
識となる平均粒径5Qnmのマグネタイト単磁区粒子の
表面に抗免疫グロブリンを結合させて得られた磁性体標
識抗免疫グロブリン4゛をウィルス抗体3に反応させる
工程、(d)は前記工程で未反応の磁性体標識抗免疫グ
ロブリン4″を磁石により捕集する工程、(e)は比較
対照試料に磁性体標識抗免疫グロブリン4゛を反応させ
る工程、(f)は未反応の磁性体標識抗免疫グロブリン
4゛を磁石により捕集する工程である。
Figure 4 is a diagram explaining the second embodiment (indirect method) of the present invention, where l is a support made of gelatin, 2 is a virus antigen, 3 is a virus antibody, and 4 is a Magnetic labeled anti-immunoglobulin, 5 is a magnet. In this example, (a) to (d)
) shows the preparation process of the specimen, and (e) to (f) show the preparation process of the comparative sample. (a) is a step of immobilizing a known virus antigen 2, (b) is a step of causing an antigen-antibody reaction between the patient's virus antibody 3 and virus antigen 2, and (c) is a step of making a magnetite monomer with an average particle size of 5 Qnm as a label. Step (d) of reacting the magnetically labeled anti-immunoglobulin 4'' obtained by binding anti-immunoglobulin to the surface of the magnetic domain particles with the virus antibody 3; (d) is the magnetically labeled anti-immunoglobulin 4'' that has not reacted in the above step; (e) is a step of reacting the comparative sample with magnetically labeled anti-immunoglobulin 4'; (f) is collecting unreacted magnetically labeled anti-immunoglobulin 4' with a magnet. It is a process.

本実施例においても、前記実施例1のSQUIDによる
測定の結果、実施例1と同程度のピコグラムのウィルス
抗体の検出が可能であった。
In this example as well, as a result of the SQUID measurement in Example 1, it was possible to detect the same picogram of virus antibodies as in Example 1.

叉ま烈ユ 第5図は本発明の第3の実施例(直接法)を説明する図
であって、(a)〜(d)は検体の調整工程を示してい
る。1はゼラチンより成る支持体、4は鉄超徽粒子によ
り標識された磁性体標識ウィルス抗体、3゛はインフル
エンザウィルス、17は電磁石である。(a)は検体で
ある患者の血液中の未知のウィルス3゛を支持体1に固
相化する工程、(b)は既知の磁性体標識ウィルス抗体
4とウィルス3”を反応させる工程、(c)は過剰な磁
性体標識ウィルス抗体4を電磁石17により分離・除去
する工程である。
FIG. 5 is a diagram for explaining the third embodiment (direct method) of the present invention, and (a) to (d) show the sample preparation process. 1 is a support made of gelatin, 4 is a magnetically labeled virus antibody labeled with iron superhydrogen particles, 3 is an influenza virus, and 17 is an electromagnet. (a) is a step of immobilizing an unknown virus 3'' in the blood of a patient as a specimen on a support 1; (b) is a step of reacting a known magnetically labeled virus antibody 4 with the virus 3''; c) is a step in which excess magnetically labeled virus antibody 4 is separated and removed by electromagnet 17.

種々の型の既知のインフルエンザウィルス抗体に標識し
た磁性体標識ウィルス抗体4を用意し、これと患者から
採取した未知のインフルエンザウィルス3”とを抗原抗
体反応させ、前記実施例工のSQUIDによる磁化測定
を行うことにより、インフルエンザウィルスの特定が可
能となる。本方法による測定法は、検出感度が高いため
に従来の酵素や蛍光体を用いる方法に比較して、ウィル
ス感染初期の段階でインフルエンザウィルスの特定を行
うことが出来た。
Magnetically labeled virus antibodies 4 labeled with various types of known influenza virus antibodies were prepared, and an antigen-antibody reaction was performed between this and an unknown influenza virus 3'' collected from a patient, and the magnetization was measured using the SQUID of the above-mentioned example. By performing this method, it becomes possible to identify the influenza virus.The measurement method using this method has a high detection sensitivity, so compared to the conventional methods using enzymes and fluorophores, it is possible to identify the influenza virus at an early stage of virus infection. I was able to identify it.

尖施炭土 第6図は本発明の第4の実施例を説明する図であり、R
IA法の直接法に相当するものである。(a)はポリカ
ーボネイトをコートしたウェルプレート11に、患者の
血液中の未知のウィルス抗体3をつけて、過剰なものは
10%子ウシ血清(Fe2)添加PBSで洗い、同時に
ウィルス抗体3のついていないウェルプレート11の表
面をFe2で被って非特異的な反応が起こらないように
処理する工程、(b)は磁性体標識ウィルス抗原16を
、ウェルプレートll上のウィルス抗体3と抗原抗体反
応を起こさせる工程である。(b)の工程後は、ウェル
プレート11を電磁石中に通した後、洗浄し、過剰な磁
性体標識ウィルス抗原16をウェルプレート11上から
完全に除去した上で、ウェルプレート11の磁化を前記
実施例1のSQUIDにより測定した。
Figure 6 is a diagram illustrating the fourth embodiment of the present invention.
This corresponds to the direct method of the IA method. In (a), an unknown virus antibody 3 in the patient's blood is applied to a polycarbonate-coated well plate 11, and the excess is washed with PBS supplemented with 10% calf serum (Fe2). (b) is a step of covering the surface of the well plate 11 with Fe2 to prevent non-specific reactions from occurring; (b) the magnetically labeled virus antigen 16 is coated with the virus antibody 3 on the well plate 11 to cause an antigen-antibody reaction. This is the process of making it happen. After the step (b), the well plate 11 is passed through an electromagnet and then washed to completely remove the excess magnetically labeled virus antigen 16 from the well plate 11, and then the magnetization of the well plate 11 is Measured by SQUID in Example 1.

以上の様な方法で、磁性超微粒子を標識した各種の既知
の抗原(血清)を未知のウィルス抗体3と反応させ、磁
化の測定からウィルス抗体3の特定と定量を行った。
In the manner described above, various known antigens (serum) labeled with magnetic ultrafine particles were reacted with the unknown virus antibody 3, and the virus antibody 3 was identified and quantified by measuring magnetization.

本実施例をRIA直接法と比較すると、RIA法では、
半減期の短い125Iのラベル血清を数多くもたなけれ
ばならないという欠点があるのに対して、本実施例では
、半減期が無いため、少数のラベル血清でよく、いつで
も免疫検査が実施できることがあげられる。
Comparing this example with the RIA direct method, the RIA method:
The drawback is that a large number of 125I labeled sera have a short half-life, but in this example, since there is no half-life, only a small number of labeled sera are needed, and an immunological test can be performed at any time. It will be done.

叉施闇1 第7図は本発明の第5の実施例であり、競合阻害反応検
出法の一例を説明する図であって、1はゼラチンより成
る支持体、2はウィルス抗原、3はウィルス抗体、16
は磁性体標識ウィルス抗原、5は磁石である。本実施例
では、(a)〜(d)は検体の調整工程を、(e)〜(
f)は比較対照試料の調整工程を示している。
Figure 7 is a fifth embodiment of the present invention, and is a diagram illustrating an example of a competitive inhibition reaction detection method, in which 1 is a support made of gelatin, 2 is a virus antigen, and 3 is a diagram for explaining a method for detecting a competitive inhibition reaction. antibody, 16
is a magnetically labeled virus antigen, and 5 is a magnet. In this example, (a) to (d) represent sample preparation steps, and (e) to (d) represent sample preparation steps.
f) shows the preparation process of the comparison sample.

(a)は既知のウィルス抗体3を固相化する工程、(b
)は固相化された抗体3と患者のウィルス抗原2とを抗
原抗体反応させる工程、(C)は別工程で磁性体により
標識した磁性体標識ウィルス抗原16を前記(b)の抗
原抗体反応後の検体と反応させる工程、(d)は前記工
程(C)で未反応の磁性体標識ウィルス抗原16を磁石
5により捕集する工程、(e)は比較対照試料に磁性体
標識ウィルス抗原16を反応させる工程、Cf”)は未
反応の磁性体標識ウィルス抗原16を磁石5により捕集
する工程である。
(a) is the step of immobilizing known virus antibody 3, (b)
) is the step of subjecting the immobilized antibody 3 and the patient's virus antigen 2 to an antigen-antibody reaction, and (C) is the step of subjecting the magnetically labeled virus antigen 16 labeled with a magnetic material in a separate step to the antigen-antibody reaction of (b) above. (d) is a step of collecting the unreacted magnetically labeled virus antigen 16 in step (C) using the magnet 5; (e) is a step in which the magnetically labeled virus antigen 16 is reacted with a comparison sample; The step of reacting Cf'') is a step of collecting unreacted magnetically labeled virus antigen 16 with magnet 5.

検体及び比較対照試料をこれらの工程により調整した後
、前記実施例1のSQUIDにより磁化を測定したとこ
ろ、本実施例の場合は、磁性体標識ウィルス抗原16は
検体中ではウィルス抗原2によりウィルス抗体3との反
応を阻害されるため未反応のまま磁石により除去される
After preparing the specimen and comparative sample through these steps, magnetization was measured using the SQUID of Example 1. In the case of this example, the magnetically labeled virus antigen 16 was converted into a virus antibody by the virus antigen 2 in the specimen. Since the reaction with 3 is inhibited, it is removed by a magnet while remaining unreacted.

しかし比較対照試料中にはウィルス抗原2は存在しない
ため磁性体標識ウィルス抗原16はウィルス抗体3と反
応し検出されることになる。
However, since the virus antigen 2 is not present in the comparison sample, the magnetically labeled virus antigen 16 reacts with the virus antibody 3 and is detected.

その結果、検体からは磁化は検出されず、比較対照試料
のみに磁化が検出された。但し、ウィルス感染初期の患
者からの検体ではウィルス抗原2の数が極めて少ないた
め、工程(b)では一部の固相化抗体のみがウィルス抗
原2と反応するため、検体からも磁化は検出されるがウ
ィルス抗原2の増加につれ検出量は減少する。この減少
量により、ウィルス抗原2の量を定量することができる
As a result, no magnetization was detected in the specimen, and magnetization was detected only in the comparison sample. However, since the number of virus antigen 2 is extremely small in samples from patients in the early stages of viral infection, only some immobilized antibodies react with virus antigen 2 in step (b), so magnetization is not detected in the sample. However, as the amount of virus antigen 2 increases, the amount detected decreases. The amount of virus antigen 2 can be quantified based on this amount of decrease.

叉血炭工 第8図は本発明の第6の実施例であり、競合阻害反応検
出法の他の一例を説明する図であって、1はゼラチンよ
り成る支持体、2はウィルス抗原、3はウィルス抗体、
4は磁性体標識ウィルス抗体、5は磁石である。本実施
例では、(a)〜(d)は検体の調整工程を、<e>〜
(f)は比較対照試料の調整工程を示している。
Fig. 8 is a sixth embodiment of the present invention and is a diagram illustrating another example of the competitive inhibition reaction detection method, in which 1 is a support made of gelatin, 2 is a virus antigen, and 3 is a virus antibody,
4 is a magnetically labeled virus antibody, and 5 is a magnet. In this example, (a) to (d) are the sample preparation steps, and <e> to
(f) shows the preparation process of the comparison sample.

(a)は既知のウィルス抗原2を固相化する工程、(b
)は固相化された抗原2と患者のウィルス抗体3と抗原
抗体反応させる工程、(c)は磁性体標識ウィルス抗体
4をウィルス抗体3に反応させる工程、(d)は前記工
程で未反応の磁性体標識ウィルス抗体4を磁石5により
捕集する工程、(e)は比較対照試料に6注性体標識ウ
ィルス抗体4を反応させる工程、(f)は未反応の磁性
体標識ウィルス抗体4を磁石5により捕集する工程であ
る。
(a) is the step of immobilizing known virus antigen 2, (b)
) is the step of reacting the immobilized antigen 2 with the patient's virus antibody 3, (c) is the step of reacting the magnetically labeled virus antibody 4 with the virus antibody 3, and (d) is the step of reacting the virus antibody 3 with the immobilized antigen 2. (e) is a step of reacting the comparative control sample with the magnetically labeled virus antibody 4; (f) is the step of collecting the unreacted magnetically labeled virus antibody 4. This is the step of collecting the particles using the magnet 5.

本実施例においても、実施例5と同し結果が得られた。In this example, the same results as in Example 5 were obtained.

尖旌拠1 第9図は本発明の第7の実施例であり、前述の実施例1
〜6のいずれにも適用が可能な磁気増感法を説明する図
であり、工はゼラチンより成る支持体、2はウィルス抗
原、3はウィルス抗体、4“は磁性体標識抗免疫グロブ
リン、14はγ−フェライト、15は磁性超微粒子であ
る。磁気増感のためには、検体との抗原抗体反応後の磁
性体標識体に針状のγ−フェライトをつける。これによ
り検出対象の磁性体量が数倍となり検出感度が向上した
。SQUIDによる磁化測定前に未反応のγ−フェライ
トを磁石で除去することによりバックグランドレベルの
上昇は認められなかった。実施例2の検体に対して針状
のγ−フェライトにより磁気増感処理を行い、その後S
QUIDにより磁化測定を行ったところ約5倍、検出感
度の向上が認められた。
Tip 1 FIG. 9 shows a seventh embodiment of the present invention, and the above-mentioned embodiment 1
FIG. 6 is a diagram illustrating a magnetic sensitization method that can be applied to any of 6 to 6, in which numeral 1 is a support made of gelatin, 2 is a virus antigen, 3 is a virus antibody, 4 is a magnetically labeled anti-immunoglobulin, and 14 is γ-ferrite, and 15 is a magnetic ultrafine particle.For magnetic sensitization, a needle-shaped γ-ferrite is attached to the magnetic label after the antigen-antibody reaction with the specimen. The amount was increased several times and the detection sensitivity was improved. By removing unreacted γ-ferrite with a magnet before magnetization measurement using SQUID, no increase in the background level was observed. Magnetic sensitization treatment is performed using γ-ferrite, and then S
When magnetization was measured using QUID, it was found that the detection sensitivity was improved by about 5 times.

磁気増感のために加える物質はγ−フェライトに限らず
、あらゆる磁性体超微粒子が使用可能である。
The substance added for magnetic sensitization is not limited to γ-ferrite, but any magnetic ultrafine particles can be used.

上記実施例に於て、支持体として寒天またはゼラチンを
用いているが、これらの間には木質的な差異はなく、固
相化される抗原、または抗体との組合せから経験的に選
択される。
In the above examples, agar or gelatin is used as a support, but there is no difference in wood quality between them, and the support is selected empirically from the combination with the antigen or antibody to be immobilized. .

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は磁性超微粒子を抗原抗体
反応の標識として用い、未反応の磁性超微粒子を磁場中
で分離除去後、超裔感度の超伝導磁束量子干渉計(S 
QU I D)により、抗原又は抗体の磁化率を測定す
るものであるから、従来のどの免疫測定法よりも優れた
S/Nが得られ、現在最高の検出感度を有するRIA法
と同程度以上の検出感度を有する新しい免疫測定法を提
供するものである。また、本発明の方法によれば、定量
のみならず、細胞組織中の抗原あるいは、抗体生産細胞
の部位の確定にも応用できる。すなわち、従来、例えば
フェリチンが電子顕微鏡における不透明な物質として免
疫電子顕微鏡法として用いられていたが、本発明の磁性
超微粒子も電子線に対して不透明であるから、抗原抗体
反応場所が電子顕微鏡観察で確定出来る。このように、
本発明は免疫量の定量と同時に、抗原又は抗体の分布を
も電子顕微鏡スケールで確定出来る特徴がある。本発明
の方法を用いれば、患者の早期診断に役立つのみならず
、ウィルス研究に新しい研究手段を提供することがでと
、医療界、医学研究につくすところ大である。
As explained above, the present invention uses magnetic ultrafine particles as labels for antigen-antibody reactions, and after separating and removing unreacted magnetic ultrafine particles in a magnetic field, superconducting magnetic flux quantum interferometer (S
Since it measures the magnetic susceptibility of antigens or antibodies using QU I D), it provides a S/N that is better than any conventional immunoassay method, and is at least as good as the RIA method, which currently has the highest detection sensitivity. The present invention provides a new immunoassay method with a detection sensitivity of . Furthermore, the method of the present invention can be applied not only to quantitative determination but also to determination of the site of antigen or antibody-producing cells in cell tissues. That is, conventionally, for example, ferritin was used as an opaque substance in an electron microscope for immunoelectron microscopy, but since the magnetic ultrafine particles of the present invention are also opaque to electron beams, the antigen-antibody reaction site can be easily detected by electron microscopy. It can be confirmed with in this way,
The present invention is characterized in that it is possible to determine the distribution of antigens or antibodies on an electron microscope scale at the same time as quantifying the amount of immunity. If the method of the present invention is used, it will not only be useful for early diagnosis of patients, but also provide new research tools for virus research, which will be of great benefit to the medical community and medical research.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例、第2図は本発明の実施
例のうち、SQUIDによる磁化測定方法を説明した図
、第3図は本発明の第1の実施例のうち検体又は比較対
照試料の乾燥工程を示した図、第4図は本発明の第2の
実施例、第5図は本発明の第3の実施例、第6図は本発
明の第4の実施例、第7図は本発明の第5の実施例、第
8図は本発明の第6の実施例、第9図は本発明の第7の
実施例を示す図である。 1・・・支持体、  2・・・ウィルス抗原3・・・ウ
ィルス抗体、 3゛・・・インフルエンザウィルス、 4・・・磁性体標識ウィルス抗体、 4゛・・・磁性体標識抗免疫グロブリン、5・・・磁石
、   6・・・電磁石、7・・・ピンクアップコイル
、 8・・・SQUID素子、 9・・・磁化率測定用電子回路、 10・・・検体又は比較対照試料、 11・・・ウェルプレート、 12・・・ガラスセル、13・・・ろ紙、14・・・T
−フェライト、 工5・・・磁性超微粒子、 16・・・磁性体標識ウィルス抗原、 17・・・電磁石、
Fig. 1 shows the first embodiment of the present invention, Fig. 2 is a diagram explaining the magnetization measurement method using SQUID among the embodiments of the present invention, and Fig. 3 shows the sample of the first embodiment of the present invention. 4 is a diagram showing the drying process of a comparative sample, FIG. 4 is a second embodiment of the present invention, FIG. 5 is a third embodiment of the present invention, and FIG. 6 is a fourth embodiment of the present invention. , FIG. 7 shows a fifth embodiment of the invention, FIG. 8 shows a sixth embodiment of the invention, and FIG. 9 shows a seventh embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Support, 2...Virus antigen 3...Virus antibody, 3゛...Influenza virus, 4...Magnetically labeled virus antibody, 4゛...Magnetically labeled anti-immunoglobulin, 5... Magnet, 6... Electromagnet, 7... Pink up coil, 8... SQUID element, 9... Electronic circuit for magnetic susceptibility measurement, 10... Specimen or comparison sample, 11. ...Well plate, 12...Glass cell, 13...Filter paper, 14...T
- Ferrite, Engineering 5...Magnetic ultrafine particle, 16...Magnetic substance labeled virus antigen, 17...Electromagnet,

Claims (8)

【特許請求の範囲】[Claims] (1)一の抗原又は抗体に磁性体超微粒子を標識して磁
性体標識体とし、該磁性体標識体と検体を抗原抗体反応
させる工程と、該工程後の前記検体から、未反応の前記
磁性体標識体を分離除去する工程と、該工程の後の前記
検体の磁化を超伝導磁束量子干渉計(SQUID)で測
定することを特徴とするSQUID免疫測定法。
(1) A step of labeling one antigen or antibody with magnetic ultrafine particles to obtain a magnetic label, and causing an antigen-antibody reaction between the magnetic label and the specimen; A SQUID immunoassay method comprising the steps of separating and removing a magnetic label, and measuring the magnetization of the specimen after the step using a superconducting flux quantum interferometer (SQUID).
(2)磁性体標識体と抗原抗体反応させる検体が、該検
体と、該検体の特異抗体又は抗原との、抗原抗体反応後
のものであることを特徴とする特許請求の範囲第1項記
載のSQUID免疫測定法。
(2) Claim 1, characterized in that the sample subjected to the antigen-antibody reaction with the magnetic label is a sample that has undergone an antigen-antibody reaction between the sample and a specific antibody or antigen of the sample. SQUID immunoassay.
(3)磁性体超微粒子により標識される抗体が抗免疫グ
ロブリンであることを特徴とする特許請求の範囲第1項
又は第2項記載のSQUID免疫測定法。
(3) The SQUID immunoassay method according to claim 1 or 2, wherein the antibody labeled with the magnetic ultrafine particles is an anti-immunoglobulin.
(4)未反応の磁性体標識体を分離除去する工程が、磁
石による分離除去であることを特徴とする特許請求の範
囲第1、2又は第3項記載のSQUID免疫測定法。
(4) The SQUID immunoassay method according to claim 1, 2 or 3, wherein the step of separating and removing unreacted magnetic labels is separation and removal using a magnet.
(5)一の抗原又は抗体に磁性体超微粒子を標識して磁
性体標識体とし、該磁性体標識体と検体を抗原抗体反応
させる工程と、該工程後の前記検体に過剰の磁性体超微
粒子を添加する工程と、該工程の後に、未反応の前記磁
性体標識体及び前記磁性体超微粒子を分離除去する工程
と、該工程の後の前記検体の磁化を超伝導磁束量子干渉
計(SQUID)で測定することを特徴とするSQUI
D免疫測定法。
(5) A step of labeling one antigen or antibody with magnetic ultrafine particles to obtain a magnetic label, and causing an antigen-antibody reaction between the magnetic label and the specimen; a step of adding fine particles, a step of separating and removing the unreacted magnetic label and the magnetic ultrafine particles, and measuring the magnetization of the specimen after the step using a superconducting magnetic flux quantum interferometer ( SQUID)
D. Immunoassay.
(6)磁性体標識体と抗原抗体反応させる検体が、該検
体と、該検体の特異抗体又は抗原との、抗原抗体反応後
のものであることを特徴とする特許請求の範囲第5項記
載のSQUID免疫測定法。
(6) Claim 5, characterized in that the sample subjected to the antigen-antibody reaction with the magnetic label is a sample that has undergone an antigen-antibody reaction between the sample and a specific antibody or antigen of the sample. SQUID immunoassay.
(7)磁性体超微粒子により標識される抗体が抗免疫グ
ロブリンであることを特徴とする特許請求の範囲第5項
又は第6項記載のSQUID免疫測定法。
(7) The SQUID immunoassay method according to claim 5 or 6, wherein the antibody labeled with the magnetic ultrafine particles is an anti-immunoglobulin.
(8)未反応の磁性体標識体及び磁性体超微粒子を分離
除去する工程が、磁石による分離除去であることを特徴
とする特許請求の範囲第5、6又は第7項記載のSQU
ID免疫測定法。
(8) The SQU according to claim 5, 6 or 7, wherein the step of separating and removing unreacted magnetic labels and magnetic ultrafine particles is separation and removal using a magnet.
ID immunoassay.
JP23577486A 1986-10-03 1986-10-03 Squid immunoassay Pending JPS6390765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23577486A JPS6390765A (en) 1986-10-03 1986-10-03 Squid immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23577486A JPS6390765A (en) 1986-10-03 1986-10-03 Squid immunoassay

Publications (1)

Publication Number Publication Date
JPS6390765A true JPS6390765A (en) 1988-04-21

Family

ID=16991039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23577486A Pending JPS6390765A (en) 1986-10-03 1986-10-03 Squid immunoassay

Country Status (1)

Country Link
JP (1) JPS6390765A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615254A1 (en) * 1996-04-18 1997-10-23 Diagnostikforschung Inst Device for the highly sensitive magnetic detection of analytes
US6046585A (en) * 1997-11-21 2000-04-04 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto
JP2002005892A (en) * 2000-04-10 2002-01-09 Randox Lab Ltd Magnetic particle detection
US6518747B2 (en) 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles
WO2003067258A1 (en) * 2002-01-29 2003-08-14 Asahi Kasei Kabushiki Kaisha Biosensor, magnetic molecule measurement method, and measurement object measuring method
US6935417B1 (en) 1998-10-19 2005-08-30 Ebara Corporation Solution heat exchanger for absorption refrigerating machine
JP2008286616A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Magnetic signal measuring device
JP2009098145A (en) * 2007-10-04 2009-05-07 Chin-Yih Hong Ultrasensitive magnetoreduction measuring system and ultrasensitive measuring method using the system requiring no cleaning
JP2009115590A (en) * 2007-11-06 2009-05-28 Tokyo Institute Of Technology Marker for biosensor, biosensor, and method of detecting the marker for biosensor
US7585624B2 (en) 2001-09-07 2009-09-08 University Of Leicester Detection of the energy of photons from biological assays
JP4657552B2 (en) * 1999-11-30 2011-03-23 クォンタム デザイン,インク. Method and apparatus for measuring accumulation of magnetic particles
JP2013092501A (en) * 2011-10-27 2013-05-16 Toyohashi Univ Of Technology Detection method for biological material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19615254A1 (en) * 1996-04-18 1997-10-23 Diagnostikforschung Inst Device for the highly sensitive magnetic detection of analytes
DE19615254C2 (en) * 1996-04-18 1999-03-11 Diagnostikforschung Inst Device for the highly sensitive magnetic detection of analytes
US6046585A (en) * 1997-11-21 2000-04-04 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of target particles having magnetic particles bound thereto
US6275031B1 (en) 1997-11-21 2001-08-14 Quantum Design, Inc. Method and apparatus for making quantitative measurements of localized accumulations of magnetic particles
US6935417B1 (en) 1998-10-19 2005-08-30 Ebara Corporation Solution heat exchanger for absorption refrigerating machine
JP4657552B2 (en) * 1999-11-30 2011-03-23 クォンタム デザイン,インク. Method and apparatus for measuring accumulation of magnetic particles
JP2002005892A (en) * 2000-04-10 2002-01-09 Randox Lab Ltd Magnetic particle detection
US6518747B2 (en) 2001-02-16 2003-02-11 Quantum Design, Inc. Method and apparatus for quantitative determination of accumulations of magnetic particles
US7585624B2 (en) 2001-09-07 2009-09-08 University Of Leicester Detection of the energy of photons from biological assays
US7425455B2 (en) 2002-01-29 2008-09-16 Asahi Kasei Kabushiki Kaisha Biosensor, magnetic molecule measurement device
WO2003067258A1 (en) * 2002-01-29 2003-08-14 Asahi Kasei Kabushiki Kaisha Biosensor, magnetic molecule measurement method, and measurement object measuring method
US8034634B2 (en) 2005-11-16 2011-10-11 Rex Chih-Yih Hong Ultra-sensitive magnetoreduction measurement system and ultra-sensitive, wash-free assay using the same
JP2008286616A (en) * 2007-05-17 2008-11-27 Hitachi Ltd Magnetic signal measuring device
US8193003B2 (en) 2007-05-17 2012-06-05 Hitachi, Ltd. Method and system for detection of biomaterials using magnetic marker
JP2009098145A (en) * 2007-10-04 2009-05-07 Chin-Yih Hong Ultrasensitive magnetoreduction measuring system and ultrasensitive measuring method using the system requiring no cleaning
EP2045599A3 (en) * 2007-10-04 2010-06-02 Chin-Yih Rex Hong Ultra-sensitive magnetoreduction measurement system and method for determining the concentration of epitope-biomolecules
JP2009115590A (en) * 2007-11-06 2009-05-28 Tokyo Institute Of Technology Marker for biosensor, biosensor, and method of detecting the marker for biosensor
JP2013092501A (en) * 2011-10-27 2013-05-16 Toyohashi Univ Of Technology Detection method for biological material

Similar Documents

Publication Publication Date Title
JP4324212B2 (en) Magnetically assisted binding assay using magnetically responsive reagents
Aytur et al. A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis
JP3607297B2 (en) Methods and compounds for the detection of analytes in magnetic relaxation measurements and their use
AU645014B2 (en) Methods, reagents and test kits for determination of subpopulations of biological entities
CN104698184B (en) The test kit of detection sugar antigen
US5375606A (en) Bio-analytical separation method
CN105308458A (en) Automated immunoanalyzer system for performing diagnostic assays for allergies and autoimmune diseases
GB1577956A (en) Determination of proteins
JPS6390765A (en) Squid immunoassay
JP2020514709A5 (en)
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
CN109799355A (en) First function five fluorescent microsphere joint-detection device and preparation method thereof
Larsson et al. Magnetic transducers in biosensors and bioassays
Eble et al. Differential diagnosis of acute viral hepatitis using rapid, fully automated immunoassays
JP6258076B2 (en) Magnetic signal measuring apparatus and magnetic signal measuring method
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
KR101928333B1 (en) Method for analyzing multiple biomolecule with multiple metal nano tag
JP2502546B2 (en) Laser magnetic immunoassay method
JP2599175B2 (en) Laser magnetic immunoassay method and measuring apparatus, superparamagnetic label used for laser magnetic immunoassay, and method for producing the same
US4242322A (en) Methods and materials for detecting antigens and antibodies
JPS6379070A (en) Laser magnetic immunoassay
Khramtsov et al. Nuclear magnetic resonance immunoassay of tetanus antibodies based on the displacement of magnetic nanoparticles
JP2567068B2 (en) Electron microscope sample preparation method and electron microscope sample preparation instrument
JP3647587B2 (en) Immunoassay
JP4694952B2 (en) Analytical method and analyzer using labeled reagent