JPS6367721A - Manufacture of amorphous carbon semiconductor film - Google Patents

Manufacture of amorphous carbon semiconductor film

Info

Publication number
JPS6367721A
JPS6367721A JP21186186A JP21186186A JPS6367721A JP S6367721 A JPS6367721 A JP S6367721A JP 21186186 A JP21186186 A JP 21186186A JP 21186186 A JP21186186 A JP 21186186A JP S6367721 A JPS6367721 A JP S6367721A
Authority
JP
Japan
Prior art keywords
gas
substrate
deposited
sputtering
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21186186A
Other languages
Japanese (ja)
Inventor
Misuzu Watanabe
渡辺 三鈴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP21186186A priority Critical patent/JPS6367721A/en
Publication of JPS6367721A publication Critical patent/JPS6367721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To manufacture an amorphous carbon semiconductor film which is easily controlled in the quality of the film without heating nor damaging on a substrate to be deposited and has a resistance value to be easily semiconductor by using as sputtering gas mixture gas of hydrogen gas and nitrogen gas, and specifying the mixture ratio and the whole pressure of the sputtering gas. CONSTITUTION:A graphite target is mounted on a carbon target electrode 5, a substrate 8a to be deposited is disposed near the upper wall of a vacuum chamber 1, a substrate 8b to be deposited is disposed near the sidewall of the chamber 1, and a substrate 8c to be deposited is disposed on an opposed electrode 4. Then, a vacuum vessel 1 is evacuated, for example, to 1.33X10<-5> Pa (10<-7> Torr), and 1-50 Vol.% of N2/H2+N2 of mixture gas is introduced. Then, after the total pressure (PH2+N2) in the chamber 1 is set to 1.3-665 Pa, power of high frequency (13.56 MHZ) is set, for example, to be 6.8 W/cm<2>, and sputtered for 5 hours. As a result, electric resistivities as characteristic of the carbon thin film formed on the substrates 8a, 8b, 8c at setting positions are lowered as compared with the case that only hydrogen gas is used as sputtering gas. Absorption of SP<3> bond of the carbon thin film due to C-H elongation and shrinkage vibrations is reduced by the spectrum of line (b), but SP<2> (absorption at 3025cm<-1>) bond is not almost observed.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、アモルファス炭素半導体膜の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application This invention relates to a method for manufacturing an amorphous carbon semiconductor film.

B0発明の概要 この発明は、ターゲット電極にグラファイトを用いて反
応性スパッタリングを行なう方法において、 スパッタガスを水素ガスと窒素ガスの混合気体となし、
その混合比(8り   )を1.0〜50 vot。
B0 Summary of the invention This invention is a method for performing reactive sputtering using graphite as a target electrode, in which the sputtering gas is a mixture of hydrogen gas and nitrogen gas,
The mixing ratio (8ri) is 1.0 to 50 vot.

H2+N2 チ、スパッタガスの全圧(PH2+N2)を1.3〜6
65Pa としたことKより、 堆積基板に加熱や損傷を与えることがなく、膜質のコン
トロールも容易となし、しかも牛導体化し易い抵抗値を
備えたアモルファス炭素半導体膜のM造を可能としたも
のである。
H2+N2 H, total pressure of sputtering gas (PH2+N2) 1.3 to 6
65 Pa, it is possible to produce an amorphous carbon semiconductor film without heating or damaging the deposited substrate, easily controlling the film quality, and having a resistance value that makes it easy to convert into a conductor. be.

C1従来の技術 従来、ダイヤモンド状炭素薄ちるいはアモルフ了ス炭素
薄膜の製造方法と、しては、イオンビーム法、プラズマ
CVD法などが知られている。
C1 Prior Art Conventionally, methods for manufacturing diamond-like carbon thin films or amorphous carbon thin films include ion beam methods, plasma CVD methods, and the like.

また、近年炭素薄膜の新しい作製法として、グラファイ
トを水素ガスおるいは水素とその他のガスとの混合ガス
でスパッタする方法が行なわれている。
Furthermore, in recent years, as a new method for producing carbon thin films, a method has been used in which graphite is sputtered with hydrogen gas or a mixed gas of hydrogen and other gases.

D1発明が解決しようとする問題点 しかしながら、このような従来の方法にあっては、以下
のような問題点を有している。
D1 Problems to be Solved by the Invention However, such conventional methods have the following problems.

(イ) イオンビーム法にあっては、基板にイオンビー
ムを照射するため、界面に構造欠陥が生じ易く、有機材
料や半導体などのイオンビームに侵され易い行方上には
膜形成が困難であった。
(b) In the ion beam method, since the substrate is irradiated with an ion beam, structural defects are likely to occur at the interface, and it is difficult to form a film on areas that are easily attacked by the ion beam, such as organic materials and semiconductors. Ta.

(ロ) プラズマCVD法にあっては、基板が直接プラ
ズマに晒されることによυ、損傷を受は易く膜質を上げ
るには、基板温度を200℃以上にする必要が有シ、用
途に制限を受は易い。
(b) In the plasma CVD method, the substrate is easily exposed to plasma and is easily damaged, and in order to improve the film quality, the substrate temperature must be raised to 200°C or higher, which limits its application. It is easy to receive.

6)  グラファイトをスパッタする方法にあっては、
非常に良質な炭素薄膜を形成出来るが、半導体化炭素薄
膜の真性半導体膜として考えた場合、用途によっては、
抵抗が大き過ぎる。
6) In the method of sputtering graphite,
A very high quality carbon thin film can be formed, but when considered as a semiconducting carbon thin film as an intrinsic semiconductor film, depending on the application,
Too much resistance.

本発明は、このような従来の諸問題に着詫作されたもの
であって、堆積基板に加熱や損傷を与えることがなく、
膜質のコントロールも容易となし、しかも半導体化し易
い抵抗値を備えたアモルファス炭素半導体膜を得んとす
るものである。
The present invention has been made to address these conventional problems, and does not cause heating or damage to the deposition substrate.
The object of the present invention is to obtain an amorphous carbon semiconductor film whose film quality can be easily controlled and which has a resistance value that is easy to convert into a semiconductor.

E6問題点を解決するための手段 本発明は、ターゲット電極にグラファイトを用いたスパ
ッタリング装置の真空室に水素ガスとΩ素ガスの混合気
体でなるスパッタガスを導入し、その水素ガスと窒素ガ
スの混合比(N8□2+N2)を1〜50 vot、%
にyA製し、且つ該混合気体の全圧(PH2+N2)を
1.3〜665 Pa とした状態で、反応性スパッタ
リングを行なうことを、その構成としている。
Means for Solving Problem E6 The present invention introduces a sputtering gas consisting of a mixture of hydrogen gas and Ω element gas into the vacuum chamber of a sputtering apparatus using graphite as a target electrode, and then mixes the hydrogen gas and nitrogen gas. Mixing ratio (N8□2+N2) from 1 to 50 vot,%
The structure is such that the reactive sputtering is performed under the condition that the total pressure (PH2+N2) of the mixed gas is 1.3 to 665 Pa.

18作用 水素ガスは、スパッタすることによジターゲットである
グラファイトのCと結合してC−Hfl[となり、この
C−Hgは、堆積基板に付着し成膜を行なう。また、窒
素ガスは、スパッタ用ガスを混合されたことによシ、バ
ンド端の局在準位を減少して、成膜されたアモルファス
炭素膜の抵抗を小さくする作用がある。
By sputtering, the 18-active hydrogen gas combines with C of graphite, which is a ditarget, to form C-Hfl[, and this C-Hg adheres to the deposition substrate to form a film. Further, since the nitrogen gas is mixed with the sputtering gas, it has the effect of reducing the localized level at the band edge and reducing the resistance of the formed amorphous carbon film.

G、実施例 以下、本発明に係るアモルファス炭素半導体膜の製造方
法を図面に示す実施例に基づき詳細に説明する。
G. Examples Hereinafter, a method for manufacturing an amorphous carbon semiconductor film according to the present invention will be explained in detail based on examples shown in the drawings.

先ず、本発明に用いられたスパッタリング装置を第1図
に基づいて説明する。
First, a sputtering apparatus used in the present invention will be explained based on FIG.

同図中の符号1は真空室、2はスパッタソースガス導入
管、3は排気管であって、図示しない真空ポンプに接続
されている。4は接地電位の電子引抜き対向電極、5は
ターゲット電極であり、マツチングボックス6を介して
高周波(R,F、)電源7に接続されている。8a、8
bは、真空室1内でかつプラズマによる励起ソースのト
ランスポートする領域よシ外側に配置した堆積基板であ
シ、8cは、対向電極4に配置した堆積基板でおる。
In the figure, numeral 1 is a vacuum chamber, 2 is a sputtering source gas introduction pipe, and 3 is an exhaust pipe, which are connected to a vacuum pump (not shown). Reference numeral 4 indicates an electron extraction counter electrode at ground potential, and reference numeral 5 indicates a target electrode, which are connected to a high frequency (R, F,) power source 7 via a matching box 6. 8a, 8
Reference numeral b denotes a deposition substrate placed within the vacuum chamber 1 and outside the region to which the plasma excitation source is transported, and 8c denotes a deposition substrate placed on the counter electrode 4.

なお、同図中、A部、B部、0部は、X空室1内を概念
的に分けた領域を示したものであって、A部は曲iaで
囲まれた範囲を示し、両電極間及びその周辺に発生して
いるプラズマ状態の領域であシ、この領域ではターゲッ
ト電極5から発生したC 、 CM 、 CH2、CM
5 、 CHII、 C2H1l 、 C2H6等の粒
子が存在している。
In addition, in the same figure, part A, part B, and part 0 indicate conceptually divided areas within X vacant room 1, and part A indicates the range surrounded by song ia, and both This is a region in a plasma state that is generated between the electrodes and around it, and in this region, C, CM, CH2, CM generated from the target electrode 5
Particles such as 5, CHII, C2H1l, and C2H6 are present.

B部は、曲線すで囲まれる、A部を除いた範囲を示し、
プラズマ中に存在する上記の粒子がトランスポートする
領域であって、その速度は雰囲気ガスの圧力及び電極間
電圧によって決定される。
Part B indicates the range excluding part A, which is surrounded by the curve,
This is the region in which the particles present in the plasma are transported, and the speed thereof is determined by the pressure of the atmospheric gas and the voltage between the electrodes.

C部は、真空室1内のA、B部を除いた範囲を示し、上
記の粒子がトランスポートされて、真空室1内壁に配置
した堆積基板8にソフトにデボジツションする領域であ
る。
Section C indicates an area within the vacuum chamber 1 excluding sections A and B, and is an area where the above-mentioned particles are transported and softly deposited onto the deposition substrate 8 placed on the inner wall of the vacuum chamber 1.

か\る構成のスパッタ装置を用いて、本実施例では、以
下の条件をを設定してスパッタを行なっている。
In this embodiment, using the sputtering apparatus having the above configuration, sputtering is performed under the following conditions.

即ち、グラファイトターゲットを炭素ターゲット電極5
に設置し、堆積基板8aを真空室1上部壁寄9に、堆積
基板8bを真空室1側壁寄シに、堆積基板8cを対向電
極4に配置した。
That is, the graphite target is connected to the carbon target electrode 5.
The deposition substrate 8a was placed near the upper wall 9 of the vacuum chamber 1, the deposition substrate 8b was placed near the side wall of the vacuum chamber 1, and the deposition substrate 8c was placed near the counter electrode 4.

そして、真空室1内を1.33X10−’Pa (IQ
−7Torr)まで減圧し、N2 /H2+N2が1o
vot、%の混合ガスを67 P& (0,5Tart
 )となるまで導入する。
Then, the pressure inside the vacuum chamber 1 is 1.33X10-'Pa (IQ
-7Torr) and N2/H2+N2 to 1o
vot,% mixed gas at 67 P& (0,5 Tart
).

次に、真空室1内のガス圧力(PH2+N2 )が安定
した後、高周波(13,56MH2) 1!力を6.8
 W/cmに設定し、5時間スパッタを行なった。
Next, after the gas pressure (PH2+N2) in the vacuum chamber 1 stabilizes, high frequency (13,56MH2) 1! power 6.8
Sputtering was performed for 5 hours at a setting of W/cm.

その結果、各セツティング位置の堆積基板8a。As a result, the deposition substrate 8a at each setting position.

8b、8c上に形成された炭素薄膜の特性を下表に示す
。なお、比較のため、窒素ガス(N2)を混合しない場
合の特性も表右欄に示す。
The characteristics of the carbon thin films formed on 8b and 8c are shown in the table below. For comparison, the characteristics when nitrogen gas (N2) is not mixed are also shown in the right column of the table.

上記の表で明らかにされる通シ、窒素ガスを水素ガス中
に10 vo4%の割合で混合した場合、電気抵抗率が
、水素ガスのみをスパッタ用ガスとした場合に比し、と
もに低下する結果が得られた。
As shown in the table above, when nitrogen gas is mixed with hydrogen gas at a ratio of 10 VO 4%, the electrical resistivity is lower than when only hydrogen gas is used as the sputtering gas. The results were obtained.

第2図は、真空室1上部壁に配置した堆積基板8a上に
形成された炭素薄膜の赤外吸収スペクトル(線イ)と、
水素ガスのみでスパッタした試料の赤外吸収スペクトル
(綜口)を示すグラフでちる。
FIG. 2 shows the infrared absorption spectrum (line A) of the carbon thin film formed on the deposition substrate 8a placed on the upper wall of the vacuum chamber 1;
This is a graph showing the infrared absorption spectrum (height) of a sample sputtered with only hydrogen gas.

同図に示されるように、窒素ガスと水素ガスの混合ガス
存在下でのスパッタで作製された炭素薄膜のSP5結合
のC−H伸縮振動による吸収は、線−〇スペクトルよシ
減少しているが、SF3(3025cm−’に出る吸収
)結合は、はとんど見られない。
As shown in the same figure, the absorption due to the C-H stretching vibration of the SP5 bond in the carbon thin film fabricated by sputtering in the presence of a mixed gas of nitrogen gas and hydrogen gas is reduced from the line -〇 spectrum. However, SF3 (absorption at 3025 cm-') bond is rarely seen.

また、窒素に基づ(N−H(3350〜3300crn
−’ )やC−N(2820〜、2760crn−1)
のシグナルも見られなかった。
Also, based on nitrogen (N-H (3350-3300crn
-' ) and C-N (2820~, 2760crn-1)
No signal was seen.

また、第3図は、光学バンドギャップ(Ego)を求め
るために測定した吸収係数(α)をフォトンエネルギー
に対して(αhν) 対hν(hニブランク定数、シ:
光の振動数)の形でプロットしたものである。
In addition, Figure 3 shows the absorption coefficient (α) measured to determine the optical band gap (Ego) with respect to the photon energy (αhν) versus hν (hniblank constant, si:
It is plotted in the form of (frequency of light).

第2図と同様に線イは、本実施例に係る炭素薄膜の特性
を、線口は、水素ガスのみに依る炭素薄膜の特性を示し
ている。
Similarly to FIG. 2, line A shows the characteristics of the carbon thin film according to this example, and line a shows the characteristics of the carbon thin film based only on hydrogen gas.

同図に依れば、線イの特性は、線口の特性よシEgo以
下のフォトンエネルギーでの吸収が減少している。これ
は、スパッタ、用ガス(スパッタソースガス)に窒素ガ
スを混合することによって、バンド端の局在準位が減少
することを意味し、この事が抵抗を小さくする要因の1
つと考えられる。
According to the figure, the characteristic of line A is that absorption at photon energies below Ego is reduced compared to the characteristic of the line mouth. This means that by mixing nitrogen gas with the sputtering gas (sputtering source gas), the localized level at the band edge is reduced, and this is one of the factors that reduce the resistance.
It is thought that there is one.

さらに、第4図は、PH2+N2 (”3’s。+N2
を1 vo4チとする。)を1.3Pa〜267Pmま
で変えて測定した抵抗率ρと光学バンドギャップEgo
との関係を示すグラフであシ、第5図は、PH2+N2
を67PaとしてN5/1!2+N2を1 voL%〜
50 vo4 % と変えた時のρとEgoとの関係を
示している。
Furthermore, FIG. 4 shows PH2+N2 ("3's.+N2
Let's say 1 vo4 chi. ) and the optical bandgap Ego measured by changing the value from 1.3 Pa to 267 Pm.
Figure 5 is a graph showing the relationship between PH2+N2
Assuming 67Pa, N5/1!2+N2 is 1 voL%~
It shows the relationship between ρ and Ego when it is changed to 50 vo4%.

以上よシ、この方法で作製された炭素薄膜は、Ego 
= 1.8 aV以上のワイドギャップを保持しながら
、ρ=lO〜10  Ω・mの比較的低い抵抗値であシ
、且つSP2結合をほとんど含ま々いアモルファス炭素
真性(1ntrinsic )半導体膜であることが明
らかとなる。
As described above, the carbon thin film produced by this method has Ego
While maintaining a wide gap of = 1.8 aV or more, it has a relatively low resistance value of ρ = lO ~ 10 Ω・m, and is an amorphous carbon intrinsic (1 ntrinsic) semiconductor film containing almost no SP2 bond. This becomes clear.

なお、PH2,N2が1.3Pa以下では、Egoが低
すぎ、665 Pa C5,OTart )を越えると
、抵抗は下らにボイド(void)などの欠陥が生じ易
くなシ思わしくなく、従って、PH+N  は、1.3
Pa〜665Pa。
Note that if PH2, N2 is below 1.3 Pa, Ego is too low, and if it exceeds 665 Pa (C5, OTart), defects such as voids tend to occur in the lower part of the resistance. is 1.3
Pa~665Pa.

水素ガスに対する窒素ガス濃度は、1〜50 vo4チ
が望ましい。
The concentration of nitrogen gas relative to hydrogen gas is preferably 1 to 50 vol.

以上、実施例について説明したが、本発明に係るアモル
ファス炭素半導体膜の製造方法においては、スパッタリ
ング装置の構造並びにスパッタ電力1時間等が上記実施
例の方法に限られるものではなく、また、堆積基板のセ
ツティング位置も上記実施例において設定された位置に
限られるものではない。
Although the embodiments have been described above, in the method for manufacturing an amorphous carbon semiconductor film according to the present invention, the structure of the sputtering device, the sputtering power for 1 hour, etc. are not limited to the method of the above embodiments, and the The setting position is not limited to the position set in the above embodiment.

H0発明の効果 以上の説明で明らかなように1この発明に係るアモルフ
ァス炭素半導体膜の製造方法にあっては、水素ガスと窒
素ガスとの混合ガスを所定の条件で用いたことによシ、 (f)  Eg = t、s eV以上のワイドギャッ
プを保持する。
Effects of the H0 Invention As is clear from the above explanation, 1. In the method for manufacturing an amorphous carbon semiconductor film according to the present invention, by using a mixed gas of hydrogen gas and nitrogen gas under predetermined conditions, (f) Maintain a wide gap of Eg = t, s eV or more.

(ロ) バンド端近傍の局在準位が少ない。(b) There are few localized levels near the band edge.

(ハ) ρ=107〜1010Ω・口のエクストリンシ
ック(extrinsic )半導体化し易い抵抗値。
(c) ρ = 107 to 1010 Ω - a resistance value that is easy to convert into an extrinsic semiconductor.

以上の(イ)、(ロ)、(ハ)を備えたイントリンシッ
ク(1ntrinsic )アモルファス炭素半導体膜
の作製が可能となる効果がある。
This has the effect of making it possible to manufacture an intrinsic amorphous carbon semiconductor film having the above (a), (b), and (c).

また、C−Cのsp結合をほとんど含まず、従来の炭素
膜より抵抗値が小さい炭素膜の作製を可能とする効果が
ある。
Further, it has the effect of making it possible to produce a carbon film that contains almost no CC sp bonds and has a lower resistance value than conventional carbon films.

さらに、堆積基板を、プラズマ状態の位置やトランスポ
ート領域を外れた位置に配置すれば、イオンビームによ
る表面損傷を防止出来、またプラズマに晒されることに
よる損傷、膜質の低下、堆積基板の温度上昇を防止出来
る効果がある。
Furthermore, by locating the deposition substrate at a position outside the plasma state or transport region, surface damage caused by the ion beam can be prevented, and damage caused by exposure to plasma, deterioration of film quality, and temperature increase of the deposition substrate can be prevented. It has the effect of preventing

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係るアモルファス炭素半導体膜の製
造方法の実施例に用いられたスパッタリング装置を示す
概略説明図、第2図は、赤外吸収スペクトルを示すグラ
フ、第3図は、(αhν)0°5とhνとの関係を示す
グラフ、第4図は、抵抗率ρ、光学バンドギャップ’E
goのガス圧依存性を示すグラフ、第5図は、抵抗率ρ
と光学バンドギャップEgoの窒素濃度依存性を示すグ
ラフである。 1・・・真窒室、5・・・ターゲント電極。 第1図 恣・零←g珂;二用いニスバ/り117・グー匿(第2
図 逝夕)−43(gスヘ・クトクル1示1り/7−733
CK)      3100     2900   
 2700     25(X)鑞   友 (am 
) 第3図 (αhV )o、sと hv  ヒ0関称i爪1グラフ
フィトンエキルギ゛−(eV) 第4図 PH2+N2  (Torr)
FIG. 1 is a schematic diagram showing a sputtering apparatus used in an example of the method for manufacturing an amorphous carbon semiconductor film according to the present invention, FIG. 2 is a graph showing an infrared absorption spectrum, and FIG. Figure 4 is a graph showing the relationship between αhν)0°5 and hν.
A graph showing the gas pressure dependence of go, Figure 5, shows the resistivity ρ
It is a graph showing the nitrogen concentration dependence of the optical band gap Ego. 1... True nitrogen chamber, 5... Target electrode. Fig. 1. 0 ← g 珂; 2-use Nisba/ri 117 ・G 珂 (2nd
Figure passed away)-43 (Gsuhe Kutkul 1 Show 1ri/7-733
CK) 3100 2900
2700 25(X) Yu Sui (am
) Fig. 3 (αhV) o, s and hv h0 function i nail 1 graph phyton energy (eV) Fig. 4 PH2+N2 (Torr)

Claims (1)

【特許請求の範囲】 ターゲット電極にグラファイトを用いたスパツタリング
装置の真空室に水素ガスと窒素ガスの混合気体でなるス
パッタガスを導入し、その水素ガスと窒素ガスの混合比
(N^2/H_2+N_2)を1〜50vol. %に調製し、且つ該混合気体の全圧(P_H__2_+
_N__2)を1.3〜665Paとした状態で、反応
性スパッタリングを行なうことを特徴とするアモルファ
ス炭素半導体膜の製造方法。
[Claims] A sputtering gas consisting of a mixture of hydrogen gas and nitrogen gas is introduced into the vacuum chamber of a sputtering device using graphite as a target electrode, and the mixture ratio of hydrogen gas and nitrogen gas (N^2/H_2+N_2 ) from 1 to 50 vol. %, and the total pressure of the mixed gas (P_H__2_+
_N___2) is 1.3 to 665 Pa, and reactive sputtering is performed.
JP21186186A 1986-09-09 1986-09-09 Manufacture of amorphous carbon semiconductor film Pending JPS6367721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21186186A JPS6367721A (en) 1986-09-09 1986-09-09 Manufacture of amorphous carbon semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21186186A JPS6367721A (en) 1986-09-09 1986-09-09 Manufacture of amorphous carbon semiconductor film

Publications (1)

Publication Number Publication Date
JPS6367721A true JPS6367721A (en) 1988-03-26

Family

ID=16612819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21186186A Pending JPS6367721A (en) 1986-09-09 1986-09-09 Manufacture of amorphous carbon semiconductor film

Country Status (1)

Country Link
JP (1) JPS6367721A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180209037A1 (en) * 2017-01-24 2018-07-26 Applied Materials, Inc. Method to improve film quality for pvd carbon with reactive gas and bias power
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102091A (en) * 2017-01-24 2019-09-02 어플라이드 머티어리얼스, 인코포레이티드 How to Improve Film Quality for PVD Carbon Using Reactive Gas and Bias Power
US10570506B2 (en) * 2017-01-24 2020-02-25 Applied Materials, Inc. Method to improve film quality for PVD carbon with reactive gas and bias power
US20180209037A1 (en) * 2017-01-24 2018-07-26 Applied Materials, Inc. Method to improve film quality for pvd carbon with reactive gas and bias power
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10950429B2 (en) 2018-05-08 2021-03-16 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Similar Documents

Publication Publication Date Title
Kim et al. Low-k Si–O–C–H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor
US5849163A (en) Process for formation of epitaxial film
US5073241A (en) Method for carbon film production
US4572841A (en) Low temperature method of deposition silicon dioxide
US5068124A (en) Method for depositing high quality silicon dioxide by pecvd
Loboda et al. Plasma‐enhanced chemical vapor deposition of a‐SiC: H films from organosilicon precursors
JP2001284349A (en) High permittivity gate oxide for silicon substrate device
Gereth et al. Properties of Ammonia‐Free Nitrogen‐Si3 N 4 Films Produced at Low Temperatures
JPS6367721A (en) Manufacture of amorphous carbon semiconductor film
JPH07335559A (en) Method for manufacturing semiconductor device
Chowdhury et al. Thermally oxidized AlN thin films for device insulators
Kar et al. Correlation of electrical and morphological properties of sputtered aluminum nitride films with deposition temperature
JPS59100561A (en) Semiconductor device and method of producing same
JPH0697070A (en) Manufacture of polycrystalline silicon film
JP3549227B2 (en) Highly oriented diamond thin film
JPH0682651B2 (en) Epitaxy insulating film for semiconductor device and manufacturing method thereof
EP0601513B1 (en) Method for forming deposited epitaxial Si film by sputtering
US4761302A (en) Fluorination of amorphous thin-film materials with xenon fluoride
JP2547032B2 (en) Method for forming hydrogenated amorphous C-Si film
JP3399624B2 (en) Method for producing hydrogen-containing amorphous carbon
JPH03212976A (en) Treatment method of cis structure containing transparent conductive oxide film
JPH09153598A (en) Dielectric thin film element and fabrication thereof
JP2668459B2 (en) Insulation film manufacturing method
Song et al. Effects of native oxide removal from silicon substrate and annealing on SiO2 films deposited at 120° C by plasma enhanced chemical vapor deposition using disilane and nitrous oxide
JP3507108B2 (en) Method of forming deposited film by bias sputtering method