JPS6360214A - Smelting reduction method for iron ore - Google Patents

Smelting reduction method for iron ore

Info

Publication number
JPS6360214A
JPS6360214A JP20338686A JP20338686A JPS6360214A JP S6360214 A JPS6360214 A JP S6360214A JP 20338686 A JP20338686 A JP 20338686A JP 20338686 A JP20338686 A JP 20338686A JP S6360214 A JPS6360214 A JP S6360214A
Authority
JP
Japan
Prior art keywords
iron ore
exhaust gas
reaction vessel
flue
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20338686A
Other languages
Japanese (ja)
Inventor
Masaaki Sakurai
桜井 雅昭
Katsuhiro Iwasaki
克博 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP20338686A priority Critical patent/JPS6360214A/en
Publication of JPS6360214A publication Critical patent/JPS6360214A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently execute preheating and pre-reduction by using effectively high temp. exhaust gas by blowing iron ores having different grain sizes plural places having different heights and further adjusting the dropping speed of iron ores under controlling the exhaust gas flowing speed by blowing steam and water. CONSTITUTION:The coares grain iron ore is blown into the reaction vessel 11 from the blowing hole 17a fitted to a flue 12 at the high position and the fine grain iron ore is blown from the blowing hole 17b at the low position. Further, the adjusted quantity of steam or water is blown into the reaction vessel 11 and the flue 12,and the exhaust gas flowing quantity is controlled by adjusting the exhaust gas temp., so that the iron ore blown in the reaction vessel 11 drops naturally. In this way, the pre-reduction and preheating of iron ore having large grain size is efficiently executed. Further, as carrier gas is used only for the iron ore having small grain size, this quantity is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、特に予備還元工程を改良した溶融還元方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention particularly relates to a melt reduction method with an improved preliminary reduction step.

(従来技術) 鉄鉱石の予備還元方法において、鉄鉱石を予熱、予備還
元する方法として、鉄鉱石を予め流動層に装入する方法
がある。この方法は、溶融還元を行なう反応容器から発
生した排ガスを利用して流動層を形成するものであるが
、上記排ガスは、1600〜1800℃あるため、その
ままでは流動層用ガスとして使用できず、1000℃程
度に冷却する必要がある。また流動層を形成しうる流速
を得るために別のガスを吹込んで流速を高める必要があ
る。更に鉄鉱石の粒径が異なると粒径の小さなものは還
元率が大きいが、粒径の大きなものは還元率が小さくな
り、還元率が不均一となる問題があった。このように流
動層を利用する方法では、反応容器から発生した高温の
排ガスの顕熱の利用効率が悪く、還元性も十分とはいえ
なかった。しかも排ガスを冷却し、流速を高めるために
別系統のガス吹込みを必要とし、設備が複雑であった。
(Prior Art) In a method for pre-reducing iron ore, there is a method of preheating and pre-reducing iron ore by charging iron ore into a fluidized bed in advance. In this method, a fluidized bed is formed using exhaust gas generated from a reaction vessel in which melting and reduction is carried out, but since the temperature of the exhaust gas is 1600 to 1800°C, it cannot be used as is as a gas for a fluidized bed. It is necessary to cool it to about 1000°C. In addition, in order to obtain a flow rate at which a fluidized bed can be formed, it is necessary to increase the flow rate by blowing in another gas. Furthermore, when the particle sizes of iron ores differ, those with small particle sizes have a high reduction rate, but those with large particle sizes have a small reduction rate, resulting in a problem that the reduction rate is non-uniform. In this method of using a fluidized bed, the sensible heat of the high-temperature exhaust gas generated from the reaction vessel is inefficiently utilized, and the reducing ability is not sufficient. Moreover, a separate system for blowing gas was required to cool the exhaust gas and increase the flow velocity, making the equipment complex.

(発明が解決しようとする技術的課題)本発明は上記事
情に鑑みてなされたものでその目的とするところは、排
ガスの顕熱を有効に利用して粒径が異なる鉄鉱石を吹込
んでもそれぞれにつき予熱、予備還元を効率よくおこな
い、しかも設備を簡略化することができる鉄鉱石の溶融
還元方法を提供することにある。
(Technical problem to be solved by the invention) The present invention has been made in view of the above circumstances, and its purpose is to effectively utilize the sensible heat of exhaust gas to inject iron ore with different particle sizes. It is an object of the present invention to provide a method for melting and reducing iron ore, which can efficiently perform preheating and preliminary reduction in each case, and can simplify the equipment.

(技術的課題を解決する手段) 本発明は、炭材及び酸素を含有するガスを横吹きあるい
は底吹きしつる機構を備えた反応容器を用意し、この反
応容器に予備還元処理した鉄鉱石、炭材、及び酸素を供
給して鉄鉱石を還元、溶融する溶融還元方法において、
反応容器の開口上部に取付けられた煙道の上部のうち高
さの異なる2か所以上から粒径の異なる鉄鉱石を吹込む
とともに、反応容器及び/又は煙道内に水蒸気及び/又
は水を吹込んで、排ガスの温度を調節して上記煙道を上
昇するガスの流速を制御し、煙道上部から吹込んだ鉄鉱
石の降下速度を調節して、この鉄鉱石の予熱、予備還元
を調節する鉄鉱石の溶融還元方法である。
(Means for Solving Technical Problems) The present invention provides a reaction vessel equipped with a mechanism for side-blowing or bottom-blowing a gas containing carbonaceous material and oxygen, and injecting iron ore which has been pre-reduced into the reaction vessel. In a melt reduction method that reduces and melts iron ore by supplying carbonaceous material and oxygen,
Injecting iron ore with different particle sizes from two or more locations at different heights in the upper part of the flue attached to the upper part of the opening of the reaction vessel, and also blowing steam and/or water into the reaction vessel and/or the flue. Then, the temperature of the exhaust gas is adjusted to control the flow rate of the gas rising through the flue, and the descending speed of the iron ore blown from the upper part of the flue is adjusted to adjust the preheating and preliminary reduction of this iron ore. This is a method for melting and reducing iron ore.

(発明の詳細な説明) 以下本発明を図面を参照して説明する。(Detailed description of the invention) The present invention will be explained below with reference to the drawings.

第1図は本発明方法を実施する溶融還元装置を示し、転
炉型の反応容器11の開口上部に煙道12を取付け、こ
の煙道を集塵器13に接続している。反応容器11は底
部及び側部にそれぞれ吹込口14,15.16を取付け
ている。底部吹込口14からは酸素と炭材(主に微粉炭
)とを反応容器内の鉄浴に吹込むもので、この吹込みに
より炭材の燃焼及び鉄鉱石の還元をおこなついる。側部
吹込口15からは酸素を吹込んで、スラグを攪拌するも
ので、この攪拌により、スラグの熱を鉄浴に伝達すると
ともにスラグと鉄浴との反応を促進している。別の側部
吹込口16からは酸素を吹込んで、反応容器11から発
生したCOガスを二次燃焼している。上記煙道12の上
部には、鉄鉱石吹込口17a、17bがその高さ方向の
異なる位置に取付けられている。そして上部鉄鉱石吹込
口17aからは比較的大粒径の鉄鉱石をそのまま装入し
、また下部鉄鉱石吹込口17bから比較的小粒径の鉄鉱
石をキャリアガスにより吹込んでいる。なお実施例では
、2個の吹込口を設けているが、3個以上でもよいこと
はもちろんである。反応容器内に自然落下した鉄鉱石は
、それぞれ、落下中に反応容器からの排ガスで予熱、予
備還元される。また煙道内には、ガス流速計18及びガ
ス圧力計19が取付けられている。更に集塵器13の出
口側には、圧力制御弁20が取付けられ、これを調節す
ることにより反応容器11内及び煙道12内の排ガスの
圧力を任意に調節できるようになっている。そして反応
容器上部及び煙道中央部には、それぞれ水蒸気及び/又
は水の吹込口21゜22が取付けられている。
FIG. 1 shows a smelting reduction apparatus for carrying out the method of the present invention, in which a flue 12 is attached to the upper part of the opening of a converter-type reaction vessel 11, and this flue is connected to a dust collector 13. The reaction vessel 11 is equipped with inlets 14, 15, and 16 at the bottom and sides, respectively. Oxygen and carbonaceous material (mainly pulverized coal) are blown into the iron bath in the reaction vessel through the bottom injection port 14, and this injection causes combustion of the carbonaceous material and reduction of iron ore. Oxygen is blown in from the side blowing port 15 to stir the slag, and this stirring transfers the heat of the slag to the iron bath and promotes the reaction between the slag and the iron bath. Oxygen is blown in from another side blow-in port 16 to perform secondary combustion of the CO gas generated from the reaction vessel 11. In the upper part of the flue 12, iron ore inlet ports 17a and 17b are installed at different positions in the height direction. Iron ore with a relatively large particle size is directly charged from the upper iron ore inlet 17a, and iron ore with a relatively small particle size is injected with a carrier gas through the lower iron ore inlet 17b. In the embodiment, two blow-in ports are provided, but it goes without saying that three or more blow-in ports may be provided. The iron ore that naturally falls into the reaction vessel is preheated and pre-reduced by the exhaust gas from the reaction vessel while falling. Furthermore, a gas flow meter 18 and a gas pressure gauge 19 are installed in the flue. Further, a pressure control valve 20 is attached to the outlet side of the dust collector 13, and by adjusting this, the pressure of the exhaust gas in the reaction vessel 11 and the flue 12 can be adjusted as desired. Steam and/or water inlets 21 and 22 are installed at the top of the reaction vessel and at the center of the flue, respectively.

しかして本発明では、鉄鉱石吹込口17から吹込まれる
鉄鉱石の粒径に応じて吹込み位置をかえてる。比較的大
粒径の鉄鉱石は、還元しにくく、予備加熱されにくいが
、上部から装入されるので、煙道内の滞留時間が長く、
その還元率を向上し、予備加熱温度を高めることができ
る。この場合鉄鉱石は、普通のフィーダーから供給しキ
ャリアガスは必要としない。一方比較的小径の鉄鉱石に
ついては、還元されやすく、予備加熱されやすいので比
較的下部から吹込む。この場合、小径の鉄鉱石は空気、
回収排ガス等のキャリアガスで搬送する。この方法によ
れば、大粒径の鉄鉱石を効率良く予備加熱、予備還元す
ることができる。またキャリアガスの使用が微細な鉄鉱
石だけなので、キャリアガスの使用を少なくすることが
できる。なお鉄鉱石吹込口17a、17bの中間に水蒸
気及び/又は水の吹込み口を設ければ、煙道上部と下部
とで排ガスの流速をそれぞれ別々に制御でき、このこと
も各種鉄鉱石の還元率の調整に有効な手段である。また
排ガス流速の調節、即ち鉄鉱石を流動化させず自然落下
させるためには、反応容器11あるいは煙道12内に吹
込む水蒸気、水の−を調節して排ガス温度を調節し、こ
のことにより排ガス流速を制御し、鉄鉱石が反応容器1
1内に自然落下するようする。即ち第2図は、排ガス流
速をパラメータとし、これを5m/秒、4.3m7秒、
3m/秒とさせて、鉄鉱石の比重、粒径の異ならせた時
の反応容器開口部での落下領域と流動化領域との変化に
ついて示している。第3図は鉄鉱石の比重をパラメータ
ーとして排ガスの流速と鉄鉱石の粒径との関係を示して
いる。このような関係を利用して、本発明では、ガス流
速計18でガス流速を検出し、この検出信号とこれらの
図に示した関係とを比較する。例えば、鉄鉱石か流動化
領域にある時あるいは微粉の鉄鉱石を吹込む時は、吹込
口21.22からの水蒸気、水の吹込み量を増加して排
ガスの温度を低下、例えば1100℃程度として排ガス
流速を低下させる。
However, in the present invention, the injection position is changed depending on the particle size of the iron ore injected from the iron ore injection port 17. Iron ore with a relatively large particle size is difficult to reduce and preheat, but since it is charged from the top, it has a long residence time in the flue.
The reduction rate can be improved and the preheating temperature can be increased. In this case, the iron ore is supplied from a conventional feeder and no carrier gas is required. On the other hand, iron ore with a relatively small diameter is easily reduced and preheated, so it is injected from a relatively lower part. In this case, the small diameter iron ore is air,
Transported using carrier gas such as recovered exhaust gas. According to this method, iron ore having a large particle size can be efficiently preheated and prereduced. Further, since only fine iron ore is used as carrier gas, the amount of carrier gas used can be reduced. If a steam and/or water inlet is provided between the iron ore inlets 17a and 17b, the flow rate of the exhaust gas can be controlled separately at the upper and lower part of the flue, which also makes it possible to reduce various types of iron ore. This is an effective means of adjusting rates. In addition, in order to adjust the flow rate of the exhaust gas, that is, to allow the iron ore to fall naturally without fluidizing it, the temperature of the exhaust gas is adjusted by adjusting the steam and water blown into the reaction vessel 11 or the flue 12. The exhaust gas flow rate is controlled, and the iron ore flows into the reaction vessel 1.
Let it fall naturally within 1. That is, in Fig. 2, the exhaust gas flow velocity is taken as a parameter, and this is set as 5 m/sec, 4.3 m/7 sec,
3 m/sec, and shows changes in the falling area and fluidized area at the opening of the reaction vessel when the specific gravity and particle size of iron ore are varied. FIG. 3 shows the relationship between the flow rate of exhaust gas and the particle size of iron ore using the specific gravity of iron ore as a parameter. Utilizing such relationships, in the present invention, the gas flow rate is detected by the gas flow meter 18, and this detection signal is compared with the relationships shown in these figures. For example, when iron ore is in a fluidized region or when fine iron ore is injected, the amount of steam and water injected from the inlet 21 and 22 is increased to lower the temperature of the exhaust gas, for example to about 1100°C. As a result, the exhaust gas flow rate is reduced.

このことにより鉄鉱石が自然落下するようにする。This allows the iron ore to fall naturally.

なお本発明では、排ガス顕熱の利用効率を高めるために
反応容器内の圧力を、好ましくは3〜10aLmと高め
るのが良い。
In the present invention, the pressure inside the reaction vessel is preferably increased to 3 to 10 aLm in order to increase the utilization efficiency of exhaust gas sensible heat.

なお本発明では、煙道に塊鉱石の装入口(23)を設け
てここから塊鉱石、フラックス等を別途装入するように
してもよい。
In the present invention, a charging port (23) for lump ore may be provided in the flue, and lump ore, flux, etc. may be separately charged from there.

(発明の効果) しかして本発明によれば大粒径の鉄鉱石について、予備
還元、予備加熱を効率良く行なえ、更にキャリアガスを
小粒径の鉄鉱石にのみ使用しているのでその使用量を少
なくすることができる。しかも1600℃〜1800℃
もの高温の排ガスを直接利用でき、熱の利用効率を向上
することができる。しかも排ガスの流速を下げれば微粉
の鉄鉱石も使用可能となり、使用可能な鉄鉱石の種類が
増加する。また流動層を必要としないので、設備が簡略
化される。
(Effects of the Invention) According to the present invention, preliminary reduction and preheating can be carried out efficiently for large-grain iron ore, and furthermore, since the carrier gas is used only for small-grain iron ore, the amount used is can be reduced. And 1600℃~1800℃
The extremely high temperature exhaust gas can be used directly, improving heat utilization efficiency. Moreover, by lowering the flow rate of exhaust gas, fine powdered iron ore can also be used, increasing the types of usable iron ore. Furthermore, since a fluidized bed is not required, the equipment is simplified.

(実施例) 一段で鉄鉱石を吹込んだ比較例と、二段で鉄鉱石を吹込
んだ本発明方法とのデーターとを比較して示す。
(Example) Data will be compared between a comparative example in which iron ore was injected in one stage and the method of the present invention in which iron ore was injected in two stages.

表1 この表から本発明では、大粒径のものも予備還元率、予
備加熱が良好に行われ、またキャリアガスの使用量が少
ないことが分かる。
Table 1 From this table, it can be seen that in the present invention, the preliminary reduction rate and preliminary heating are performed well even with large particle sizes, and the amount of carrier gas used is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる溶融還元方法の一例を示す説明
図、第2図は排ガスの流速をパラメーターとして鉄鉱石
の粒径と比重を変えた場合の落下領域と流動化領域の変
化を示す図、第3図は鉄鉱石の比重をパラメーターとし
て鉄鉱石の粒径と排ガスの流速との関係を示す図である
Figure 1 is an explanatory diagram showing an example of the melting reduction method according to the present invention, and Figure 2 shows changes in the falling area and fluidization area when the particle size and specific gravity of iron ore are changed using the flow rate of exhaust gas as a parameter. FIG. 3 is a diagram showing the relationship between the particle size of iron ore and the flow rate of exhaust gas using the specific gravity of iron ore as a parameter.

Claims (1)

【特許請求の範囲】[Claims] 炭材及び酸素を含有するガスを横吹きあるいは縦吹きし
うる機構を備えた反応容器を備え、この反応容器に予備
還元処理した鉄鉱石、炭材、及び酸素を供給して鉄鉱石
を還元、溶融する溶融還元方法において、反応容器の開
口上部に取付けられた煙道の上部のうち高さの異なる2
か所以上から粒径の異なる鉄鉱石を吹込むとともに、反
応容器及び/又は煙道内に水蒸気及び/又は水を吹込ん
で、排ガス温度を調節して排ガス流速を制御し、煙道上
部から吹込んだ鉄鉱石の自然落下速度を調節して、この
鉄鉱石の予熱、予備還元を調節する鉄鉱石の溶融還元方
法。
Equipped with a reaction vessel equipped with a mechanism that can blow horizontally or vertically a gas containing carbonaceous material and oxygen, and supplying pre-reduced iron ore, carbonaceous material, and oxygen to this reaction vessel to reduce the iron ore. In the smelting reduction method, two pipes of different heights are used in the upper part of the flue attached to the upper part of the opening of the reaction vessel.
In addition to injecting iron ore with different particle sizes from multiple locations, steam and/or water is injected into the reaction vessel and/or flue to adjust the exhaust gas temperature and control the exhaust gas flow rate, and then inject from the upper part of the flue. An iron ore melting and reduction method that adjusts the natural falling speed of the iron ore to adjust the preheating and preliminary reduction of the iron ore.
JP20338686A 1986-08-29 1986-08-29 Smelting reduction method for iron ore Pending JPS6360214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20338686A JPS6360214A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20338686A JPS6360214A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Publications (1)

Publication Number Publication Date
JPS6360214A true JPS6360214A (en) 1988-03-16

Family

ID=16473179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20338686A Pending JPS6360214A (en) 1986-08-29 1986-08-29 Smelting reduction method for iron ore

Country Status (1)

Country Link
JP (1) JPS6360214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012672A1 (en) * 1992-11-30 1994-06-09 Bogdan Vuletic Process and device for producing pig iron from iron ore or for thermally and/or chemically treating an easily decomposable material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994012672A1 (en) * 1992-11-30 1994-06-09 Bogdan Vuletic Process and device for producing pig iron from iron ore or for thermally and/or chemically treating an easily decomposable material

Similar Documents

Publication Publication Date Title
CN1037528C (en) A converter process for the production of iron
CA1214333A (en) Method and a melt-down gasifier for producing molten pig iron or steel pre-products
CA1337241C (en) Method for smelting reduction of iron ore and apparatus therefor
CA1160056A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
US4886246A (en) Metal-making apparatus involving the smelting reduction of metallic oxides
CA1336744C (en) Method for smelting reduction of iron ore and apparatus therefor
CS212734B2 (en) Method of simultaneous combined production of electric energy and raw iron
SK282985B6 (en) Method of producing liquid pig iron or liquid steel precursors
US6156262A (en) Melter gasifier for the production of a metal melt
JPS6360214A (en) Smelting reduction method for iron ore
JPS6360213A (en) Smelting reduction method for iron ore
JPS62228870A (en) Out-of-core circulator for fluidized-bed spare reducing furnace
JPS6360212A (en) Smelting reduction method for iron ore
JPS6311609A (en) Prereduction device for iron ore
JPS62227022A (en) Preheating and reducing device for iron ore
JP2765734B2 (en) Operation method of iron bath reactor
JPS62228874A (en) Preheated core shifter to fluidized-bed spare reducing furnace
JPH01111809A (en) Method for stopping operation of iron ore fluidized bed reduction apparatus
JPS62228868A (en) Fluidized bed furnace with out-of-core circulating mechanism
JPS59104411A (en) Method for preheating raw material fed to fluidized bed type preliminary reducing furnace and fluidized bed type preliminary reducing furnace
JPH0774368B2 (en) Iron ore fluidized bed reduction device
JPH0637659B2 (en) Iron ore fluidized bed reduction device
JPS62227014A (en) Production of molten metal from powdery ore
JPS62228883A (en) Out-of-core circulation-quantity controller in fluidized-bedspare reducing furnace
JPS62228882A (en) Iron ore spare reducing device