JPS6357383B2 - - Google Patents

Info

Publication number
JPS6357383B2
JPS6357383B2 JP59017418A JP1741884A JPS6357383B2 JP S6357383 B2 JPS6357383 B2 JP S6357383B2 JP 59017418 A JP59017418 A JP 59017418A JP 1741884 A JP1741884 A JP 1741884A JP S6357383 B2 JPS6357383 B2 JP S6357383B2
Authority
JP
Japan
Prior art keywords
manufacturing
silicon
aluminum
water
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59017418A
Other languages
Japanese (ja)
Other versions
JPS60161371A (en
Inventor
Shuzo Kanzaki
Hideyo Tabata
Shigetoshi Oota
Takeshi Kumazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59017418A priority Critical patent/JPS60161371A/en
Publication of JPS60161371A publication Critical patent/JPS60161371A/en
Publication of JPS6357383B2 publication Critical patent/JPS6357383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、噴霧熱分解法により合成したムライ
ト粉末より得られる高強度セラミツクス焼結体の
製造法に関するものである。3Al2O3・2SiO2なる
組成で代表されるムライトは、熱膨張係数が酸化
物セラミツクスの中で特に小さく、密度も低くま
た、代表的な酸化物セラミツクスであるアルミナ
に比して高温でのクリープ特性が優れるなどの特
徴を有し、耐熱性構造材料としての応用の可能性
があるため、研究開発が盛んになりつつある。従
来このムライト焼結体を製造する原料粉体は、粘
土質原料にアルミナを添加する方法、アルミナゾ
ルとシリカゾルを混合しゲル化して加熱する方法
及びケイ酸ソーダとアルミニウム塩を混合し加熱
する方法等が用いられている。しかしながら、粘
土質原料を用いると低温で液相を生じこれが焼成
後も残存し、ゾルを用いた場合微粉末が得られず
焼結性に劣りまた、Na塩を用いると生成物にNa
が入り易く、いずれも焼結体の強度を低下させる
原因となつていた。この他、近年アルコキシドと
アルミニウム塩を共沈させたり、アルコキシドを
加水分解して微粉末を合成する方法が研究されて
来たが、ホツトプレス焼結においても焼結体の強
度が30Kg/mm2以下と非常に小さいなどの欠点があ
つた。 本発明は、上記の如き従来の欠点を鑑みて、
種々の実験及び研究を重ねた結果、焼結体中に液
相や不純物の存在が実質上認められない前記特許
請求の範囲に記載の如き高密度・高強度ムライト
セラミツクス焼結体の製造法を完成するに至つた
ものである。 以下この発明を詳細に説明する。 本発明において使用される原料はアルミナ源と
しては、硝酸塩、硫酸塩、塩化物、酢酸塩などが
挙げられ、これらのうちで硝酸アルミニウムまた
は塩化アルミニウムがより好ましい。シリカ源は
SioOo-1(OR)2o+2で表わされるアルコキシドが挙
げられ、シリコンメトキシド、シリコンエトキシ
ド、シリコンプロポキシド及びシリコンブトキシ
ドが使用できる。このうちでもR=C2H5、n=
1のシリコンエトキシドあるいはR=CH3、n=
1のシリコンメトキシドが好ましい。これらの出
発原料を水または水溶性の溶媒中にムライト組成
(通常3Al2O3・2SiO2であるが、固溶領域が
Al2O3mol%で58〜62.4mol%)になる様に混合、
溶解する。なお溶媒としては水またはアルコール
またはこれらの混合物のいずれかであつて、アル
コール分の割合は好ましくは0〜100%、より好
ましくは30〜50%である。濃度は飽和溶液濃度ま
で任意の濃度で良いが、好ましくはムライト換算
で0.1〜0.5mol/程度である。噴霧熱分解法
(Spray Pyrolysis method)は分解温度により得
られる粒子の特性が異なる。この場合の分解温度
は250〜700℃、好ましくは600℃程度が良い。か
くしてムライト組成に分子オーダー(Molecular
order)で混合された均質な粒子が、ある大きさ
を持つた凝集体として得られる。この場合、得ら
れた粉末は、X線的に無定形(Amorphous)で、
粒子の表面に水溶性溶媒等の吸着が見られるた
め、この吸着した水溶性溶媒、水等を除去し、か
つ結晶化させるために仮焼を行う。仮焼温度は
900〜1100℃が好ましく、1000℃前後がより好ま
しい。更に凝集粒子を破壊するために粉砕を行
い、平均粒径0.1μm前後のムライト粉末を得る。
この時不純物の混入をさけるため粉砕媒体は、他
の不純物の混入を防止するために厳選される必要
がある。ムライト粉末を1500〜1700℃の温度範囲
で、1時間以上加圧焼結(ホツトプレス)するか
あるいは目的とする形状に成形後常圧焼結するこ
とにより、本発明の高強度ムライトセラミツクス
焼結体を得る。本発明方法において、目的に応じ
てアルミナやシリカ過剰領域のムライト粉末を合
成する場合でも製造プロセスは全て同様である。
従つて本発明によれば、化学組成が均質なムライ
ト粒子から成り、高温での焼結にもかかわらず異
常粒子成長や液相、不純物の存在など見られず高
温領域でも著しく安定な高強度ムライトセラミツ
クス焼結体が得られる。 実施例及び比較例 水溶性溶媒中に硝酸アルミニウム(Al
(NO33・9H2O)とシリコンエトキシド(Si
(OC2H54)をムライト組成(3Al2O3・2SiO2
の化学量論比の0.2mol/の濃度になる様に混
合し、溶解し、炉内温度600℃の噴霧熱分解炉に
て処理することにより得られる無定形ムライト組
成粉末を、1000℃で仮焼し、ボールミルにて50時
間粉砕し比表面積15m2/g、平均粒径0.1μmのム
ライト粉末を得る。ここで噴霧熱分解にて得られ
た粉末の熱分析(TG―DTA)の結果を図1に示
す。図1より通常のゾルーゲル法や共沈法と異な
り、無定形ムライト組成粉末のムライト化が、
980℃付近の発熱ピークでわかる様に一段で終了
することが特徴である。得られたムライト粉末
を、1600℃、60分、500Kg/cm2の条件で加圧焼結
法にて処理あるいは、200Kg/cm2の圧力で成形し、
大気雰囲気中1650℃にて焼結させることによりム
ライト焼結体を得る。次いで焼結体をダイヤモン
ド砥石で切断し、#400ダイヤモンド砥石で表面
研削を行い3×3×30mmの試験片を作成し、スパ
ン20mmで長さ方向中心部に荷重を加え、3点曲げ
にて常温から1300℃の温度範囲で曲げ強さを測定
した。 本発明による方法及びその他の方法によるムラ
イト焼結体について、各種試験をして得られた測
定値を表1に示す。
The present invention relates to a method for producing a high-strength ceramic sintered body obtained from mullite powder synthesized by a spray pyrolysis method. Mullite, which is represented by the composition 3Al 2 O 3 2SiO 2 , has a particularly small thermal expansion coefficient among oxide ceramics, has a low density, and is more stable at high temperatures than alumina, a typical oxide ceramic. It has characteristics such as excellent creep properties and has the potential for application as a heat-resistant structural material, so research and development is becoming more active. Conventionally, the raw material powder for manufacturing this mullite sintered body has been obtained by adding alumina to clay raw materials, mixing alumina sol and silica sol to gel and heating the mixture, mixing sodium silicate and aluminum salt and heating, etc. is used. However, when clay raw materials are used, a liquid phase is generated at low temperatures and this remains even after firing, and when a sol is used, a fine powder cannot be obtained and the sinterability is poor, and when Na salt is used, the product contains Na
easily enters the sintered body, and both of them cause a decrease in the strength of the sintered body. In addition, in recent years, research has been conducted on methods of co-precipitating alkoxides and aluminum salts, or hydrolyzing alkoxides to synthesize fine powders, but even in hot press sintering, the strength of the sintered body is 30 kg/mm 2 or less. It had drawbacks such as being very small. The present invention has been made in view of the above-mentioned conventional drawbacks.
As a result of various experiments and research, we have developed a method for producing a high-density, high-strength mullite ceramic sintered body as described in the claims above, in which the presence of liquid phase or impurities is substantially not recognized in the sintered body. It has come to completion. This invention will be explained in detail below. The alumina source used in the raw material used in the present invention includes nitrates, sulfates, chlorides, acetates, etc. Among these, aluminum nitrate or aluminum chloride is more preferred. The silica source is
Examples include alkoxides represented by Si o O o-1 (OR) 2o+2 , and silicon methoxide, silicon ethoxide, silicon propoxide, and silicon butoxide can be used. Among these, R=C 2 H 5 , n=
1 silicon ethoxide or R=CH 3 , n=
1 silicon methoxide is preferred. These starting materials are added to water or a water-soluble solvent with a mullite composition (usually 3Al 2 O 3 2SiO 2 , but the solid solution region is
Al 2 O 3 mol% (58 to 62.4 mol%),
dissolve. The solvent is either water, alcohol, or a mixture thereof, and the alcohol content is preferably 0 to 100%, more preferably 30 to 50%. The concentration may be any concentration up to the saturated solution concentration, but is preferably about 0.1 to 0.5 mol/in terms of mullite. In the spray pyrolysis method, the characteristics of the particles obtained differ depending on the decomposition temperature. In this case, the decomposition temperature is 250 to 700°C, preferably about 600°C. Thus, the mullite composition has a molecular order (Molecular order).
Homogeneous particles mixed in different order are obtained as agglomerates with a certain size. In this case, the powder obtained is X-ray amorphous;
Since adsorption of a water-soluble solvent, etc. is observed on the surface of the particles, calcination is performed to remove the adsorbed water-soluble solvent, water, etc., and to crystallize the particles. The calcination temperature is
The temperature is preferably 900 to 1100°C, more preferably around 1000°C. Furthermore, pulverization is performed to break up the agglomerated particles to obtain mullite powder with an average particle size of approximately 0.1 μm.
At this time, in order to avoid contamination with impurities, the grinding media must be carefully selected to prevent contamination with other impurities. The high-strength mullite ceramic sintered body of the present invention is produced by sintering mullite powder under pressure (hot pressing) at a temperature range of 1500 to 1700°C for at least 1 hour, or by molding it into the desired shape and then sintering it under normal pressure. get. In the method of the present invention, the manufacturing process is the same even when synthesizing mullite powder in an alumina or silica-excessive region depending on the purpose.
Therefore, according to the present invention, high-strength mullite is made of mullite particles with a homogeneous chemical composition, shows no abnormal particle growth, liquid phase, or presence of impurities despite sintering at high temperatures, and is extremely stable even in high-temperature ranges. A ceramic sintered body is obtained. Examples and Comparative Examples Aluminum nitrate (Al
(NO 3 ) 3・9H 2 O) and silicon ethoxide (Si
(OC 2 H 5 ) 4 ) with mullite composition (3Al 2 O 3・2SiO 2 )
The amorphous mullite composition powder obtained by mixing and melting to a concentration of 0.2 mol/stoichiometric ratio of The mixture was calcined and ground in a ball mill for 50 hours to obtain mullite powder with a specific surface area of 15 m 2 /g and an average particle size of 0.1 μm. Figure 1 shows the results of thermal analysis (TG-DTA) of the powder obtained by spray pyrolysis. Figure 1 shows that unlike the normal sol-gel method or coprecipitation method, the mullite formation of amorphous mullite composition powder is
As can be seen from the exothermic peak around 980°C, it is characterized by finishing in one stage. The obtained mullite powder is processed by a pressure sintering method at 1600℃ for 60 minutes at 500Kg/cm 2 or molded at a pressure of 200Kg/cm 2 .
A mullite sintered body is obtained by sintering at 1650°C in an air atmosphere. Next, the sintered body was cut with a diamond whetstone, and the surface was ground with a #400 diamond whetstone to create a 3 x 3 x 30 mm test piece. A load was applied to the center in the longitudinal direction with a span of 20 mm, and the specimen was bent at three points. Bending strength was measured in the temperature range from room temperature to 1300°C. Table 1 shows the measured values obtained by conducting various tests on mullite sintered bodies produced by the method according to the present invention and other methods.

【表】 以上の実験結果から、本発明の方法によるとき
は高温まで強度の低下が見られず、高温特性が著
しく良好なムライト焼結体が得られることが判
る。以上述べて来た様に、本発明の高強度セラミ
ツクス焼結体の製造法は噴霧熱分解法により得ら
れる粉末を用い、均質なムライト焼結体が得ら
れ、ゾル―ゲル法や共沈法と比較しても粉末の処
理が容易であり、高温まで化学的・物理的に安定
な高強度ムライト焼結体を得ることができ、工業
的に極めて有用な方法である。
[Table] From the above experimental results, it can be seen that when the method of the present invention is used, no decrease in strength is observed up to high temperatures, and a mullite sintered body with extremely good high-temperature properties can be obtained. As described above, the method for producing a high-strength ceramic sintered body of the present invention uses powder obtained by the spray pyrolysis method to obtain a homogeneous mullite sintered body, and uses the sol-gel method and co-precipitation method. It is an extremely useful method industrially, as it is easier to process the powder than the conventional method, and a high-strength mullite sintered body that is chemically and physically stable up to high temperatures can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図1は硝酸アルミニウムとシリコンエトキシド
をAl2O3/SiO2比がモル比で2/3となる様に混
合した溶液を600℃で噴霧熱分解して得た粉末の
熱分析(TG―DTA)結果である。
Figure 1 shows the thermal analysis ( TG- DTA) results.

Claims (1)

【特許請求の範囲】 1 アルミニウム塩と一般式SioOo-1(OR)2o+2
(n≧1,R:アルキル基)のシリコンアルコキ
シドとを水または水溶性溶媒に溶解すること、こ
うしてできた溶液を噴霧熱分解すること、この熱
分解によつて合成された粉末を900〜1100℃で仮
焼すること、仮焼によつて得られたムライト粉末
を1500〜1700℃の温度範囲で、加圧焼結もしくは
成形後常圧焼結することから成ることを特徴とす
る、高強度セラミツクス焼結体の製造法。 2 該アルミニウム塩が硝酸アルミニウム、硫酸
アルミニウム、塩化アルミニウム及び酢酸アルミ
ニウムのうちいずれかである、特許請求の範囲第
1項記載の製造法。 3 該アルミニウム塩が硝酸アルミニウムまたは
塩化アルミニウムである、特許請求の範囲第2項
に記載の製造法。 4 該シリコンアルコキシドがシリコンメトキシ
ド、シリコンエトキシド、シリコンプロポキシド
およびシリコンブトキシドのいづれかである、特
許請求の範囲第1項記載の製造法。 5 該シリコンアルコキシドがシリコンメトキシ
ドまたはシリコンエトキシドである、特許請求の
範囲第4項記載の製造法。 6 該溶媒が水またはアルコールまたは、これら
の混合物のいずれかである、特許請求の範囲第1
項記載の製造法。 7 水とアルコールの該混合物中のアルコール分
の割合が0〜100容量%である、特許請求の範囲
第6項記載の製造法。 8 水とアルコールの該混合物中のアルコール分
の割合が30〜50容量%である、特許請求の範囲第
7項記載の製造法。 9 上記噴霧熱分解工程における温度が250〜700
℃である、特許請求の範囲第1項記載の製造法。 10 上記焼結工程における成形体の保持時間が
少なくとも1時間である、特許請求の範囲第1項
記載の製造法。
[Claims] 1. Aluminum salt and general formula Si o O o-1 (OR) 2o+2
(n≧1, R: alkyl group) and silicon alkoxide are dissolved in water or a water-soluble solvent, the resulting solution is subjected to spray pyrolysis, and the powder synthesized by this pyrolysis is A high-strength product characterized by calcination at ℃, and pressure sintering or pressureless sintering after forming of the mullite powder obtained by calcination at a temperature range of 1500 to 1700℃. A method for producing ceramic sintered bodies. 2. The manufacturing method according to claim 1, wherein the aluminum salt is any one of aluminum nitrate, aluminum sulfate, aluminum chloride, and aluminum acetate. 3. The manufacturing method according to claim 2, wherein the aluminum salt is aluminum nitrate or aluminum chloride. 4. The manufacturing method according to claim 1, wherein the silicon alkoxide is any one of silicon methoxide, silicon ethoxide, silicon propoxide, and silicon butoxide. 5. The manufacturing method according to claim 4, wherein the silicon alkoxide is silicon methoxide or silicon ethoxide. 6 Claim 1, wherein the solvent is either water or alcohol, or a mixture thereof.
Manufacturing method described in section. 7. The production method according to claim 6, wherein the proportion of alcohol in the mixture of water and alcohol is 0 to 100% by volume. 8. The manufacturing method according to claim 7, wherein the proportion of alcohol in the mixture of water and alcohol is 30 to 50% by volume. 9 The temperature in the above spray pyrolysis step is 250 to 700.
The manufacturing method according to claim 1, wherein the temperature is .degree. 10. The manufacturing method according to claim 1, wherein the molded body is held for at least 1 hour in the sintering step.
JP59017418A 1984-02-01 1984-02-01 Manufacture of high strength ceramic sintered body Granted JPS60161371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59017418A JPS60161371A (en) 1984-02-01 1984-02-01 Manufacture of high strength ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59017418A JPS60161371A (en) 1984-02-01 1984-02-01 Manufacture of high strength ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS60161371A JPS60161371A (en) 1985-08-23
JPS6357383B2 true JPS6357383B2 (en) 1988-11-11

Family

ID=11943457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59017418A Granted JPS60161371A (en) 1984-02-01 1984-02-01 Manufacture of high strength ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS60161371A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611667B2 (en) * 1985-05-30 1994-02-16 工業技術院長 Method for producing alumina-silica ceramics sintered body having excellent high temperature strength
JPS62108765A (en) * 1985-11-08 1987-05-20 株式会社神戸製鋼所 Manufacture of tough ceramic material
JPS6389455A (en) * 1986-10-01 1988-04-20 東レ株式会社 Mullite sintered body
JPS63159254A (en) * 1986-12-23 1988-07-02 株式会社ニッカト− Manufacture of mullite base electric insulating material
WO1992009543A1 (en) * 1990-12-03 1992-06-11 Manville Corporation Method of preparing ceramic hollow particles
KR101677415B1 (en) * 2014-06-06 2016-11-17 엔지케이 인슐레이터 엘티디 Mullite sintered body, method for producing the same, and composite substrate

Also Published As

Publication number Publication date
JPS60161371A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
JPS6052083B2 (en) Manufacturing method of high purity ceramic powder
JPS62167209A (en) Alpha-sialon powder and its production
JPS6357383B2 (en)
US5320792A (en) Process for the preparation of LAS ceramic sintered bodies
JPH0640763A (en) Preparation of highly crystalline article
JPH0339967B2 (en)
US4774068A (en) Method for production of mullite of high purity
CA1241523A (en) Process for the preparation of lithium silicate
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JP2000159570A (en) Production of compact cordierite sintered product
JPS61281013A (en) Production of mullite powder of high purity
JPH03215348A (en) Sintered material of zircon and its production
JPH0615421B2 (en) Method for manufacturing mullite sintered body
JPS60141671A (en) Manufacture of zirconia sintered body
JPS62202813A (en) Production of mullite fine powder containing uniformly dispersed zirconia
JP3496795B2 (en) Method for producing silicon nitride powder
JPS5926966A (en) Manufacture of ceramics green molded body
JPS60145902A (en) Production of sialon powder
JPS62230667A (en) Manufacture of ceramics
JPS61236649A (en) Ceramic powder and manufacture
David et al. Synthesis and characterization of cordierite from acetylacetonate/alkoxide precursors
JPS62265166A (en) Manufacture of high temperature strength alumina silica baseceramic sintered body
JPS6272554A (en) Manufacture of fine polycrystal al2o3 sintered body
JPH0574525B2 (en)
JPH02102169A (en) Mullite composition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term