JPS6373628A - Method for washing and drying treatments - Google Patents

Method for washing and drying treatments

Info

Publication number
JPS6373628A
JPS6373628A JP21996986A JP21996986A JPS6373628A JP S6373628 A JPS6373628 A JP S6373628A JP 21996986 A JP21996986 A JP 21996986A JP 21996986 A JP21996986 A JP 21996986A JP S6373628 A JPS6373628 A JP S6373628A
Authority
JP
Japan
Prior art keywords
wafer
light
liquid
irradiate
removing process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21996986A
Other languages
Japanese (ja)
Other versions
JPH0695511B2 (en
Inventor
Masato Tanaka
真人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP61219969A priority Critical patent/JPH0695511B2/en
Publication of JPS6373628A publication Critical patent/JPS6373628A/en
Publication of JPH0695511B2 publication Critical patent/JPH0695511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To treat a wafer at the minimum period in accordance with the number of rotation of the wafer by a method wherein, when a liquid-removing process is going to be performed, light is made to irradiate on the surface of the wafer, the reflected light or the transmitted light is detected from the wafer surface, and the finishing point of liquid-removing treatment is detected accurately by the signal level of the detection signal. CONSTITUTION:After the surface of a wafer W has been cleaned, work is shifted to a liquid- removing process in which waterdrops will be shaken off by centrifugal force. Simultaneously with the shifting to the liquid-removing process, the light coming from a light-emitting means 7 is made to irradiate on the surface of the wafer W, its reflected light is made incident on a photoelectric conversion device 6, the variation in the reflected light on the surface of the wafer W is inputted to a control means 8 as an electric signal. As the light made to irradiate on the wafer surface is irregularly reflected while there are waterdrops of the washing liquid remaining on the surface of the wafer W, the quantity of light going into light-receiving fibers 4 fluctuates heavily. When the liquid-removing process goes into the latter stage wherein a thin water film remains on the wafer surface, the amplitude of the output signal becomes almost constant, and the time when said output signal becomes constant is judged as the finishing time of the liquid-removing operation. Then, the infrared rays are made to irradiate by an infrared rays lamp 10, and the wafer surface is dried up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体ウェハやガラス基板等の覆板状被処
理基板(以下「ウェハ」と称す)の表面を洗浄した後、
水切りし、乾燥させる方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for cleaning the surface of a covered substrate to be processed (hereinafter referred to as a "wafer") such as a semiconductor wafer or a glass substrate.
Concerning how to drain and dry.

〔従来の技術〕[Conventional technology]

従来、例えば特開昭59−100540号公報(発明の
名称「シリコンウェハーの処理に用いる遠心乾燥機にお
ける処理方法」)においては、篭に収納されたウェハに
水シヤワーを吹き付けながら所要時間(0〜t工)低速
回転させ。
Conventionally, for example, in Japanese Patent Application Laid-Open No. 59-100540 (title of the invention: "Processing method in a centrifugal dryer used for processing silicon wafers"), a water shower is sprayed onto wafers stored in a basket while the required time (0 to T) Rotate at low speed.

次に水シヤワーを止めてから所要時間(tx 〜t2)
高速回転させ、続いて高速回転の状態でウェハ表面に窒
素ガスを所要時間(tz〜シ、)吹き付けて乾燥処理を
終るようにした遠心乾燥機における処理方法が知られて
いる(第5図参照)。
Next, the time required after stopping the water shower (tx ~ t2)
A processing method using a centrifugal dryer is known in which the drying process is completed by rotating the wafer at high speed and then spraying nitrogen gas onto the wafer surface for a required period of time (tz~shi) while the wafer is rotating at high speed (see Figure 5). ).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

特開昭59−100540号公報においては、高速回転
開始より所要時間(t2−t、)後にウェハ表面の水滴
が高速回転により振り切られたものとして、不活性ガス
を供給し、乾燥させているが、ウェハの表面状態、ウェ
ハの材質、ウェハの寸法等により、所要時間(1,11
)を、いちいち実験的に求め、再設定する必要があった
In Japanese Patent Application Laid-Open No. 59-100540, an inert gas is supplied to dry the wafer, assuming that the water droplets on the wafer surface have been shaken off by the high-speed rotation after a required time (t2-t) from the start of the high-speed rotation. , the required time (1,11
) had to be determined experimentally and reset.

一方、不活性ガスを供給する代わりにウェハ表面に光を
照射してウェハを乾燥させる場合には、ウェハ表面に水
滴が残っていると、その部分がシミとなって残るという
問題があるため、パターンとして形成された微細な凹部
以外のウェハ表面を完全に脱水処理した後、光照射によ
り乾燥する必要があり、そのためには脱水処理の完了時
を正確に検出することが課題となっていた。
On the other hand, when drying the wafer by irradiating the wafer surface with light instead of supplying an inert gas, there is a problem that if water droplets remain on the wafer surface, those areas will remain as stains. After completely dehydrating the wafer surface, except for the minute depressions formed as a pattern, it is necessary to dry it by light irradiation, and to do this, it has been a challenge to accurately detect when the dehydration process is complete.

〔問題点を解決するための手段〕[Means for solving problems]

この発明はウェハを回転させながらその表面に洗浄液を
供給して洗浄し、しかる後、ウェハを洗浄時より高速に
回転させてウェハ表面に付着した洗浄液を振り切って脱
液し、脱液したウェハ表面に光照射して加熱し、乾燥す
る方法において、脱液処理時、ウェハ表面に光を照射し
、その表面から反射光または透過光を検知し、その検知
信号の信号レベルがほぼ一定になった時を脱液処理終了
と判定して、その後乾燥処理を行なうようにしたことを
特徴とする洗浄乾燥処理方法である。
This invention cleans the wafer by supplying a cleaning liquid to its surface while rotating the wafer, and then rotates the wafer at a higher speed than during cleaning to shake off the cleaning liquid adhering to the wafer surface and remove the liquid from the wafer surface. In the method of irradiating the wafer with light, heating it, and drying it, during the deliquification process, the wafer surface is irradiated with light and the reflected or transmitted light is detected from the surface, and the signal level of the detection signal becomes almost constant. This cleaning/drying method is characterized in that it is determined that the dewatering process is completed at a certain time, and then the drying process is performed.

〔作  用〕[For production]

脱液処理工程において、ウェハ表面に光を照射し、その
表面からの反射光または透過光を検知すると、その前段
においてはその検知信号はウェハ表面上の水滴表面での
光の乱反射または吸収等により大きく変動するが、脱液
処理後段になってくるとウェハ表面に残存する薄い水膜
により反射光または透過光に干渉が生じ、検知信号は一
定の振幅を有する信号に変化し、ウェハ表面に形成され
た微細な凹部以外の水分が遠心力により振り切られた状
態で脱液処理が完了すれば、検知信号はほぼ一定となる
。脱液処理完了検知後、ウェハ表面に光照射し、乾燥さ
せることにより、ウェハの均一で完全な乾燥処理を行な
うことができる。
In the dewatering process, when the wafer surface is irradiated with light and the reflected or transmitted light from the surface is detected, in the previous stage the detection signal is generated by diffuse reflection or absorption of the light on the surface of water droplets on the wafer surface. Although it fluctuates greatly, in the latter stages of the deliquification process, the thin water film remaining on the wafer surface causes interference in reflected or transmitted light, and the detection signal changes to a signal with a constant amplitude, causing the formation of light on the wafer surface. If the liquid removal process is completed in a state where the water other than the minute recesses that have been removed has been shaken off by centrifugal force, the detection signal will remain approximately constant. After the completion of the liquid removal process is detected, the wafer surface is irradiated with light and dried, thereby making it possible to uniformly and completely dry the wafer.

〔実施例〕〔Example〕

この発明に係る方法のフローチャートを第1図、そのフ
ローチャートを実施するための装置の1実施例を示す概
要図を第2図、第1図のフローチャートにおける各処理
工程のウェハ回転数等の時間的変化を表わす説明図を第
3図に示す。
FIG. 1 is a flowchart of the method according to the present invention, FIG. 2 is a schematic diagram showing one embodiment of an apparatus for carrying out the flowchart, and FIG. An explanatory diagram showing the change is shown in FIG.

第2図の概要図において、1はウェハWを保持し、水平
回転させるチャック、2はチャック1の上方に吊設した
洗浄液供給用ノズル、3および4はウェハWにそれらの
一端が近接すべく。
In the schematic diagram of FIG. 2, 1 is a chuck that holds the wafer W and rotates it horizontally, 2 is a cleaning liquid supply nozzle suspended above the chuck 1, and 3 and 4 are designed so that one end thereof approaches the wafer W. .

表面処理室5の内側面に吊設された投光用ファイバーお
よび受光用ファイバーである。また、表面処理室5の底
面には、処理液排出用ドレン管9が設けられており、処
理室側壁には、真空源(図示せず)と連結された減圧用
配管12が配設されている。さらに、処理室5の上部蓋
体5′は透明板で開閉可能に構成され、その上方には。
A light emitting fiber and a light receiving fiber are suspended from the inner surface of the surface treatment chamber 5. Further, a drain pipe 9 for discharging the processing liquid is provided at the bottom of the surface processing chamber 5, and a depressurizing pipe 12 connected to a vacuum source (not shown) is arranged on the side wall of the processing chamber. There is. Furthermore, the upper lid 5' of the processing chamber 5 is constructed of a transparent plate that can be opened and closed, and above it.

ウェハ乾燥用の赤外線照射ランプ10.および必要によ
り点灯される紫外線照射ランプ11が配設されている。
Infrared irradiation lamp for wafer drying 10. Also provided is an ultraviolet irradiation lamp 11 that is turned on when necessary.

また、投光用ファイバー3の他端には1発光ダイオード
または半導体レーザー等の発光手段7、受光用ファイバ
ー4の他端には、光電変換手段6がそれぞれ配設されて
いる。光電変換手段6からの出力信号は、制御手段8に
入力され、該光電変換手段6からの信号の変化により、
ウェハWの表面処理状態を検出することができる。
Furthermore, a light emitting means 7 such as a light emitting diode or a semiconductor laser is provided at the other end of the light emitting fiber 3, and a photoelectric conversion means 6 is provided at the other end of the light receiving fiber 4. The output signal from the photoelectric conversion means 6 is input to the control means 8, and due to the change in the signal from the photoelectric conversion means 6,
The surface treatment state of the wafer W can be detected.

第6図は、この制御手段8の1実施例を示すブロック図
であり、光電変換手段6からの出力信号は、まず増幅器
81を介してA/D変換器82でデジタル信号に変換さ
れ、中央演算装置(CPU)83に入力される。CPU
83では所定の演算処理1例えば微分処理が行なわれ、
微分された光電変換手段6からの出力信号が一定期間所
定レベル値以下になった時点で脱液処理を終了させるた
め、回転制御回路84を介して回転チャック1の駆動モ
ータを停止させる。
FIG. 6 is a block diagram showing one embodiment of this control means 8, in which the output signal from the photoelectric conversion means 6 is first converted into a digital signal by an A/D converter 82 via an amplifier 81, and then The data is input to a processing unit (CPU) 83. CPU
At 83, predetermined arithmetic processing 1, for example, differential processing, is performed.
When the differentiated output signal from the photoelectric conversion means 6 remains below a predetermined level value for a certain period of time, the drive motor of the rotary chuck 1 is stopped via the rotation control circuit 84 in order to terminate the liquid removal process.

以後、第1図のフローチャートに従って説明する。まず
、処理が開始(ステップS0)されると、チャック1に
保持されたウェハWが水平回転し始める。この時の回転
数Nは第3図Aに示す如く、0からN1となり、ノズル
2(第2図)からはウェハWに洗浄液が供給される(ス
テップS工)。
Hereinafter, the process will be explained according to the flowchart shown in FIG. First, when the process is started (step S0), the wafer W held by the chuck 1 begins to rotate horizontally. At this time, the rotational speed N changes from 0 to N1 as shown in FIG. 3A, and the cleaning liquid is supplied to the wafer W from the nozzle 2 (FIG. 2) (step S).

ウェハWの回転数がN1にてウェハW表面を所要時間(
0〜tx)洗浄処理した後、ウェハWの回転NはN□か
らNz  (Nz ≧200Orpm)に切り換えられ
、遠心力にて振り切る脱液処理工程(ステップS2)に
移行する。この脱液処理工程への移行と同時に1発光手
段7からファイバー3を介してウェハWの表面に光を照
射し、その反射光をファイバー4を介して光な変換手段
6に入射させることにより、ウェハWの表面における反
射光の変化を電気信号Vとして制御手段8に入力する。
The rotation speed of the wafer W is N1 and the surface of the wafer W is
0 to tx) After the cleaning process, the rotation N of the wafer W is switched from N□ to Nz (Nz ≧200 Orpm), and the process moves to a deliquification process (step S2) in which the wafer is shaken off by centrifugal force. At the same time as the transition to the liquid removal process, light is irradiated from the light emitting means 7 to the surface of the wafer W via the fiber 3, and the reflected light is made to enter the optical conversion means 6 via the fiber 4. Changes in the reflected light on the surface of the wafer W are inputted to the control means 8 as an electrical signal V.

第3図Bは、光電変換手段6からの出力信号Vの1例を
示すもので、ウェハW表面に洗浄液の水滴が残留してい
る間は、ウェハ表面への照射光が乱反射するため、受光
ファイバー4に入る光量の変化は大きいが、パターンが
形成されたvanな凹部以外のウェハWの表面から洗浄
液の水滴が完全に振り切られ、その表面に薄い水膜が残
溜する脱液処理後段になると出力信号の振幅が一定とな
り、最終的に前記凹部以外の水分がなくなった時は。
FIG. 3B shows an example of the output signal V from the photoelectric conversion means 6. While the water droplets of the cleaning liquid remain on the surface of the wafer W, the irradiated light on the wafer surface is diffusely reflected, so that it is not received. Although the amount of light entering the optical fiber 4 changes greatly, the water droplets of the cleaning liquid are completely shaken off from the surface of the wafer W other than the van recesses where the pattern is formed, and a thin water film remains on the surface. When this happens, the amplitude of the output signal becomes constant, and finally, when there is no more moisture in the area other than the recess.

受光量に相当する光電変換手段6からの出力信号Vはほ
ぼ一定となる。この出力信号Vが一定となる時間t2を
脱液処理終了時と判定する。
The output signal V from the photoelectric conversion means 6 corresponding to the amount of received light is approximately constant. The time t2 at which this output signal V becomes constant is determined to be the end of the liquid removal process.

例えば第3図Aの回転数N2 をそれぞれN、 =50
0.1000.2000、および4000rpmとした
場合、第3図Bの脱水処理に要する時間Di −tx 
)はそれぞれ60.40.25および15秒となる。ま
た、かかる脱液処理終了時の判定は1例えば、第3図B
の時間t2より所定時間後を脱液処理終了時として判定
することもできる。
For example, the number of revolutions N2 in Figure 3A is N, = 50
0.1000.2000, and 4000 rpm, the time Di -tx required for the dehydration treatment in Figure 3B
) are 60, 40, 25 and 15 seconds respectively. In addition, the determination at the end of the deliquification process is 1, for example, in FIG. 3B.
It is also possible to determine that a predetermined period of time has elapsed from time t2 as the end of the liquid removal process.

かかる脱液処理の終了後、赤外線照射ランプ10により
ウェハW表面に赤外線を照射し、ウェハ表面を乾燥する
(ステップS、)、なお、ウェハWの材質がシリコンの
場合には、シリコン基板が最も吸収しやすい波長1.2
μmの赤外領域の光線を主に含むハロゲンランプを赤外
線照射ランプ10として用いることが好ましい。
After the liquid removal process is completed, the surface of the wafer W is irradiated with infrared rays using the infrared irradiation lamp 10 to dry the wafer surface (step S). Note that when the material of the wafer W is silicon, the silicon substrate is the most Easily absorbed wavelength 1.2
It is preferable to use a halogen lamp that mainly emits light in the infrared region of μm as the infrared irradiation lamp 10.

第4図は、この発明に係る洗浄乾燥処理方法の他の実施
例を説明するためのウェハWの回転数のグラフを示す、
ここでは、前記制御手段8(第2図)に、エツチング処
理等の表面処理の終了時点(エンドポイント)を検知す
る機能をも付加した場合を開示したもので、所定の回転
数N1で回転するウェハWの表面に第2図に図示してい
ないノズルからエツチング液を供給して、ウェハW表面
の金属薄膜を選択的にエツチングし、そのエツチング状
態を、光ファイバー3および4を介してウェハW表面か
らの反射光の変化に基づいてエツチング処理のエンドポ
イントを検知する。
FIG. 4 shows a graph of the rotational speed of the wafer W for explaining another embodiment of the cleaning and drying processing method according to the present invention.
Here, a case is disclosed in which the control means 8 (FIG. 2) is additionally equipped with a function of detecting the end point of surface treatment such as etching treatment, and rotates at a predetermined rotation speed N1. An etching solution is supplied to the surface of the wafer W from a nozzle not shown in FIG. 2 to selectively etch the metal thin film on the surface of the wafer W. The end point of the etching process is detected based on changes in the reflected light from the etching process.

エツチング処理の終了時t1 をエンドポイント(E、
P、)とし、エツチング液の供給を停止するとともに、
ウェハWの回転数をN1からN2 に変え、ウェハW表
面に洗浄液を供給し、ウェハW表面を洗浄する。所定時
間経過後、洗浄液の供給を停止し1回転数をN、からN
4 に切り換え、ウェハW表面に残留する洗浄液を振切
り、同時に前記したと同様にして脱液処理の終了点を検
知し始める。しかる後、ウェハWの反射光がファイバー
4に入射する量が一定となった時t、を脱液処理終了時
とし1次にウェハWの表面にランプ11より所定時間t
4まで紫外線を照射し、ウェハW表面に付着している有
機および無機の不純物を分解する。
At the end of the etching process, t1 is set as the end point (E,
P,) and stop the supply of etching solution,
The rotation speed of the wafer W is changed from N1 to N2, and a cleaning liquid is supplied to the surface of the wafer W to clean the surface of the wafer W. After the predetermined time has passed, stop the supply of cleaning liquid and increase the number of rotations from N to N.
4, shake off the cleaning liquid remaining on the surface of the wafer W, and at the same time start detecting the end point of the liquid removal process in the same manner as described above. Thereafter, the time t when the amount of light reflected from the wafer W becomes constant and enters the fiber 4 is defined as the end of the deliquification process, and the lamp 11 is then applied to the surface of the wafer W for a predetermined time t.
Ultraviolet rays are irradiated up to 4 to decompose organic and inorganic impurities adhering to the surface of the wafer W.

次にウェハWの回転速度をN4からN、に切り換え、純
水をウェハW表面に供給し、ウェハW表面上の分解した
不純物をウェハW表面から除去する。なお、この純水洗
浄と紫外線照射とは、一定時間重複させる方が不純物の
分解除去にとっては、好ましい。
Next, the rotational speed of the wafer W is switched from N4 to N, pure water is supplied to the wafer W surface, and the decomposed impurities on the wafer W surface are removed from the wafer W surface. Note that it is preferable for the pure water washing and ultraviolet irradiation to overlap for a certain period of time in order to decompose and remove impurities.

所要時間(シ、〜ts)純水にて洗浄後、ウェハ表面に
、1.P、A、(イソ・プロピル・アルコール)等の溶
剤を供給し、ウェハ表面に残留する水分と置換させる。
After cleaning with pure water for the required time (~ts), 1. A solvent such as P, A, (isopropyl alcohol), etc. is supplied to replace the moisture remaining on the wafer surface.

また、この1.P、A、等の溶剤をウェハW表面に供給
する際には、その供給と同時に紫外線を照射すると、1
.P、A、等の溶剤が分解するため、紫外線照射と溶剤
供給とは重複しないように制御される。
Also, this 1. When supplying solvents such as P, A, etc. to the surface of the wafer W, if UV rays are irradiated at the same time as the supply, 1
.. Since solvents such as P and A are decomposed, ultraviolet irradiation and solvent supply are controlled so as not to overlap.

次にウェハWの回転数をN□からN4に切り換え、再び
脱液処理工程に入り(ts〜11)、脱液処理の終了点
が検知されて、脱液処理を終了する。この脱液処理終了
後、ウェハWの回転数はN、のまま乾燥処理工程に入り
、ランプ10によりウェハW表面に赤外線を所定時間D
t〜ts)照射する。
Next, the rotational speed of the wafer W is switched from N□ to N4, and the liquid removal process is started again (ts~11), and when the end point of the liquid removal process is detected, the liquid removal process is ended. After this deliquification process is completed, the rotation speed of the wafer W remains at N, and the drying process begins, and the lamp 10 emits infrared rays onto the surface of the wafer W for a predetermined time D.
t~ts) irradiate.

なお、上記した脱液処理工程および光照射による乾燥工
程は、減圧室内において行なうことができることは言う
までもない。
It goes without saying that the above-described liquid removal treatment step and drying step by light irradiation can be performed in a reduced pressure chamber.

なお、第7図はこの発明に係る方法の他の実施例(透過
光の場合)を示す概要図であり、ここでは発光手段7か
らシリコンウェハWに1例えば1.2μmを主波長とす
る光を照射し、その透過光を光電変換手段6により受光
して制御手段8に入力することにより、反射光の場合と
同様脱液処理の終了を検知することができる。
Note that FIG. 7 is a schematic diagram showing another embodiment (in the case of transmitted light) of the method according to the present invention. By irradiating the liquid and receiving the transmitted light by the photoelectric conversion means 6 and inputting it to the control means 8, it is possible to detect the end of the liquid removal process in the same way as in the case of reflected light.

〔発明の効果〕〔Effect of the invention〕

ウェハを洗浄後、高速回転させ、遠心力による脱液処理
後、光照射によりウェハを乾燥させる際、ウェハを必要
以上に高速回転させることもなく、また逆に、ウェハ表
面に洗浄液が残留した状態でウェハ表面に光を照射して
、ウェハ表面にシミを発生させるという問題は、脱液処
理の終了点を的確に検出することにより解消し、ウェハ
の回転数に応じた必要最少限度の脱液処理時間で処理す
ることができる。
After cleaning the wafer, it is rotated at high speed, and after deliquid treatment using centrifugal force, when drying the wafer by light irradiation, the wafer is not rotated at an unnecessarily high speed, and conversely, the cleaning solution remains on the wafer surface. The problem of irradiating the wafer surface with light and causing stains on the wafer surface can be solved by accurately detecting the end point of the deliquification process, and the process can be performed to the minimum necessary level according to the rotational speed of the wafer. It can be processed in processing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る方法を実施するための1例を示
すフローチャート、第2図はこの発明に係る方法を実施
するための1例を示す装置の概要図、第3図はこの発明
に係る方法を実施するための1例を示す説明図、第4図
はこの発明に係る方法を実施するための他の例を示す説
明図、第5図は従来の説明図、第6図は制御手段の1例
を示すブロック図、第7図はこの発明に係る方法を実施
するための他の例を示す装置概要図である。 W・・・ウェハ、     1・・・回転チャック、2
・・・ノズル、     3・・・投光用ファイバー、
4・・・受光用ファイバー、 5・・・表面処理室、  6・・・光電変換素子、7・
・・発光手段、   8・・・制御手段。 9・・・排液管、10・・・赤外線ランプ、11・・・
紫外線ランプ、12・・・減圧配管。 第1 図 〉↓ (J11L2L4 第5 図
FIG. 1 is a flow chart showing an example of implementing the method according to the present invention, FIG. 2 is a schematic diagram of an apparatus showing an example of implementing the method according to the present invention, and FIG. 3 is a flowchart showing an example of implementing the method according to the present invention. FIG. 4 is an explanatory diagram showing another example of implementing the method according to the present invention, FIG. 5 is an explanatory diagram of the conventional method, and FIG. 6 is a control diagram. FIG. 7 is a block diagram showing one example of the means, and FIG. 7 is a schematic diagram of an apparatus showing another example for implementing the method according to the present invention. W...Wafer, 1...Rotating chuck, 2
...Nozzle, 3...Light projection fiber,
4... Light receiving fiber, 5... Surface treatment chamber, 6... Photoelectric conversion element, 7...
...Light emitting means, 8...Control means. 9... Drain pipe, 10... Infrared lamp, 11...
Ultraviolet lamp, 12...decompression piping. Fig. 1〉↓ (J11L2L4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 被処理基板を回転させながらその表面に洗浄液を供給し
て洗浄し、しかる後、被処理基板を洗浄時より高速に回
転させて被処理基板表面に付着した洗浄液を振り切って
脱液し、脱液した被処理基板に光照射して加熱し、乾燥
する方法において、脱液処理時、被処理基板表面に光を
照射し、その表面からの反射光または透過光を検知し、
その検知信号の信号レベルがほぼ一定になった時を脱液
処理終了と判定して、その後乾燥処理を行なうようにし
たことを特徴とする洗浄乾燥処理方法。
While rotating the substrate to be processed, a cleaning liquid is supplied to the surface to clean it, and then the substrate to be processed is rotated at a higher speed than during cleaning to shake off the cleaning liquid adhering to the surface of the substrate to be processed and remove the liquid. In a method of irradiating light onto a substrate to be processed, heating it, and drying, during deliquid treatment, the surface of the substrate to be processed is irradiated with light, and reflected light or transmitted light from the surface is detected,
A cleaning and drying processing method characterized in that it is determined that the dewatering process is completed when the signal level of the detection signal becomes almost constant, and then the drying process is performed.
JP61219969A 1986-09-17 1986-09-17 Washing and drying treatment method Expired - Lifetime JPH0695511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219969A JPH0695511B2 (en) 1986-09-17 1986-09-17 Washing and drying treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219969A JPH0695511B2 (en) 1986-09-17 1986-09-17 Washing and drying treatment method

Publications (2)

Publication Number Publication Date
JPS6373628A true JPS6373628A (en) 1988-04-04
JPH0695511B2 JPH0695511B2 (en) 1994-11-24

Family

ID=16743863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219969A Expired - Lifetime JPH0695511B2 (en) 1986-09-17 1986-09-17 Washing and drying treatment method

Country Status (1)

Country Link
JP (1) JPH0695511B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354344A2 (en) * 2000-12-27 2003-10-22 Lam Research Corporation Method and apparatus for monitoring a semiconductor wafer during a spin drying operation
WO2005036621A1 (en) * 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
WO2005067011A1 (en) * 2004-01-07 2005-07-21 Tokyo Electron Limited Coater/developer and coating/developing method
WO2005076321A1 (en) * 2004-02-03 2005-08-18 Nikon Corporation Exposure apparatus and method of producing device
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
JP2009088563A (en) * 2004-07-07 2009-04-23 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8040489B2 (en) * 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2015222451A (en) * 2003-05-23 2015-12-10 株式会社ニコン Exposure equipment and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9874517B2 (en) 2014-03-24 2018-01-23 Konica Minolta, Inc. Processing apparatus and particle securing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2022009989A (en) * 2017-11-13 2022-01-14 東京エレクトロン株式会社 Substrate-processing device, substrate-processing method, and memory medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102233A (en) * 1979-01-30 1980-08-05 Matsushita Electric Ind Co Ltd Removing method of dust
JPS59195644A (en) * 1983-04-21 1984-11-06 Nec Corp Device for washing exposure mask
JPS6118958A (en) * 1984-07-04 1986-01-27 Mitsubishi Electric Corp Cleaning method of glass mask for semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102233A (en) * 1979-01-30 1980-08-05 Matsushita Electric Ind Co Ltd Removing method of dust
JPS59195644A (en) * 1983-04-21 1984-11-06 Nec Corp Device for washing exposure mask
JPS6118958A (en) * 1984-07-04 1986-01-27 Mitsubishi Electric Corp Cleaning method of glass mask for semiconductor device

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380619C (en) * 2000-12-27 2008-04-09 拉姆研究公司 Method and apparatus for monitoring a semiconductor wafer during a spin drying operation
EP1354344A2 (en) * 2000-12-27 2003-10-22 Lam Research Corporation Method and apparatus for monitoring a semiconductor wafer during a spin drying operation
KR100869455B1 (en) * 2000-12-27 2008-11-19 램 리써치 코포레이션 Method and Apparatus for Monitoring a Semiconductor Wafer during a Spin Drying Operation
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9958786B2 (en) 2003-04-11 2018-05-01 Nikon Corporation Cleanup method for optics in immersion lithography using object on wafer holder in place of wafer
JP2015222451A (en) * 2003-05-23 2015-12-10 株式会社ニコン Exposure equipment and device manufacturing method
US9939739B2 (en) 2003-05-23 2018-04-10 Nikon Corporation Exposure apparatus and method for producing device
JP2007059929A (en) * 2003-05-23 2007-03-08 Nikon Corp Exposure device and exposure method and device manufacturing method
US20130094006A1 (en) * 2003-10-08 2013-04-18 Zao Nikon Co., Ltd. Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US9097986B2 (en) * 2003-10-08 2015-08-04 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US7995186B2 (en) * 2003-10-08 2011-08-09 Zao Nikon Co., Ltd. Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
JP2011211221A (en) * 2003-10-08 2011-10-20 Miyagi Nikon Precision Co Ltd Substrate conveyance and substrate carrying method, exposure apparatus and exposure method, device manufacturing apparatus, and device manufacturing method
US20110261330A1 (en) * 2003-10-08 2011-10-27 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure apparatus and exposure method, device manufacturing method
WO2005036621A1 (en) * 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
JP2009094542A (en) * 2003-10-08 2009-04-30 Zao Nikon Co Ltd Substrate conveying device and substrate conveying method, exposure device and exposure method, and device manufacturing apparatus and device manufacturing method
KR101319109B1 (en) * 2003-10-08 2013-10-17 가부시키가이샤 자오 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
KR101361892B1 (en) * 2003-10-08 2014-02-12 가부시키가이샤 자오 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
TWI620990B (en) * 2003-10-08 2018-04-11 Nikon Corp Substrate transfer device, substrate transfer method, exposure device, exposure method, and device manufacturing method
US9110381B2 (en) * 2003-10-08 2015-08-18 Nikon Corporation Substrate conveyance device and substrate conveyance method, exposure apparatus and exposure method, device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
WO2005067011A1 (en) * 2004-01-07 2005-07-21 Tokyo Electron Limited Coater/developer and coating/developing method
US7530749B2 (en) 2004-01-07 2009-05-12 Tokyo Electron Limited Coater/developer and coating/developing method
KR101006635B1 (en) 2004-01-07 2011-01-07 도쿄엘렉트론가부시키가이샤 Coater/developer and coating/developing methode
US10151983B2 (en) 2004-02-03 2018-12-11 Nikon Corporation Exposure apparatus and device manufacturing method
WO2005076321A1 (en) * 2004-02-03 2005-08-18 Nikon Corporation Exposure apparatus and method of producing device
KR101377815B1 (en) * 2004-02-03 2014-03-26 가부시키가이샤 니콘 Exposure apparatus and method of producing device
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9645505B2 (en) 2004-06-09 2017-05-09 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device to measure specific resistance of liquid
US10338478B2 (en) 2004-07-07 2019-07-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) * 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US10739684B2 (en) 2004-07-07 2020-08-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009088563A (en) * 2004-07-07 2009-04-23 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US8040489B2 (en) * 2004-10-26 2011-10-18 Nikon Corporation Substrate processing method, exposure apparatus, and method for producing device by immersing substrate in second liquid before immersion exposure through first liquid
US8941808B2 (en) 2004-10-26 2015-01-27 Nikon Corporation Immersion lithographic apparatus rinsing outer contour of substrate with immersion space
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9874517B2 (en) 2014-03-24 2018-01-23 Konica Minolta, Inc. Processing apparatus and particle securing method
JP2022009989A (en) * 2017-11-13 2022-01-14 東京エレクトロン株式会社 Substrate-processing device, substrate-processing method, and memory medium

Also Published As

Publication number Publication date
JPH0695511B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JPS6373628A (en) Method for washing and drying treatments
US4871417A (en) Method and apparatus for surface treating of substrates
US4767495A (en) Method for detecting time for termination of surface layer removal processing
US20230249230A1 (en) Wafer cleaning apparatus and wafer cleaning method using the same
JPH08195375A (en) Spin-drying method and spin-dryer
JPH1020508A (en) Developing and device for substrate
JP2000114219A (en) Substrate-processing device
JPH0656833B2 (en) Substrate resist removal cleaning method and apparatus
JP3748527B2 (en) Etching apparatus and etching method
JPS6333824A (en) Cleaning method for surface
JPH04164316A (en) Photoresist removal device
JP7265467B2 (en) Resist removal system and resist removal method
JP7265466B2 (en) Resist removal system and resist removal method
JPH0745574A (en) Cleaning and drying of work and device thereof
JP2002280347A (en) Liquid chemical processing method and liquid chemical processor
JPH02201924A (en) Removal and cleaning of resist for substrate
JPH1167704A (en) Semiconductor wafer cleaning apparatus
KR100781890B1 (en) Washing device
KR20100030341A (en) Single wafer type cleaning apparatus
JPH08219638A (en) Dryer and drying method
JP2003249477A (en) Single-wafer washing device for semiconductor substrate
JPH03222408A (en) Leaf type wet peeling device
KR200155167Y1 (en) Foreign matter detecting and removing apparatus
JPH1036981A (en) Spin etching method and spin etching device
JPS5749238A (en) Chemically etching device for semiconductor substrate