JPS6367583A - Magnetism detector - Google Patents

Magnetism detector

Info

Publication number
JPS6367583A
JPS6367583A JP61212375A JP21237586A JPS6367583A JP S6367583 A JPS6367583 A JP S6367583A JP 61212375 A JP61212375 A JP 61212375A JP 21237586 A JP21237586 A JP 21237586A JP S6367583 A JPS6367583 A JP S6367583A
Authority
JP
Japan
Prior art keywords
coil
detection
magnetic
magnetic field
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61212375A
Other languages
Japanese (ja)
Other versions
JP2587412B2 (en
Inventor
Natsuhiko Sakairi
坂入 夏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61212375A priority Critical patent/JP2587412B2/en
Publication of JPS6367583A publication Critical patent/JPS6367583A/en
Application granted granted Critical
Publication of JP2587412B2 publication Critical patent/JP2587412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To clearly discriminate whether or not there is a magnetic body by detecting synchronously the detected value signal of a detection coil by a phase detection coil as a phase reference. CONSTITUTION:An exciting coil 2 produces a magnetic field with an alternating current from an oscillator 1. Part of this magnetic field penetrates detection coils 3 and 3a, which induce voltages. Further, the phase detection coil 8 is arranged so as to penetrate the magnetic field produced by the coil 2 the same phase at all times. Then the voltage induced cross the coils 3 and 3a are amplified to become detection signals a1 and a2, which are detected synchronously by synchronous detecting circuits 13 and 13a with a synchronizing signal (b) generated by the coil 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性体又は導電体を検知するための磁気検知
器に関し、特に、磁性体又は導電体をガイドレーンとし
て走行する無人搬送車に使用されるカイドレーン用磁気
検知器に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic detector for detecting a magnetic material or a conductive material, and is particularly applicable to an automatic guided vehicle that runs using a magnetic material or a conductive material as a guide lane. The present invention relates to a magnetic detector used for KaiDrain.

〔従来の技術〕[Conventional technology]

磁性体の存在を検知する磁気検知器の1つに、交流磁場
を発生する励起コイルとそれが作る磁場によって誘導電
圧を生ずる検知コイルから成る自己励磁型のものがある
。これは、構造が簡単で設計の自由度も大きいことから
、従来広く利用されており、効果をあげている。1つの
利用分野として、この技術は種々の車両誘導システム等
に利用され役立っている。これらの誘導システムでは、
帯状の磁性体又は金属等の導電体をガイドレーンとして
誘導すべき道に設けて、誘導されるべきもの(車両等)
に取り付けられた検知器の信号からガイドレーンの方向
を知り、それに応じて操舵し、目的の場所に誘導するも
のである。
One type of magnetic detector that detects the presence of a magnetic substance is a self-excitation type that includes an excitation coil that generates an alternating magnetic field and a detection coil that generates an induced voltage by the generated magnetic field. This has been widely used and has been effective because it has a simple structure and a high degree of freedom in design. As one field of application, this technology is used and useful in various vehicle guidance systems. In these guidance systems,
Objects to be guided (vehicles, etc.) by installing a conductive material such as a magnetic material or metal in the form of a strip on the road to be guided as a guide lane.
The system learns the direction of the guide lane from the signal from a detector attached to the vehicle, and steers accordingly to guide the vehicle to its destination.

従来の磁気検知器としては、第9図のコイル配置で第1
0図の回路構成のものが知られている。
As a conventional magnetic detector, the coil arrangement shown in Figure 9 is the first one.
The circuit configuration shown in Fig. 0 is known.

この磁気検知器の動作について説明する。まず、励起コ
イル2に発振器1を接続して、交流電流を励起コイル2
に流す。すると、励起コイル2から励起磁界4が発生す
る。この励起磁界4の一部が検知コイル3,3aを貫く
ことにより、検知コイル3.3aに誘導電圧が生ずる。
The operation of this magnetic detector will be explained. First, connect the oscillator 1 to the excitation coil 2 and apply an alternating current to the excitation coil 2.
flow to. Then, an excitation magnetic field 4 is generated from the excitation coil 2. When a portion of this excitation magnetic field 4 penetrates the sensing coils 3, 3a, an induced voltage is generated in the sensing coil 3.3a.

この誘導電圧は、第10図の信号処理の回路に入力され
る。検知コイル3,3aの誘導電圧はそれぞれ増幅回路
5゜5aを経て整流回路6,6aで整流された後、差動
回路7に入力され、検知コイル3,3aによる2つの信
号の差が出力される。
This induced voltage is input to the signal processing circuit shown in FIG. The induced voltages of the detection coils 3 and 3a are respectively rectified by rectifier circuits 6 and 6a through amplifier circuits 5.5a and then input to a differential circuit 7, where the difference between the two signals from the detection coils 3 and 3a is output. Ru.

このような構成・機能の磁気検知器において、検知コイ
ル3に空気より大きな比透磁率をもつ磁性体が接近する
と、磁界分布が変化し、検知コイルを貫く磁束も変化す
る。また、導電体が接近すると、導電体に生ずる渦電流
により磁界が変化する。その結果、検知コイルに誘導さ
れる電圧も変化することになる。磁性体又は導電体が2
つの検知コイルから対称な位置(第9図の中心軸り上)
にある場合は磁界分布は対称となり、2つの検知コイル
の誘導電圧も等しいため、検知器出力も零となる。しか
し、磁性体又は導電体で作られたガイドレーンが片側の
検知コイルにより接近すると、左右の検知コイル電圧が
不平衡となり、差動回路7の出力電圧が不平衡の程度に
応じて正又は負となる。従って、この電圧を制御信号と
して用いることにより、誘導されるべき物(車両等)を
ガイドレーンに沿って走行させることができる。
In a magnetic detector having such a configuration and function, when a magnetic body having a relative magnetic permeability larger than air approaches the detection coil 3, the magnetic field distribution changes and the magnetic flux passing through the detection coil also changes. Furthermore, when a conductor approaches, the magnetic field changes due to eddy currents generated in the conductor. As a result, the voltage induced in the sensing coil will also change. Magnetic material or conductive material is 2
Symmetrical position from the two detection coils (on the center axis in Figure 9)
, the magnetic field distribution becomes symmetrical and the induced voltages of the two detection coils are also equal, so the detector output is also zero. However, when a guide lane made of a magnetic or conductive material approaches one of the sensing coils, the voltages of the left and right sensing coils become unbalanced, and the output voltage of the differential circuit 7 becomes positive or negative depending on the degree of unbalance. becomes. Therefore, by using this voltage as a control signal, an object to be guided (such as a vehicle) can be caused to travel along the guide lane.

次に、磁性体が接近した時の磁界の変化についてより詳
細に説明する。第3図(a)は検知コイル3、Tli性
体11およびその周辺の磁力線について示したものであ
る。実線9は磁性体11のない場合の磁力線であり、破
線10は磁性体11が検知コイル3に接近したときの磁
力線である。第3図(a)に示すように、磁性体11が
接近すると、磁力線は、磁性体11に吸い込まれるよう
に、実線9から破mloへというように変化する。この
時、検知コイル3を垂直に貫く磁束の総和も、第3図(
′b)の実線矢印の大きさから破線矢印の大きさへと減
少し、誘導電圧は小さくなる。従って、第10図におい
て、磁性体11が近づいた側の整流回路6の出力は、も
う一方の整流回路6aの出力より小さくなり、差動回路
7の出力はそれに応じて正又は負となる。
Next, changes in the magnetic field when a magnetic body approaches will be explained in more detail. FIG. 3(a) shows the detection coil 3, the Tli material 11, and the lines of magnetic force around them. A solid line 9 is a line of magnetic force when the magnetic body 11 is not present, and a broken line 10 is a line of magnetic force when the magnetic body 11 approaches the detection coil 3. As shown in FIG. 3(a), when the magnetic body 11 approaches, the lines of magnetic force change from a solid line 9 to a broken line 9 as if being sucked into the magnetic body 11. At this time, the total sum of magnetic flux that perpendicularly passes through the detection coil 3 is also calculated as shown in Figure 3 (
'b) decreases from the size of the solid line arrow to the size of the broken line arrow, and the induced voltage becomes smaller. Therefore, in FIG. 10, the output of the rectifier circuit 6 on the side closer to the magnetic body 11 is smaller than the output of the other rectifier circuit 6a, and the output of the differential circuit 7 becomes positive or negative accordingly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の検知器にガイドレーンが非常に接近した
場合、磁力線分布は、第4図(a)の実線9から同図の
破線10へと大きく変化し、検知コイル3を貫く磁束の
総和は、同図(blの実線矢印で示す向きから破線矢印
で示す向きへ逆転する。検知コイル3の誘導電圧は、上
述したように整流回路6を通すため、磁性体との距離が
小さくなるに従い減少していた整流回路6の出力電圧は
、磁性体11がさらに接近して磁力線の向きが逆になる
と、磁性体11との距離の減少に伴い、逆に増加する。
When the guide lane is very close to the conventional detector described above, the magnetic field line distribution changes greatly from the solid line 9 in FIG. , the same figure (the direction shown by the solid line arrow in BL is reversed from the direction shown by the broken line arrow).The induced voltage in the detection coil 3 is passed through the rectifier circuit 6 as described above, so it decreases as the distance from the magnetic body becomes smaller. When the magnetic body 11 approaches further and the direction of the lines of magnetic force becomes reversed, the output voltage of the rectifier circuit 6 increases as the distance from the magnetic body 11 decreases.

すなわち、磁性体11が一定距離以上に接近した場合、
磁性体のない場合と区別できな(なるという欠点があっ
た。
That is, when the magnetic body 11 approaches a certain distance or more,
The disadvantage was that it could not be distinguished from the case without magnetic material.

〔問題点を解決するための手段〕[Means for solving problems]

このような欠点を除去するために本発明は、交流磁界を
発生する励起コイルと、この励起コイルの作る磁界によ
って誘導電圧を生ずる検知コイルと、磁界によって誘導
電圧を生じ発生磁界の位相を検知する位相検知コイルと
、検知コイルの誘導電圧による検知信号を位相検知コイ
ルの誘導電圧による同期信号により同期検波する同期検
波回路とを検知器に設けるようにしたものである。
In order to eliminate such drawbacks, the present invention provides an excitation coil that generates an alternating magnetic field, a detection coil that generates an induced voltage by the magnetic field generated by the excitation coil, and a detection coil that generates an induced voltage by the magnetic field and detects the phase of the generated magnetic field. The detector is provided with a phase detection coil and a synchronous detection circuit that synchronously detects a detection signal caused by the voltage induced in the detection coil using a synchronous signal caused by the voltage induced in the phase detection coil.

〔作用〕[Effect]

本発明においては、検知コイルを貫く磁束の向きが反転
した時には負電圧が出力される。
In the present invention, a negative voltage is output when the direction of the magnetic flux passing through the sensing coil is reversed.

〔実施例〕〔Example〕

本発明に係わる磁気検知器の一実施例を第1図および第
2図に示す。第1図は本検知器の各構成の配置を示す配
置図、第2図は本検知器の回路を示す回路図である。第
1図および第2図において第9図および第10図と同一
部分又は相当部分には同一符号が付しである。
An embodiment of the magnetic detector according to the present invention is shown in FIGS. 1 and 2. FIG. 1 is a layout diagram showing the arrangement of each component of the present detector, and FIG. 2 is a circuit diagram showing the circuit of the present detector. In FIGS. 1 and 2, the same or equivalent parts as in FIGS. 9 and 10 are given the same reference numerals.

第1図において、励起コイル2は発振器1からの交流電
流により磁界を発生する。この磁界の一部が検知コイル
3.3aを貫くことにより検知コイル3,3aには誘導
電圧が生ずる。位相検知コイル8は、励起コイル2から
発生する磁界を常に同一位相で貫く位置に設置される。
In FIG. 1, an excitation coil 2 generates a magnetic field using an alternating current from an oscillator 1. A part of this magnetic field penetrates the sensing coil 3.3a, so that an induced voltage is generated in the sensing coils 3, 3a. The phase detection coil 8 is installed at a position where the magnetic field generated from the excitation coil 2 always penetrates with the same phase.

第2図において、検知コイル3.3aの誘導電圧は、増
幅回路12.12aで増幅されて検知信号al、a2と
なる。この検知信号al、a2は、同期検波回路13.
13aで、位相検知コイル8で生じた誘導電圧を増幅し
た信号である同期信号すにより同期検波される。
In FIG. 2, the induced voltage of the detection coil 3.3a is amplified by the amplifier circuit 12.12a to become detection signals al and a2. These detection signals al and a2 are transmitted to the synchronous detection circuit 13.
13a, synchronous detection is performed using a synchronous signal S which is a signal obtained by amplifying the induced voltage generated in the phase detection coil 8.

このような構成・機能の本検知器に磁性体が接近して磁
力線分布が第3図+8)のように変化した場合の第2図
の回路の各部波形を第5図に示し、第4図(a)のよう
に変化した場合の各部波形を第6図に示す。第5図(a
)および第6図(a)は検知コイル3.3aの誘導電圧
を増幅回路12.12aで増幅した信号である検知信号
al(破線)、  a2 (実線)を示し、第5図(b
)および第6図(b)は位相検知コイル8の誘導電圧を
増幅回路12bで増幅した信号である同期信号すを示し
、第5図(C1および第6図(e)は同期検波回路13
.13aの出力である検波信号cl(破線)、c2(実
線)を示す。
Figure 5 shows the waveforms of various parts of the circuit in Figure 2 when a magnetic body approaches this detector with such a configuration and function and the magnetic field line distribution changes as shown in Figure 3+8). FIG. 6 shows waveforms of various parts when changing as shown in (a). Figure 5 (a
) and FIG. 6(a) show detection signals al (broken line) and a2 (solid line), which are signals obtained by amplifying the induced voltage of the detection coil 3.3a by the amplifier circuit 12.12a, and FIG. 5(b)
) and FIG. 6(b) show the synchronous signal S which is a signal obtained by amplifying the induced voltage of the phase detection coil 8 by the amplifier circuit 12b, and FIG.
.. Detection signals cl (broken line) and c2 (solid line), which are the outputs of 13a, are shown.

第5図(a)に示す破線の検知信号al+第5図TC)
に示す破線の検波信号C1は、第3図(a)の磁性体1
1による信号である。検波信号C2は磁性体11の影響
のない検知コイル3aの誘導電圧によるものである。検
波信号CIのレベルは、第3図(b)に示すような検知
コイル3を貫く磁束量の減少により■1となり、磁性体
11の影響のない検波信号c2のレベル■2より小さな
値となっている。
Detection signal al shown in broken line shown in Fig. 5 (a) + Fig. 5 TC)
The detected signal C1 indicated by the broken line is generated by the magnetic body 1 in FIG. 3(a).
This is a signal based on 1. The detection signal C2 is due to the induced voltage of the detection coil 3a, which is not affected by the magnetic body 11. The level of the detection signal CI becomes ■1 due to the decrease in the amount of magnetic flux penetrating the detection coil 3 as shown in FIG. ing.

また、第6図(a)に示す破線の検知信号al、第6図
(C1に示す破線の検波信号c1は、第4図の磁性体1
1による信号である。第5図の場合と同様に、検波信号
C2は磁性体11の影響のない検知コイル3aの誘導電
圧によるものである。検波信号c1のレベルは、第6図
[alに示すように検知信号a1の位相が反転している
ため、正から負へ極性が反転している。
Furthermore, the detection signal al shown in the broken line shown in FIG. 6(a) and the detection signal c1 shown in the broken line shown in FIG.
This is a signal based on 1. As in the case of FIG. 5, the detection signal C2 is due to the induced voltage of the detection coil 3a, which is not affected by the magnetic body 11. As shown in FIG. 6 [al], the level of the detection signal c1 is inverted in polarity from positive to negative because the phase of the detection signal a1 is inverted.

位相検知コイル8は、磁性体11による磁界の乱れによ
っても一定の位相(向き)に磁力線が貫く位置に設置さ
れているため、検知コイル3,3aを貫く磁力線の位相
(向き)の基準となり得る。
Since the phase detection coil 8 is installed at a position where the lines of magnetic force penetrate in a constant phase (direction) even when the magnetic field is disturbed by the magnetic body 11, it can serve as a reference for the phase (direction) of the lines of magnetic force passing through the detection coils 3 and 3a. .

従って、位相検知コイル8の誘導電圧による同期信号を
用い同期検波された検波信号は、磁性体11との距離が
小さくなるに従い、正から負へと変化する。
Therefore, the detection signal that is synchronously detected using the synchronous signal generated by the voltage induced in the phase detection coil 8 changes from positive to negative as the distance to the magnetic body 11 becomes smaller.

本実施例においては、位相検知コイル8は、磁性体又は
導電体の接近時にも磁界の乱れにより位相が反転しない
位置にあれば十分であり、第7図に示すように励起コイ
ル2に巻回するものであっても良い。また、検知コイル
3,3aは、第8図に示すように、コイルの軸が紙面に
垂直方向に設置されたものであっても同様の効果を奏す
る。
In this embodiment, it is sufficient that the phase detection coil 8 is located at a position where the phase will not be reversed due to the disturbance of the magnetic field even when a magnetic body or a conductive body approaches, and the phase detection coil 8 is wound around the excitation coil 2 as shown in FIG. It may be something that you do. Furthermore, the same effect can be obtained even if the detection coils 3 and 3a are installed with the axes of the coils perpendicular to the plane of the paper, as shown in FIG.

〔発明の効果〕 以上説明したように本発明は、位相の基準となる位相検
知コイルを設け、この位相検知コイルの誘導電圧による
同期信号を用いて検知コイルの誘導電圧による検知信号
を同期検波することにより、検知コイルを貫く磁束の向
きが反転した時に負電圧を出力することができ、磁性体
が接近するに従い検波信号を単調に減少させることがで
きるので、磁性体の有無を明確に区別できる効果がある
[Effects of the Invention] As explained above, the present invention provides a phase detection coil serving as a phase reference, and uses a synchronization signal caused by the induced voltage of the phase detection coil to synchronously detect a detection signal caused by the induced voltage of the detection coil. By doing this, it is possible to output a negative voltage when the direction of the magnetic flux passing through the detection coil is reversed, and the detection signal can be monotonically decreased as the magnetic object approaches, making it possible to clearly distinguish whether there is a magnetic object or not. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる磁気検知器の一実施例を示す配
置図、第2図はその回路を示す回路図、第3図および第
4図は磁性体の接近による磁束分布の変化を示す説明図
、第5図および第6図は第3図および第4図に対応して
第2図の回路の各部波形を示す波形図、第7図は本発明
の第2の実施例を示す配置図、第8図は本発明の第3の
実施例を示す配置図、第9図は従来の磁気検知器の構成
を示す配置図、第10図はその回路を示す回路図である
。 1・・・発振器、2・・・励起コイル、3.3a・・・
検知コイル、4・・・磁力線、7・・・差動回路、8・
・・位相検知コイル、12.12a、  12b=−・
増幅回路、13.13a・・・同期検波回路。
Fig. 1 is a layout diagram showing an embodiment of a magnetic detector according to the present invention, Fig. 2 is a circuit diagram showing its circuit, and Figs. 3 and 4 show changes in magnetic flux distribution due to the approach of a magnetic body. Explanatory drawings, FIGS. 5 and 6 are waveform diagrams corresponding to FIGS. 3 and 4, showing waveforms of various parts of the circuit in FIG. 2, and FIG. 7 is a layout showing a second embodiment of the present invention. 8 is a layout diagram showing a third embodiment of the present invention, FIG. 9 is a layout diagram showing the configuration of a conventional magnetic detector, and FIG. 10 is a circuit diagram showing the circuit. 1... Oscillator, 2... Excitation coil, 3.3a...
Detection coil, 4... Line of magnetic force, 7... Differential circuit, 8...
・・Phase detection coil, 12.12a, 12b=-・
Amplifier circuit, 13.13a... synchronous detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 交流磁界を発生する励起コイルと、この励起コイルの作
る磁界によって誘導電圧を生ずる検知コイルと、前記磁
界によって誘導電圧を生じ発生磁界の位相を検知する位
相検知コイルと、前記検知コイルの誘導電圧による検知
信号を前記位相検知コイルの誘導電圧による同期信号に
より同期検波する同期検波回路とを備えたことを特徴と
する磁気検知器。
an excitation coil that generates an alternating magnetic field; a detection coil that generates an induced voltage by the magnetic field created by the excitation coil; a phase detection coil that generates an induced voltage by the magnetic field and detects the phase of the generated magnetic field; A magnetic detector comprising: a synchronous detection circuit that synchronously detects a detection signal using a synchronous signal generated by an induced voltage of the phase detection coil.
JP61212375A 1986-09-09 1986-09-09 Magnetic detector Expired - Lifetime JP2587412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61212375A JP2587412B2 (en) 1986-09-09 1986-09-09 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61212375A JP2587412B2 (en) 1986-09-09 1986-09-09 Magnetic detector

Publications (2)

Publication Number Publication Date
JPS6367583A true JPS6367583A (en) 1988-03-26
JP2587412B2 JP2587412B2 (en) 1997-03-05

Family

ID=16621523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61212375A Expired - Lifetime JP2587412B2 (en) 1986-09-09 1986-09-09 Magnetic detector

Country Status (1)

Country Link
JP (1) JP2587412B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215497A (en) * 1983-05-19 1984-12-05 Hitachi Cable Ltd Plating method of fiber bundle
JPH01295311A (en) * 1988-05-24 1989-11-29 Nippon Sharyo Seizo Kaisha Ltd Control method and detecting device for guidance of unmanned carrier
CN105378500A (en) * 2013-07-19 2016-03-02 阿莱戈微系统有限责任公司 Methods and apparatus for magnetic sensor producing a changing magnetic field
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715703A (en) * 1980-06-30 1982-01-27 Hasegawa Taiiku Shisetsu Kk Playground
JPS5858488A (en) * 1981-10-02 1983-04-07 Nippon Telegr & Teleph Corp <Ntt> Detector for object buried in ground
JPS5960275A (en) * 1982-09-30 1984-04-06 Anritsu Corp Metal detector
JPS6146463U (en) * 1984-08-30 1986-03-28 ティーディーケイ株式会社 magnetic sensing device
JPS6184887U (en) * 1984-11-09 1986-06-04

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715703A (en) * 1980-06-30 1982-01-27 Hasegawa Taiiku Shisetsu Kk Playground
JPS5858488A (en) * 1981-10-02 1983-04-07 Nippon Telegr & Teleph Corp <Ntt> Detector for object buried in ground
JPS5960275A (en) * 1982-09-30 1984-04-06 Anritsu Corp Metal detector
JPS6146463U (en) * 1984-08-30 1986-03-28 ティーディーケイ株式会社 magnetic sensing device
JPS6184887U (en) * 1984-11-09 1986-06-04

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215497A (en) * 1983-05-19 1984-12-05 Hitachi Cable Ltd Plating method of fiber bundle
JPH0346584B2 (en) * 1983-05-19 1991-07-16 Hitachi Cable
JPH01295311A (en) * 1988-05-24 1989-11-29 Nippon Sharyo Seizo Kaisha Ltd Control method and detecting device for guidance of unmanned carrier
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
CN105378500A (en) * 2013-07-19 2016-03-02 阿莱戈微系统有限责任公司 Methods and apparatus for magnetic sensor producing a changing magnetic field
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Also Published As

Publication number Publication date
JP2587412B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
JPS6367583A (en) Magnetism detector
US3644825A (en) Magnetic detection system for detecting movement of an object utilizing signals derived from two orthogonal pickup coils
ATE263359T1 (en) DETERMINATION OF RELATIVE POSITION AND ORIENTATION
JP2528161B2 (en) Securities inspection equipment
US6064315A (en) Zero speed transducer
JPH0989843A (en) Method and apparatus for eddy current flaw detection
JP3091148B2 (en) Vehicle detection device
JP2897300B2 (en) Magnetic detector
JP2590581B2 (en) Runway judgment device for automatic guided vehicles
JP2590578B2 (en) Magnetic detector
JP2512951B2 (en) Automatic guided vehicle guidance device
JPH02214907A (en) Magnetic sensor
EP0376095B1 (en) Magnetic flux measuring method and apparatus for embodying the same
JPS61133890A (en) Magnetic sensor
JP2910167B2 (en) Guide method of carrier
JPH03150401A (en) Magnetic detector
SU901821A1 (en) Touch-free position pickup
JPS5852467B2 (en) Non-contact bevel sensor
JPS6240506A (en) Guide sensor having branch point detecting function
JPS59116815A (en) Detector for guide line for unmanned control vehicle
JPS62123506A (en) Position marker and method of detecting same
JPH01203989A (en) Magnetic sensor
JPH10312215A (en) Traveling control method and unmanned vehicle
JPS589018A (en) Displacement speed detecting device
JPS62288501A (en) Magnet detector