JPS636393A - Shell and tube type heat exchanger - Google Patents

Shell and tube type heat exchanger

Info

Publication number
JPS636393A
JPS636393A JP14963386A JP14963386A JPS636393A JP S636393 A JPS636393 A JP S636393A JP 14963386 A JP14963386 A JP 14963386A JP 14963386 A JP14963386 A JP 14963386A JP S636393 A JPS636393 A JP S636393A
Authority
JP
Japan
Prior art keywords
heating fluid
shell
buffle
flows
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14963386A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Ito
伊東 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14963386A priority Critical patent/JPS636393A/en
Publication of JPS636393A publication Critical patent/JPS636393A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PURPOSE:To be able to cope with the change in load easily and safely by varying the flow passage of heating fluid by adjusting the location of a buffle plate in a barrel axis direction from the outside of the barrel. CONSTITUTION:The rotation of a threaded rod 19 with an operating handle 20 allows a movable buffle 25 to rise up. As a movable buffle 24 is connected to the buffle 25 with chains 26, the buffle 24 flows to rise up. In the condition that the buffles 24, 25 are kept pulled up heating fluid flowing in to an upper barrel 8 from an inlet 9 for the heating fluid flows through fixed buffles 21, 22, in a zig-zag way and then flows outside directly from an outlet 10 for the heating fluid. Therefore, as the speed of the heating fluid is reduced and contacting opportunity between the heating fluid and heat transfer tubes 7 where heated fluid flows is reduced by the change in contacting direction from crossing flow to parallel flow, etc. transmittance of heat transferred to the heated fluid is reduced and an exchanged heat amount is also reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は交換熱量を可変としたシェルアンドチューブ式
熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a shell-and-tube heat exchanger in which the amount of heat exchanged is variable.

〔従来の技術〕[Conventional technology]

例えば、高温ガス炉においては、原子炉から約850℃
の一次ヘリウムが流出され、該高温−次ヘリウムの熱エ
ネルギーを加圧水型冷却器で回収し、約400℃のヘリ
ウムを原子炉に戻して運転している。
For example, in a high-temperature gas reactor, the temperature from the reactor to about 850°C is
Primary helium is flowed out, the thermal energy of the high-temperature secondary helium is recovered by a pressurized water cooler, and the helium at approximately 400°C is returned to the reactor for operation.

従来使用されている加圧水型冷却器は第3図に示すよう
に、密閉胴a内に加圧水伝熱管すが収納され、該加圧水
伝熱管すの両端が下部に設けた加圧水入口Cと加圧水出
口gとにそれぞれ接続され、−次ヘリウム人口dから密
閉同a内に流入する一次ヘリウムと熱交換されるように
なっている。図中、fは一次ヘリウム出口、Qは加圧水
出口を示す。
As shown in Fig. 3, a conventionally used pressurized water cooler has pressurized water heat transfer tubes housed in a closed shell a, and both ends of the pressurized water heat transfer tubes are connected to a pressurized water inlet C and a pressurized water outlet G provided at the bottom. and the primary helium flowing from the negative helium population d into the sealed same a. In the figure, f indicates the primary helium outlet, and Q indicates the pressurized water outlet.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし上記の加圧水型冷却器では、異なる負荷で運転し
ようとする場合、例えば50%負荷の場合がある。この
場合高温ガス炉の出入口の温度を最大負荷時と50%負
荷時で同一条件にする必要があるが、ヘリウムガス等の
加熱流体流量を50%にしても紀伝熱量が50%になら
ず、紀伝熱量を50%にするため水の流量を絞ると加圧
水が沸騰を起す等の問題が発生する。
However, the above-mentioned pressurized water cooler may be operated at a different load, for example at 50% load. In this case, it is necessary to keep the temperature at the entrance and exit of the high-temperature gas furnace the same at maximum load and at 50% load, but even if the flow rate of the heating fluid such as helium gas is set to 50%, the amount of heat transferred will not be 50%. If the flow rate of water is reduced to reduce the heat transfer amount to 50%, problems such as boiling of the pressurized water will occur.

このような問題を解決するため、例えば、密閉胴a外で
加熱流体を一部バイパスさせる方法が考えられるが、こ
れだと密閉同a内から流出する温度の降下した加熱流体
とバイパスした高温の加熱流体との混合部の温度差が大
となり熱応力が発生して好ましくない。
In order to solve this problem, for example, a method of partially bypassing the heated fluid outside the sealed shell a can be considered, but in this case, the heated fluid with a lower temperature flowing out from the sealed shell a and the bypassed high temperature fluid This is not preferable because the temperature difference between the heating fluid and the mixing portion becomes large and thermal stress occurs.

又、加圧水型冷却器eを2基直列又は並列に設置して低
負荷時にヘリウムをバイパスさせることも考えられるが
、いずれの場合も加圧水型冷却器eが増加するので設備
費が高価になる。
It is also possible to install two pressurized water type coolers e in series or in parallel to bypass helium during low load, but in either case, the number of pressurized water type coolers e increases, resulting in high equipment costs.

〔発明の目的〕[Purpose of the invention]

本発明は、従来の技術にかかる問題に鑑み案出されたも
ので、加熱水型冷却器として加熱流体の流路を変更させ
ることにより熱交換器の管外熱伝達率を可変とし高温ガ
ス炉の低負荷時の運転も対応できるシェルアンドチュー
ブ式熱交換器を提供することを目的とする。
The present invention was devised in view of the problems associated with the conventional technology, and is a heated water type cooler that changes the flow path of the heated fluid to vary the heat transfer coefficient outside the tube of the heat exchanger. The purpose of the present invention is to provide a shell-and-tube heat exchanger that can be operated at low loads.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明のシェルアンドチュ
ーブ式熱交換器は胴肉に、胴と同軸方向に多数の伝熱管
を収容し、管外を流れる加熱流体が入口側から出口側に
ジグザグ状に流れるように複数のバッフル板が設けられ
てなるシェルアンドチューブ式熱交換器において、1ま
たは2以上のバッフル板を胴外側より胴軸方向に位置調
節することにより加熱流体の流路が可変になっているこ
とを特徴とする。
In order to achieve the above object, the shell-and-tube heat exchanger of the present invention accommodates a large number of heat transfer tubes in the body in the same direction as the body, so that the heated fluid flowing outside the tubes zigzags from the inlet side to the outlet side. In a shell-and-tube heat exchanger that is equipped with a plurality of baffle plates so that the fluid flows in a straight line, the flow path of the heated fluid can be varied by adjusting the position of one or more baffle plates from the outside of the body in the axial direction of the body. It is characterized by being

〔実 施 例〕〔Example〕

以下、図面に基づいて本発明の好適実施例を説明する。 Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図は本発明の一実施例であり、上下二つ割りとした
胴1の下部胴2に加圧水入口3と加圧水出口4を設ける
と共に該下部胴2内を仕切り板5により加圧水入口側と
同出口側とに遮断し、管板6に配設した加圧水伝熱管7
により加圧水入口側と同出口側とを連通せしめている。
Fig. 1 shows an embodiment of the present invention, in which a pressurized water inlet 3 and a pressurized water outlet 4 are provided in the lower part of the body 2 of the body 1 which is divided into upper and lower halves, and a partition plate 5 is provided inside the lower part 2 to provide a pressurized water inlet and an outlet on the same side. A pressurized water heat transfer tube 7 arranged in a tube plate 6 and isolated from the side.
This allows communication between the pressurized water inlet side and the pressurized water outlet side.

該加圧水伝熱管7を収容する上部胴8の下部に加熱流体
入口9を設けると共に上部に加熱流体出口10を設け、
更に上部胴8内には固定バッフル板21,22.および
可動バッフル板24.25 (本実施例では可動バッフ
ル板を2ケとする)がそれぞれ配設され、加熱流体がジ
グザグ状に流れるようになっている。
A heated fluid inlet 9 is provided at the lower part of the upper body 8 that accommodates the pressurized water heat transfer tube 7, and a heated fluid outlet 10 is provided at the upper part,
Furthermore, within the upper body 8 are fixed baffle plates 21, 22. and movable baffle plates 24, 25 (two movable baffle plates in this embodiment) are respectively disposed so that the heated fluid flows in a zigzag pattern.

可動バッフル板24および25は互に鎖26にて連結さ
れ、中央に後述するネジ付ロッド19と螺合するネジ孔
が設けられている。可動バッフル25はストッパー27
によって最下位点が位置決めされ、又可動バッフル24
はネジ付ロッド19の先端に設けられたバッフルストッ
パー28により支えられていて可動バッフル24.25
間の間隔が保持されている。
The movable baffle plates 24 and 25 are connected to each other by a chain 26, and a screw hole is provided in the center to be screwed into a threaded rod 19, which will be described later. The movable baffle 25 is a stopper 27
The lowest point is positioned by the movable baffle 24.
is supported by a baffle stopper 28 provided at the tip of the threaded rod 19, and a movable baffle 24.25
The spacing between is maintained.

ネジ付ロッド19は中央部19aが拡径しておりかつそ
の部分に雄ネジが切っである。
The threaded rod 19 has a central portion 19a that is enlarged in diameter and has a male thread cut therein.

両端部はネジのないロッドで下端部はバッフル板を支え
るストッパー28を有しており、又上端は操作ハンドル
20を有している。
Both ends are threadless rods, the lower end has a stopper 28 for supporting the baffle plate, and the upper end has an operating handle 20.

ネジ付ロッド19は前記上部胴8の頂部を貫通して胴肉
に突出している。
A threaded rod 19 passes through the top of the upper body 8 and projects into the body.

次に作用を説明する。操作ハンドル20によりネジ付ロ
ッド19を回転すると、可動バッフル25が上昇する。
Next, the effect will be explained. When the threaded rod 19 is rotated by the operating handle 20, the movable baffle 25 is raised.

可動バッフル24は鎖26により可動バッフル25に連
結されているためつられて上昇する。鎖26は最低3ケ
あるのがよい。ざらに可動バッフル25が上昇すると可
動バッフル24もネジ付ロッド19のネジ部19aと螺
合する。そして図2に示すように可動バッフル25が上
昇してロッド19のネジ部からはずれると、そこで停止
する。後から続く可動バッフル24が上昇しストッパー
28に当って停止する。
The movable baffle 24 is connected to the movable baffle 25 by a chain 26, so that it is suspended and raised. It is preferable that there be at least three chains 26. When the movable baffle 25 rises roughly, the movable baffle 24 also screws into the threaded portion 19a of the threaded rod 19. Then, as shown in FIG. 2, when the movable baffle 25 rises and comes off the threaded portion of the rod 19, it stops there. The following movable baffle 24 rises and stops when it hits the stopper 28.

可動バッフル24.25が上述のように上に引上げられ
た状態で加熱流体人口9から上部胴8内に流入した高温
加熱流体は固定バッフル21.22をジグザグ状に流れ
た後、直接加熱流体出口10から外部に流出するので、
加熱流体の速度が減じたり又伝熱管7との接触方向が直
交から平行に移行する等による加熱流体と内部に被加熱
流体が流れる伝熱管7との接触の機会が減少し、被加熱
流体へ伝熱される熱伝達率が減少し、交換熱量が下るこ
とになる。
With the movable baffles 24.25 being pulled upward as described above, the high temperature heating fluid flowing into the upper shell 8 from the heating fluid port 9 flows through the fixed baffles 21.22 in a zigzag pattern, and then directly passes through the heating fluid outlet. Since it flows out from 10,
As the speed of the heating fluid decreases or the direction of contact with the heat exchanger tubes 7 changes from perpendicular to parallel, the chances of contact between the heating fluid and the heat exchanger tubes 7 in which the heated fluid flows decreases, causing the heated fluid to The heat transfer rate decreases, and the amount of heat exchanged decreases.

なお、本発明のシェルアンドチューブ式熱交換器は上述
の実施例のみに限定されるものでなく、本発明の要旨を
逸脱しない範囲において種々変更を加え得ることは勿論
である。
Note that the shell-and-tube heat exchanger of the present invention is not limited to the above-described embodiments, and it goes without saying that various changes may be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明のシェルアンドチューブ熱交
換器は、胴肉に収納したバッフル板を移動し、加熱流体
の流路を変更しえるようにしたので、負荷の変動に対し
て容易かつ安全に対応できる。
As explained above, in the shell-and-tube heat exchanger of the present invention, the baffle plate housed in the body can be moved to change the flow path of the heating fluid, so it is easy and safe to respond to load fluctuations. Can correspond to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の熱交換器の一実施例の断面図、第2図
は第1図の一部拡大図、第3図は従来の熱交換器の一例
を示す説明図である。 1・・・・・・胴 2・・・・・・下部胴 6・・・・・・管 板 7・・・・・・加圧水伝熱管 8・・・・・・上部胴 9・・・・・・加熱流体入口 10・・・・・・加熱流体出口 19・・・・・・ネジ付ロンド 21.22・・・・・・固定バッフル板24.25・・
・・・・可動バッフル板特許登録出願人  石川島播磨
重工業株式会社代理人 弁理士  島 村 芳 明 第1図 第2図
FIG. 1 is a sectional view of an embodiment of the heat exchanger of the present invention, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. 3 is an explanatory diagram showing an example of a conventional heat exchanger. 1...Body 2...Lower shell 6...Pipe Plate 7...Pressurized water heat transfer tube 8...Upper shell 9... ... Heating fluid inlet 10 ... Heating fluid outlet 19 ... Threaded iron 21.22 ... Fixed baffle plate 24.25 ...
...Movable baffle plate patent registration applicant Ishikawajima Harima Heavy Industries Co., Ltd. Representative Patent attorney Yoshiaki Shimamura Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 胴内に胴と同軸方向に多数の伝熱管を収容し、管外を流
れる加熱流体が入口側から出口側にジグザグ状に流れる
ように複数のバッフル板が設けられてなるシェルアンド
チューブ式熱交換器において、1または2以上のバッフ
ル板を胴外側より、胴軸方向に位置調節することにより
加熱流体の流路が可変になつていることを特徴とするシ
ェルアンドチューブ式熱交換器。
A shell-and-tube heat exchanger in which a large number of heat transfer tubes are housed in the shell coaxially with the shell, and multiple baffle plates are provided so that the heated fluid flowing outside the tubes flows in a zigzag pattern from the inlet side to the outlet side. 1. A shell-and-tube heat exchanger, characterized in that the flow path of a heating fluid is made variable by adjusting the position of one or more baffle plates from the outside of the shell in the axial direction of the shell.
JP14963386A 1986-06-27 1986-06-27 Shell and tube type heat exchanger Pending JPS636393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14963386A JPS636393A (en) 1986-06-27 1986-06-27 Shell and tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14963386A JPS636393A (en) 1986-06-27 1986-06-27 Shell and tube type heat exchanger

Publications (1)

Publication Number Publication Date
JPS636393A true JPS636393A (en) 1988-01-12

Family

ID=15479490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14963386A Pending JPS636393A (en) 1986-06-27 1986-06-27 Shell and tube type heat exchanger

Country Status (1)

Country Link
JP (1) JPS636393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061291A (en) * 1998-03-26 2009-03-26 Sportbug.Com Inc Performance monitor for athlete using global positioning system
CN111426228A (en) * 2020-05-18 2020-07-17 安徽东能换热装备有限公司 Grid type turbulence device of plate type converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009061291A (en) * 1998-03-26 2009-03-26 Sportbug.Com Inc Performance monitor for athlete using global positioning system
CN111426228A (en) * 2020-05-18 2020-07-17 安徽东能换热装备有限公司 Grid type turbulence device of plate type converter
CN111426228B (en) * 2020-05-18 2021-06-15 安徽东能换热装备有限公司 Grid type turbulence device of plate type converter

Similar Documents

Publication Publication Date Title
US3760870A (en) Cooler construction for circulating controlled amounts of heat carrier from a reaction vessel
US4099019A (en) Electric furnace waste heat recovery method and apparatus
US2391244A (en) Heat exchanger
US3205939A (en) Symmetrical distributor assembly for fluids in a thermal multiple installation
US4034803A (en) Corrosion resistant tubular air preheater
KR940022025A (en) Waste heat boiler
DE3163038D1 (en) Annular heat exchanger
EP0205205A1 (en) Transfer-line cooler
GB1533444A (en) Multi-pass heat exchangers
GB1528215A (en) Heat exchanger and method for cooling hot gases
CA2270800A1 (en) Heat-exchange coil assembly
US4323114A (en) Cluster heat exchanger
JPS636393A (en) Shell and tube type heat exchanger
CN106989631A (en) A kind of moon shape deflection plate and shell-and-tube heat exchanger
US2744813A (en) Catalytic furnace
CS272797B2 (en) Heat exchange installation
CN103256585A (en) Novel waste heat boiler
US3930537A (en) Heat exchanger
JPS63151613A (en) Apparatus for cooling gas generated from synthesis of ammonia
JPS6314094A (en) Shell and tube type heat exchanger
US4243097A (en) Waste heat boiler
US2365878A (en) Heat exchanger
KR20050083061A (en) Waste-heat boiler for a claus plant
WO2003021177A1 (en) Piping system and method of making the same and associated method of heat transfer
GB969036A (en) Improvements in or relating to tubular heat exchange apparatus