JPS638262A - Sliding member made from silicon carbide sintered body and manufacture - Google Patents

Sliding member made from silicon carbide sintered body and manufacture

Info

Publication number
JPS638262A
JPS638262A JP61150124A JP15012486A JPS638262A JP S638262 A JPS638262 A JP S638262A JP 61150124 A JP61150124 A JP 61150124A JP 15012486 A JP15012486 A JP 15012486A JP S638262 A JPS638262 A JP S638262A
Authority
JP
Japan
Prior art keywords
silicon carbide
weight
sliding member
temperature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61150124A
Other languages
Japanese (ja)
Inventor
衣笠 比佐志
向江 伸人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP61150124A priority Critical patent/JPS638262A/en
Publication of JPS638262A publication Critical patent/JPS638262A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐熱性、耐摩耗性及び耐腐食性等に優れた特性
を有し、耐熱高温材料及び軸封部の封止用摺動材料とし
て期待される超緻密化した炭化珪素焼結体からなる摺動
部材およびその製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention has excellent properties such as heat resistance, abrasion resistance, and corrosion resistance, and is used as a heat-resistant high-temperature material and a sliding material for sealing a shaft sealing part. The present invention relates to a sliding member made of an ultra-densified silicon carbide sintered body that is expected to be used as a material, and a method for manufacturing the same.

(従来の技術) 炭化珪素焼結体は耐熱性、耐摩耗性及び耐腐食性等に優
れた特性を有し、したがって、高温かつ高応力の条件が
要求される例えばガスタービンの摺動構成部材として、
また摩耗量が小さく、高い熱伝導率を要求される例えば
軸受やメカニカルシール等の摺動部材として活用される
(Prior Art) Silicon carbide sintered bodies have excellent properties such as heat resistance, wear resistance, and corrosion resistance, and are therefore used in sliding components of gas turbines, for example, which require high temperature and high stress conditions. As,
It is also used as sliding members such as bearings and mechanical seals that require low wear and high thermal conductivity.

炭化珪素焼結体からなる摺動部材は炭化珪素に焼結助材
としてホウ素及び炭素を添加してなる組成物を不活性雰
囲気中において、2000℃以上の高温かつ常圧で焼結
する常圧焼結法によって得られる。
A sliding member made of a silicon carbide sintered body is produced by sintering a composition made of silicon carbide with boron and carbon added as sintering aids at a high temperature of 2000°C or higher and normal pressure in an inert atmosphere. Obtained by sintering method.

しかし、常圧焼結法では気孔や不純物(主として焼結剤
)が粒界に偏析することから、その特性は、曲げ強度が
40〜80Kg/ m rrI′、密度が95% 〜9
8χ、熱伝導率が0.2 ca文/cues番℃程度に
制限される。
However, in the pressureless sintering method, pores and impurities (mainly sintering agent) segregate at grain boundaries, so the characteristics are that the bending strength is 40 to 80 kg/m rrI' and the density is 95% to 9.
8χ, thermal conductivity is limited to about 0.2 ca/cue ℃.

しかし、この程度の曲げ強度では、少なくとも70Kg
/mゴの曲げ強度を要求されるガスタービン摺動構成部
材のような熱機関部品として強度的に不満足である。ま
た、メカニカルシールや軸受等の摺動部材において、耐
摩耗性とともに要求される熱伝導率の点でも、炭化珪素
の単結晶が高い熱伝導率1.2 cal/c鳳・S・℃
を有しているにもかかわらず、気孔や不純物及び粒界等
が熱伝導をつかさどる格子振動の伝搬を妨げることによ
り前述の値に低下する。しかも、巨大粒成長にともない
耐摩耗性の低下を招くおそれがある。
However, with this level of bending strength, at least 70 kg
It is unsatisfactory in terms of strength as a heat engine component such as a gas turbine sliding component that requires a bending strength of /m. In addition, silicon carbide single crystal has a high thermal conductivity of 1.2 cal/c, which is required for wear resistance and thermal conductivity in sliding parts such as mechanical seals and bearings.
However, the value decreases to the above value because pores, impurities, grain boundaries, etc. impede the propagation of lattice vibrations that control heat conduction. Furthermore, there is a risk that the wear resistance will deteriorate due to the growth of giant grains.

したがって、炭化珪素焼結体の強度、v、度、熱伝導率
、耐摩耗性等の向上を図るために、高温加圧焼結法が奨
拘られるけれども、この方法は生産性に劣り大量生産に
適しない、また焼結体の形状に制約をうけるため、例え
ばガスタービンロータのような羽根部を有する複雑な形
状の焼結体を得ることが困難である。
Therefore, in order to improve the strength, v, degree, thermal conductivity, wear resistance, etc. of silicon carbide sintered bodies, high-temperature pressure sintering methods are recommended, but this method is inferior in productivity and cannot be used in mass production. Moreover, since the shape of the sintered body is restricted, it is difficult to obtain a sintered body with a complicated shape having a blade portion, such as a gas turbine rotor, for example.

そこで、HIP処理(熱間静水圧プレス法)により高強
度、高密度及び高熱伝導率を有し、かつ耐摩耗性に優れ
た焼結体を得る技術が特開昭80−255672号公報
により提案された。
Therefore, a technique for obtaining a sintered body with high strength, high density, high thermal conductivity, and excellent wear resistance by HIP treatment (hot isostatic pressing method) was proposed in Japanese Patent Application Laid-open No. 80-255672. It was done.

(発明が解決しようとする問題点) しかし、前記従来の旧P処理では1850〜2000℃
の温度で!00気圧以上の処理条件が要求される。
(Problem to be solved by the invention) However, in the conventional old P treatment,
At a temperature of! Processing conditions of 0.000 atmospheres or higher are required.

このような高温を要求される)IIP %理では、極め
て高い高温強度を有するHIP処理炉が必要であり、処
理装置の価格が高価格化する。
In the IIP process which requires such high temperatures, a HIP processing furnace having extremely high high temperature strength is required, which increases the cost of the processing equipment.

また、2000℃付近の高温領誠の温度測定には、高価
なWRe系の熱電対が用いられるけれども、熱劣化が激
しく数サイクル程度の使用で使用不能になり、それにと
もなうトラブルやメンテナンス上の弊害を招き1元来、
比較的高いとされているHIP処理のランニングコスト
をさらに高める要因になっている。
In addition, expensive WRe thermocouples are used to measure temperatures at high temperatures around 2000°C, but they undergo severe thermal deterioration and become unusable after only a few cycles of use, resulting in trouble and maintenance problems. Inviting 1 original,
This is a factor that further increases the running cost of HIP processing, which is considered to be relatively high.

そのために、炭化珪素焼結体の旧P処理を可及的低温で
行うことが要請されるけれども、焼結助材としてホウ素
や炭素系のものを用いる場合は、拡散クリープによって
緻密化されるところから。
For this reason, it is required to perform the old P treatment of silicon carbide sintered bodies at the lowest possible temperature, but when boron or carbon-based materials are used as sintering aids, they are densified by diffusion creep. from.

1850℃以上、好ましくは2000℃以上の高温で処
理せざるを得ない。
It is necessary to process at a high temperature of 1850°C or higher, preferably 2000°C or higher.

本発明者らは、前記従来技術の背景に鑑み鋭意研究の結
果、炭化珪素にホウ素、アルミニウム又はアルミニウム
化合物及び非結合炭素とからなる焼結助剤を添加した混
合物からなる組成を一定組成範囲とするとともに、これ
らを一定温度範囲において前焼成することで、密度95
%以上の炭化珪素前焼成体を得たのち、この炭化珪素前
焼成体を1650〜1850℃未満の低温領域で100
0気圧以上の圧力を加えて、HIP処理することにより
、相対密度100%に近い超微密化した高強度な炭化珪
素焼結体からなる摺動部材が得られることを見出した。
As a result of intensive research in view of the background of the prior art, the present inventors have determined that a composition consisting of a mixture of silicon carbide and a sintering aid consisting of boron, aluminum or an aluminum compound, and non-bonded carbon is set within a certain composition range. At the same time, by pre-firing these at a certain temperature range, the density is 95.
% or more, the silicon carbide pre-fired body is heated to 100°C in a low temperature range of 1650 to less than 1850°C.
It has been found that by applying a pressure of 0 atmospheres or higher and performing HIP treatment, a sliding member made of an ultrafine, high-strength silicon carbide sintered body with a relative density close to 100% can be obtained.

(問題点を解決するための手段) 本発明に係る炭化珪素焼結体からなる摺動部材では、炭
化珪素に0.03〜4重量2のホウ素、 O,OS〜2
重量工のアルミニウム又はアルミニウム化合物及び0.
5〜15重量2の非結合炭素を添加した混合物からなる
成形体を焼結させ、さらに)IIP処理したことを要旨
とする炭化珪素焼結体からなる摺動部材であり、アルミ
ニウム又はアルミニウム化合物を添加することによって
、低温)11P処理を可能とならしめこれによって相対
密度tooxに近い超′/&密化した摺動部材が得られ
る。
(Means for Solving the Problems) In the sliding member made of a silicon carbide sintered body according to the present invention, silicon carbide is mixed with boron of 0.03 to 4 weight 2, O, OS~2
Heavy engineering aluminum or aluminum compounds and 0.
It is a sliding member made of a silicon carbide sintered body, which is obtained by sintering a molded body made of a mixture to which 5 to 15 weight 2 of non-bonded carbon is added, and further subjected to IIP treatment, and is made of aluminum or an aluminum compound. The addition of these compounds makes it possible to carry out low-temperature (11P) treatment, thereby producing an ultra-dense sliding member with a relative density close to toox.

また、本発明に係る炭化珪素焼結体の製造方法は、炭化
珪素に0.03〜4重量tのホウ素、 0.05〜2重
量2のアルミニウム又はアルミニウム化合物及び0.5
〜15重量2の非結合炭素を添加した混合物からなる成
形体を形成し、この成形体を不活性雰囲気中1750〜
1850℃の温度で前焼成体密度が952以上になるよ
うに前焼成し、その後不活性雰囲気中1650〜185
0度未満の温度と1000気圧以上の圧力でHIP処理
するようにしている。
Further, the method for producing a silicon carbide sintered body according to the present invention includes silicon carbide, boron in an amount of 0.03 to 4 tons by weight, aluminum or an aluminum compound in an amount of 0.05 to 2 tons by weight, and 0.5 tons by weight.
A molded body is formed from a mixture to which 15% by weight of non-bonded carbon is added, and this molded body is heated to 1750°C in an inert atmosphere.
Pre-fired at a temperature of 1850°C so that the density of the pre-fired body becomes 952 or higher, and then heated to 1650-185 in an inert atmosphere.
The HIP process is performed at a temperature of less than 0 degrees and a pressure of 1,000 atmospheres or more.

(作 用) 本発明においては、炭化珪素粒内へのアルミニウム又は
アルミニウム化合物の固溶拡散と、1000気圧以上の
高圧力によって拡散クリープが促進され、低温HIP処
理にもかかわらず相対密度が1002に近い超微密化し
た高強度の炭化珪素焼結体からなる摺動部材が得られる
(Function) In the present invention, diffusion creep is promoted by solid solution diffusion of aluminum or an aluminum compound into silicon carbide grains and a high pressure of 1000 atmospheres or more, and the relative density is reduced to 1002 despite the low-temperature HIP treatment. A sliding member made of a high-strength silicon carbide sintered body with close to ultra-fine density can be obtained.

(実施例) 平均粒径IJL11以下のα型もしくIよβ型炭イヒ珪
素の微粉末を原料として、この原料に対し焼結助剤とし
てのホウ素を0.03〜4重量2 (好まし゛〈1士0
o05〜0.15重量%)、アルミニウム又はアルミニ
ウム化合物を0.05〜2重量2 (好ましくは0.1
〜0.5重量2)及び非結合炭素を0.5〜15重量2
の範囲の量だけ添加し、充分に混合して成形用原料を得
る。
(Example) Using a fine powder of α-type or I-β type silicon carbide having an average particle size of IJL11 or less as a raw material, boron as a sintering aid is added to this raw material by 0.03 to 4 weight 2 (preferably <1 person 0
o05-0.15% by weight), aluminum or aluminum compound 0.05-2% by weight2 (preferably 0.1
~0.5 wt2) and 0.5-15 wt2 of non-bonded carbon
A raw material for molding is obtained by adding only an amount within the range of , and mixing thoroughly.

しかるのち、この原料をプレス成形し、この成形体を不
活性雰囲気(例えばアルゴン雰囲気)中で下記第1表に
示す前焼成温度で前焼成した。つづいて、前焼成によっ
て得た前焼成体を不活性雰囲気(例えばアルゴン雰囲気
)中で第1表に示す)+IP処理条件にてHIP処理を
行い、第1表に示すNo、l〜No、11及びNo、1
5の試料を得、さらに焼結助剤としてA文を添加しない
比較試料、つまり従来技術の試料をNo、12〜No、
14に示す。
Thereafter, this raw material was press-molded, and the molded body was pre-fired at the pre-fire temperature shown in Table 1 below in an inert atmosphere (for example, argon atmosphere). Subsequently, the pre-fired body obtained by pre-fired was subjected to HIP treatment in an inert atmosphere (for example, argon atmosphere) under the +IP treatment conditions shown in Table 1. and No. 1
Sample No. 5 was obtained, and comparative samples without addition of Blend A as a sintering aid, that is, samples of the prior art, were obtained as No. 12 to No.
14.

(以下余白) 前記第1表において、試料No、2.No、3.Na4
.No。
(Left below) In Table 1 above, sample No. 2. No, 3. Na4
.. No.

10、No、11及びNo、15は本発明範囲内のもの
で)IIP処理として1000気圧以上、温度が185
0℃未満の低温でも相対密度が10ozに近い超高密度
焼結体が得られ、曲げ強度も70Kg/mrn’以上を
確保した。
10, No. 11 and No. 15 are within the scope of the present invention) IIP treatment at 1000 atmospheres or more and temperature 185
An ultrahigh-density sintered body with a relative density close to 10 oz was obtained even at a low temperature of less than 0° C., and the bending strength was also secured to be 70 Kg/mrn' or more.

これに比べて、試料No、1.No、8.No、+2で
示す比較品の如< HIP処理温度を1850℃以上(
特に1900℃〜2000℃)の高温にした場合、異常
な粒子成長が見られ、さらにA文を焼結助剤として添加
しない従来技術の試料No、12〜No、 14におい
ては。
In comparison, sample No. 1. No, 8. As for the comparative products indicated by No. +2, the HIP treatment temperature was set at 1850℃ or higher (
In particular, when the temperature was raised to a high temperature (1900° C. to 2000° C.), abnormal grain growth was observed, and furthermore, in Samples No. 12 to No. 14 of the prior art, in which A was not added as a sintering aid.

HIP処理条件として、2000気圧、1900℃以上
の温度にしないと密度があがらず、試料No、+2では
、粒子成長が見られ、逆に試料No、14の如く、18
50℃では、!&密化が不足していることが確認された
As for the HIP processing conditions, the density does not increase unless the temperature is 2000 atm and 1900°C or higher, and particle growth was observed in sample No. +2, and conversely, sample No. 14 and 18
At 50℃! & It was confirmed that there was a lack of density.

さらに、試料N006〜N008の比較品では、1(I
P処理条件として、圧力を1000気圧未満(300気
圧)にした場合、相対密度が低下する傾向にあり好まし
くない、また、試料No、5の比較品のように、HIP
処理条件として温度を1650℃を下回る場合も、相対
密度の低下が認められた。
Furthermore, in the comparison products of samples N006 to N008, 1(I
As for the P treatment conditions, if the pressure is less than 1000 atm (300 atm), the relative density tends to decrease, which is undesirable.
A decrease in relative density was also observed when the temperature was lower than 1650°C as a treatment condition.

第1図はHIP返理温度と)IIP処理後の密度との関
係を試料N001〜No、5 、 No、6〜No、8
及びNo、12〜No、14のそれぞれについて示して
いる。同図において1本発明範囲内の試料Nc+、2.
No、3 、No、4は1700℃〜1850℃の低温
領域において、相対密度100tに近い値を得ることが
判る。
Figure 1 shows the relationship between the HIP return temperature and the density after IIP treatment for samples No. 001 to No. 5, No. 6 to No. 8.
and No. 12 to No. 14, respectively. In the figure, 1. Sample Nc+ within the range of the present invention, 2.
It can be seen that No. 3, No. 4, and No. 4 obtain values close to a relative density of 100 t in the low temperature region of 1700°C to 1850°C.

さらに、第2表に本発明により製造された炭化珪素焼結
体からなる摺動部材をメカニカルシールのシールリング
としてテストした結果を示す。
Furthermore, Table 2 shows the results of testing the sliding member made of the silicon carbide sintered body manufactured according to the present invention as a seal ring of a mechanical seal.

(以下余白) 前記第2表において熱伝導率が従来の2〜3倍に向上し
、かつ粒界強度が向上した結果優れた摺動特性を有する
ことが明らかとなった。
(The following is a blank space) In Table 2, it was revealed that the thermal conductivity was improved two to three times that of the conventional product, and the grain boundary strength was improved, resulting in excellent sliding properties.

炭化珪素焼結体は、へき開性の強い結晶であるから、従
来の常圧焼結法によって得た炭化珪素焼結体をメカニカ
ルシールの摺動部材として用いた場合、しばしば摺動面
に雲母のような薄片状の摩耗脱落を認め、摺動という熱
剪断応力によって炭化珪素焼結体粒子のへき開摩耗を生
じることが明らかであり、特に常圧焼結法によって得た
炭化珪素焼結体の異常粒成長組織の場合、その現象が最
も著しい。
Since silicon carbide sintered bodies are crystals with strong cleavability, when silicon carbide sintered bodies obtained by conventional pressureless sintering are used as sliding members of mechanical seals, mica often forms on the sliding surfaces. It is clear that the thermal shear stress caused by sliding causes cleavage wear of the silicon carbide sintered particles, and this is especially true for the abnormality of the silicon carbide sintered particles obtained by the pressureless sintering method. In the case of grain growth structures, this phenomenon is most remarkable.

しかし、本発明に係るHIP処理を施した炭化珪素焼結
体からなる摺動部材をメカニカルシールに用いた場合、
自らは勿論、相手材である焼結カーボンをもS耗させな
い、また摺動トルクが従来に比べて低く、しかも非常に
安定である等、優れた特性を示す。
However, when a sliding member made of a silicon carbide sintered body subjected to HIP treatment according to the present invention is used for a mechanical seal,
It exhibits excellent properties such as not causing any S wear on itself or the mating material, sintered carbon, and the sliding torque is lower than conventional ones, and it is very stable.

一方、HIP処理された炭化珪素焼結体からなる摺動部
材でも、巨大粒成長した場合1強度低下が認められるけ
れども、この炭化珪素焼結体からなる摺動部材をメカニ
カルシールに使用した場合、従来の常圧焼結法によって
得た炭化珪素焼結体の場合のような摺動性衡の低下を認
めない。
On the other hand, even in a sliding member made of HIP-treated silicon carbide sintered body, a decrease in strength of 1 level is observed when giant grains grow; however, when a sliding member made of this silicon carbide sintered body is used for a mechanical seal, There is no decrease in sliding properties as in the case of silicon carbide sintered bodies obtained by conventional pressureless sintering methods.

この事実は、HIP処理によって熱伝導性が向上すると
ともに、粒界隙間が狭められることによって、粒界強度
が向上し、粒子のへき開摩耗が抑制されるためと考えら
れる。
This fact is considered to be because the HIP treatment improves thermal conductivity and narrows grain boundary gaps, thereby improving grain boundary strength and suppressing cleavage wear of particles.

(発明の効果) 以上説明したように、本発明によれば、焼結助剤として
所定量のホウ素及び非結合炭素の他にアルミニウム又は
アルミニウム化合物を添加混合した成形体を形成し、こ
の形成体を不活性雰囲気中1750〜1850℃の温度
で前焼成体密度が95z以上になるように前焼成し、そ
の後不活性雰囲気中に1650〜1850℃未満の温度
と1000気圧以上の圧力で)II’P処理するように
製造されて、得られた摺動部材は、炭化珪素粒内へのア
ルミニウム又はアルミニウム化合物の固溶拡散と、10
00気圧以上の高圧力によって拡散クリープが促進され
るから、低温処理であるのにもかかわらず、超!lkS
化した高強度な特性と、高い熱伝導率及び優れた摺動特
性を有する炭化珪素焼結体からなる摺動部材を得ること
ができる。
(Effects of the Invention) As explained above, according to the present invention, a molded body is formed in which aluminum or an aluminum compound is added and mixed in addition to a predetermined amount of boron and non-bonded carbon as a sintering aid, and this formed body is pre-calcined in an inert atmosphere at a temperature of 1750 to 1850 °C so that the density of the pre-calcined body is 95z or more, and then pre-fired in an inert atmosphere at a temperature of 1650 to less than 1850 °C and a pressure of 1000 atm or more)II' The sliding member manufactured by P treatment has solid solution diffusion of aluminum or an aluminum compound into silicon carbide grains, and 10
Diffusion creep is promoted by high pressures of over 1,000 atmospheres, so even though it is a low temperature process, it is super! lkS
It is possible to obtain a sliding member made of a silicon carbide sintered body having high strength characteristics, high thermal conductivity, and excellent sliding characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は旧P処理温度と)IIP処理後の密度との関係
を示すグラフである。 特許出願人    日木ピラー工業株式会社代 理 人
    弁理士  鈴江 孝−の 手続補正書 1、 事件の表示 特願昭61−150124号 2、 発明の名称 炭化珪素焼結体からなる摺動部材およびその製造方法3
、 補正をする者 事件との関係    特許出願人 日本ピラー工業株式会社 4、 代理人 住所  大阪市北区神山町8番1号 梅田辰已ビル明細
書の特許請求の範囲の欄および図面(1) 明細書の特
許請求の範囲の欄の記載を別のと差し替える。 以上 特許請求の範囲 (1) 炭化珪素に0.03〜4重量2のホウ素。 0.05〜2重量%のアルミニウム又はアルミニウム化
合物及び0.5〜15重量2の非結合炭素を添加した混
合物からなる成形体を焼結させ、さらに)IIP処理し
たことを特徴とする炭化珪素焼結体からなる摺動部材。 (2) 炭化珪素に0.03〜4重Mzのホウ素。 0.05〜2重量%のアルミニウム又はアルミニウム化
合物及び0.5〜15重量2の非結合炭素を添加した混
合物からなる成形体を形成し、この成形体を不活性雰囲
気中1750〜1950  ℃の温度で前焼成体密度が
95X以上になるように前焼成し、その後不活性雰囲気
中1850−1850℃未満の温度と1000気圧以上
の圧力でHIP処理することを特徴とする炭化珪素焼結
体からなる摺動部材の製造方法。 8      の
FIG. 1 is a graph showing the relationship between the old P treatment temperature and the density after the IIP treatment. Patent applicant Hiki Pillar Kogyo Co., Ltd. Agent Patent attorney Takashi Suzue Procedural amendment 1, Indication of case Patent application No. 150124/1982 2 Title of invention Sliding member made of silicon carbide sintered body and its Manufacturing method 3
, Relationship with the case of the person making the amendment Patent applicant Nippon Pillar Industries Co., Ltd. 4 Address of agent Tatsumi Umeda Building 8-1 Kamiyama-cho, Kita-ku, Osaka City Claims column and drawings (1) of the specification Replace the statement in the claims column of the document with another statement. Claims (1) 0.03 to 4% by weight of boron in silicon carbide. A silicon carbide sintered product characterized in that a molded body made of a mixture to which 0.05 to 2% by weight of aluminum or an aluminum compound and 0.5 to 15% by weight of non-bonded carbon is added is sintered and further subjected to IIP treatment. A sliding member made of a solid body. (2) 0.03-4 Mz boron in silicon carbide. A molded body is formed from a mixture of 0.05 to 2% by weight of aluminum or an aluminum compound and 0.5 to 15% by weight of unbonded carbon, and the molded body is heated in an inert atmosphere at a temperature of 1750 to 1950°C. A silicon carbide sintered body characterized by being pre-fired so that the density of the pre-fired body becomes 95X or more, and then subjected to HIP treatment in an inert atmosphere at a temperature of less than 1850-1850°C and a pressure of 1000 atm or more. A method for manufacturing a sliding member. 8 of

Claims (2)

【特許請求の範囲】[Claims] (1)炭化珪素に0.03〜4重量%のホウ素、0.0
5〜2重量%のアルミニウム又はアルミニウム化合物及
び0.5〜15重量%の非結合炭素を添加した混合物か
らなる成形体を焼結させ、さらにHIP処理したことを
特徴とする炭化珪素焼結体からなる摺動部材。
(1) 0.03-4% by weight of boron in silicon carbide, 0.0
From a silicon carbide sintered body characterized by sintering a molded body made of a mixture to which 5 to 2% by weight of aluminum or an aluminum compound and 0.5 to 15% by weight of non-bonded carbon are added, and further subjected to HIP treatment. A sliding member.
(2)炭化珪素に0.03〜4重量%のホウ素、0.0
5〜2重量%のアルミニウム又はアルミニウム化合物及
び0.5〜15重量%の非結合炭素を添加した混合物か
らなる成形体を形成し、この成形体を不活性雰囲気中1
750〜950℃の温度で前焼成体密度が95%以上に
なるように前焼成し、その後不活性雰囲気中1650〜
1850℃未満の温度と1000気圧以上の圧力でHI
P処理することを特徴とする炭化珪素焼結体からなる摺
動部材の製造方法。
(2) 0.03-4% by weight of boron in silicon carbide, 0.0
A molded body is formed from a mixture to which 5 to 2% by weight of aluminum or an aluminum compound and 0.5 to 15% by weight of unbonded carbon are added, and this molded body is heated for 1 hour in an inert atmosphere.
Pre-fired at a temperature of 750-950°C so that the density of the pre-fired body becomes 95% or more, and then heated at a temperature of 1650-950°C in an inert atmosphere.
HI at temperatures below 1850℃ and pressures above 1000 atm
A method for manufacturing a sliding member made of a silicon carbide sintered body, characterized by subjecting it to P treatment.
JP61150124A 1986-06-26 1986-06-26 Sliding member made from silicon carbide sintered body and manufacture Pending JPS638262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150124A JPS638262A (en) 1986-06-26 1986-06-26 Sliding member made from silicon carbide sintered body and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150124A JPS638262A (en) 1986-06-26 1986-06-26 Sliding member made from silicon carbide sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS638262A true JPS638262A (en) 1988-01-14

Family

ID=15490003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150124A Pending JPS638262A (en) 1986-06-26 1986-06-26 Sliding member made from silicon carbide sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS638262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321797A (en) * 2006-05-30 2007-12-13 Kyocera Corp Sliding member and mechanical seal ring using the same
WO2021220849A1 (en) * 2020-04-28 2021-11-04 京セラ株式会社 Sliding member and papermaking member

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122311A (en) * 1978-03-15 1979-09-21 Hiroshige Suzuki High density silicon carbide sintered body and preparation thereof
JPS6081064A (en) * 1983-10-13 1985-05-09 ティーディーケイ株式会社 Manufacture of silicon carbide sintered body
JPS60255672A (en) * 1984-05-30 1985-12-17 京セラ株式会社 Manufacture of silicon carbide sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122311A (en) * 1978-03-15 1979-09-21 Hiroshige Suzuki High density silicon carbide sintered body and preparation thereof
JPS6081064A (en) * 1983-10-13 1985-05-09 ティーディーケイ株式会社 Manufacture of silicon carbide sintered body
JPS60255672A (en) * 1984-05-30 1985-12-17 京セラ株式会社 Manufacture of silicon carbide sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321797A (en) * 2006-05-30 2007-12-13 Kyocera Corp Sliding member and mechanical seal ring using the same
WO2021220849A1 (en) * 2020-04-28 2021-11-04 京セラ株式会社 Sliding member and papermaking member

Similar Documents

Publication Publication Date Title
JPS58204873A (en) Substantially pore-free polycrystal sintered body comprising alpha-silicon carbide, boron carbide and free carbon and manufacture
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
Cygan et al. Thermal stability and coefficient of friction of the diamond composites with the titanium compound bonding phase
JPS638262A (en) Sliding member made from silicon carbide sintered body and manufacture
Evans et al. Reaction bonded silicon carbide: SFF, process refinement and applications
CN109354502B (en) Self-lubricating silicon nitride-based composite material with high wear-resistant surface in high-temperature environment
JPS5939766A (en) Alumina-silicon carbide complex sintered body
DeLeeuw Effects of Joining Pressure and Deformation on the Strength and Microstructure of Diffusion‐Bonded Silicon Carbide
JPH0772104B2 (en) Polycrystalline ceramics
Wilhelm et al. Influence of resin content and compaction pressure on the mechanical properties of SiC–Si composites with sub-micron SiC microstructures
Pechkovskii et al. Structure and mechanical properties of porous titanosilicon carbide Ti 3 SiC 2
JP3543032B2 (en) Laminated structure sintered body for cutting tool and method for producing the same
JPS62207767A (en) High temperature high strength silicon nitride ceramics and manufacture
JP2742619B2 (en) Silicon nitride sintered body
JPH055150A (en) Boron carbide-reactive metal cermet
McEntire et al. Ceramic component processing development for advanced gas-turbine engines
JPS60161383A (en) Ceramic part
JP2766753B2 (en) Manufacturing method of low sputter graphite material
JPS58110466A (en) Manufacture of magnesium fluoride polycrystal body
JPS605073A (en) Silicon carbide sintered body and manufacture
JPH0585506B2 (en)
McEntire et al. Ceramic component processing development for advanced gas turbine engines
JPH06206770A (en) Production of silicon carbide-carbon-based composite material
JPS63230570A (en) Sic-tic normal pressure sintered body and manufacture
JPH01215942A (en) Fuel injection nozzle made of sintered alloy and its manufacture